

West Linn Surface Water Master Plan

UAB Meeting

April 9 | 2019

Surface Water Master Plan Development Process

Problem Identification

- Data Gathering
- Field Investigations
- Surveys/Interviews
- Public Input
- Hydrologic and Hydraulic Modeling

- Programmatic Activities
- Planning Activities
- Cost Estimation

Master Plan Development

- Project Prioritization
- Documentation
- Funding Needs
- Stakeholder Outreach

Project Timeline

Spring 2017 Project Kickoff Data Compilation Summer 2017 Data Compilation GIS Data Review Code Review Public Outreach

Fall/ Winter 2017 Problem Area Identification Field Investigations System Hydrology

Spring/Summer 2018 Survey System Hydrology Hydraulic Modeling Water Quality Assessment

Fall/ Winter 2018 Project Development Project Costing

Spring/ Summer 2019 Project Prioritization Plan Development

Meeting Goals

- Review surface water master plan development process including public engagement.
- Identify system evaluation results.
- Discuss potential stormwater project and program needs for the capital improvement program.
- Define project next steps.

Basis of Planning and Preliminary Project Needs

Project Timeline

Spring 2017 Project Kickoff Data Compilation Summer 2017 Data Compilation GIS Data Review Code Review Public Outreach

Fall/ Winter 2017 Problem Area Identification Field Investigations System Hydrology

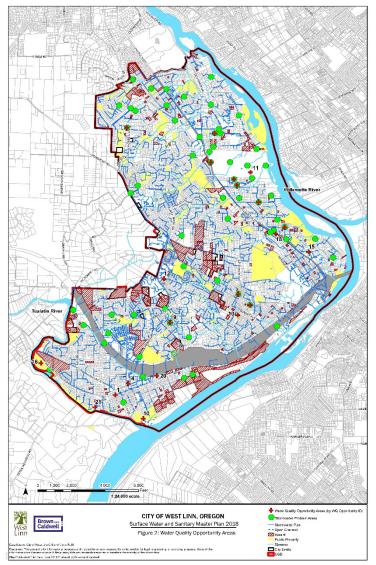
Data Review

- Public and Staff Surveys
- Staff discussions/ meetings
- GIS Data Review
- 2006 Stormwater Master Plan CIP Review
- 2015 Hydromodification Assessment Review

West Linn Stormwater Survey (Staff)

	Title/ Department:							
Please take a few moments to note where you have observed the following:								
1. System Flooding: Whe channels) occur?	re does regular flooding of th	he stormwater collection	system (pipes, oper					
Type of deficiency:	Infrastructure description:	Location (Address or intersection):	Observations:					
System surcharging Roadway flooding Pending or pooling stomwater Property damage Other (specify)								
System such arging Roadway flooding Ponding or pooling stormwater Property damage Other (specify)								
System surcharging Roadway flooding Pronding or pooling stormwater Property damage Other (specify)								
2. Open Channel Condition or replacement?	on: Are there areas of the op	en channel collection sys	tem that require rep					
Type of deficiency:	Channel description:	Location (Address or intersection):	Observations:					
Bank erosion Erosion at outfalls								
Channel deepening/widening Channel migration Other (specify)								
Channel migration								

est Linn Stormwater Master Plan


Code Review/ Basis of Planning

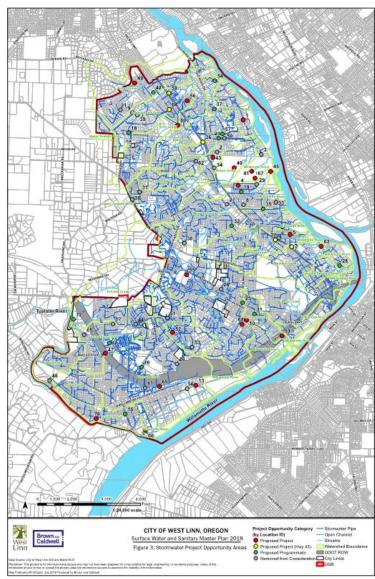
- Review of the City's stormwater public works/ stormwater design standards and municipal code.
- Goals:
 - Identify basis of design
 - Identify gaps or inconsistencies between code and the NPDES MS4 permit requirements

• Outcomes:

- Confirm city/ private property responsibilities related to the stormwater collection system
- Establish design criteria for use in system evaluation and CIP development
- September 2018 PWS update.

