

PLANNING MANAGER DECISION

DATE: August 16, 2023

FILE NO.: MISC-23-02

REQUEST: Approval for the expansion of a non-conforming structure at 2247 5th Ave.

PLANNER: Ben Gardner, Assistant Planner

Planning Manager \underline{DSW}

TABLE OF CONTENTS

STAFF ANALYSIS AND RECOMMENDATION

GENERAL INFORMATION	2
EXECUTIVE SUMMARY	3
PUBLIC COMMENT	3
DECISION AND CONDITIONS OF APPROVAL	3

ADDENDUM

STAFF FINDINGS	4
----------------	---

EXHIBITS

PD-1 APPLICANT SUBMITTAL	8
PD-2 COMPLETENESS LETTER	74
PD-3 AFFIDAVIT AND NOTICE PACKET	76

GENERAL INFORMATION

APPLICANT:	Thomas Watton - Watton Design Works, Inc. 1880 Willamette Falls Dr. Ste 200-D West Linn, OR 97068
OWNER:	Jim Walsh 2247 5 th Ave West Linn, OR 97068
SITE LOCATION:	2247 5 th Ave West Linn, OR 97068
SITE SIZE:	15,661 Square Feet
LEGAL DESCRIPTION:	Eastern Portion of Lot A on Tract 62 of Willamette Tracts Assessors Map 31E02AB Tax lot 6600
COMP PLAN DESIGNATION:	Low Density Residential
ZONING:	Residential, R-10
APPROVAL CRITERIA:	Community Development Code (CDC) Chapter 12: Residential R-7, Chapter 66: Non-Conforming Structures; Chapter 99: Procedures for Decision-Making: Quasi-Judicial.
120-DAY RULE:	The application became complete on June 15, 2023. The 120-day period therefore ends on October 13, 2023.
PUBLIC NOTICE:	Notice was mailed to property owners within 300 feet of the subject property and to the affected neighborhood association on July 11, 2023. A sign was placed on the property on July 12, 2023. The notice was also posted on the City's website on July 11, 2023. Therefore, public notice requirements of CDC Chapter 99 have been met.

EXECUTIVE SUMMARY

The applicant requests approval for the enlargement of a non-conforming accessory structure containing a conforming use located at 2247 5th Ave. The existing accessory structure is a two-story garage that is located 3.5 feet from the internal side property line to the East, which does not meet the 7.5-foot setback required by the underlying R-10 zone.

The applicant proposes expanding the top ground-level floor of the given structure an additional 6 feet towards the Northernmost / front property line while maintaining the 3.5-foot internal side setback distance. It is proposed to meet the front setback of 20 feet by having a total distance from the face of the garage to the front property line of 33.5 feet. The structure meets all other dimensional standards, setbacks, lot coverage, and other provisions of the underlying R-10 zone.

Public Comments:

No public comments received for this application

DECISION

The Planning Manager (designee) approves this application (MISC-23-02), based on: 1) the findings submitted by the applicant, which are incorporated by this reference, 2) supplementary staff findings included in the Addendum below, and 3) the addition of conditions of approval below. With these findings, the applicable approval criteria are met. The conditions are as follows:

1. <u>Site Plan, Elevations, and Narrative.</u> The project shall conform to the submitted plans, elevations, and narrative submitted in Exhibit PD-1 dated March 9, 2023.

The provisions of the Community Development Code Chapter 99 have been met.

Ben Gardner, Assistant Planner

August 16, 2023 Date

Appeals to this decision must be filed with the West Linn Planning Department within 14 days of mailing date. Cost is \$400. An appeal to City Council of a decision by the Planning Director shall be heard on the record. The appeal must be filed by an individual who has established standing by submitting comments prior to the decision date. Approval will lapse 3 years from effective approval date if the final plat is not recorded.

Mailed this 16th day of August, 2023.

Therefore, the 14-day appeal period ends at 5 p.m., on August 30th, 2023.

ADDENDUM

APPROVAL CRITERIA AND FINDINGS MISC-23-02

This decision adopts the findings for approval contained within the applicant's submittal, with the following exceptions and additions:

11.030 PERMITTED USES
The following are uses permitted outright in this zoning district:
1. Single-family attached and detached residential unit.

11.040 ACCESSORY USES

Accessory uses are allowed in this zone as provided by Chapter 34 CDC.

Staff Finding 1: The applicant proposes to expand an existing non-conforming accessory structure garage containing a conforming use associated with a single-family home. The criteria are met.

11.070 DIMENSIONAL REQUIREMENTS, USES PERMITTED OUTRIGHTAND USES PERMITTED UNDER PRESCRIBED CONDITIONS

Except as may be otherwise provided by the provisions of this code, the following are the requirements for uses within this zone:

STANDARD	REQUIREMENT	ADDITIONAL NOTES
Minimum lot size Average minimum lot or parcel size for a townhouse project	10,000 sf 1,500 sf	For a single-family attached or detached unit
Minimum lot width at front lot line	35 ft	Does not apply to townhouses or cottage clusters
Average minimum lot width	50 ft	Does not apply to townhouses or cottage clusters
Minimum yard dimensions or minimum building setbacks		Except as specified in CDC 25.070(C)(1) through (4) for the Willamette Historic District. Front, rear, and side yard setbacks in a cottage cluster project are 10 ft. There are no additional setbacks for individual structures on individual lots, but minimum distance between structures shall follow applicable building code requirements.
Front yard	20 ft	Except for steeply sloped lots where the provisions of CDC 41.010 shall apply
Interior side yard	7.5 ft	Townhouse common walls that are attached may have a 0-ft side setback.
Street side yard	15 ft	
Rear yard	20 ft	

STANDARD	REQUIREMENT	ADDITIONAL NOTES		
Maximum building height	35 ft	Except for steeply sloped lots in which case the provisions of Chapter 41 CDC shall apply.		
Maximum lot coverage	35%	Maximum lot coverage does not apply to cottage clusters. However, the maximum building footprint for a cottage cluster is less than 900 sf per dwelling unit. • This does not include detached garages, carports, or accessory structures. • A developer may deduct up to 200 sf for an attached garage or carport.		
Minimum accessway width to a lot which does not abut a street or a flag lot	15 ft			
Maximum floor area ratio	0.45	Maximum FAR does not apply to cottage clusters.		
Duplex, triplex, and quadplex	0.60	Type I and II lands shall not be counted toward lot area when determining allowable floor area ratio, except that a minimum floor area ratio of 0.30 shall be allowed regardless of the classification of lands within the property. That 30 percent shall be based upon the entire property, including Type I and II lands. Existing residences in excess of this standard may be replaced to their prior dimensions when damaged without the requirement that the homeowner obtain a non-conforming structures permit under Chapter 66 CDC.		

•••

Staff Finding 2: The subject property is 15,661 square feet in area with a 75.39-foot front lot line. The average lot width is 75.39 feet. The applicant proposes an enlargement of an existing accessory structure. The given structure is currently, at its nearest points, 33.5 feet from the Northernmost / front property line, approximately 145 feet from the Southernmost / rear property line, approximately 48 feet from the Westernmost internal side property line, and 3.5 feet from the Easternmost internal side property line. Its proximity to the Easternmost internal side property line is non-conforming, and thus requires an application for its enlargement as a non-conforming structure. The height of the accessory structure is 12 ft. 6-1/2 in. The total lot coverage including the proposed modification is approximately 4,100 square feet of 15,661 or 26.1%, and the total floor area ratio, that which will be unchanged by the proposed modification, is approximately 4,919 square feet of 15,661 or 0.31. The criteria are met.

66.040 DETERMINATION OF STATUS

A. The Planning Director shall make a determination regarding non-conforming status without giving notice.

•••

Staff Finding 3: The Planning Director determined the existing structure is non-conforming based on its proximity to the Eastern side lot line. The criteria is met.

66.080 Enlargement of or Alteration to a Non-Conforming Structure: Process and Approval Standards

B. An enlargement or alteration to a non-conforming structure containing a conforming use may be permitted subject to the following:

• • •

. . .

2. If the enlargement, in and of itself, does not meet all provisions of the code, review and approval by the Planning Director for single-family structures, and by the Planning Commission for non-single-family structures under the provisions of CDC 99.060(B) is required subject to the following standards.

- a. The enlargement or alteration will not change the non-conformity; and
- b. All other applicable ordinance provisions will be met.

Staff Finding 4: The proposed alteration is an enlargement of an existing non-conforming structure containing a conforming use. The enlargement does not meet the internal side setback of 7.5 feet required by the dimensional standards of the underlying R-10 zone, but it is proposed that the enlargement maintain the current non-conforming internal side setback distance of 3.5 feet. Thus, the enlargement will not change the non-conformity, and all other dimensional standards and provisions of the Community Development Code are met. The criteria are met.

Chapter 99: PROCEDURES FOR DECISION MAKING: QUASI-JUDICIAL 99.060 APPROVAL AUTHORITY

•••

- A. Planning Director authority. The Planning Director shall have the authority to:
 - 1. Approve, deny, or approve with conditions the following applications:

•••

. . .

- *h.* Enlargement or alteration of a non-conforming single-family structure containing a conforming use (Chapter 66 CDC).
- 4. Make the initial determination regarding the status of the following: a. Non-conforming structure (Chapter 66 CDC).

Staff Finding 5: The Planning Director determined the existing structure is non-conforming. See Staff Finding 3. The proposed scope is the enlargement of a non-conforming accessory structure containing a conforming use. The criteria are met.

99.080 NOTICE

Notice shall be given in the following ways:

•••

B. Class B Notice. Notice of a proposed action on a development application pursuant to CDC 99.060 shall be given by the Director in the following manner:

- 1. At least 14 days prior to the decision date, a notice shall be sent by mail to:
 - a. The applicant or their agent;

b. The affected recognized neighborhood association or citizens advisory committee; and

c. All property owners of record within 300 feet of the site perimeter;

2. At least 10 days prior to the earliest date that the approval authority can take action on the application, the applicant shall place a sign, provided by the Community Development Department, on the subject property in plain view. The sign shall state, "This property is the subject of a land use decision," with the type of use or request indicated.

3. The Director shall cause an affidavit of mailing of notice and posting of notice to be filed and made part of the administrative record.

4. At the conclusion of the land use action the signs shall be removed.

LAND USE ACTION	TYPE OF NOTICE
Enlarge or Alter Non-conforming Use/Structure:	
Single-Family Residential	В

Staff Finding 6: A Class B Notice was prepared. The notice was sent via mail to the applicant, the affected neighborhood association, and all property owners within 300 ft. of the site perimeter of 2247 5th Ave on 7/11/23. A sign detailing the property's status as being the subject of a land use decision with case details was placed on the property on 7/12/23. An affidavit of mailing of notice and posting of notice was filed in the land use case record. The sign was removed at the conclusion of the action on 8/17/23. The criteria are met.

EXHIBIT PD-1: APPLICANT SUBMITTAL

West Linn, Oregon 97068 Telephone 503.656-3535 • westlinnoregon.gov

	DEVELOPMENT REV	IEW APPLICAT	ION	
STAFF CONTACT Ben Gardner	PROJECT NO(S).	MISC-23-02		PRE-APPLICATION NO.
NON-REFUNDABLE FEE(S)	1,000	(s)	TOTAL \$1,00	00
Type of Review (Please check all that Annexation (ANX) Appeal and Review (AP) Code Interpretation Conditional Use (CUP) Design Review (DR) Tree Easement Vacation Final Plat or Plan (FP) Flood Management Area Pre-Application, Home Occupation, Side	apply): Historic Review Legislative Plan or Change Lot Line Adjustment (LLA) Minor Partition (MIP) (Prel Modification of Approval Non-Conforming Lots, Use Planned Unit Developmen Street Vacation ewalk Use, Addressing, and Sign	iminary Plat or Plan)	Subdivision (SUB) Temporary Uses Time Extension Variance (VAR) Water Resource Are Water Resource Are Water Resource Are Willamette & Tuala Zone Change different forms, avail	RECEIVED ynn Schroder , 5/16/2023 ,11:16:55 AM a Protection/Single Lot (WAI a Protection/Wetland (WAP tin River Greenway (WRG) able on the City website.
Site Location/Address: 2247 5th Ave.		Asse Tax	essor's Map No.: : Lot(s):6600	3S, 1E, 02AB
		Tota	I Land Area: 15.66	1 SF
Applicant Name: Watton Design (please print) Address: 1880 Willamett West Linn, Or.	Works, Inc. Thomas Wa e Falls Dr. Suite 200-D 97068	atton	^{Phone:} 503.655 Email: thomas@	.1001 @wattondesign.com
Owner Name (required): Jim Walsl (please print) Address: 2247 5th J City State Zip: West Linn	n Ave. 1, Or. 97068		Phone: 503.816 _{Email:} jim@wa	.4997 Ish-industries.com
Consultant Name: (please print) Address:			Phone: Email:	
City State Zip:				
 All application fees are non-refu The owner/applicant or their re A decision may be reversed on a Submit this form and supporting https://westlinnoregon.gov/planni 	undable (excluding deposit presentative should be pre appeal. The permit approval g documents through the <u>Su</u> ng/submit-land-use-applicatio	Any overruns to sent at all public h will not be effective u bmit a Land Use Appl on	deposit will resul earings. ntil the appeal peri ication web page:	t in additional billing. od has expired.
The undersigned property owner(s) he hereby agree to comply with all code n complete submittal. All amendments to approved shall be enforced where app place at the time of the ipitial applicati Thomas P. Wattor	reby authorizes the filing of this equirements applicable to my a o the Community Development licable. Approved applications a on. 3-9-2023	application, and auth pplication. Acceptance Code and to other reg nd subsequent develo	orizes on site review e of this application of sulations adopted aff opment is not vested	by authorized staff. I does not infer a eer the application is under the provisions in 3-9-2023
Applicant's signature / 100 / 1	Date	Owner's signature	(req̀uired) 🔍	Date

1880 Willamette Falls Dr. Suite 200-D West Linn, Or. 97068 503.655.1001 thomas@wattondesign.com wattondesign.com

Client Information: Jim Walsh 2247 5th Ave. West Linn, Or. 97068

Darren Wyss Planning Manager 22500 Salamo Road West Linn, Or. 97068 **Project:** Non-Conforming Review Garage Addition; 2247 5th Ave.

Planning Manager Wyss,

Please see attached application and supporting documents for a non-conforming review of a six foot addition to the depth of an existing garage at the address listed above. Below is the response addressing approval criteria of chapters 11 & 66 of the West Linn CDC.

66.080 ENLARGEMENT OF OR ALTERATION TO A NON-CONFORMING STRUCTURE: PROCESS AND APPROVAL STANDARDS

A. An enlargement of or alteration to a non-conforming structure containing a non-conforming use may be permitted subject to review and approval by the Planning Commission under the provisions of CDC <u>99.060(B)</u> and CDC <u>65.120</u> through <u>65.140</u>.

Response: The existing structure to be enlarged is the primary garage and will not contain any non-conforming uses.

B. An enlargement or alteration to a non-conforming structure containing a conforming use may be permitted subject to the following:

1. If the enlargement, in and of itself, meets all provisions of this code, the enlargement will be permitted. This exception does not preclude design review or other applicable provisions of this code.

2. If the enlargement, in and of itself, does not meet all provisions of the code, review and approval by the Planning Director for single-family structures, and by the Planning Commission for non-single-family structures under the provisions of CDC <u>99.060</u>(B) is required subject to the following standards.

- a. The enlargement or alteration will not change the non-conformity; and
- b. All other applicable ordinance provisions will be met. (Ord. <u>1192</u>, 1987)

Response: The proposed enlargement to the existing non-conforming garage will not change the existing non-conformity.

The non-conformity of the existing structure is that it is located 3.5' from the east side yard property line. The enlargement we are proposing will expand the garage depth to the north by 6' to make it usable for today's garage needs. The proposed expansion will be no closer to the side yard than the existing structure. This 6' extension to the garage will change the garage street front setback from 39.5' to 33.5'. This still gives ample off-street parking for the residence.

We are required to update the existing framed garage floor to today's structural code standards. Because there is living space below the garage, this floor framing upgrade will raise the garage floor approx. 18" from its existing elevation. This upgrade will also allow us to upgrade the lateral design of this old structure. We will be able to install a port-hole frame at the garage door face that will greatly stiffen this structure to wind and earthquake forces.

Please note that the adjacent property to the east is a 15' wide flag lot access. There will never be any adjacent structures built near this property line.

11.070 DIMENSIONAL REQUIREMENTS, USES PERMITTED OUTRIGHT AND USES PERMITTED UNDER PRESCRIBED CONDITIONS

We have chosen to also address section 11 requirements for the R-10 Zone.

- 1. 5,000 min. lot size: This Lot is 15,661sf
- 2. 35' min. front yard width: This lot is 75.39' wide
- 3. 50' Average width: This lot is 75.39' average width
- 4. n/a
- 5. Building setbacks:
 - a. 20' front: proposed setback is 33.5'
 - **b.** 7.5' side: current setback to structure is 3.5'. The proposed addition will not encroach any closer than the 3.5'.
 - c. 20' rear: n/a
- 6. 35' max. ht.: This building height at the proposed addition will be 12'-6-1/2" tall.
- 7. Max lot coverage: Existing house (3,237sf) + proposed (120sf) = 3,367sf / 15,661= 21.4% total coverage.
- 8. n/a
- 9. FAR: No increase in heated floor area. n/a

NOVEMBER 30, 2007 JAMES BURTON BROWN 60379 RENEWS: DECEMBER 31, 2023	REGISTERED PROFESSIONAL LAND SURVEYOR		
CLIENT: ORIG. DATE: DRAWN BY: SHEET No.	WALSH 10-7-2022 CJB 1 OF 1	SCALE MAP TAX LOT 6600, MAP 32, 1E, 02AB (2247 5TH AVENUE) CITY OF WEST LINN, CLACKAMAS COUNTY, OREGON Scale: 1"=20'	CENTERLINE CONCEPTS LAND SURVEYING, INC. 19376 MOLALLA AVE., SUITE 120 OREGON CITY, OREGON 97045 PHONE 503.650.0188 FAX 503.650.0189

Plotted: 10/07/2022 - 10:48am, M: \PROJECTS \WALSH-5TH AVENUE-2247 \DWG \SCALE-C3D.dwg, Layout: EXHIBIT 8.5X11 - 11X17

	\ ≊r				N				N		N				
														-	
				G	AR,	AG	Ξ				- -		-0		
				F	LAT F	2 <i>00</i> F					Ø)		ц-'г		
	×	X	X	Μ	X		Χ	М		X	•				
					SHC	P			1'-2"						
_	≠ € -		 										1		
]										L]		

EXIS	TING	SECTION
SCALE :1/4"	= 1'-Ø"	

INTEGRITY.

THE SCOPE OF WORK SPECIFIC TO THIS PERMIT IS ONLY RELATED TO THE 6' ADDITION TO THE FRONT OF THE GARAGE. THIS BUILDING HAS ALREADY BEEN PERMITTED TO UPDATE THE FLOOR SYSTEM TO SUPPORT A VEHICLE. IT HAS ALSO BEEN REVIEWED BY AN ENGINEER FOR STRUCTURAL AND LATERAL

THE PROPOSED ADDITION IS MEANT TO GIVE MORE FLOOR AREA IN THE GARAGE AREA ONLY. NOT THE SPACE LOCATED UNDER THE GARAGE. THE ADDITION IS ALSO MEANT TO CREATE A FRESH AND UP TO DATE FRONT GARAGE WALL WITH FOOTING, WALL TO GARAGE FLOOR CONNECTION FOR LATER SHEAR.

FRONT ELEVATION

REAR ELEVATION

-			1				
_	ALTICUENT AUCH (ARE HAV GORE TITO THE REPREATION OF THEY REWARD TO GULRE THAT THET ARE BREAD RECE IF U THE RE- ANOTHANT OF THE COTTINUE TO THE COTTINUE ANOTHANT OF THE COTTINUE OF RECEARCH TO THE REWARD OF THE COTTINUE OF ANOTHAN WELL AN ATT AND AND THE ANOTHAN OF ANOTHAN OF LOCAL REQUINION OF ANTO TO RE OF RULING ONLY AND ARE NOT TO RE CORED IN ATT CORM WINGTH THE CARE// WEITTEN REPLAYION OF WATTON DEADN WORK/.						
, **/TRUCTURE TO DE DULT FROM PRIMIT /TAMPED PLAN /ET ONLY	Willar West thomase	ATT ESIC PRKS, 1880 nette Falls Suite #200 Linn, Or. 03.655.10 @wattonde	ON ON SN Inc. s Drive 97068 01 sign.com				
	PROJECT: GARAGE ADDITION	BUILDING SITE ADDRESS: 2247 5th AVENUE	WEST LINN, OREGON 97068 CLACKAMAS COUNTY				
	EXISTING GARAGE PLANS	SQUARE FOOTAGE EXISTING GARAGE480 S.F. 120 S.F.CONCRETE ALTERNATIVES, Inc.EXISTING GARAGE480 S.F. 120 S.F.NOAH KAMP 503.709.3922 NOAH KAMP 503.709.3922NOAH CONCRETE ALTERNATIVES, Inc.	ADU STUDIO BELOW UNCHANGED WALSH SO3.816.4997 $MMMLSH 503.816.4997$ $MMMLSH 503.816.4997$ $MMMLSH 503.816.4997$				
_	Est. 4- Rev.	-10-2023	DATE:				
_	PLANS V	DID 1YR. FROM	EST. DATE JOB No.				
_	2205	4	SHEET				
		I					
-							

G. I. GUTTER ON 2 X 12 FASCIA C/W DOWNSPOUTS (SEE ROOF PLAN)

FINISHED FLOOR

, ++/TRUCTURE TO BE BULT FROM PREMIT /TAMPED PLANT /FT ONLY	ATTICUENT PLACE REPENDENCE OF POPULATION OF THE DEWING OC LOCAL FEAL THERE AND AN OC LOCAL FEAL THERE AND AND COMO IN ANY AN OF ALLIAN OF WHITEIN REPUTATION WHITEIN REPUTATION WHITEIN REPUTATION WALL AND AND AND AND AND WALL AND AND AND AND WALL AND AND AND AND AND AND WHITEIN REPUTATION WALL AND AND AND AND AND AND AND AND WALL AND AND AND AND AND AND AND AND AND WALL AND	ON SON SON SON SON SON SON SON SON SON S	
	PROJECT: GARAGE ADDITION	BUILDING SITE ADDRESS: 2247 5th AVENUE	WEST LINN, OREGON 97068 CLACKAMAS COUNTY
	EXTERIOR ELEVATIONS	End CONCRETE ALTERNATIVES, Inc. RE NOAH KAMP 503.709.3922 NOAH KAMP 503.709.3922 noah@concretealt.com	WALSH RESIDENCE JIM WALSH 503.816.4997 JIM WALSH for an anti-industries.com
_	PROPOSED	SQUARE FOOTAGEEXISTING GARAGE480 S.JPROPOSED GARAGE120 S.JTOTAL AREA600 S.J	ADU STUDIO BELOW UNCHANG
_	Est. 4- Rev.	-10-2023	EST. DATE
_	2205	4	JUB No.
		2	-
-			

TANDARDS THEREIN, TOGETHER WITH APPLICABLE MUNICIPAL,	STATE, AND FEDERAL REGULATIONS.
ALL WORK IS SUBJECT TO BUILDING DEPARTMENT FIELD INSPECTIVE ALL MEASURES NECESSAR	ECTOR'S APPROVAL.
ONSTRUCTION.	
THE DESIGN, ADEQUACY AND SAFETY OF ERECTION BRACING, THE SOLE RESPONSIBILITY OF THE CONTRACTOR. THE CONTR RECTION OF THE FRAMING AND OF THE LATRAL LOAD	SHORING, TEMPORARY SUPPORTS, SHORING OF EXISTING BUILDING ELEMENTS, ETC. ACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE PRIOR TO THE
THE ENGINEER IS RESPONSIBLE FOR THE STRUCTURAL ITEMS PECIFIED IN THESE CALCULATIONS WITHOUT APPROVAL FROM _EMENT OR SYSTEM OF THE STRUCTURE.	IN THE PLANS ONLY. SHOULD ANY CHANGES BE MADE FROM THE DESIGN AS THE ENGINEER, THEN THE ENGINEER WILL ASSUME NO RESPONSIBILITY FOR ANY
) DESIGN CRITERIA: BUILDING CODE - 2010 OPECON STRUCTURAL SPECIALTY CC	
GEOTECHNICAL & GRAVITY DESIGN DATA:	DE, ASCE 7-10
ALLOWABLE SOIL BEARING PRESSURE ROOF DEAD/LIVE/SNOW LOAD FLOOR DEAD/LIVE LOAD DECK DEAD/LIVE LOAD	= 1,500psf = 17psf / 20psf / 25psf = 15psf / 40psf = 12psf / 60psf
SEISMIC DESIGN DATA: IMPORTANCE FACTOR (Ie)	= 1.0
RISK GATEGURY MAPPED SPECTRAL RESPONSE ACCELERATION (Ss) MAPPED SPECTRAL RESPONSE ACCELERATION (Sc)	= 0.832 = 0.376
MAPPED SPECTRAL RESPONSE COEFFICIENT (S_{DS}) MAPPED SPECTRAL RESPONSE COEFFICIENT (S_{D1})	= 0.666 = 0.482
SITE SOIL CLASS SEISMIC DESIGN CATEGORY	= D (BY DEFAULT) = D
REDUNDANCY FACTOR (p) SEISMIC RESPONSE COEFFICIENT (C _s - S _{DS} x I/R)	= 1.30 $= 0.102$ $= 6.5$ (EA OPTHOCOMIAL DIPECTION)
RESPONSE MOD COEFF. (K) BASIC SEISMIC FORCE RESISTING SYSTEM ANALYSIS PROCEDURE LISED	= 0.0 (EA. ORTHOGONAL DIRECTION) = LIGHT-FRAME (WOOD) SHEARWALLS = FOUIVALENT LATERAL FORCE
DESIGN BASE SHEAR (V = C_sW) HORIZONTAL SEISMIC LOAD ($E_h = pV$)	= 0.102 W = 0.133 W
WIND DESIGN DATA: WIND SPEED WIND EXPOSURE FACTOR	= 97mph (BASIC WIND SPEED - 3 second gust) = C
THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE LOCATION OF ALL	UNDERGROUND FACILITIES OR OTHER BURIED OBJECTS WHICH MAY BE ENCOUNTERED BUT
HICH ARE NOT SHOWN ON THESE PLANS.	ESIGN LOADS
THESE CALCULATIONS ASSUME STABLE, UNDISTURBED SOILS AND LEV	EL OR STEPPED FOOTINGS. ANY UNUSUAL SOIL CONDITIONS SUCH AS ORGANIC SOILS, CLAY
CKETS, OR UNCERTIFIED FILLS SHALL BE BROUGHT TO THE ATTENTION	I OF THE ENGINEER PRIOR TO CONSTRUCTION.
THE BOTTOM OF ALL FOOTING EXCAVATIONS SHALL BE CLEAN AND LEV	/EL.
ALL FINISHED GRADE SHALL SLOPE AT A MINIMUM SLOPE OF 2% AWAY	FROM ALL FOUNDATIONS A MINIMUM OF 10 FEET HORIZONTAL.
FOUNDATIONS SHALL NOT BE SCALED FROM PLAN OR DETAIL DRAWING	
THE CONTRACTOR SHALL BE RESPONSIBLE FOR DETERMINING THE EXA RIOR TO PLACEMENT OF CONCRETE AND/OR INSTALLATION OF STRUCTU	ACT LOCATION OF ALL ANCHOR BOLTS, HOLDOWN ANCHORS OR STRAPS AND EMBEDMENTS, JRAL FRAMING MEMBERS.
) CONCRETE:	
ALL FOUNDATION CONCRETE SHALL HAVE A MAXIMUM SLUMP OF 4" AND FOUNDATIONS AND 3/4" AT ALL OTHER LOCATIONS.	D A MINIMUM F'c=2500 PSI @ 28 DAYS (UNO). AGGREGATE SIZE SHALL BE A MAXIMUM OF 1-1/2"
CONCRETE FOR ICF WALLS SHALL HAVE A FREE-FLOW, SELF-COMPACT PROVED.	ING SLUMP, MINIMUM F'c=3000 PSI @ 28 DAYS, WITH 3/8" - MAX 1/2" AGGREGATE, OR SIMILAR
CURING COMPOUND SHALL BE SPRAYED ON ALL EXPOSED SURFACES I	MMEDIATELY AFTER FINAL TROWELING.
ALL CEMENT USED SHALL CONFORM TO ASTM C-150 AND SHALL BE TYP ESIGNS ALREADY ESTABLISHED & APPROVED BY LOCAL JURISDICTION.	E II OR TYPE III LOW ALKALI. FLYASH SUBSTITUTION UP TO 25% IS PERMITTED FOR MIX
AGGREGATE SHALL CONFORM TO ASTM C-33 AND SHALL NOT CONTAIN EST DATA IS UNAVAILABLE IN REGARDS TO ALKALI REACTIVE MATERIALS	MATERIALS WHICH ARE ALKALI REACTIVE AS DETERMINED BY ASTM C-227, 289 AND 295. IF 6, PROVIDE CEMENT WITH A MAXIMUM ALKALI CONTENT LESS THAN 0.45% BY WEIGHT.
CONCRETE EXPOSED TO FREEZING OR THAWING SHALL BE PROTECTED	D IN ACCORDANCE TO THE LATEST EDITION OF ACI & IBC
WATER PROOFING OF FOUNDATIONS, RETAINING WALLS, AND SLAB ON VIBRATE CONCRETE ABOUND ALL BOLTS, REBAR AND SUBFACES	GRADE IS THE RESPONSIBILITY OF THE CONTRACTOR OR OWNER.
CONSTRUCTION JOINTS SHALL BE CLEAN AND WET PRIOR TO POURING	CONCRETE.
. CONCRETE SHALL HAVE A WATER-CEMENT RATIO OF 0.45 LB./LB. OR LE	ESS.
. CONCRETE SHALL BE AIR ENTRAINED A MINIMUM OF 5% AND MAXIMUM	OF 7%.
) CONCRETE SLAB CONSTRUCTION:	
GRAVEL OR SAND BASE SHOWN IS TO PROVIDE STRUCTURAL BASE FOR IE SLAB ARE INCLUDED. IF BUILDING USE WILL BE SUCH THAT SLAB MUS OPPING IS RECOMMENDED.	R SLAB ONLY. NO PROVISIONS FOR PREVENTING GROUNDWATER INFILTRATION OR DAMPNESS OF ST BE DRY AT ALL TIMES, DAMP-PROOFING WITH PEA GRAVEL BASE, VISQUEEN AND 2" SAND
SLABS ON GRADE SHALL BE PLACED OVER 4" MINIMUM OF FREE DRAIIN DTED OTHERWISE.	ING AGGREGATE BASE COMPACTED TO A MINIMUM OF 95% RELATIVE COMPACTION, UNLESS
CRACK CONTROL JOINTING IS DESIGNED BY THE CONTRACTOR, UNLES	S SHOWN ON FOUNDATION PLAN. THE MAXIMUM SPACING OF JOINTS SHALL NOT EXCEED 30' IN
STEEL REBAR OR WIRE MESH IN SLABS SHALL BE LOCATED IN THE CEN	TER OF THE SLAB.
) STRUCTURAL STEEL:	
MATERIALS:	
I.a.WIDE FLANGE & WT SHAPES:ASTI.b.CHANNELS, ANGLES, PLATES & BARS:AST	M A992 M A36
I.c. GRADE 50 PLATES (WHERE NOTED ON PLANS): AST I.d. PIPE: AST	M A52 M A53, GRADE B M A500, GRADE B, EV = 42ksi EOB BOUNDS & EV = 48ksi EOB DEOTANOULAD & 2011ADE
FASTENERS	IVI ADUU, GRADE D, FY = 42KSI FOR ROUNDS & FY = 46KSI FOR RECTANGULAR & SQUARE
2.a. MACHINE BOLTS:	M A307
2.b. BOLTS: AST 2.c. ANCHOR RODS: AST	M A325-X M F1554, GRADE 36, THREADED WITH NUT, UNLESS NOTED OTHERWISE
	M A108, GRADE 1010 THRU 1020 M A563
2.d.SHEAR STUD CONNECTORS:AST2.e.NUTS:AST	
2.d. SHEAR STUD CONNECTORS: AST 2.e. NUTS: AST 2.f. HARDENED PLAIN & BEVELED WASHERS: AST	M F436

G) WOOD FRAMING

SAWN LUMBER:

SHALL BE MINIMUM NO. 2 DOUGLAS FIR/LARCH, WWPA GRADING RULES

ALL LUMBER SHALL BE KILN-DRIED WITH A MOISTURE CONTENT LESS THAN 19%

SILLS AND PLATES IN CONTACT WITH CONCRETE/MASONRY AND WITHIN 6" OF GRADE SHALL BE PRESSURE-TREATED DOUGLAS FIR-LARCH. MUD-SILL SHALL BE 2x MINIMUM THICKNESS OF THE SAME OR GREATER WIDTH AS THE STUDS ABOVE. WALL FRAMING SHALL BE 2x6 STUDS @ 16" ON CENTER UNLESS OTHERWISE NOTED. PROVIDE DOUBLE 2x6 TOP PLATE WITH MINIMUM 48" LAP SPLICE WITH (8) 16d COMMON NAILS MINIMUM, STAGGERED, UNLESS OTHERWISE NOTED.

TIMBERS (4x NOMINAL WIDTH & LARGER):

SHALL BE MINIMUM NO. 1 DOUGLAS IR/LARCH, WWPA GRADING RULES

TIMBERS USED IN TRUSS CONSTRUCTION SHALL HAVE A MAXIMUM MOISTURE CONTENT OF 12% BEFORE ASSEMBLING THE TRUSS. GLUED LAMINATED TIMBER (GLULAM):

GLUED LAMINATED TIMBER SHALL BE MANUFACTURED IN ACCORDANCE WITH AMERICAN INSTITUTE OF TIMBER CONSTRUCTION AITC 117 & AITC 190.1.

GLUED LAMINATED TIMBER SHALL BE OF THE FOLLOWING GRADES, UNLESS NOTED OTHERWISE: b.a. SINGLE SPAN MEMBERS: COMBINATION 24F-V4

b.b. MULTI-SPAN & CANTILEVER MEMBERS: COMBINATION 24F-V8

LAMINATED VENEER LUMBER (LVL):

MINIMUM DESIGN PROPERTIES FOR $1\frac{3}{4}$ " WIDE MEMBERS: F_b = 2,800psi, E = 2,000,000psi, F_v = 285psi

MINIMUM DESIGN PROPERTIES FOR $3\frac{1}{2}$ " AND WIDER MEMBERS: F_b = 3100psi, E = 2,000,000psi, F_v = 310psi LVL MEMBERS SHALL NOT BE USED IN EXTERIOR APPLICATIONS OR AGAINST CONCRETE

FASTEN MULTI-PLY LVL BEAM OR JOISTS TOGETHER WITH TWO ROWS OF 10d NAILS @ 12" ON CENTER THROUGH LENGTH, STAGGERED TO

PREVENT SPLITTING, BETWEEN EACH PLY. PROVIDE (8) ADDITIONAL 10d NAILS BETWEEN EACH PLY DISTRIBUTED CLOSELY TO THE VICINITY OF CONCENTRATED LOADS ON MEMBERS FROM FLUSH-SUPPORTED BEAMS OR JOISTS.

PARALLEL STRAND LUMBER (PSL):

MINIMUM DESIGN PROPERTIES: $F_b = 2,900$ psi, E = 2,000,000 psi, $F_v = 290$ psi

PSL MEMBERS USED IN EXTERIOR APPLICATIONS, OR AGAINST CONCRETE, SHALL BE APPROVED BY THE MANUFACTURER FOR USE IN THE EXPOSURE CONDITION TO WHICH THEY ARE SUBJECT.

AMINATED STRAND LUMBER (LSL):

MINIMUM DESIGN PROPERTIES: F_b = 2,325psi, E = 2,000,000psi, F_v = 310psi

PREFABRICATED WOOD I-JOISTS:

WOOD I-JOISTS SHALL CONFORM TO THE REQUIREMENTS OF ASTM D5055

JOIST TYPES AND SIZES SHALL BE AS INDICATED ON THE PLANS, OR WRITTEN APPROVED EQUALS. JOISTS SHALL HAVE LOAD-CARRYING CAPACITY IN ACCORDANCE WITH THE MANUFACTURER'S PUBLISHED LOAD TABLES. INSTALLATION SHALL BE AS PER MANUFACTURER'S RECOMMENDATIONS OR AS DETAILED; USE THE MORE STRINGENT CONDITION. FLOOR SHEATHING SHALL BE GLUED AND NAILED CONTINUOUSLY TO THE TOP FLANGE OF ALL JOISTS AS SPECIFIED ON THE PLANS AND IN

THESE NOTES. SUBMIT SHOP DRAWINGS OF LAYOUT AND REQUIRED CONNECTION DETAILS FOR REVIEW BY THE ENGINEER PRIOR TO FABRICATION.

PREFABRICATED WOOD TRUSSES:

MAXIMUM TRUSS SPACING: 24" ON CENTER

- TRUSS LOADING UNLESS NOTED OTHERWISE ON DRAWINGS: .b.a. TOP CHORD SNOW LOAD = 25 psf
- TOP CHORD DEAD LOAD = 8 psf

BOTTOM CHORD LIVE LOAD = 0 psf

BOTTOM CHORD DEAD LOAD = 7 psf

NET WIND UPLIFT (FOR LOAD COMBINATION 0.6 x DEAD - 0.6 x WIND) = 0 psf AT INTERIOR REGIONS, 3 psf WITHIN 8 FEET OF AND PARALLEL TO ROOF EDGES, AND 18 psf WITHIN 8 FEET IN ANY DIRECTION FROM ROOF CORNERS. REVIEW THE PLANS AND DETAILS FOR SPECIAL LOADS INCLUDING, BUT NOT LIMITED TO, REACTIONS FROM PARAPET WALLS, MECHANICAL

UNITS, AND AXIAL LOADS FROM SEISMIC CROSS-TIES & DRAG STRUTS. TRUSSES TO BE FABRICATED BY A CERTIFIED MEMBER OF THE TRUSS PLATE INSTITUTE. DESIGN, FABRICATION, AND ERECTION TO CONFORM TO ANSI/TPI 1 THE TRUSS SUBMITTAL PACKAGE PROVIDED BY THE TRUSS MANUFACTURER SHALL CONSIST OF EACH INDIVIDUAL TRUSS DESIGN DRAWING,

THE TRUSS PLACEMENT DIAGRAM, THE PERMANENT INDIVIDUAL TRUSS MEMBER RESTRAINT/BRACING METHOD, AND DETAILS AND ANY OTHER STRUCTURAL DETAILS GERMANE TO THE TRUSSES.

d.a. TRUSS DESIGN DRAWINGS SHALL BE PREPARED AND STAMPED BY A PROFESSIONAL ENGINEER REGISTERED IN THE STATE IN WHICH THE PROJECT IS LOCATED. DRAWINGS SHALL INCLUDE THE WRITTEN, GRAPHIC, AND PICTORIAL DEPICTION OF EACH INDIVIDUAL TRUSS SHALL BE PROVIDED TO THE BUILDING OFFICIAL FOR APPROVAL PRIOR TO INSTALLATION. REFERENCE THE DEFERRED SUBMITTAL SECTION OF THESE NOTES FOR MORE INFORMATION. TRUSS DESIGN DRAWINGS SHALL ALSO BE PROVIDED WITH THE SHIPMENT OF TRUSSES DELIVERED TO THE JOB SITE. TRUSS DESIGN DRAWINGS SHALL INCLUDE, AT A MINIMUM, THE FOLLOWING:

8.d.a.a. SLOPE OR DEPTH, SPAN, AND SPACING

LOCATION OF ALL JOINTS AND SUPPORT LOCATIONS 8.d.a.b. NUMBER OF PLIES IF GREATER THAN ONE

8.d.a.c. REQUIRED BEARING WIDTHS 8.d.a.d.