Water Quality Assessment

- Water quality retrofits are a priority in the NPDES MS4 permit.
- Four strategies developed to characterize identified water quality projects:
 - 1. Green infrastructure in public ROW
 - 2. New facilities on public property
 - 3. New facilities to directly manage runoff associated with Highway 43 (public property or property acquisition)
 - 4. Pond retrofits


Site Visits

Project Need Workshop

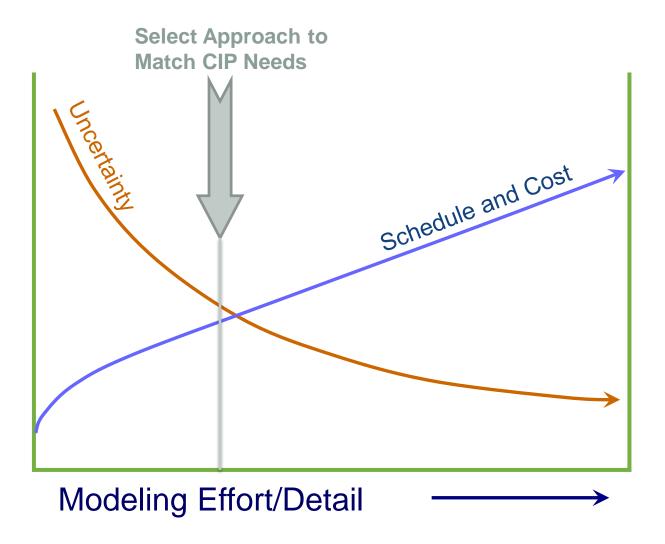
Projects

- Capacity Improvement
- Improve System Configuration
- Add Infrastructure (with and without water quality)
- Water Quality
- System Repair
- Erosion
- Planning Efforts
- Programs

Modeling Needs Identification

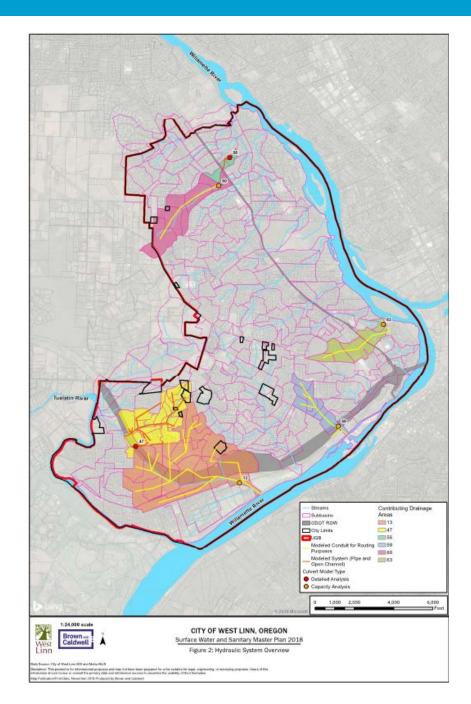
- Project needs were reviewed to determine if modeling would help inform project solutions.
 - Category 1: Detailed hydraulic modeling to inform sources and solutions
 - Category 2: Hydrology modeling only to inform system sizing
 - Category 3: Limited hydraulic modeling to evaluate capacity
 - Category 4: No modeling required
- Survey conducted by City staff in Summer 2018

Modeling Evaluation


Project Timeline

Spring 2017 Project Kickoff Data Compilation Summer 2017 Data Compilation GIS Data Review Code Review Public Outreach

Fall/ Winter 2017 Problem Area Identification Field Investigations System Hydrology



Modeling Approach

Modeling Overview

- Detailed Modeling Areas:
 - Blankenship Road
 - Fairview Way
- Capacity Modeling Areas:
 - 5th Avenue Culvert
 - Sunset Creek at I-205
 - Kantara Way
 - Maddox Creek at River Street
- Highway 43
 - 24 Crossings
 - Upstream and Downstream Structures and Conveyance Channel