8.d.a.e. DESIGN LOADS AS APPLICABLE. INCLUDING:

TOP CHORD LIVE LOAD 8.d.a.e.a. 8.d.a.e.b. TOP CHORD DEAD LOAD

BOTTOM CHORD LIVE LOAD 8.d.a.e.c.

BOTTOM CHORD DEAD LOAD 8.d.a.e.d.

ADDITIONAL LOADS AND LOCATIONS 8.d.a.e.e. ENVIRONMENTAL DESIGN CRITERIA AND LOADS (WIND, RAIN, SNOW, SEISMIC, ETC.) 8.d.a.e.f.

OTHER LATERAL LOADS, INCLUDING DRAG STRUT LOADS 8.d.a.e.g.

ADJUSTMENTS TO WOOD MEMBER AND METAL CONNECTOR PLATE DESIGN VALUE FOR CONDITIONS OF USE. 8.d.a.f.

METAL-CONNECTOR-PLATE TYPE, SIZE, AND THICKNESS OR GAGE, AND THE DIMENSIONED LOCATION OF EACH METAL CONNECTOR 8.d.a.g. PLATE. CONNECTOR PLATES SHALL HAVE A CURRENT ICC-ES OR IAPMO EVALUATION REPORT.

SIZE, SPECIES, AND GRADE FOR EACH WOOD MEMBER. 8.d.a.h.

TRUSS-TO-TRUSS CONNECTIONS AND TRUSS FIELD ASSEMBLY REQUIREMENTS. 8.d.a.i. CALCULATED SPAN-TO-DEFLECTION RATIO AND MAXIMUM VERTICAL AND HORIZONTAL DEFLECTION FOR LIVE AND TOTAL LOAD, AS 8.d.a.j. APPLICABLE.

MAXIMUM AXIAL TENSION AND COMPRESSION FORCES IN THE TRUSS MEMBERS. 8.d.a.k.

REQUIRED PERMANENT INDIVIDUAL TRUSS MEMBER RESTRAINT LOCATION AND THE METHOD AND DETAILS OF RESTRAINT/BRACING TO 8.d.a.l. BE USED.

PERMANENT INDIVIDUAL TRUSS MEMBER RESTRAINT SHALL CONFORM WITH SECTION 2303.4.1.2 OF THE 2015 IBC. PROJECT-SPECIFIC d.b. PERMANENT INDIVIDUAL TRUSS MEMBER RESTRAINT/BRACNG DESIGN, IF USED, SHALL BE SPECIFIED BY A PROFESSIONAL ENGINEER REGISTERED IN THE STATE IN WHICH THE PROJECT IS LOCATED.

TEMPORARY INSTALLATION OF BRACING/RESTRAINTS: THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE LATERAL AND INSTALLATION BRACING OF THE TRUSSES. TRUSS BRACING SHALL COMPLY WITH THE REQUIREMENTS OF TPI DSB-89. TEMPORARY BRACING INCLUDES TOP CHORD LATERAL BRACING, BOTTOM CHORD LATERAL BRACING, DIAGONAL BRACING, CROSS BRACING, AND GROUND BRACING. TRUSSES SPANNING 60 FEET OR GRATER: THE OWNER SHALL CONTRACT WITH ANY QUALIFIED REGISTERED PRFESSIONAL ENGINEER FOR THE DESIGN OF THE TEMPORARY INSTALLATION RESTRAINT/BRACING AND THE PERMANENT INDIVIDUAL TRUSS MEMBER RESTRAINT/BRACING FOR ALL TRUSSES WITH CLEAR SPANS 60 FEET OR GREATER.

WOOD STRUCTURAL PANELS:

WOOD STRUCTURAL PANELS SHALL CONFORM TO VOLUNTARY PRODUCT STANDARDS PS 1 AND PS 2 AND APA PRP-108 PERFORMANCE STANDARDS

ALL SHEATHING SHALL BEAR THE APA TRADEMARK AND GRADE STAMP.

ALL END JOINTS SHALL BE STAGGERED AND SHALL BUTT ALONG THE CENTER LINES OF FRAMING MEMBERS.

THE LONG DIMENSION OF PANELS SHALL BE INSTALLED PERPENDICULAR TO SUPPORTS WITH PANEL CONTINUOUS OVER TWO OR MORE SPANS

PANELS SHALL NOT BE LESS THAN 4' x 8', EXCEPT AT BOUNDARIES AND CHANGES IN FRAMING. THE MINIMUM PANEL DIMENSION FOR FLOOR SHEATHING AT BOUNDARIES SHALL BE 24" UNLESS ALL EDGES OF THE UNDERSIZED PANELS ARE SUPPORTED BY AND FASTENED TO FRAMING MEMBERS OR BLOCKING.

NAILS SHALL BE COMMON WIRE NAILS (NOT BOX OR SINKER NAILS) AND BE PLACED 3/8" MINIMUM FROM THE EDGE OF PANELS. MINIMUM NAIL PENETRATION INTO FRAMING MEMBERS SHALL BE 11/2" FOR 8d NAILS AND 15/8" FOR 10d NAILS.

WHERE SPECIAL INSPECTIONS ARE REQUIRED, PANEL NAILING SHALL BE INSPECTED PRIOR TO COVERING. ROOF PANELS SHALL BE 15/32" THICK, MINIMUM, 32/16 SPAN RATING; PANEL GRADE: APA RATED SHEATHING. NAILING, UNLESS NOTED OTHERWISE: .1. 8d @ 6" o/c AT PANEL EDGES

1.2. 8d @ 12" o/c AT PANEL FIELD

FLOOR FLOOR PANELS SHALL ³/₄" THICK, MINIMUM, 24", PANEL GRADE: APA RATED SHEATHING. GLUED w/ NAILING, UNLESS NOTED OTHERWISE: 2.1. 10d @ 6" o/c AT PANEL EDGES

.2.2. 10d @ 12" o/c AT PANEL FIELD WALL PANELS SHALL BE 7/16" THICK, MINIMUM, 24/1 SPAN RATING; PANEL GRADE: APA RATED SHEATHING. NAILING, UNLESS NOTED OTHERWISE

.3.1. 8d @ 6" o/c AT PANEL EDGES

.3.2. 8d @ 12" o/c AT PANEL FIELD

WOOD DECKING BOARDS:

BOARDS SHALL BE LAID AT 90 DEGREES TO SUPPORTING MEMBERS.

- NAILING TO EACH INTERIOR SUPPORTING MEMBER: D.b.a. 2x6 BOARDS: (2) GALVANIZED 16d NAILS OR #12 WOOD DECK SCREWS.
- D.b.b. 2x8 BOARDS: (3) GALVANIZED 16d NAILS OR #12 WOOD DECK SCREWS.

NAILING TO EDGE SUPPORTING MEMBER: GALVANIZED 16d NAILS OR #12 WOOD DECK SCREWS AT 4" ON CENTER. END JOINTS IN ADJACENT BOARDS SHALL BE SEPARATED BY AT LEAST ONE JOIST. THERE SHALL BE AT LEAST TWO BOARDS BETWEEN JOINTS ON THE SAME SUPPORT.

G) WOOD FRAMING (CONT.):

1. FAST	ENERS AND FRAMING ANC
1.a. N	AILS: COMMON WIRE NAILS
1.a.a.	8d = 0.131"Ø x 2½" LONG
1.a.b.	10 = 0.148"Ø x 3" LONG
1.a.c.	16d = 0.162"Ø x 3½" LONG
1.b. L	AG BOLTS AND THRU-BOLT
1.b.a.	THROUGH-BOLT HOLES
	BOLTS BEARING ON WO
1.b.b.	INSTALL LAG BOLTS IN D
	PROVIDE STANDARD CU
1.c. V	/OOD SCREWS SHALL BE /
1.d. A	LL FRAMING ANCHORS ANI
1.e. M	ETAL CONNECTORS AND T
1.e.a.	ALL METAL CONNECTOR

2. PROVIDE 3" x 3" x 1/4" PLATE WASHERS ON ALL FOUNDATION ANCHOR BOLTS.

3. GENERAL:

- 2304 10 1
- FRAMING DEFLECTION.

H) POST-INSTALLED ANCHORS:

- (ICC-ES ESR-3187) BY HILTI.

- SEEK GUIDANCE FROM THE ENGINEER.
- ATTACHED WITH POST-INSTALLED ANCHORS.
- SUBMITTED.

HORS AND CONNECTORS

TS ASTM A307

S SHALL BE $rac{1}{76}$ " LARGER THAN BOLT DIAMETER. PROVIDE STANDARD CUT WASHER UNDER ALL HEAD AND NUTS FOR DRILLED PILOT HOLES EQUAL TO $\frac{3}{4}$ TIMES THE BOLT SHANK DIAMETER. DO NOT HAMMER OR OVER-DRIVE BOLTS.

JT WASHER UNDER ALL LAG BOLT HEADS BEARING ON WOOD. AS SPECIFIED ON PLANS

ID CONNECTORS SHALL BE BY SIMPSON STRONG-TIE, UNLESS NOTED OTHERWISE

TREATED LUMBER: DRS IN CONTACT WITH TREATED LUMBER SHALL BE STAINLESS STEEL, BATCH HOT-DIP GALVANIZED PER ASTM A123 OR A153, OR PROPRIETARY EQUIVALENT.

3.a. FOR CONNECTIONS FOR WOOD MEMBERS NOT SHOWN ON THESE DRAWINGS OR IN THESE NOTES, USE THE IBC FASTENING SCHEDULE, TABLE 3.b. ALL EXTERIOR WOOD SHALL BE PRESSURE TREATED, PAINTED OR STAINED. MAINTENANCE SHALL BE THE RESPONSIBILITY OF THE OWNER. FOLLOW THE MANUFACTURER'S RECOMMENDATIONS FOR EXTERIOR APPLICATIONS. 3.c. ALL NON-BEARING WALLS BELOW FLOOR FRAMING AND PREFABRICATED TRUSSES SHALL BE SLIP CONNECTED TO ALLOW FOR POTENTIAL

ADHESIVE ANCHORS AND DOWELS IN CONCRETE: SET-XP (ICC-ES ESR-2508) OR AT-XP (IAPMO UES ER-263) BY SIMPSON STRONG-TIE OR HIT-HY 200

2. ADHESIVE ANCHORS AND DOWELS IN REINFORCED MASONRY: SET-XP (IAPMO UES ER-265) OR AT-XP (IAPMO UES ER-281) BY SIMPSON STRONG-TIE.

3. EXPANSION ANCHORS IN CONCRETE: STRONG-BOLT 2 (IAPMO UES ER-240) BY SIMPSON STRONG-TIE OR KWIK BOLT TZ (ICC-ES ESR-1917) BY HILTI. 4. EXPANSION ANCHORS IN MASONRY: STRONG-BOLT 2 (IAPMO UES ER-240) BY SIMPSON STRONG-TIE.

5. SCREW ANCHORS IN CONCRETE: TITEN HD (ICC-ES ESR-2713) BY SIMPSON STRONG-TIE OR KWIK HUS-EZ (ICC-ES ESR-3056) BY HILTI.

6. SCREW ANCHORS IN MASONRY: TITEN HD (IC-ES ESR-1056) BY SIMPSON STRONG-TIE OR KWIK HUS-EZ (ICC-ES ESR-3056) BY HILTI.

7. FOLLOW MANUFACTURER'S INSTALLATION INSTRUCTIONS FOR ALL POST-INSTALLED ANCHORS, INCLUDING REQUIREMENTS FOR INSTALLING ANCHORS NEAR HEAD OR BED JOINTS IN MASONRY WALLS.

8. PROVIDE STAINLESS STEEL FASTENERS FOR EXTERIOR USE OR WHEN EXPOSED TO WEATHER. PROVIDE ELECTRO-PLATED CARBON STEEL ANCHORS AT OTHER LOCATIONS, UNLESS NOTED OTHERWISE.

9. IF REINFORCEMENT IS ENCOUNTERED DURING DRILLING, ABANDON AND SHIFT THE HOLE LOCATION TO AVOID THE REINFORCEMENT. PROVIDE A MINIMUM OF (2) ANCHOR DIAMETERS OR 1 INCH, WHICHEVER IS LARGE, OF SOUND CONCRETE OR MASONRY BETWEEN THE ANCHOR AND THE ABANDONED HOLE. FILL THE ABANDONED HOLE WITH NON-SHRINK GROUT. IF THE ANCHOR OR DOWEL MAY NOT BE SHIFTED AS NOTED ABOVE,

10. LOCATED REINFORCEMENT AND CONFIRM FINAL ANCHOR LOCATIONS PRIOR TO FABRICATING PLATES, MEMBERS, OR OTHER STEEL ASSEMBLIES

11. SUBSTITUTE PRODUCTS SHALL HAVE AN ASSOCIATED ICC-ES OR IAPMO EVALUATION REPORT AND THE CONTRACTOR MUST DEMONSTRATE PERFORMANCE IS EQUIVALENT TO THE SPECIFIED PRODUCTS. SUBSTITUTIONS WILL NOT BE CONSIDERED UNLESS THIS INFORMATION IS

ABBREVIATIONS: GLULAM ANCHOR BOLT GYP GYPSUM ARV/ ABOVE HORIZ HORIZONTAL ARCH'L ARCHITECTURAL MFR MANUFACTURER BLW BELOW MECH'L MECHANICAL B/W BETWEEN (NI)BOARI NTS NOT TO SCALE BTM BOTTOM OC ON CENTER BOUNDARY NAILING BN OH OVERHANG CANT CANTILEVER OSB ORIENTED STRAND BOARD CONCRETE MASONRY CMU OPN'G OPENING CENTERLINE CL OPP OPPOSITE COL COLUMN PLCS PLACES CONC CONCRETE CONN PLATE PL CONNECTION PLYWD PLYWOOD D.J DECK JOIST PRESSURE TREATED PT DP DEEP RAD RADIUS DBL DOUBLE REF REFERENCE EXISTING (E) REQ'D REQUIRED EDGE NAILING ΕN SHT'G SHEATHING EACH EA SIMILAR SIM EACH WAY ΕW STRUCT'L STRUCTURAL ELEV ELEVATION STD STANDARD FLR FLOOR SUBFLR SUBFLOOR FLOOR JOIST FJ SHEARWALL SW FOUNDATION FND то TOP OF FOOTING FT'G TYP TYPICAL FOUNDATION WALL FW UNLESS NOTED OTHERWISE UNO GENERAL CONTRACTOR GC VIF VERIFY IN FIELD GA GAUGE VERT VERTICAL GN GENERAL NOTES WWF WELDED WIRE FABRIC GIRDER TRUSS GT

DRAWING LIST:

S100	GENERAL STRUCTURAL NOTES
S101	SPECIAL INSPECTIONS & SCHEDULES
S102	FOUNDATION PLAN
S103	FLOOR FRAMING PLAN
S104	ROOF FRAMING PLAN
S201	STRUCTURAL DETAILS
S202	STRUCTURAL DETAILS
S203	STRUCTURAL DETAILS

S100

		CONCR	ETE		
SYSTEM OR MATERIAL:	IBC CODE REFERENCE:	CODE OR STANDARD:	CONTINUOUS:	PERIODIC:	NOTES:
AT THE TIME FRESH CONCRETE IS SAMPLED TO FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE	TABLE 1705.3	ASTM C 172 ASTM C 31 ACI 318: 5.6, 5.8	x		FABRICATE SPECIMENS AT TIME FRESH CONCRETE IS PLACED ONCE EACH DAY FOR A GIVEN CLASS OF CONCRETE, OR LESS THAN ONCE FOR EACH 150 YDS OF CONCRETE, OR LESS THAN ONCE FOR EACH 5,000 FT2 OF SURFACE AREA FOR SLABS/WALLS. ONCE
CONCRETE STRENGTH	TABLE 1705.3	ASTM C39	х		EACH SHIFT FROM IN-PLACE WORK OR FROM TEST PANEL AND MINIMUM ONE SPECIMEN FOR EACH 50 CUBIC YARDS. "PRECONSTRUCTION TESTS AS REQUIRED PER THE BUILDING OFFICIAL."
CONCRETE SLUMP		ASTM C143	Х		
CONCRETE AIR CONTENT	TABLE	ASTM C231	Х		
	1705.3	ASTM C1064	X		
		710110101004	X		
NSPECTION OF ANCHORS INSTALLED IN HARDENED CONCRETE	1909.1 TABLE 1705.3	ACI 318: 3.8.6, 8.1.3, 21.1.8		x	SPECIAL INSPECTIONS APPLY TO ANCHOR PRODUCT NAME, TYPE, AND DIMENSIONS, HOLE DIMENSIONS, COMPLIANCE WITH DRILL BIT REQUIREMENTS, CLEANLINESS OF THE HOLE AND ANCHOR, ADHESIVE EXPIRATION DATE, ANCHOR/ADHESIVE INSTALLATION, ANCHOR EMBEDMENT, AND TIGHTENING TORQUE
REINFORCING STEEL PLACEMENT	1705.3 1910.4 1901.3.2	ACI 318: 3.5 ACI 318: 7.1-7.7		х	TOLERANCES AND REINFORCING PLACEMENT PER ACI 7.5; SPACING LIMITS FOR REINFORCING ACI 7.6 PROTECTION OF REINFORCEMENT PER ACI 7.7
WELDING REINFORCING STEEL	1705.2.2.1.2 1903.1	ACI 318: 3.5.2 AWS D1.4	х		REFER TO STEEL FOR WELDING REQUIREMENTS TABLE 1705.2.2, ITEM 2b
a. VERIFICATION OF WELDABILITY OF REINFORCING STEEL OTHER THAN ASTM A 706	TABLE 1705.2.2	AWS D1.4 ACI 318: SECTION 3.5.2		х	
b. OTHER REINFORCING STEEL	TABLE 1705.2.2	AWS D1.4 ACI 318: SECTION 3.5.2		х	
PLACEMENT OF BOLTS INSTALLED IN CONCRETE	TABLE 1705.3 1908.5 1909.1	ACI 318: 1.3.2.C ACI 318: 8.1.3 ACI 318: 21.1.8 ACI 318 - APPENDIX D		x	ALL BOLTS VISUALLY INSPECTED
VERIFYING USE OF REQUIRED MIX DESIGN(S)	TABLE 1705.3 1904 1904.2 1910.2 1910.3	ACI 318: CHAPTER 4 ACI 318: 5.2-5.4		х	
CONCRETE PLACEMENT	TABLE 1705.3	ACI 318: 1.3.2.D ACI 318: 5.9 - 5.10	х		
CONCRETE PLACEMENT AT COMPOSITE SLABS		ASCE 9, CHAPTER 3	х		
CONCRETE CURING	TABLE 1705.3 1910.9.1-3	ACI 318: 5.11-5.13		х	
VERIFICATION OF IN-SITU CONCRETE PRIOR TO REMOVAL OF FORMS AND SHORES FROM ELEVATED BEAMS AND STRUCTURAL SLABS	TABLE 1705.3	ACI 318: 6.2		х	
VERIFICATION OF FORMWORK	TABLE 1705.3	ACI 318: 6.1.1		х	SPECIAL INSPECTIONS APPLY TO SHAPE, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED

SHEARWALL SCHEDULE	

MARK	SHEATHING NAILING	SILL NAILING	RIM NAILING	F
1	6" o/c EDGES 12" o/c FIELD	16d @ 6" o/c	A35 @ 18" o/c	2
2	4" o/c EDGES 12" o/c FIELD	16d @ 4" o/c	A35 @ 16" o/c	2

HOLDOWN SCHEDULE

MARK	TYPE	POST	FASTENERS	ANCHOR BOLT	REMARKS	DETAIL
A	CS16	SINGLE STUD	PER MFR		MIN. 11" END DIST. ON BEAM BELOW	112 S202
В	HDU2	DOUBLE STUD	(6) ¼" x 2½" SDS SCREWS	SSTB20		109 S201
C	HDU4	DOUBLE STUD	(10) ¼" x 2½" SDS SCREWS	SSTB24		109 S201
	HDU5	DOUBLE STUD	(14) ¹ ⁄ ₄ " x 2 ¹ ⁄ ₂ " SDS SCREWS	SSTB24		109 S201

HEADER SCHEDULE					
MARK	SIZE	TRIMMER STUDS	KING STUDS		
HE	EXISTING T	TING TO REMAIN			
(H1)	4x6	(1) 2x	(1) 2x		
H2	6x6	(1) 2x	(1) 2x		
H3	6x8	(1) 2x	(1) 2x		
H4	6x10	(2) 2x	(2) 2x		
H5	6x12	(2) 2x	(2) 2x		

*HOLDOWN	SC

1. HOLDOWNS SHOWN ARE MANUFACTURED BY SIMPSON STRONG-TIE.

2. THREADED RODS SHALL BE ASTM F1554 GR. 36. PROVIDE DOUBLE NUTS AT EMBEDDED END ROD WITH PLATE WASHERS (ASTM A36) OF THE FOLLOWING SIZES INSTALLED BETWEEN THE NUTS:

2. IF REQUIRED, DEEPEN FOOTING OR WALL TO PROVIDE A MINIMUM OF 3" CLEARANCE BETWEEN THE BOTTOM OF THE HOLDOWN ANCHOR BOLT (WITH THE EMBEDMENT DEPTH SHOWN IN THE SCHEDULE) AND THE BOTTOM OF THE FOOTING OR WALL. THE THICKENED SECTION OF THE FOOTING OR WALL (PARALLEL TO THE LENGTH OF THE WALL) SHALL EXTEND A MINIMUM OF 1.5xEMBEDMENT DEPTH (1'-0" MIN.) BEYOND THE BOLT CENTERLINE EACH SIDE.