Highway 43 System Evaluation Assumptions

- Stemming from the 2016 Highway 43 Concept Plan
- Phase I of the Highway 43 Improvements (Arbor to Hidden Springs)
 - Design: 2018 (Conducted by ODOT), Construction: ~2020
 - Capacity deficient culverts to be sized and costed as a CIP.
 - Water quality improvements not included in CIP concepts.
- Phase II of the Highway 43 Improvements (Hidden Springs to I-205)
- Guidelines:
 - Cooperative Maintenance Agreement (February 2018)
 - City charter amendment (Chapter 11, Section 46) stormwater management associated with OR43 is an authorized use. Water quality mitigation for Highway 43 may be permitted in parks.

Analysis Criteria Used to Identify "Deficiencies"

- Water Quality Facility Design
 - Portland SWMM
 - 1"/ 24 hour design storm
- Structure Spacing
 - Max 500' between structures
- Pipe Design
 - 10-year design storm, surcharge is acceptable
 - 12" min pipe size in public ROW
- Culverts
 - 25-year design storm, such that headwater does not exceed 1.5 times culvert diameter.

Modeling Results

- Blankenship Road
 - 2-yr and 10-yr deficiencies
 - Upsizing and realignment
- Fairview Way
 - 10-yr deficiencies
 - Upsizing and relocation

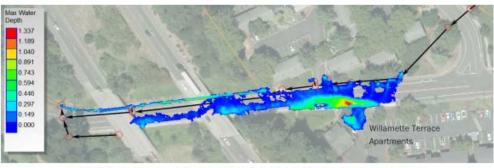
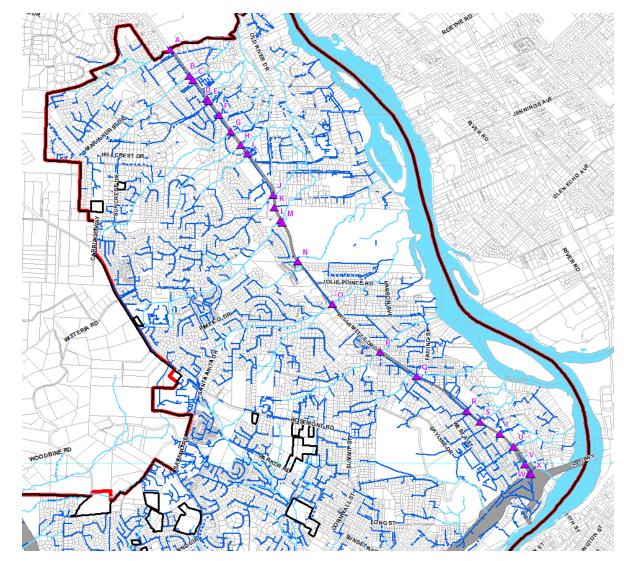




Figure 1. Existing system analysis showing 2-D flooding for the 2-year 24-hour event

Modeling Results

- 2-yr deficiency at all evaluated culverts
- Kantara Way
 - Limited potential for safety impacts
 - No project development