3. EMBEDMENT DEPTHS SHOWN FOR ANCHOR RODS ARE MEASURED FROM THE TOP OF CONCRETE FOOTING.

EA. PLY.

FOOTING SCHEDULE						
	DIMENSIONS			REINFORCEMENT		
MARK	LONG ("A")	SHORT ("B")	THICKNESS	LONG DIREC ("C")	SHORT DIREC ("D")	REMARKS
CF1	CONT.	1'-3"	10"	(2) #4 BOT.		
CF2	CONT.	2'-6"	12"	(3) #4 BOT.	#4 @ 24" o/c	
PF1	2'-0"	2'-0"	10"	(3) #4 BOT.	(3) #4 BOT.	
PF2	2'-6"	2'-6"	10"	(3) #4 BOT.	(3) #4 BOT.	
PF3	3'-0"	3'-0"	12"	(4) #4 BOT.	(4) #4 BOT.	
PF4	3'-6"	3'-6"	12"	(5) #4 BOT.	(5) #4 BOT.	
PF5	5'-0"	5'-0"	12"	(8) #4 BOT.	(8) #4 BOT.	

NOTE: REINFORCING "C" IS PARALLEL TO DIMENSION "A" & REINFORCING "D" IS PARALLEL TO DIMENSION "B"

FOUNDATION ANCHORS 2x PL. w/ $\frac{1}{2}$ " DIA. ANCHOR BOLTS @ 48" o/c

2x PL. w/ $\frac{1}{2}$ " DIA. ANCHOR BOLTS @ 36" o/c

CHEDULE NOTES:

AB DIA	PL SIZE
⁵ ⁄8"	³ / ₈ "x2 ¹ / ₂ "x2 ¹ / ₂ "
⁷ ⁄8"	³ ⁄8"x3"x3"

4. CONNECT MULTIPLE STUDS AS POSTS USING MIN. (2) 16d NAILS @ 8" o/c

			REVIS	SIONS			
							REMARKS
							ATE
	_						SUB#
							REV#
		SKYLINE BOULEVARD	TI AND OREGON 97229		3-404-0494	alvin matt@nmail	
NATT		427 NW	POR) (. L	DC C	C	ЯC
MATT		427 NW	D F	PRO,	nc ESS	CON	.
		120 × 13 427 NW		PR0, NE 69F G0		CONAL D	
		44 DIO 7 32 427 NW	and and and and and and and and	PRO, NE GO 8.2 GA	DC ESS PENER		
			and G^{I} G^{I} G^{I} G^{I} T^{I} $ES:$ T	PRO, NE PRO, NE GO	$\frac{1}{20}$	Construction 100 100 100 100 100 100 100 100 100 10	
			$\frac{1}{2}$ $\frac{1}$	$P^{RO} = \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	23	
		: - GARAGE REMODEL		$\sum_{n=1}^{\infty} P(N) = P(N) =$			
		DENCE - GARAGE REMODEL 🛛 🔤 🖉 🖉 🖓 🖓 🖓 🖓 🖂 🖓 🛛 427 NW		$\sum_{n=1}^{\infty} \mathcal{R}(N = 0) = \sum_{n=1}^{\infty} \mathcal{R}(N = 0) = \sum_{n=1}^{\infty} $	& SPECIAL INSPECTIONS	23 23 223	3 DRAWN M. GALVIN COPYRIGHI: 2023 J J J J J J J J J J J J J J J J J J J
		RESIDENCE - GARAGE REMODEL		$\sum_{n=1}^{\infty} Q_n Q_n $	ULES & SPECIAL INSPECTIONS	23 23 223	
		VALSH RESIDENCE - GARAGE REMODEL 3 / 조종, ᅙ. 2 전 427 NW		241 2111 AVEINUE, WEST EXAMPLE ON 31 UN	SCHEDULES & SPECIAL INSPECTIONS		
		く 🔠 MALSH RESIDENCE - GARAGE REMODEL 🛛 🔤 🖉 🖉 🖓 🗐 📓 🖅 🦓 🤤 🖉 🦓 🗍 427 NW		$\sum_{n=1}^{\infty} \nabla C \nabla C $	2 SCHEDULES & SPECIAL INSPECTIONS		
		Malsh Residence - Garage Remodel A27 NW Residence - Garage Remodel		$O = \frac{1}{2} \int \frac{1}{2} \frac{1}{2$	عد الكل SCHEDULES & SPECIAL INSPECTIONS		

FOUNDATION NOTES:

- 1. VERIFY ALL DIMENSIONS WITH ARCHITECTURAL DRAWINGS PRIOR TO COMMENCING WORK. ALL EXISTING DIMENSIONS TO BE FIELD VERIFIED PRIOR TO COMMENCING WORK.
- REFER TO SHEETS S100 & S101 FOR SPECIFICATIONS, SCHEDULES, NOTES AND SYMBOLS NOT SHOWN HERE BUT APPLYING TO WORK SHOWN THIS SHEET
- TYPICAL PERIMETER/EXTERIOR FOOTING SHALL BE MARK 'CF1' PER FOOTING SCHEDULE, UNLESS NOTED OTHERWISE. PROVIDE 6" CONC. STEM WALL w/ #4 VERTS AT 24" o/c & MIN. (2) #4 CONTINUOUS HORIZONTAL BARS (TOP & BOTTOM OF WALL), TYPICAL UNLESS NOTED OTHERWISE. AT EXTERIOR, 2-STORY CONCRETE WALL PROVIDE MARK 'CF2' FOOTING.
- WALL FRAMING SHALL BE 2x STUDS AT 16" ON CENTER, UNLESS NOTED OTHERWISE.
- 5. TOP PLATES SHALL BE SPLICED PER DETAIL 111/S202
- 6. CONSTRUCT SHEARWALLS PER DETAIL 109/S202
- 7. HOLDOWNS SHOWN THIS LEVEL OCCUR AT THE BOTTOM OF THE MAIN FLOOR FRAMING/TOP OF FOUNDATION

			REVIS	SIONS			
							SX
							DATE REMA
							BUB#
							REV#
		427 NW SKYLINE BOULEVARD	PORTI AND ORFGON 97229		003-464-6494	alvin matt@mail.com	
	2	•		_	FES5		
[[[[ED F 91 91 ORE 170 ES: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	$\frac{PRO}{NE}$ $69F$ GO $8,2$ GA $06/2$ 75	2ρ PE ORE N 2ρ ORE N 2ρ ORE N 2ρ ORE N 2ρ ORE OR	011- D 3 23	7
[[[[TERIT 8 MIGIT MA EXPIR	ED F N G 91 ORE 170 ES: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	2R0, NE GOI GOI 8,29 GA 06/2 2/5		5014F D 3 223	COPYRIGHT: 2023
L S				$\frac{2RO}{VE} = \frac{2RO}{VE} = 2$		3 23 ····	DRAWN M. GALVIN COPYRIGHT: 2023
		MALSH RESIDENCE - GARAGE REMODEL				3 123	DATE FEBRUARY 2023 DRAWN M. GALVIN 2023 2023
JOB				O(E) = 0 $O(E) = 0$		3 223	DATE FEBRUARY 2023 DRAWN M. GALVIN COPYRIGHT: 2023
JOB		S M N N N N N N N N N N N N N N N N N N		C V E C			DATE FEBRUARY 2023 DRAWN M. GALVIN COPYRIGHT: 2023

FLOOR FRAMING NOTES:

- 1. VERIFY ALL DIMENSIONS WITH ARCHITECTURAL DRAWINGS PRIOR TO COMMENCING WORK. ALL EXISTING DIMENSIONS TO BE FIELD VERIFIED PRIOR TO COMMENCING WORK.
- 2. REFER TO SHEETS S100 & S101 FOR SPECIFICATIONS, SCHEDULES, NOTES AND SYMBOLS NOT SHOWN HERE BUT APPLYING TO WORK SHOWN THIS SHEET
- FLOOR SHEATHING SHALL BE MIN. ²³/₃₂" WITH 8d NAILS 6"/12" ON CENTER (EDGES/FIELD).
- 4. WALL FRAMING SHALL BE 2x STUDS AT 16" ON CENTER, UNLESS NOTED OTHERWISE.
- 5. TOP PLATES SHALL BE SPLICED PER DETAIL 111/S202
- 6. UNLESS NOTED OTHERWISE, ALL NEW HEADERS SHALL BE FRAMED PER DETAIL 108/S202
- 7. HOLDOWNS SHOWN THIS LEVEL OCCUR AT THE BOTTOM OF THE MAIN FLOOR FRAMING/TOP OF FOUNDATION
- 8. CONSTRUCT SHEARWALLS PER DETAIL 109/S202
- 9. UNLESS NOTED OTHERWISE, POST UP/DOWN SHALL BE BUILT-UP 2x STUDS TO MATCH OR EXCEED CARRIED BEAM WIDTH. FASTEN EACH PLY WITH MIN. (2) 16d NAILS @ 8" o/c.
- 10. ALL BEAM HANGERS ARE MANUFACTURED BY SIMPSON STRONG-TIE, UNLESS NOTED OR DETAILED OTHERWISE
- 11. TYPICAL FLOOR HANGERS SHALL BE: 11⁷/₈" TJI 110 = SIMPSON ITS1.81/11.88 117/8" TJI 210 = SIMPSON ITS2.06/11.88 11⁷/₈" TJI 230 = SIMPSON ITS2.37/11.88 2x8 = SIMPSON LUS28

		ſ	REVIS	SIONS			
							REV# SUB# DATE REMARKS
		427 NW SKYLINE BOULEVARD			DU3-404-0484	mon light matter	
[[s		TERE BOIGITA CONSTRUCTION MAA EXPIR	$\sqrt{\frac{G}{\sqrt{G}}}$ 91 $\sqrt{\frac{G}{\sqrt{T}}}$ 91 $\sqrt{\frac{G}{\sqrt{T}}}$ ES: 2	NE 69F GO 8,2 06/ 2/5	257 PIGNEN 0 V 30/2 720 720	3 23	²⁰¹¹ 2023
		WALSH RESIDENCE - GARAGE REMODEL	0017 ETU AVVENILIE AVVECT I ININI OD 07060	2241 JILI AVENUE, WEJI LINN, UN 31 000	UPPER FLOOR & LOWER ROOF FRAMING PLAN		DATE FEBRUARY 2023 M. GALVIN COPYRIC
JOB	NUM	BER 22	2.(23	37	 •	70
URA	wing -			\boldsymbol{C}	RE)	≡∨ S	
			1	J		/	

ROOF FRAMING NOTES:

- 1. VERIFY ALL DIMENSIONS WITH ARCHITECTURAL DRAWINGS PRIOR TO COMMENCING WORK. ALL EXISTING DIMENSIONS TO BE FIELD VERIFIED PRIOR TO COMMENCING WORK.
- REFER TO SHEETS S100 & S101 FOR SPECIFICATIONS, SCHEDULES, NOTES AND SYMBOLS NOT SHOWN HERE BUT APPLYING TO WORK SHOWN THIS SHEET
- ROOF SHEATHING SHALL BE MIN. ¹⁵/₃₂" WITH 8d NAILS 6"/12" ON CENTER (EDGES/FIELD).
- 4. TOP PLATES SHALL BE SPLICED PER DETAIL
- 111/S202
- 5. HOLDOWNS SHOWN THIS LEVEL OCCUR AT THE BOTTOM OF THE SECOND FLOOR FRAMING / TOP OF FIRST FLOOR FRAMING (i.e. STRAPS FROM UPPER FLOOR STUDS TO LOWER FLOOR STUDS)

		REVIS	SIONS	5	
					E REMARKS
					SUB# DAT
					REV#
-					
Ц. Г. Г.	RD				
	427 NW SKYLINE BOULEVA			503-484-6494	gaiviii.iiiau@yii
			$P_{\rm r} = \frac{1}{2} \left[\frac{1}{2} \left[$		
			$\begin{bmatrix} 0 & 1 \\ 0 $		
	- GARAGE REMODEL Reversion - R				M. GALVIN COPYRIGHT: 2023 JULIAULUCUTI
	WALSH RESIDENCE - GARAGE REMODEL				DATE FEBRUARY 2023 DRAWN COPYRIGHT: ZO23 DATE FEBRUARY 2023 M. GALVIN 2023
	🛒 况 🖩 WALSH RESIDENCE - GARAGE REMODEL				DATE FEBRUARY 2023 DRAWN COPYRIGHT: ZOD3 DATE FEBRUARY 2023 M. GALVIN COPYRIGHT: 2023

Structural Calculations

Walsh Residence - Garage Remodel 2247 5th Avenue West Linn, OR 97068

DESIGN CRITERIA - SHEET 1 OF 2

1.0: PROJECT LOCATION	
1.1	Address: 2247 5th Avenue, West Linn, OR 97068
1.2	Coordinates: 45.34463239999999, -122.6480053
1.3	Site Elevation: 159ft
2.0: APPLICABLE CODES	
BUILDING CODES	
2.1	2019 Oregon Structural Specialty Code
2.2	2021 Oregon Residential Structural Code
2.3	ASCE 7-16: Minimum Design Loads for Buildings & Other Structures
MATERIAL CODES	
2.4	ACI 318-14: Building Code Requirements for Structural Concrete
2.5	AISC 360-16: Specification for Structural Steel Buildings

3.0: STRUCTURE DEAD & LIVE LOADS

DFAD	IOADS
	LOADS

3.1	Roof DL = 17 psf	(comp. shingles o/ 2x framing)
3.2	Floor DL 1 = 15 psf	(finish flr o/ 2x joists)
3.3	Floor DL 2 = NA	(not used)
3.4	Exterior Wall DL = 15 psf	
3.5	Interior Wall DL = 10 psf	
LIVE LOADS		
3.6	Roof LL = 20 psf	(reducible)
3.7	Floor LL = 40 psf	
3.8	Deck/Balcony LL = 60 psf	(1.5x LL served)
3.9	Storage LL = 100 psf	

4.0: DEFLECTION CRITERIA

ROOF		
4.1	Total Load (DL+SL/RLL) =	L/180
4.2	Live Load or Snow Load =	L/360
FLOORS		
4.3	Total Load (DL+LL) =	L/240
4.4	Live Load or Snow Load =	L/360

DESIGN CRITERIA - SHEET 2 OF 2

5.0: SOILS DESIGN DATA

5.1	Soil Site Class = D	(By Default)
5.2	Allow. Bearing Pressure = 1,500 psf	
5.3	Geotech Report = No	

6.0: SEISMIC DESIGN DATA

6.1	Seismic Importance Factor $(I_e) = 1.00$
6.2	Structure Risk Category = 1
6.3	Mapped Spectral Response Acceleration $(S_s) = 0.832$
6.4	Mapped Spectral Response Acceleration $(S_1) = 0.376$
6.5	Mapped Spectral Response Coefficient (S _{DS}) = 0.666
6.6	Mapped Spectral Response Coefficient $(S_{D1}) = 0.482$
6.7	Site Class = D
6.8	Seismic Design Category = D
6.9	Redundancy Factor (ρ) = 1.30
6.10	Seismic Response Coefficient ($C_s = S_{DS} \times I/R$) = 0.102
6.11	Response Modification Coeff. (R) = 6.50
6.12	Seismic Force Resisting System = Light-frame (wood) shearwalls
6.13	Analysis Procedure Used = Equivalent Lateral Force
6.14	Design Base Shear ($V = C_s W$) = 0.102 W
6.15	Horizontal Seismic Load (E _h =pxV) = 0.133 W

7.0: WIND DESIGN DATA

7.1	Basic Wind Speed = 97
7.2	Wind Exposure = C

8.0: SNOW DESIGN DATA

8.1	Design Roof Snow Load =	25 psf
8.2	Frost Depth =	18 inches

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Concentrated)

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	2,400.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade : 24F-V8	Fv	265.0 psi	Eminbend - yy	850.0ksi
	Ft	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional buck	lina			•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

Beam self weight calculated and added to loading

Load for Span Number 1

Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 6.083 ft, (GARAGE)

Point Load : L = 3.0 k @ 4.625 ft, (Pt Load)

Load for Span Number 2

```
Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 6.083 ft, (GARAGE)
```

Point Load : L = 3.0 k @ 4.625 ft, (Pt Load)

DESIGN SUMMARY

DESIGN SUMMART						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.840 1 5.5x9	Maximum S Sectior	hear Stress Ratio used for this span	=	0.629:1 5.5x9
fb: Actual	=	2,016.07psi		fv: Actual	=	166.70 psi
F'b	=	2,400.00psi		F'v	=	265.00 psi
Load Combination	+D+L+H,	LL Comb Run (LL)	Load C	ombination	+D+L+H, L	L Comb Run (LL)
Location of maximum on span	=	9.250ft	Locatio	n of maximum on span	=	8.527 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Defle Max Upward Transient Deflectio Max Downward Total Deflectio Max Upward Total Deflection	ection ion n	0.151 in Ratio = -0.062 in Ratio = 0.200 in Ratio = -0.031 in Ratio =	737>=360 1777>=360 554>=240 3551>=240	Span: 2 : L Only, LL Co Span: 2 : L Only, LL Co Span: 2 : +D+L+H, LL C Span: 2 : +D+L+H, LL C	mb Run (*L) mb Run (L*) Comb Run (* Comb Run (L)) [L) _*)