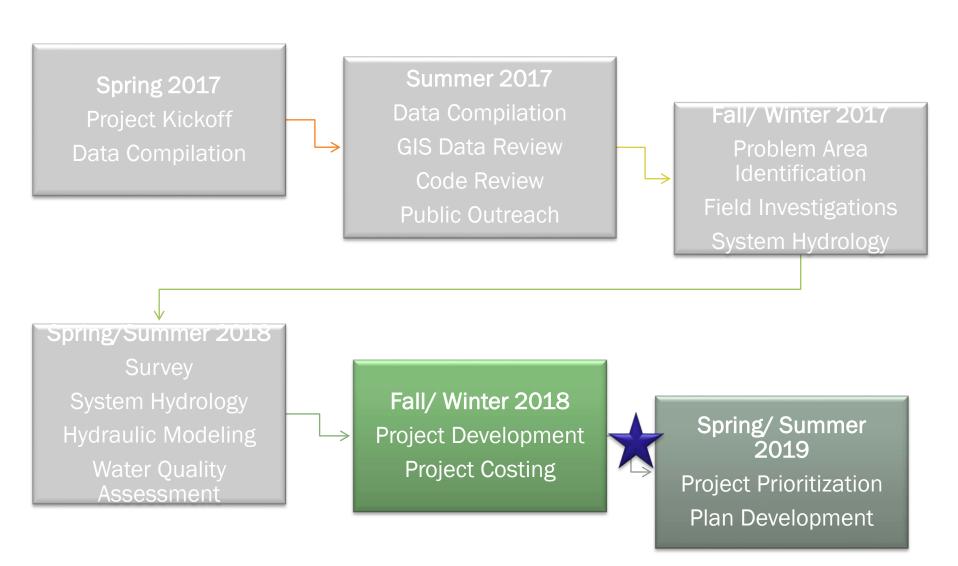


Location #63:

Maddox Creek

Modeling Results - Highway 43

- 24 culverts evaluated
- 13 deficient
 - Flooding
 - Surcharging
- Upsize/ realignment in conjunction with Highway 43 improvements



Project and Program Development and Costs

Project Timeline

Priorities and Phasing

- High Priority Needs (2019-2024)
 - Addresses current system flooding
 - Addresses failing infrastructure
 - Project timing in next 5-years
- Medium Priority Needs (2025-2029)
 - Addresses local issue
 - Project timing in next 15-years
- Low Priority/ Unfunded Needs (2030-2039)

Project Efforts

- One-time activity to address a system deficiency or need.
 - Capacity Projects
 - Infrastructure Improvement/ Addition Projects
 - Retrofit/ Erosion Prevention and Control Projects
- Project needs identified as High and Medium Priority are sized and a preliminary cost developed.

Projects will use AACE Class 4 Capital Estimates and will be in 2018 ENR dollars

	Primary Characteristic	Secondary Characteristic			
ESTIMATE CLASS	LEVEL OF PROJECT DEFINITION Expressed as % of complete definition	END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a]	PREPARATION EFFORT Typical degree of effort relative to least cost index of 1 [b]
Class 5	0% to 2%	Concept Screening	Capacity Factored, Parametric Models, Judgment, or Analogy	L: -20% to -50% H: +30% to +100%	1
Class 4	1% to 15%	Study or Feasibility	Equipment Factored or Parametric Models	L: -15% to -30% H: +20% to +50%	2 to 4
Class 3	10% to 40%	Budget, Authorization, or Control	Semi-Detailed Unit Costs with Assembly Level Line Items	L: -10% to -20% H: +10% to +30%	3 to 10
Class 2	30% to 70%	Control or Bid/ Tender	Detailed Unit Cost with Forced Detailed Take-Off	L: -5% to -15% H: +5% to +20%	4 to 20
Class 1	50% to 100%	Check Estimate or Bid/Tender	Detailed Unit Cost with Detailed Take- Off	L: -3% to -10% H: +3% to +15%	5 to 100

Notes: [a] The state of process technology and availability of applicable reference cost data affect the range markedly. The +/- value represents typical percentage variation of actual costs from the cost estimate after application of contingency (typically at a 50% level of confidence) for given scope.

[b] If the range index value of "1" represents 0.005% of project costs, then an index value of 100 represents 0.5%. Estimate preparation effort is highly dependent upon the size of the project and the quality of estimating data and tools.

Figure 1. – Cost Estimate Classification Matrix for Process Industries

Planning Efforts

- One-time effort to evaluate feasibility and need for a project opportunity
- Planning efforts are all considered Medium Priority and a preliminary cost developed.

Program Efforts

- Ongoing/ annual effort to address routine deficiency.
- Establishing programmatic efforts can be a way of reserving/ dedicating funds
- Funding may supplement existing programs
- Programmatic efforts are identified as an annual cost requirement.

Next Steps

Next Steps

- Finalize Stormwater Capital Improvement Program Costs
- Draft Master Plan (by June)
- Additional stakeholder outreach