Maximum Forces & Stresses for Load Combinations

Load Combination	Max Stress Ratios									Momer	Moment Values			Shear Values			
Segment Length	Span #	Μ	V	CD	СМ	C _t	CLx	CV	Cfu	с _і	Cr	М	fb	F'b	V	fv	F'v
+D+H														0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.349	0.281	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,160.0	2.21	66.9	238.5
Length = 9.250 ft	2	0.349	0.281	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,160.0	2.21	66.9	238.5
+D+L+H, LL Comb F	Run (*L)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.577	0.581	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.57	1,385.3	2,400.0	5.08	153.9	265.0
Length = 9.250 ft	2	0.667	0.581	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	9.91	1,601.3	2,400.0	5.08	153.9	265.0

Decign OK

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Concentrated)

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	ress Ra	tios								Momer	nt Values		S	near Vali	Jes
Segment Length	Span #	M	V	CD	СМ	C _t C	CLx	CV	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
+D+L+H, LL Comb R	Run (L*)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.667	0.581	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	9.91	1,601.3	2,400.0	5.08	153.9	265.0
Length = 9.250 ft	2	0.577	0.581	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.57	1,385.3	2,400.0	2.63	153.9	265.0
+D+L+H, LL Comb R	Run (LL)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.840	0.629	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	12.47	2,016.1	2,400.0	5.50	166.7	265.0
Length = 9.250 ft	2	0.840	0.629	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	12.47	2,016.1	2,400.0	5.50	166.7	265.0
+D+Lr+H, LL Comb I	Run (*L)			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+Lr+H, LL Comb I	Run (L*)			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+Lr+H, LL Comb I	Run (LL	.)			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+S+H					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.273	0.220	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,760.0	2.21	66.9	304.8
Length = 9.250 ft	2	0.273	0.220	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,760.0	2.21	66.9	304.8
+D+0.750Lr+0.750L+	⊦H, LL (Cc			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.409	0.399	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,000.0	4.36	132.2	331.3
Length = 9.250 ft	2	0.432	0.399	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,000.0	4.36	132.2	331.3
+D+0.750Lr+0.750L+	⊦H, LL (Cc			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.432	0.399	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,000.0	4.36	132.2	331.3
Length = 9.250 ft	2	0.409	0.399	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,000.0	2.52	132.2	331.3
+D+0.750Lr+0.750L+	⊦H, LL (Cc			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.567	0.428	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,000.0	4.68	141.8	331.3
Length = 9.250 ft	2	0.567	0.428	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,000.0	4.68	141.8	331.3
+D+0.750L+0.750S+	H, LL C	ю			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.445	0.434	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	2,760.0	4.36	132.2	304.8
Length = 9.250 ft	2	0.469	0.434	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	2,760.0	4.36	132.2	304.8
+D+0.750L+0.750S+	H, LL C	ю			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.469	0.434	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	2,760.0	4.36	132.2	304.8
Length = 9.250 ft	2	0.445	0.434	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	2,760.0	2.52	132.2	304.8
+D+0.750L+0.750S+	H, LL C	ю			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.616	0.465	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	2,760.0	4.68	141.8	304.8
Length = 9.250 ft	2	0.616	0.465	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	2,760.0	4.68	141.8	304.8
+D+0.60W+H					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.197	0.158	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,840.0	2.21	66.9	424.0
Length = 9.250 ft	2	0.197	0.158	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,840.0	2.21	66.9	424.0
+D+0.70E+H					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.197	0.158	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,840.0	2.21	66.9	424.0
Length = 9.250 ft	2	0.197	0.158	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,840.0	2.21	66.9	424.0
+D+0.750Lr+0.750L+	+0.450V	V-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	4.36	132.2	424.0
Length = 9.250 ft	2	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0
+D+0.750Lr+0.750L+	+0.450V	V-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Concentrated)

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	ress Ra	tios								Momer	nt Values		SI	hear Valu	Jes
Segment Length	Span #	M	V	CD	СМ	c _t c	CLx	CV	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
Length = 9.250 ft	2	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	2.52	132.2	424.0
+D+0.750Lr+0.750L-	+0.450V	V-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
Length = 9.250 ft	2	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
+D+0.750L+0.750S+	-0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	4.36	132.2	424.0
Length = 9.250 ft	2	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0
+D+0.750L+0.750S+	-0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0
Length = 9.250 ft	2	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	2.52	132.2	424.0
+D+0.750L+0.750S+	0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
Length = 9.250 ft	2	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
+D+0.750L+0.750S+	0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	4.36	132.2	424.0
Length = 9.250 ft	2	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0
+D+0.750L+0.750S+	0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.337	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	8.02	1,295.8	3,840.0	4.36	132.2	424.0
Length = 9.250 ft	2	0.320	0.312	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.60	1,227.6	3,840.0	2.52	132.2	424.0
+D+0.750L+0.750S+	0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
Length = 9.250 ft	2	0.443	0.334	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	10.52	1,700.7	3,840.0	4.68	141.8	424.0
+0.60D+0.60W+0.60)H				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
Length = 9.250 ft	2	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
+0.60D+0.70E+0.60	Н				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
Length = 9.250 ft	2	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Loca	tion in Span	Load C	Combination	Max. "+" Defl	Location in Span
+D+L+H, LL Comb Run (L*)	1	0.2001		4.289			0.0000	0.000
+D+L+H, LL Comb Run (*L)	2	0.1991		5.013			0.0000	0.000
Vertical Reactions				Suppo	ort notatio	n : Far left is #1	Values in KIPS	
Load Combination		Suppo	ort 1 S	Support 2 Su	upport 3			
Max Upward from all Load Cond	ditions	3	.718	11.986	3.718			
Max Upward from Load Combin	ations	3	.718	11.986	3.718			
Max Upward from Load Cases		2	.203	6.938	2.203			
Max Downward from all Load C	onditio	-0	.422		-0.422			
Max Downward from Load Case	es (Resis	-0	.422		-0.422			
+D+H		1	.514	5.047	1.514			
+D+L+H, LL Comb Run (*L)		1	.092	8.517	3.718			
+D+L+H, LL Comb Run (L*)		3	.718	8.517	1.092			
+D+L+H, LL Comb Run (LL)		3	.296	11.986	3.296			
+D+Lr+H, LL Comb Run (*L)		1	.514	5.047	1.514			
+D+Lr+H, LL Comb Run (L*)		1	.514	5.047	1.514			
+D+Lr+H, LL Comb Run (LL)		1	.514	5.047	1.514			
+D+S+H		1	.514	5.047	1.514			
+D+0.750Lr+0.750L+H, LL Con	nb Run (*	1	.198	7.649	3.167			
+D+0.750Lr+0.750L+H, LL Con	nb Run (L	3	.167	7.649	1.198			
+D+0.750Lr+0.750L+H, LL Con	nb Run (L	2	.850	10.251	2.850			

Project File: 2247 5th ave.ec6 (c) ENERCALC INC 1983-2022

Page 6 of 48

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Concentrated)

Vertical Reactions		Supp	oort notation : Far left is #1	Values in KIPS
Load Combination	Support 1 S	Support 2 S	Support 3	
+D+0.750L+0.750S+H, LL Comb Run (*L	1.198	7.649	3.167	
+D+0.750L+0.750S+H, LL Comb Run (L*	3.167	7.649	1.198	
+D+0.750L+0.750S+H, LL Comb Run (LL	2.850	10.251	2.850	
+D+0.60W+H	1.514	5.047	1.514	
+D+0.70E+H	1.514	5.047	1.514	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.198	7.649	3.167	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	3.167	7.649	1.198	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	2.850	10.251	2.850	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.198	7.649	3.167	
+D+0.750L+0.750S+0.450W+H, LL Comb	3.167	7.649	1.198	
+D+0.750L+0.750S+0.450W+H, LL Comb	2.850	10.251	2.850	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.198	7.649	3.167	
+D+0.750L+0.750S+0.5250E+H, LL Comb	3.167	7.649	1.198	
+D+0.750L+0.750S+0.5250E+H, LL Comb	2.850	10.251	2.850	
+0.60D+0.60W+0.60H	0.909	3.028	0.909	
+0.60D+0.70E+0.60H	0.909	3.028	0.909	
D Only	1.514	5.047	1.514	
L Only, LL Comb Run (*L)	-0.422	3.469	2.203	
L Only, LL Comb Run (L*)	2.203	3.469	-0.422	
L Only, LL Comb Run (LL) H Only	1.782	6.938	1.782	

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Distributed)

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : IBC 2018
Material Properties

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	2,400.0 psi	Ebend- xx	1,800.0 ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species · DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi
Wood Grade : 24F-V8	Fv	265.0 psi	Eminbend - yy	850.0ksi
	Ft	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional b	uckling		2	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Load for Span Number 1

Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 6.083 ft, (GARAGE)

Load for Span Number 2

Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 6.083 ft, (GARAGE)

DESIGN SUMMARY

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.490 1 5.5x9	Maximum S Sectior	hear Stress Ratio used for this span	=	0.393:1 5.5x9
fb: Actual	=	1,175.16psi		fv: Actual	=	104.20 psi
F'b	=	2,400.00psi		F'v	=	265.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	+D+L+H, l = =	L Comb Run (LL) 9.250ft Span # 1	Load C Locatio Span #	ombination n of maximum on span where maximum occurs	+D+L+H, LL = =	Comb Run (LL) 8.527 ft Span # 1
Maximum Deflection Max Downward Transient Defle Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ection on า	0.047 in Ratio = -0.021 in Ratio = 0.097 in Ratio = -0.005 in Ratio =	2347 >=360 5331 >=360 1142 >=240 23781 >=240	Span: 2 : L Only, LL Co Span: 2 : L Only, LL Co Span: 2 : +D+L+H, LL (Span: 2 : +D+L+H, LL (mb Run (*L) mb Run (L*) Comb Run (*L Comb Run (L*))

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios									Moment	Shear Values					
Segment Length	Span #	Μ	V	CD	СМ	с _t	CLx	CV	Cfu	с _і	с _г	М	fb	F'b	V	fv	F'v
+D+H														0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.349	0.281	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,160.0	2.21	66.9	238.5
Length = 9.250 ft	2	0.349	0.281	0.90	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,160.0	2.21	66.9	238.5
+D+L+H, LL Comb F	Run (*L)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.402	0.377	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.97	964.9	2,400.0	3.30	99.9	265.0
Length = 9.250 ft	2	0.402	0.377	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.97	964.9	2,400.0	3.30	99.9	265.0
+D+L+H, LL Comb F	Run (L*)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.402	0.377	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.97	964.9	2,400.0	3.30	99.9	265.0

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Distributed)

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios						~	<u> </u>	Momen	t Values		S	hear Valu	Jes
Segment Length	Span #	M	V	CD	СМ	C _t (CLx	CV	Cfu	с _і	C _r	М	fb	F'b	V	fv	F'v
Length = 9.250 ft	2	0.402	0.377	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.97	964.9	2,400.0	2.35	99.9	265.0
+D+L+H, LL Comb F	Run (LL)				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.490	0.393	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.27	1,175.2	2,400.0	3.44	104.2	265.0
Length = 9.250 ft	2	0.490	0.393	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	7.27	1,175.2	2,400.0	3.44	104.2	265.0
+D+Lr+H, LL Comb	Run (*L))			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+Lr+H, LL Comb	Run (L*))			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+Lr+H, LL Comb	Run (LL	.)			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
Length = 9.250 ft	2	0.252	0.202	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,000.0	2.21	66.9	331.3
+D+S+H					1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.273	0.220	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2,760.0	2.21	66.9	304.8
Length = 9.250 ft	2	0.273	0.220	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	2.760.0	2.21	66.9	304.8
+D+0.750Lr+0.750L-	+H. LL C	Cc		-	1.00	1.00	1.00	1.000	1.00	1.00	1.00	-		0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.304	0.277	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3.000.0	3.03	91.7	331.3
L = 100000000000000000000000000000000000	2	0.304	0.277	1.25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,000.0	3.03	91.7	331.3
+D+0 7501 r+0 7501 -	- +H II (20	0.2.1	0	1 00	1 00	1 00	1 000	1 00	1 00	1 00	0.01	0.210	0.0	0.00	0.0	0.0
Length = 9250 ft	1	0.304	0 277	1 25	1 00	1 00	1 00	1 000	1 00	1 00	1 00	5 64	912.3	3 000 0	3.03	91.7	331.3
Length = 9.250 ft	2	0.304	0.277	1 25	1.00	1.00	1.00	1 000	1.00	1.00	1.00	5.64	912.3	3,000,0	2.31	91.7	331.3
+D+0 7501 r+0 7501 -	 +H II (0.004 Cr	0.277	1.20	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.04	012.0	0,000.0	0.00	0.0	0.0
I = 100000000000000000000000000000000000	1	0 357	0 286	1 25	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6 62	1 070 0	3 000 0	3 13	94.9	331 3
Length = 9.250 ft	2	0.357	0.286	1.20	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,000.0	3 13	04.0 Q4 Q	331.3
+D+0 7501 +0 750S+	<u>-</u> н п с	`0.007	0.200	1.20	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.02	1,070.0	0.0	0.00	0.0	0.0
$I = 10.750 \pm 10.75001$	1	0 331	0 301	1 15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5 64	9123	2 760 0	3.03	0.0 01 7	304.8
Length = 9.250 ft	2	0.331	0.301	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	012.0	2,760.0	3.03	01.7	304.8
+D+0 7501 +0 750S+	<u>-</u> н н с	`0.001	0.501	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.04	312.5	2,700.0	0.00	0.0	0.0
$L = 0.750 \pm $	1, LL C	0 331	0 301	1 15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	0123	2 760 0	3.03	0.0	304.8
Length = 9.250 ft	י 2	0.331	0.301	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	012.3	2,700.0	2 21	01.7	204.0
Length = 9.250 h		`0.001	0.501	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.04	312.5	2,700.0	2.51	0.0	0.0
+D+0.750L+0.7503+	1, LL C	0 200	0 21 1	1 15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6 62	1 070 0	2 760 0	2.12	0.0	204.9
Length = 9.250 ft	י 2	0.300	0.311	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	2,700.0	2 12	94.9	204.0
	2	0.566	0.311	1.15	1.00	1.00	1.00	1.000	1.00	1.00	1.00	0.02	1,070.0	2,700.0	0.00	94.9	0.0
+D+0.0000+11	4	0 107	0 1 5 9	1 60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	7546	2 9 4 0 0	0.00	66.0	424.0
Length = 9.250 ft	י ר	0.197	0.150	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.07	754.0	3,040.0	2.21	66.0	424.0
	2	0.197	0.156	1.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.07	754.0	3,040.0	2.21	00.9	424.0
	4	0 107	0 1 5 9	1 60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	7546	2.040.0	0.00	0.0	424.0
Length = 9.250 ft	1	0.197	0.150	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.07	754.0	3,040.0	2.21	66.9	424.0
Length = 9.250 ft		0.197	0.158	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	4.67	754.6	3,840.0	2.21	66.9	424.0
+D+0.750Lr+0.750L-	+0.4500	v-	0.040	4 00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.04	040.0	0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
+D+0.750Lr+0.750L-	+0.450V	v-	0.010	4.00	1.00	1.00	1.00	1.000	1.00	1.00	1.00	- • •	010 0	0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	2.31	91.7	424.0
+D+0.750Lr+0.750L-	+0.450V	V-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Distributed)

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	tress Ra	tios								Momer	nt Values		Sh	near Valu	Jes
Segment Length	Span #	M	V	CD	СМ	C _t (CLx	CV	Cfu	с _і	C _r	М	fb	F'b	V	fv	F'v
Length = 9.250 ft	1	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
Length = 9.250 ft	2	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
+D+0.750L+0.750S+	-0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
+D+0.750L+0.750S+	-0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	2.31	91.7	424.0
+D+0.750L+0.750S+	-0.450W	/+			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
Length = 9.250 ft	2	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
+D+0.750L+0.750S+	-0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
+D+0.750L+0.750S+	-0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	3.03	91.7	424.0
Length = 9.250 ft	2	0.238	0.216	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	5.64	912.3	3,840.0	2.31	91.7	424.0
+D+0.750L+0.750S+	-0.5250	E-			1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
Length = 9.250 ft	2	0.279	0.224	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	6.62	1,070.0	3,840.0	3.13	94.9	424.0
+0.60D+0.60W+0.60)H				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
Length = 9.250 ft	2	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
+0.60D+0.70E+0.60	н				1.00	1.00	1.00	1.000	1.00	1.00	1.00			0.0	0.00	0.0	0.0
Length = 9.250 ft	1	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0
Length = 9.250 ft	2	0.118	0.095	1.60	1.00	1.00	1.00	1.000	1.00	1.00	1.00	2.80	452.7	3,840.0	1.32	40.1	424.0

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Lo	ocation in Spar	Load Combination	Max. "+" Def	Location in Span
+D+L+H, LL Comb Run (L*)	1	0.0972	4.134		0.0000	0.000
+D+L+H, LL Comb Run (*L)	2	0.0965	5.168		0.0000	0.000
Vertical Reactions			Supp	port notation : Far left is #	#1 Values in KIPS	3
Load Combination		Support	1 Support 2 S	Support 3		
Max Upward from all Load Cond	litions	2.49	9 7.861	2.499		
Max Upward from Load Combin	ations	2.49	99 7.861	2.499		
Max Upward from Load Cases		1.51	4 5.047	1.514		
Max Downward from all Load Co	onditio	-0.14	41	-0.141		
Max Downward from Load Case	s (Resis	-0.14	41	-0.141		
+D+H		1.51	4 5.047	1.514		
+D+L+H, LL Comb Run (*L)		1.37	6.454	2.499		
+D+L+H, LL Comb Run (L*)		2.49	99 6.454	1.374		
+D+L+H, LL Comb Run (LL)		2.35	58 7.861	2.358		
+D+Lr+H, LL Comb Run (*L)		1.51	4 5.047	1.514		
+D+Lr+H, LL Comb Run (L*)		1.51	4 5.047	1.514		
+D+Lr+H, LL Comb Run (LL)		1.51	4 5.047	1.514		
+D+S+H		1.51	4 5.047	1.514		
+D+0.750Lr+0.750L+H, LL Com	ıb Run (*	1.40	6.102	2.253		
+D+0.750Lr+0.750L+H, LL Com	ıb Run (L	2.25	6.102	1.409		
+D+0.750Lr+0.750L+H, LL Com	ıb Run (L	2.14	7.158	2.147		
+D+0.750L+0.750S+H, LL Com	b Run (*L	. 1.40	09 6.102	2.253		
+D+0.750L+0.750S+H, LL Com	b Run (L*	2.25	6.102	1.409		
+D+0.750L+0.750S+H, LL Com	b Run (Ll	_ 2.14	7.158	2.147		

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB1 (Distributed)

Vertical Reactions		Su	pport notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
+D+0.60W+H	1.514	5.047	1.514	
+D+0.70E+H	1.514	5.047	1.514	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.409	6.102	2.253	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	2.253	6.102	1.409	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	2.147	7.158	2.147	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.409	6.102	2.253	
+D+0.750L+0.750S+0.450W+H, LL Comb	2.253	6.102	1.409	
+D+0.750L+0.750S+0.450W+H, LL Comb	2.147	7.158	2.147	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.409	6.102	2.253	
+D+0.750L+0.750S+0.5250E+H, LL Comb	2.253	6.102	1.409	
+D+0.750L+0.750S+0.5250E+H, LL Comb	2.147	7.158	2.147	
+0.60D+0.60W+0.60H	0.909	3.028	0.909	
+0.60D+0.70E+0.60H	0.909	3.028	0.909	
D Only	1.514	5.047	1.514	
L Only, LL Comb Run (*L)	-0.141	1.407	0.985	
L Only, LL Comb Run (L*)	0.985	1.407	-0.141	
L Only, LL Comb Run (LL) H Only	0.844	2.813	0.844	

Project File: 2247 5th ave.ec6
LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Concentrated)

CODE REFERENCES

Calculations per NI	DS 2018, IBC 2018, CBC 2019, ASC	CE 7-16
Load Combination	Set : IBC 2018	
Material Propertie	€S	
Analysis Method : A	Allowable Stress Design	Eh +

Analysis Method : Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elasi	ticity	
Load Combination : IBC 2018	Fb -	2,400.0 psi	Ebend- xx	1,800.0ksi	
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0 ksi	
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi	
Wood Grade : 24F-V8	Fv	265.0 psi	Eminbend - yy	850.0ksi	
	Ft	1,100.0 psi	Density	31.210 pcf	
Beam Bracing : Beam is Fully Braced against lateral-torsional bu	uckling		-		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE) Load for Span Number 2 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE) Point Load : L = 3.0 k @ 2.250 ft, (Pt Load) Load for Span Number 3

Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE)

Point Load : L = 3.0 k @ 2.250 ft, (Pt Load)

Load for Span Number 4

Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE)

DESIGN SUMMARY

Maximum Bending Stress Ratio	= C	0.564 : 1	Maximum S	hear Stress Ratio	=	0.592 : 1
Section used for this span		5.5X0	Section	used for this spart		5.5X0
fb: Actual	=	1,354.30psi		fv: Actual	=	156.89 psi
F'b	=	2,400.00psi		F'v	=	265.00 psi
Load Combination	+D+L+H, LI	L Comb Run (*LL*)	Load C	ombination	+D+L+H, l	L Comb Run (*LL*)
Location of maximum on span	=	4.500 ft	Locatio	n of maximum on span	=	4.044 ft
Span # where maximum occurs	; =	Span # 2	Span #	where maximum occurs	6 =	Span # 2
Maximum Deflection						
Max Downward Transient Def	lection	0.039 in Ratio =	1384 >=360	Span: 4 : L Only, LL C	omb Run (*	*L*L)
Max Upward Transient Deflec	tion	-0.017 in Ratio =	3152>=360	Span: 4 : L Only, LL C	omb Run (I	_*L*)
Max Downward Total Deflection	on	0.044 in Ratio =	1228 >=240	Span: 4 : +D+L+H, LL	Comb Run	(*L*L)
Max Upward Total Deflection		-0.012 in Ratio =	4332>=240	Span: 4 : +D+L+H, LL	Comb Run	(L*L*)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Loca	ation in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L+H, LL Comb Run (L*L*)	1	0.0228	1.951	L Only, LL Comb Run (*L*L)	-0.0109	3.428
+D+L+H, LL Comb Run (*L*L)	2	0.0439	2.278		0.0000	3.428
+D+L+H, LL Comb Run (L*L*)	3	0.0440	2.278	+D+L+H, LL Comb Run (*L*L)	-0.0011	0.057
+D+L+H, LL Comb Run (*L*L)	4	0.0226	2.268	L Only, LL Comb Run (L*L*)	-0.0120	0.897

Design OK

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Concentrated)

Vertical Reactions		Su	oport notati	ion : Far lef	it is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	
Max Upward from all Load Conditions	1.584	6.196	7.712	6.196	1.585	
Max Upward from Load Combinations	1.584	6.196	7.712	6.196	1.585	
Max Upward from Load Cases	0.915	3.422	5.260	3.422	0.916	
Max Downward from all Load Conditio	-0.334	-0.486	-0.256	-0.486	-0.334	
Max Downward from Load Cases (Resis	-0.334	-0.486	-0.256	-0.486	-0.334	
+D+H	0.915	2.774	2.451	2.774	0.916	
+D+L+H, LL Comb Run (***L)	0.909	2.807	2.324	3.628	1.496	
$+D+L+\Pi$, LL Comb Run (L)	0.004	2.201	0.06Z	5.309 6.163	0.000	
$+D+L+\Pi$, LL Comb Run (LL)	0.990	2.320 5.300	4.904 5.082	2 288	1.100	
+D+L+H Comb Run (*L*L)	0.500	5 342	2.002 2.952	3 141	1.004	
+D+I+H, II Comb Run (*II*)	0.676	4.823	7.712	4.823	0.676	
+D+L+H, LL Comb Run (*LLL)	0.670	4.856	7.584	5.677	1.257	
+D+L+H, LL Comb Run (L***)	1.496	3.627	2.324	2.807	0.910	
+D+L+H, LL Comb Run (L**L)	1.490	3.660	2.196	3.661	1.490	
+D+L+H, LL Comb Run (L*L*)	1.584	3.141	4.954	5.342	0.582	
+D+L+H, LL Comb Run (L*LL)	1.578	3.174	4.826	6.196	1.162	
+D+L+H, LL Comb Run (LL**)	1.168	6.163	4.954	2.320	0.998	
+D+L+H, LL Comb Run (LL*L)	1.162	6.196	4.826	3.174	1.579	
+D+L+H, LL Comb Run (LLL*)	1.257	5.677	7.584	4.856	0.670	
+D+L+H, LL Comb Run (LLLL)	1.251	5.709	7.456	5.710	1.251	
+D+Lr+H, LL Comb Run (**L)	0.915	2.774	2.451	2.774	0.916	
+D+LI+ Π , LL Comb Run (L)	0.915	2.114	2.431	2.114	0.916	
+D+Lr+H \downarrow Comb Run (*L**)	0.915	2.774	2.451	2.114	0.916	
+D+ $Ir+H$, II Comb Run (* $I*I$)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H. LL Comb Run (*LL*)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (*LLL)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (L***)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (L**L)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (L*L*)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (L*LL)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LL**)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LL*L)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LLL)	0.915	2.774	2.451	2.774	0.916	
	0.915	2.114	2.401	2.114	0.916	
+D+0 750l r+0 750l +H 11 Comb Run (*	0.911	2 798	2.401	3 414	1 351	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.982	2.409	4.424	4.676	0.670	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.977	2.434	4.328	5.316	1.105	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.669	4.675	4.424	2.409	0.982	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.665	4.700	4.328	3.050	1.417	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.736	4.311	6.397	4.311	0.736	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.731	4.335	6.301	4.951	1.172	
+D+0.750Lr+0.750L+H, LL Comb Run (L	1.351	3.414	2.356	2.799	0.911	
+D+0.750Lr+0.750L+H, LL Comb Run (L	1.346	3.439	2.260	3.439	1.346	
+D+0.750Lr+0.750L+H, LL Comb Run (L	1.417	3.049	4.328	4.700	0.665	
+D+0.750Li+0.750L+H, LL Comb Run (L	1.413	5.074	4.232	5.341 2.424	0.079	
$\pm D \pm 0.750$ I ± 0.750 I ± 1.1 Comb Run (I	1 100	5 340	4.320	2.434	0.978	
+D+0.750Lr+0.750L+H [] Comb Run (]	1.100	4 951	6.301	4 335	0 732	
+D+0.750Lr+0.750L+H, LL Comb Run (L	1.167	4.975	6.205	4.976	1.167	
+D+0.750L+0.750S+H, LL Comb Run (**	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+H, LL Comb Run (**	0.982	2.409	4.424	4.676	0.670	
+D+0.750L+0.750S+H, LL Comb Run (**	0.977	2.434	4.328	5.316	1.105	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.669	4.675	4.424	2.409	0.982	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.665	4.700	4.328	3.050	1.417	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.736	4.311	6.397	4.311	0.736	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.731	4.335	6.301	4.951	1.172	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.351	3.414	2.356	2.799	0.911	

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Concentrated)

Vertical Reactions		Su	pport notati	on : Far lef	t is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.346	3.439	2.260	3.439	1.346	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.417	3.049	4.328	4.700	0.665	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.413	3.074	4.232	5.341	1.101	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.105	5.316	4.328	2.434	0.978	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.100	5.340	4.232	3.074	1.413	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.171	4.951	6.301	4.335	0.732	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.167	4.975	6.205	4.976	1.167	
+D+0.60W+H	0.915	2.774	2.451	2.774	0.916	
+D+0.70E+H	0.915	2.774	2.451	2.774	0.916	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.982	2.409	4.424	4.676	0.670	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.977	2.434	4.328	5.316	1.105	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.669	4.675	4.424	2.409	0.982	
+D+0.750Lf+0.750L+0.450W+H, LL Comb	0.000	4.700	4.328	3.050	1.417	
+D+0.750L+0.750L+0.450W+H, LL Comb	0.730	4.311	6 201	4.311	0.730	
+D+0.750L+0.750L+0.450W+H, LL Comb	1 251	4.330	2 256	2 700	0.011	
$\pm D \pm 0.750 L \pm 0.750 L \pm 0.450 W \pm H + L + Comb$	1 3/6	3 / 30	2.330	2.799	1 3/6	
$\pm D \pm 0.750$ I ± 0.750 ± 0.450 W ± 11 , EC Comb	1 417	3 040	4 328	4 700	0.665	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1 413	3 074	4 232	5 341	1 101	
+D+0.750l r+0.750l +0.450W+H, LL Comb	1.105	5.316	4.328	2.434	0.978	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.100	5.340	4.232	3.074	1.413	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.171	4.951	6.301	4.335	0.732	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.167	4.975	6.205	4.976	1.167	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.982	2.409	4.424	4.676	0.670	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.977	2.434	4.328	5.316	1.105	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.669	4.675	4.424	2.409	0.982	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.665	4.700	4.328	3.050	1.417	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.736	4.311	6.397	4.311	0.736	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.731	4.335	6.301	4.951	1.172	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.351	3.414	2.356	2.799	0.911	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.340	3.439	2.200	3.439	1.346	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.417	3.049	4.320	4.700	0.005	
+D+0 7501 +0 750S+0 450W+H 11 Comb	1 105	5 316	4.328	2 434	0.978	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.100	5.340	4.232	3.074	1.413	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.171	4.951	6.301	4.335	0.732	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.167	4.975	6.205	4.976	1.167	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.982	2.409	4.424	4.676	0.670	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.977	2.434	4.328	5.316	1.105	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.669	4.675	4.424	2.409	0.982	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.665	4.700	4.328	3.050	1.417	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.736	4.311	6.397	4.311	0.736	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.731	4.335	6.301	4.951	1.172	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.351	3.414	2.350	2.799	0.911	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.340	3.439	4 220	3.439	0.665	
+D+0.7501+0.7508+0.5250E+H 1 Comb	1 413	3.049	4.320	4.700 5.341	1 101	
+D+0 750L+0 750S+0 5250E+H 11 Comb	1 105	5 316	4.328	2 434	0.978	
+D+0.750I +0.750S+0.5250E+H, II Comb	1.100	5.340	4.232	3.074	1.413	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.171	4.951	6.301	4.335	0.732	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.167	4.975	6.205	4.976	1.167	
+0.60D+0.60W+0.60H	0.549	1.664	1.471	1.664	0.549	
+0.60D+0.70E+0.60H	0.549	1.664	1.471	1.664	0.549	
D Only	0.915	2.774	2.451	2.774	0.916	
L Only, LL Comb Run (***L)	-0.006	0.033	-0.128	0.854	0.581	
L Only, LL Comb Run (**L*)	0.089	-0.486	2.630	2.535	-0.328	
L Only, LL Comb Run (**LL)	0.083	-0.454	2.502	3.389	0.253	

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Concentrated)

Vertical Reactions		Supp	ort notatio	n : Far left i	s #1	Values in KIPS
Load Combination	Support 1 S	upport 2 S	Support 3 S	Support 4 S	Support 5	
L Only, LL Comb Run (*L**)	-0.328	2.536	2.630	-0.486	0.089	
L Only, LL Comb Run (*L*L)	-0.334	2.568	2.502	0.367	0.669	
L Only, LL Comb Run (*LL*)	-0.239	2.049	5.260	2.049	-0.239	
L Only, LL Comb Run (*LLL)	-0.245	2.082	5.133	2.903	0.341	
L Only, LL Comb Run (L***)	0.580	0.854	-0.128	0.033	-0.006	
L Only, LL Comb Run (L**L)	0.574	0.886	-0.256	0.887	0.575	
L Only, LL Comb Run (L*L*)	0.669	0.367	2.502	2.568	-0.334	
L Only, LL Comb Run (L*LL)	0.663	0.400	2.375	3.422	0.247	
L Only, LL Comb Run (LL**)	0.253	3.389	2.502	-0.454	0.083	
L Only, LL Comb Run (LL*L)	0.247	3.422	2.374	0.400	0.663	
L Only, LL Comb Run (LLL*)	0.341	2.903	5.133	2.082	-0.245	
L Only, LL Comb Run (LLLL)	0.335	2.936	5.005	2.936	0.335	

H Only

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Distributed)

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb +	2,400.0 psi	E : Modulus of Elas	ticity
Load Combination : IBC 2018	Fb -	2,400.0 psi	Ebend- xx	1,800.0ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species · DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0ksi
Wood Grade : 24F-V8	Fv	265.0 psi	Eminbend - yy	850.0ksi
	Ft	1,100.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional bu	ickling		2	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE) Load for Span Number 2 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE) Load for Span Number 3 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE) Load for Span Number 4 Uniform Load : D = 0.070, L = 0.040 ksf, Tributary Width = 8.0 ft, (GARAGE)

DESIGN SUMMARY

JESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio) =	0.276 1	Maximum Sh	ear Stress Ratio	=	0.320 : 1
Section used for this span		5.5x6	Section	used for this span		5.5x6
fb: Actual	=	662.92psi		fv: Actual	=	84.76 psi
F'b	=	2,400.00psi		F'v	=	265.00 psi
Load Combination	+D+L+H,	LL Comb Run (L*LL)	Load Co	mbination	+D+L+H, LL C	omb Run (L*LL)
Location of maximum on span	=	4.500 ft	Location	of maximum on span	=	4.500 ft
Span # where maximum occurs	=	Span # 3	Span # v	where maximum occur	rs =	Span # 3
Maximum Deflection						
Max Downward Transient Def	lection	0.010 in Ratio =	5230>=360	Span: 4 : L Only, LL	Comb Run (*L*L)
Max Upward Transient Deflec	tion	-0.007 in Ratio =	8282>=360	Span: 4 : L Only, LL	Comb Run (L*L*)
Max Downward Total Deflection	on	0.020 in Ratio =	2510>=240	Span: 4 : +D+L+H, L	L Comb Run (*L'	*L)
Max Upward Total Deflection		-0.003 in Ratio =	18898>=240	Span: 4 : +D+L+H, L	L Comb Run (L*I	_*)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Loca	ation in Span	Load Combination	Max. "+" Defl	Location in Span
+D+L+H, LL Comb Run (L*L*)	1	0.0199	1.898		0.0000	0.000
+D+L+H, LL Comb Run (*L*L)	2	0.0142	2.335	+D+L+H, LL Comb Run (L*L*)	-0.0021	0.399
+D+L+H, LL Comb Run (L*L*)	3	0.0143	2.222	+D+L+H, LL Comb Run (*L*L)	-0.0019	4.215
+D+L+H, LL Comb Run (*L*L)	4	0.0197	2.321		0.0000	4.215

--!--- Ol/

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Distributed)

Vertical Reactions		Su	pport notati	ion : Far lef	it is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3	Support 4	Support 5	
Max Upward from all Load Conditions	1.517	4.457	4.090	4.457	1.518	
Max Upward from Load Combinations	1.517	4.457	4.090	4.457	1.518	
Max Upward from Load Cases	0.915	2.774	2.451	2.774	0.916	
Max Downward from all Load Conditio	-0.085	-0.118	-0.256	-0.118	-0.085	
Max Downward from Load Cases (Resis	-0.085	-0.118	-0.256	-0.118	-0.085	
+D+H	0.915	2.774	2.451	2.774	0.916	
+D+L+H, LL Comb Run (***L)	0.909	2.807	2.324	3.628	1.496	
+D+L+H, LL Comb Run (**L*)	0.937	2.656	3.271	3.570	0.836	
+D+L+H, LL Comb Run (**LL)	0.931	2.689	3.143	4.424	1.417	
+D+L+H, LL Comb Run (*L**)	0.836	3.570	3.271	2.656	0.937	
+D+L+H, LL Comb Run (*L*L)	0.830	3.603	3.143	3.510	1.518	
+D+L+H, LL Comb Run (*LL*)	0.857	3.452	4.090	3.453	0.858	
+D+L+H, LL Comb Run (*LLL)	0.851	3.485	3.962	4.306	1.438	
+D+L+H, LL Comb Run (L***)	1.496	3.627	2.324	2.807	0.910	
+D+L+H, LL Comb Run (L^^L)	1.490	3.660	2.196	3.661	1.490	
+D+L+H, LL Comb Run (L*L*)	1.517	3.510	3.143	3.603	0.830	
+D+L+H, LL Comb Run (L*LL)	1.511	3.542	3.015	4.457	1.411	
+D+L+H, LL Comb Run (LL**)	1.416	4.424	3.143	2.689	0.931	
+D+L+H, LL Comb Run (LL*L)	1.410	4.457	3.015	3.543	1.512	
+D+L+H, LL Comb Run (LLL [*])	1.438	4.306	3.962	3.485	0.852	
$+D+L+\Pi$, LL Comb Run (LLLL)	1.432	4.339	3.033	4.339	1.432	
$+D+LI+\Pi$, LL Comb Run (L)	0.915	2.114	2.401	2.114	0.916	
+D+LI+H, LL Comb Run (LL)	0.915	2.774	2.401	2.114	0.916	
$\pm D \pm I \pm H = I = Comb Run (*I **)$	0.915	2.774	2.451	2.774	0.910	
+D+Lr+H \downarrow Comb Run (*L*L)	0.010	2.774	2.451	2.774	0.916	
+D+Lr+H $\downarrow \downarrow$ Comb Run (*Ll*)	0.010	2.774	2.451	2.774	0.916	
+D+Lr+H Comb Run (*)	0.010	2 774	2 451	2 774	0.916	
+D+Lr+H, LL Comb Run (L***)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H. LL Comb Run ($L^{**}L$)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H. LL Comb Run (L*L*)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (L*LL)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LL**)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LL*L)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LLL*)	0.915	2.774	2.451	2.774	0.916	
+D+Lr+H, LL Comb Run (LLLL)	0.915	2.774	2.451	2.774	0.916	
+D+S+H	0.915	2.774	2.451	2.774	0.916	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.911	2.798	2.356	3.414	1.351	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.932	2.685	3.066	3.371	0.856	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.927	2.710	2.970	4.012	1.291	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.856	3.371	3.066	2.686	0.932	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.851	3.396	2.970	3.326	1.367	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.872	3.283	3.681	3.283	0.872	
+D+0.750Lr+0.750L+H, LL Comb Run (*	0.867	3.307	3.585	3.923	1.307	
+D+0.750Lr+0.750L+H, LL Comb Run (L	1.351	3.414	2.356	2.799	0.911	
+D+0.750Li+0.750L+H, LL Comb Run (L	1.340	3.439	2.200	3.439	1.340	
+D+0.750Li+0.750L+H, LL Comb Run (L	1 262	3.320	2.970	3.390	1 297	
$\pm D \pm 0.750 I \pm 0.750 I \pm H + H + Comb Run (I$	1.302	4 011	2.074	2 710	0.027	
+D+0.750Lr+0.750L+H_1L_Comb_Run (L	1 287	4.036	2.370	3 351	1 363	
+D+0.7501 r+0.7501 +H 1 Comb Run (1)	1.207	3 923	3 585	3 308	0.868	
+D+0.750 r+0.750 +H. 11 Comb Run (1	1.303	3.948	3,489	3.948	1.303	
+D+0.750L+0.750S+H. LL Comb Run (**	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+H. LL Comb Run (**	0.932	2.685	3.066	3.371	0.856	
+D+0.750L+0.750S+H. LL Comb Run (**	0.927	2.710	2.970	4.012	1.291	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.856	3.371	3.066	2.686	0.932	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.851	3.396	2.970	3.326	1.367	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.872	3.283	3.681	3.283	0.872	
+D+0.750L+0.750S+H, LL Comb Run (*L	0.867	3.307	3.585	3.923	1.307	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.351	3.414	2.356	2.799	0.911	

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Distributed)

Vertical Reactions		Sup	port notatio	on : Far left	is #1	Values in KIPS
Load Combination	Support 1 S	Support 2	Support 3	Support 4	Support 5	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.346	3.439	2.260	3.439	1.346	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.367	3.326	2.970	3.396	0.851	
+D+0.750L+0.750S+H, LL Comb Run (L*	1.362	3.350	2.874	4.036	1.287	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.291	4.011	2.970	2.710	0.927	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.287	4.036	2.874	3.351	1.363	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.307	3.923	3.585	3.308	0.868	
+D+0.750L+0.750S+H, LL Comb Run (LL	1.303	3.948	3.489	3.948	1.303	
+D+0.60W+H	0.915	2.774	2.451	2.774	0.916	
+D+0.70E+H	0.915	2.774	2.451	2.774	0.916	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.932	2.685	3.066	3.371	0.856	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	0.927	2.710	2.970	4.012	1.291	
+D+0.750Li+0.750L+0.450W+H, LL Comb	0.600	3.371	3.000	2.000	0.932	
+D+0.750L+0.750L+0.450W+H, LL Comb	0.001	3.390	2.970	3.320	0.972	
$\pm D \pm 0.750$ I ± 0.750 ± 0.450 W $\pm H$ 11 Comb	0.867	3 307	3 585	3 923	1 307	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1 351	3 4 1 4	2 356	2 799	0.911	
+D+0.7501 r+0.7501 +0.450W+H 11 Comb	1.346	3 4 3 9	2.000	3 4 3 9	1.346	
+D+0.750l r+0.750l +0.450W+H, 11 Comb	1.367	3.326	2.970	3.396	0.851	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.362	3.350	2.874	4.036	1.287	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.291	4.011	2.970	2.710	0.927	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.287	4.036	2.874	3.351	1.363	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.307	3.923	3.585	3.308	0.868	
+D+0.750Lr+0.750L+0.450W+H, LL Comb	1.303	3.948	3.489	3.948	1.303	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.932	2.685	3.066	3.371	0.856	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.927	2.710	2.970	4.012	1.291	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.856	3.371	3.066	2.686	0.932	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.851	3.396	2.970	3.326	1.367	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.872	3.283	3.681	3.283	0.872	
+D+0.750L+0.750S+0.450W+H, LL Comb	0.007	3.307	3.363	3.923 2.700	0.011	
+D+0.7501+0.7508+0.450W+H, LL Comb	1.331	3.414	2.330	2.799	1 346	
+D+0 7501 +0 750S+0 450W+H 11 Comb	1.340	3 326	2.200	3 396	0.851	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.362	3.350	2.874	4.036	1.287	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.291	4.011	2.970	2.710	0.927	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.287	4.036	2.874	3.351	1.363	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.307	3.923	3.585	3.308	0.868	
+D+0.750L+0.750S+0.450W+H, LL Comb	1.303	3.948	3.489	3.948	1.303	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.911	2.798	2.356	3.414	1.351	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.932	2.685	3.066	3.371	0.856	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.927	2.710	2.970	4.012	1.291	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.856	3.371	3.066	2.686	0.932	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.851	3.396	2.970	3.326	1.367	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.872	3.283	3.681	3.283	0.872	
+D+0.750L+0.750S+0.5250E+H, LL Comb	0.007	3.307	2 356	3.923 2 700	0.011	
+D+0.750L+0.750S+0.5250E+H 11 Comb	1 346	3 439	2.330	2.733	1 346	
+D+0.7501+0.750S+0.5250E+H_11_Comb	1.367	3 326	2 970	3 396	0.851	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.362	3.350	2.874	4.036	1.287	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.291	4.011	2.970	2.710	0.927	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.287	4.036	2.874	3.351	1.363	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.307	3.923	3.585	3.308	0.868	
+D+0.750L+0.750S+0.5250E+H, LL Comb	1.303	3.948	3.489	3.948	1.303	
+0.60D+0.60W+0.60H	0.549	1.664	1.471	1.664	0.549	
+0.60D+0.70E+0.60H	0.549	1.664	1.471	1.664	0.549	
D Only	0.915	2.774	2.451	2.774	0.916	
L Only, LL Comb Run (***L)	-0.006	0.033	-0.128	0.854	0.581	
L Only, LL Comb Run (""L")	0.021	-0.118	0.819	0.796	-0.079	
	0.015	-0.065	0.092	000.1	0.301	

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FB2 (Distributed)

Vertical Reactions		Supp	ort notatio	Values in KIPS			
Load Combination	Support 1 S	upport 2 S	Support 3	Support 4	Support 5		
L Only, LL Comb Run (*L**)	-0.079	0.797	0.819	-0.118	0.021		
L Only, LL Comb Run (*L*L)	-0.085	0.829	0.692	0.736	0.602		
L Only, LL Comb Run (*LL*)	-0.058	0.679	1.639	0.679	-0.058		
L Only, LL Comb Run (*LLL)	-0.064	0.711	1.511	1.532	0.523		
L Only, LL Comb Run (L***)	0.580	0.854	-0.128	0.033	-0.006		
L Only, LL Comb Run (L**L)	0.574	0.886	-0.256	0.887	0.575		
L Only, LL Comb Run (L*L*)	0.602	0.736	0.692	0.829	-0.085		
L Only, LL Comb Run (L*LL)	0.596	0.769	0.564	1.683	0.495		
L Only, LL Comb Run (LL**)	0.501	1.650	0.692	-0.085	0.015		
L Only, LL Comb Run (LL*L)	0.495	1.683	0.564	0.769	0.596		
L Only, LL Comb Run (LLL*)	0.522	1.532	1.511	0.711	-0.064		
L Only, LL Comb Run (LLLL)	0.516	1.565	1.383	1.565	0.517		
LI Only							

H Only

(c) ENERCALC INC 1983-2022

Project File: 2247 5th ave.ec6

Page 19 of 48

DESCRIPTION: FH1 **CODE REFERENCES** Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018 **Material Properties** E : Modulus of Elasticity Analysis Method : Allowable Stress Design 900.0 psi Fb+ Load Combination : IBC 2018 Fb -900.0 psi Ebend- xx 1,600.0ksi Fc - Prll 1,350.0 psi Eminbend - xx 580.0ksi Fc - Perp 625.0 psi Wood Species : Douglas Fir-Larch Fv 180.0 psi Wood Grade : No.2 575.0 psi Ft Density 31.210 pcf **Beam Bracing** : Beam is Fully Braced against lateral-torsional buckling D(0.204) S(0.3) D(0.05) L(0.08)

6x6 Span = 3.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Uniform Load : D = 0.0250, L = 0.040 ksf, Tributary Width = 2.0 ft, (FLOOR) Uniform Load : D = 0.0170, S = 0.0250 ksf, Tributary Width = 12.0 ft, (ROOF)

DESIGN SUMMARY

Maximum Bending Stress Ratio	=	0.261 : 1	Maximum S	hear Stress Ratio	=	0.139 : 1
Section used for this span		6x6	Sectior	i used for this span		6x6
fb: Actual	=	269.72psi	269.72psi fv: Actual		=	28.87 psi
F'b	=	1,035.00psi	00psi F'v			207.00 psi
Load Combination		+D+S	Load C	ombination		+D+S
Location of maximum on span	=	1.500ft	Location of maximum on span		=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection						
Max Downward Transient Deflect	tion	0.005 in Ratio =	7986>=360	Span: 1 : S Only		
Max Upward Transient Deflection	ו	0 in Ratio =	<mark>0</mark> <360	n/a		
Max Downward Total Deflection		0.008 in Ratio =	4324 >=240	Span: 1 : +D+S		
Max Upward Total Deflection		0 in Ratio =	<mark>0</mark> <240	n/a		

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Locati	ion in Span	Load Combination	Max. "+" Defl Location in Spar		
+D+S	1	0.0083	1.511		0.0000	0.000	
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS		
Load Combination		Support 1 S	upport 2				
Max Upward from all Load Co	onditions	0.831	0.831				
Max Upward from Load Com	binations	0.831	0.831				
Max Upward from Load Case	es	0.450	0.450				
D Only		0.381	0.381				
+D+L		0.501	0.501				
+D+S		0.831	0.831				
+D+0.750L		0.471	0.471				
+D+0.750L+0.750S		0.809	0.809				
+0.60D		0.229	0.229				

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

Design OK

Wood Beam

LIC# : KW-06014810, Build:20.22.12.28

Wood Beam		Project File: 2247 5th ave.ec6
LIC# : KW-06014810, Build:20.22.12.28		(c) ENERCALC INC 1983-2022
DESCRIPTION: FH1		
Vertical Reactions	Support notation : Fai	r left is #1 Values in KIPS
Load Combination	Support 1 Support 2	
L Only	0.120 0.120	
S Only	0.450 0.450	

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FH2

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb +	900.0 psi	E : Modulus of Elasticity		
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi	
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi	
Wood Species : Douglas Fir-Larch	Fc - Perp	625.0 psi			
Wood Grade : No.2	Fv	180.0 psi			
	Ft	575.0 psi	Density	31.210pcf	
Beam Bracing : Beam is Fully Braced against lateral-torsional buck	ina			•	

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

 $\begin{array}{l} \mbox{Beam self weight NOT internally calculated and added} \\ \mbox{Load for Span Number 1} \\ \mbox{Uniform Load : } D = 0.0250, \ L = 0.040 \ ksf, \ Tributary Width = 5.50 \ ft, \ (FLOOR) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Load for Span Number 2} \\ \mbox{Uniform Load : } D = 0.0250, \ L = 0.040 \ ksf, \ Tributary Width = 5.50 \ ft, \ (FLOOR) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Load for Span Number 3} \\ \mbox{Uniform Load : } D = 0.0250, \ L = 0.040 \ ksf, \ Tributary Width = 5.50 \ ft, \ (FLOOR) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 5.50 \ ft, \ (FLOOR) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 4.0 \ ft, \ (ROOF) \\ \mbox{Uniform Load : } D = 0.0170, \ S = 0.0250 \ ksf, \ Tributary Width = 0.050 \ ft, \ Tributary Width = 0.050 \$

DESIGN SUMMARY

					Doolgii Oit
=	0.099: 1 6x8	Maximum S Section	=	0.103 : 1 6x8	
=	89.12psi		fv: Actual	=	18.49 psi
=	900.00psi	F'v			180.00 psi
	+D+L	Load C	ombination		+D+L
=	3.000 ft	Locatio	n of maximum on span	=	3.000 ft
=	Span # 1	Span #	where maximum occurs	=	Span # 2
ction on I	0 in Ratio = 0 in Ratio = 0.001 in Ratio = -0.000 in Ratio =	0 <360 0 <360 25554 >=240 394841 >=240	n/a n/a Span: 3 : +D+0.750L+0.7 Span: 2 : +D+0.750L+0.7	750S 750S	
	= = = = ction	= 0.099: 1 6x8 = 89.12psi = 900.00psi +D+L = 3.000ft = Span # 1 ction 0 in Ratio = 0 0 in Ratio = 0 0.001 in Ratio = -0.000 in Ratio =	= 0.099 1 Maximum S 6x8 Section = 89.12 psi = 900.00 psi +D+L Load C = 3.000 ft Locatio = Span # 1 Span # ction 0 in Ratio = 0 <360 0 in Ratio = 0 <360 0 <0.001 in Ratio = 25554 >=240 -0.000 in Ratio = 394841 >=240	= 0.099 1 Maximum Shear Stress Ratio 6x8 Section used for this span = 89.12 psi fv: Actual = 900.00 psi F'v +D+L Load Combination = 3.000 ft Location of maximum on span = Span # 1 Span # where maximum occurs ction 0 in Ratio = 0 <360 n/a 0 in Ratio = 0 <360 n/a 0.001 in Ratio = 25554 >=240 Span: 3 : +D+0.750L+0.7 -0.000 in Ratio = 394841 >=240 Span: 2 : +D+0.750L+0.7	= 0.099 1 Maximum Shear Stress Ratio = 6x8 Section used for this span = 89.12 psi fv: Actual = 900.00 psi F'v = +D+L Load Combination = 3.000 ft Location of maximum on span = Span # 1 Span # where maximum occurs = 0 <360 n/a 0 in Ratio = 0 <360 n/a 0.001 in Ratio = 25554 >=240 Span: 3 : +D+0.750L+0.750S -0.000 in Ratio = 394841 >=240 Span: 2 : +D+0.750L+0.750S

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+D+0.750L+0.750S	1	0.0014	1.361		0.0000	0.000
+D+0.750L+0.750S	2	0.0001	1.513	+D+0.750L+0.750S	-0.0001	0.353
+D+0.750L+0.750S	3	0.0014	1.664		0.0000	0.353

Design OK

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FH2

Vertical Reactions		Supp	ort notatior	Values in KIPS	
Load Combination	Support 1 S	upport 2 S	upport 3 S	upport 4	
Max Upward from all Load Conditions	0.535	1.470	1.470	0.535	
Max Upward from Load Combinations	0.535	1.470	1.470	0.535	
Max Upward from Load Cases	0.264	0.726	0.726	0.264	
D Only	0.247	0.678	0.678	0.247	
+D+L	0.511	1.404	1.404	0.511	
+D+S	0.367	1.008	1.008	0.367	
+D+0.750L	0.445	1.223	1.223	0.445	
+D+0.750L+0.750S	0.535	1.470	1.470	0.535	
+0.60D	0.148	0.407	0.407	0.148	
L Only	0.264	0.726	0.726	0.264	
S Only	0.120	0.330	0.330	0.120	

Project File: 2247 5th ave.ec6

Wood Beam		Project File: 2247 5th ave.ec6				
LIC# : KW-06014810, Build:20.22.12.28			(c) ENERG	CALC INC 1983-2022		
DESCRIPTION: FJ1 (Concentrated Load)						
CODE REFERENCES						
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16 Load Combination Set : IBC 2018						
Aaterial Properties						
Analysis Method : Allowable Stress Design Load Combination : IBC 2018	Fb + Fb - Fc - Prll	1,200.0 psi 1,200.0 psi 1,550.0 psi	<i>E : Modulus of Elast</i> Ebend- xx Eminbend - xx	<i>ticity</i> 1,800.0ksi 660.0ksi		
Wood Species : Douglas Fir-Larch Wood Grade : No.1 & Better	Fc - Perp Fv Ft	625.0 psi 180.0 psi 800.0 psi	Density	31 210 pcf		
Beam Bracing : Beam is Fully Braced against lateral-torsional buck	ling	00010 pc.	Repetitive Member Stress Increase			
¢	L(3) D(006)	Ý		Ý		
0	4.40					
	4x12					
Spar	n = 10.50 ft					
				7		

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Uniform Load : D = 0.060 ksf, Tributary Width = 1.0 ft, (FLOOR) Point Load : L = 3.0 k @ 5.250 ft, (Garage Pt Load)

DESIGN SUMMARY

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.932 1 4x12	Maximum S Sectior	hear Stress Ratio used for this span	=	0.372:1 4x12
fb: Actual	=	1,414.40psi		fv: Actual	=	67.04 psi
F'b	=	1,518.00psi	F'v		=	180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 5.250ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs		= =	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ion	0.168 in Ratio = 0 in Ratio = 0.190 in Ratio = 0 in Ratio =	749>=360 0<360 662>=240 0<240	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max St	tress Ra	tios								Momer	nt Values		Sh	ear Valu	Jes
Segment Length	Span #	Μ	V	CD	СМ	с _t	CLx	C _F	Cfu	с _і	Cr	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.098	0.061	0.90	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.83	134.4	1,366.2	0.26	9.9	162.0
+D+L					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.932	0.372	1.00	1.00	1.00	1.00	1.100	1.00	1.00	1.15	8.70	1,414.4	1,518.0	1.76	67.0	180.0
+D+0.750L					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.577	0.234	1.25	1.00	1.00	1.00	1.100	1.00	1.00	1.15	6.73	1,094.4	1,897.5	1.38	52.8	225.0
+0.60D					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.033	0.021	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.50	80.6	2,428.8	0.16	5.9	288.0

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ1 (Concentrated Load)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Location in Span Load Combination		Load Combination	Max. "+" Defl Location in Sp	
+D+L	1	0.1902	5.288		0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	upport 2			
Max Upward from all Load Co	nditions	1.815	1.815			
Max Upward from Load Comb	inations	1.815	1.815			
Max Upward from Load Cases	5	1.500	1.500			
D Only		0.315	0.315			
+D+L		1.815	1.815			
+D+0.750L		1.440	1.440			
+0.60D		0.189	0.189			
L Only		1.500	1.500			

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ1 (Distributed Load)

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

CODE REFERENCES

Load Combination Set : IBC 2018													
Material Properties													
Analysis Method : Allowable Stress Design	Fb +	900.0 psi	E : Modulus of Elast	icity									
Load Combination : IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi									
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi									
Wood Species Douglas Fir-Larch	Fc - Perp	625.0 psi											
Wood Grade : No.2	Fv	180.0 psi											
	Ft	575.0 psi	Density	31.210 pcf									
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling	1		Repetitive Membe	er Stress Increase									

Beam self weight NOT internally calculated and added
Uniform Load : D = 0.060, L = 0.040 ksf, Tributary Width = 1.0 ft, (FLOOR)

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.197 : 1 4x12	Maximum S Sectior	hear Stress Ratio used for this span	=	0.092:1 4x12
fb: Actual	=	224.00psi	24.00psi fv: Actual		=	16.50 psi
F'b	=	1,138.50psi		F'v	=	180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 5.250ft Span # 1	Load C Locatio Span #	ombination n of maximum on span where maximum occurs	= =	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	tion າ	0.017 in Ratio = 0 in Ratio = 0.041 in Ratio = 0 in Ratio =	7608 >=360 0 <360 3043 >=240 0 <240	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios					Moment Values				Shear Values						
Segment Length	Span #	Μ	V	CD	СМ	Ct	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.131	0.061	0.90	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.83	134.4	1,024.7	0.26	9.9	162.0
+D+L					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.197	0.092	1.00	1.00	1.00	1.00	1.100	1.00	1.00	1.15	1.38	224.0	1,138.5	0.43	16.5	180.0
+D+0.750L					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.142	0.066	1.25	1.00	1.00	1.00	1.100	1.00	1.00	1.15	1.24	201.6	1,423.1	0.39	14.8	225.0
+0.60D					1.00	1.00	1.00	1.100	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 10.50 ft	1	0.044	0.021	1.60	1.00	1.00	1.00	1.100	1.00	1.00	1.15	0.50	80.6	1,821.6	0.16	5.9	288.0

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ1 (Distributed Load)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Location in Span		Load Combination	Max. "+" Defl Loca	_ocation in Span	
+D+L	1	0.0414	5.288		0.0000	0.000	
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS		
Load Combination		Support 1 S	upport 2				
Max Upward from all Load Co	onditions	0.525	0.525				
Max Upward from Load Com	binations	0.525	0.525				
Max Upward from Load Case	S	0.315	0.315				
D Only		0.315	0.315				
+D+L		0.525	0.525				
+D+0.750L		0.473	0.473				
+0.60D		0.189	0.189				
L Only		0.210	0.210				

Project File: 2247 5th ave.ec6

Wc	bod	Beam	
	/ U U	Douil	

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ2 (Concentrated Load)

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASC Load Combination Set : IBC 2018	CE 7-16			
Material Properties				
Analysis Method : Allowable Stress Design Load Combination : IBC 2018	Fb + Fb - Fc - Prll	1,200.0 psi 1,200.0 psi 1,550.0 psi	<i>E : Modulu</i> s of Elast Ebend- xx Eminbend - xx	<i>ticity</i> 1,800.0ksi 660.0ksi
Wood Species : Douglas Fir-Larch Wood Grade : No.1 & Better	Fc - Perp Fv Ft	625.0 psi 180.0 psi 800.0 psi	Density	31.210pcf
Beam Bracing : Beam is Fully Braced against lateral-tors	Repetitive Member Stress Increase			
	L(3)			
. ↓	D(006)	4	4	,
	,			
	4x10			
<u>د</u>	Span = 7.167 ft			

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Beam self weight NOT internally calculated and added Uniform Load : D = 0.060 ksf, Tributary Width = 1.0 ft, (FLOOR) Point Load : L = 3.0 k @ 3.583 ft, (Garage Pt Load)

DESIGN SUMMARY

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.836 1 4x10	Maximum S Sectior	hear Stress Ratio used for this span	=	0.430:1 4x10
fb: Actual	=	1,384.78psi	fv: Actual		=	77.36 psi
F'b	=	1,656.00psi	F'v		=	180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 3.583ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs		= =	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflectior Max Downward Total Deflection Max Upward Total Deflection	ion 1	0.096 in Ratio = 0 in Ratio = 0.105 in Ratio = 0 in Ratio =	894>=360 0<360 820>=240 0<240	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max Stress Ratios						Moment Values			Shear Values						
Segment Length	Span #	М	V	CD	СМ	Ct	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.062	0.048	0.90	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.39	92.6	1,490.4	0.17	7.9	162.0
+D+L					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.836	0.430	1.00	1.00	1.00	1.00	1.200	1.00	1.00	1.15	5.76	1,384.8	1,656.0	1.67	77.4	180.0
+D+0.750L					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.513	0.267	1.25	1.00	1.00	1.00	1.200	1.00	1.00	1.15	4.42	1,061.7	2,070.0	1.29	60.0	225.0
+0.60D					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.021	0.016	1.60	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.23	55.6	2,649.6	0.10	4.7	288.0

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ2 (Concentrated Load)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Locat	cation in Span Load Combination		Max. "+" Defl Loca	Location in Span	
+D+L	1	0.1048	3.583		0.0000	0.000	
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS		
Load Combination		Support 1 S	Support 2				
Max Upward from all Load Co	nditions	1.715	1.715				
Max Upward from Load Comb	oinations	1.715	1.715				
Max Upward from Load Cases	S	1.500	1.500				
D Only		0.215	0.215				
+D+L		1.715	1.715				
+D+0.750L		1.340	1.340				
+0.60D		0.129	0.129				
L Only		1.500	1.500				

Project File: 2247 5th ave.ec6

Applied Loads

LIC# : KW-06014810, Build:20.22.12.28

Load Combination Set : IBC 2018

DESCRIPTION: FJ2 (Distributed Load)

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

CODE REFERENCES

Material Properties E : Modulus of Elasticity Analysis Method : Allowable Stress Design 1,200.0 psi Fb+ Load Combination : IBC 2018 Fb -1,200.0 psi Ebend- xx 1,800.0ksi Fc - Prll 1,550.0 psi Eminbend - xx 660.0ksi Fc - Perp 625.0 psi Wood Species : Douglas Fir-Larch Fv . 180.0 psi : No.1 & Better Wood Grade Ft 800.0 psi Density 31.210 pcf Beam Bracing : Beam is Fully Braced against lateral-torsional buckling **Repetitive Member Stress Increase** D(0.06) L(0.04) 4x10 Span = 7.167 ft

Beam self weight NOT internally calculated and ad	lded
Uniform Load : $D = 0.060$, $L = 0.040$ ksf, Tribu	utary Width = 1.0 ft, (FLOOR)

DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.093: 1 4x10	Maximum S Section	hear Stress Ratio used for this span	=	0.073:1 4x10
fb: Actual	=	154.35psi		fv: Actual	=	13.09 psi
F'b	=	1,656.00psi	F'v		=	180.00 psi
Load Combination	_	+D+L 2.582#	Load Combination		_	+D+L
Span # where maximum occurs	=	Span # 1	Span #	where maximum occurs	=	Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	ion	0.006 in Ratio = 0 in Ratio = 0.014 in Ratio = 0 in Ratio =	14964 >=360 0 <360 5985 >=240 0 <240	Span: 1 : L Only n/a Span: 1 : +D+L n/a		

Maximum Forces & Stresses for Load Combinations

Load Combination		Max S	tress Ra	tios								Moment	t Values		Sh	iear Vali	ues
Segment Length	Span #	М	V	CD	СМ	Ct	CLx	C _F	Cfu	с _і	C r	М	fb	F'b	V	fv	F'v
D Only														0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.062	0.048	0.90	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.39	92.6	1,490.4	0.17	7.9	162.0
+D+L					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.093	0.073	1.00	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.64	154.4	1,656.0	0.28	13.1	180.0
+D+0.750L					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.067	0.052	1.25	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.58	138.9	2,070.0	0.25	11.8	225.0
+0.60D					1.00	1.00	1.00	1.200	1.00	1.00	1.15			0.0	0.00	0.0	0.0
Length = 7.167 ft	1	0.021	0.016	1.60	1.00	1.00	1.00	1.200	1.00	1.00	1.15	0.23	55.6	2,649.6	0.10	4.7	288.0

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

Service loads entered. Load Factors will be applied for calculations.

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: FJ2 (Distributed Load)

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Locat	on in Span	Load Combination	Max. "+" Defl Loca	ition in Span
+D+L	1	0.0144	3.609		0.0000	0.000
Vertical Reactions			Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination		Support 1 S	upport 2			
Max Upward from all Load Co	nditions	0.358	0.358			
Max Upward from Load Comb	inations	0.358	0.358			
Max Upward from Load Cases	6	0.215	0.215			
D Only		0.215	0.215			
+D+L		0.358	0.358			
+D+0.750L		0.322	0.322			
+0.60D		0.129	0.129			
L Only		0.143	0.143			

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF3

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Mater	ial Prope	rties			
f'c :	Concrete	e 28 day strength	=	3	3.0 ksi
fy :	Rebar Yi	eld	=	60).0 ksi
Ec	: Concret	e Elastic Modulus	=	3,122	2.0 ksi
Concrete Density =				145	5.0 pcf
Φ	Values	Flexure	=	0.9	90
'		Shear	=	0.7	50
Analy	sis Settir	ngs			
Mir	n Steel %	Bending Reinf.		=	
Mir	n Allow %	Temp Reinf.		=	0.00180
Mir	n. Overtur	ning Safety Factor		=	1.0 : 1
Mir	n. Sliding	Safety Factor		=	1.0:1
Ado	d Ftg Wt f	or Soil Pressure		:	Yes
Use	e ftg wt fo	r stability, moments	& shears	:	Yes
Ado	d Pedesta	al Wt for Soil Pressu	re	:	No
Use	e Pedesta	al wt for stability, mo	m & shear	:	No
		•			

Soil Design Values		
Allowable Soil Bearing	=	1.50 ksf
Soil Density	=	110.0 pcf
Increase Bearing By Footing Weight	=	No
Soil Passive Resistance (for Sliding)	=	250.0 pcf
Soil/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth		
Footing base depth below soil surface	=	ft
Allow press. increase per foot of depth	=	ksf
when footing base is below	=	ft
Increases based on facting plan dimensio		
Alloweble pressure ippresses par feet of de	л nth	
Allowable pressure increase per tool of de	pui	kof
when max, length or width is greater than	=	KSI
	=	ft

Dimensions

Width parallel to X-X Axis	=	2.50 ft
Length parallel to Z-Z Axis	=	2.50 ft
Footing Thickness	=	10.0 in

Pedestal dimensions px : parallel to X-X Axis pz : parallel to Z-Z Axis	= =	in in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars = Reinforcing Bar Size =	3.0 # 4
Bars parallel to Z-Z Axis	
Number of Bars =	3.0
Reinforcing Bar Size =	# 4
Bandwidth Distribution Check (ACI	15.4.4.2)
Direction Requiring Closer Separation	n
	n/a
# Bars required within zone	n/a
# Bars required on each side of zone	n/a

Bars required on each side of zone

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	4.212		3.50				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

3

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF3

D

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

DESIGN S	UMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.9033	Soil Bearing	1.355 ksf	1.50 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1823	Z Flexure (+X)	1.332 k-ft/ft	7.306 k-ft/ft	+1.20D+1.60L
PASS	0.1823	Z Flexure (-X)	1.332 k-ft/ft	7.306 k-ft/ft	+1.20D+1.60L
PASS	0.1823	X Flexure (+Z)	1.332 k-ft/ft	7.306 k-ft/ft	+1.20D+1.60L
PASS	0.1823	X Flexure (-Z)	1.332 k-ft/ft	7.306 k-ft/ft	+1.20D+1.60L
PASS	0.1667	1-way Shear (+X)	13.699 psi	82.158 psi	+1.20D+1.60L
PASS	0.1667	1-way Shear (-X)	13.699 psi	82.158 psi	+1.20D+1.60L
PASS	0.1667	1-way Shear (+Z)	13.699 psi	82.158 psi	+1.20D+1.60L
PASS	0.1667	1-way Shear (-Z)	13.699 psi	82.158 psi	+1.20D+1.60L
PASS	0.3118	2-way Punching	51.228 psi	164.317 psi	+1.20D+1.60L
Detailed R	esults				

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actual	Actual / Allow			
Load Combination	Gross Allowable	(in	ı)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.7948	0.7948	n/a	n/a	0.530
X-X, +D+L	1.50	n/a	0.0	1.355	1.355	n/a	n/a	0.903
X-X, +D+0.750L	1.50	n/a	0.0	1.215	1.215	n/a	n/a	0.810
X-X, +0.60D	1.50	n/a	0.0	0.4769	0.4769	n/a	n/a	0.318
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.7948	0.7948	0.530
Z-Z, +D+L	1.50	0.0	n/a	n/a	n/a	1.355	1.355	0.903
Z-Z, +D+0.750L	1.50	0.0	n/a	n/a	n/a	1.215	1.215	0.810
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.4769	0.4769	0.318

Overturning Stability

	Overt	urning Mome	nt	Resisting Mo	oment	Stability Ratio	Status
							All units k
	S	liding Force		Resisting F	orce	Stability Ratio	Status
Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual A in^2	As Phi*Mı k-ft	n Status
	Mu k-ft	Overt S Mu Side k-ft	Overturning Mome Sliding Force Mu Side Tension k-ft Surface	Overturning Moment Sliding Force Mu Side Tension As Req'd k-ft Surface in^2	Overturning Moment Resisting Model Sliding Force Resisting Force Mu Side Tension As Req'd Gvrn. As k-ft Surface	Overturning Moment Resisting Moment Sliding Force Resisting Force Mu Side Tension As Req'd Gvrn. As Actual A k-ft Surface in^2 in^2 in^2	Overturning Moment Resisting Moment Stability Ratio Sliding Force Resisting Force Stability Ratio Mu Side Tension As Req'd Gvrn. As Actual As Phi*Mu k-ft Surface in^2 in^2 k-ft

	k-ft		Surface	in^2	in^2	in^2	k-ft	
X-X, +1.40D	0.7371	+Z	Bottom	0.2160	AsMin	0.240	7.306	ок
X-X, +1.40D	0.7371	-Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D+1.60L	1.332	+Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D+1.60L	1.332	-Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D+0.50L	0.8506	+Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D+0.50L	0.8506	-Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D	0.6318	+Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +1.20D	0.6318	-Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +0.90D	0.4739	+Z	Bottom	0.2160	AsMin	0.240	7.306	OK
X-X, +0.90D	0.4739	-Z	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.40D	0.7371	-X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.40D	0.7371	+X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.20D+1.60L	1.332	-X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.20D+1.60L	1.332	+X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.20D+0.50L	0.8506	-X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.20D+0.50L	0.8506	+X	Bottom	0.2160	AsMin	0.240	7.306	OK
Z-Z, +1.20D	0.6318	-X	Bottom	0.2160	AsMin	0.240	7.306	OK

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF3

Footing Flexure

Flexure Axis & Load Combinatio	on Mu k-ft	Side	Tension Surface	in^2	I Gvrn. A in^2	As Actual in^2	As Pr	ı i*Mn k-ft	Status
Z-Z, +1.20D	0.6318	+X	Bottom	0.2160	AsMin	0.24	0	7.306	ок
Z-Z, +0.90D	0.4739	-X	Bottom	0.2160	AsMin	0.24	0	7.306	OK
Z-Z, +0.90D	0.4739	+X	Bottom	0.2160	AsMin	0.24	0	7.306	ΟΚ
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	ı@-Z Vı	u @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	7.58 p	si	7.58 psi	7.58 psi	7.58 ps	7.58 psi	82.16 p	si 0.09	OK
+1.20D+1.60L	13.70 p	si	13.70 psi	13.70 psi	13.70 ps	13.70 psi	82.16 p	si 0.17	OK
+1.20D+0.50L	8.75 p	si	8.75 psi	8.75 psi	8.75 ps	8.75 psi	82.16 p	si 0.11	OK
+1.20D	6.50 p	si	6.50 psi	6.50 psi	6.50 ps	6.50 psi	82.16 p	si 0.08	ОК
+0.90D	4.87 p	si	4.87 psi	4.87 psi	4.87 ps	4.87 psi	82.16 p	si 0.06	ОК
Two-Way "Punching" Shear								All units	, k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn	1		Status
+1.40D		28.3	5 psi	164.32	2psi	0.1726			ОК
+1.20D+1.60L		51.2	3 psi	164.32	2psi	0.3118			OK
+1.20D+0.50L		32.7	2 psi	164.32	2psi	0.1991			ΟΚ
+1.20D		24.3	0 psi	164.32	2psi	0.1479			ок
+0.90D		18.2	3 psi	164.32	2psi	0.1109			ок

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF4

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16 Load Combinations Used : IBC 2018

General Information

Material Pro	perties			
f'c : Conci	ete 28 day strength	=	3	.0 ksi
fy : Rebar	Yield	=	60	.0 ksi
Ec : Conc	rete Elastic Modulus	=	3,122	.0 ksi
Concrete	Density	=	145	.0 pcf
O Values	s Flexure	=	0.9	90
·	Shear	=	0.75	50
Analysis Set	tings			
Min Steel	% Bending Reinf.		=	
Min Allow	% Temp Reinf.		=	0.00180
Min. Over	turning Safety Factor		=	1.0 : 1
Min. Slidir	ng Safety Factor		=	1.0:1
Add Ftg V	/t for Soil Pressure		:	Yes
Use ftg wt	for stability, moments &	shears	:	Yes
Add Pede	stal Wt for Soil Pressure	•	:	No
Use Pede	stal wt for stability, mom	& shear	:	No

Soil Design Values		
Allowable Soil Bearing	=	1.50 ksf
Soil Density	=	110.0 pcf
Increase Bearing By Footing Weight	=	No
Soil Passive Resistance (for Sliding)	=	250.0 pcf
Soil/Concrete Friction Coeff.	=	0.30
Increases based on footing Depth		
Footing base depth below soil surface	=	ft
Allow press. increase per foot of depth	=	ksf
when footing base is below	=	ft
Increases based on footing plan dimension	n	
Allowable pressure increase per foot of der	nth	
	_	ksf
when max. length or width is greater than	-	Kor
5 5	=	ft

Dimensions

Width parallel to X-X Axis	=	3.0 ft
Length parallel to Z-Z Axis	=	3.0 ft
Footing Thickness	=	12.0 in

Pedestal dimensions		
px : parallel to X-X Axis	=	in
pz : parallel to Z-Z Axis	=	in
Height	=	in
Rebar Centerline to Edge of	Concrete	
at Bottom of footing	=	3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size	=	#	4.0 4
Bars parallel to Z-Z Axis Number of Bars	=		4.0
Reinforcing Bar Size	=	#	4
Bandwidth Distribution C	heck (ACI 15.4	4.4.2)	
Direction Requiring Close	r Separation		
			n/a
# Bars required within zor	ne		n/a
# Bars required on each si	ide of zone		n/a

Bars required on each side of zone

Applied Loads

		D	Lr	L	S	w	E	н
P : Column Load OB : Overburden	=	8.486		3.50				k ksf
M-xx M-zz	=							k-ft k-ft
V-x	=							k
V-z	=							k

""

Project File: 2247 5th ave.ec6

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF4

D

Project File: 2247 5th ave.ec6

(c) ENERCALC INC 1983-2022

DESIGN S	UMMARY				Design OK
	Min. Ratio	ltem	Applied	Capacity	Governing Load Combination
PASS	0.9847	Soil Bearing	1.477 ksf	1.50 ksf	+D+L about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.1881	Z Flexure (+X)	1.973 k-ft/ft	10.486 k-ft/ft	+1.20D+1.60L
PASS	0.1881	Z Flexure (-X)	1.973 k-ft/ft	10.486 k-ft/ft	+1.20D+1.60L
PASS	0.1881	X Flexure (+Z)	1.973 k-ft/ft	10.486 k-ft/ft	+1.20D+1.60L
PASS	0.1881	X Flexure (-Z)	1.973 k-ft/ft	10.486 k-ft/ft	+1.20D+1.60L
PASS	0.1482	1-way Shear (+X)	12.178 psi	82.158 psi	+1.20D+1.60L
PASS	0.1482	1-way Shear (-X)	12.178 psi	82.158 psi	+1.20D+1.60L
PASS	0.1482	1-way Shear (+Z)	12.178 psi	82.158 psi	+1.20D+1.60L
PASS	0.1482	1-way Shear (-Z)	12.178 psi	82.158 psi	+1.20D+1.60L
PASS	0.2779	2-way Punching	45.669 psi	164.317 psi	+1.20D+1.60L
Detailed R	esults				

Soil Bearing

Detetien Asie 0		Xecc	Actual / Allow					
Load Combination	Gross Allowable	(in)		Bottom, -Z	Top, +Z	Top, +Z Left, -X		Ratio
X-X, D Only	1.50	n/a	0.0	1.088	1.088	n/a	n/a	0.725
X-X, +D+L	1.50	n/a	0.0	1.477	1.477	n/a	n/a	0.985
X-X, +D+0.750L	1.50	n/a	0.0	1.380	1.380	n/a	n/a	0.920
X-X, +0.60D	1.50	n/a	0.0	0.6527	0.6527	n/a	n/a	0.435
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	1.088	1.088	0.725
Z-Z, +D+L	1.50	0.0	n/a	n/a	n/a	1.477	1.477	0.985
Z-Z, +D+0.750L	1.50	0.0	n/a	n/a	n/a	1.380	1.380	0.920
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.6527	0.6527	0.435

Overturning Stability Rotation Axis &

Load Combination Footing Has NO Overturning		Over	Overturning Moment			oment St	ability Ratio	Status	
Sliding Stability								All units k	
Force Application Axis Load Combination		S	liding Force		Resisting F	Force St	ability Ratio	Status	
Footing Has NO Sliding Footing Flexure									
Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mr k-ft	n Status	

	k-ft		Surface	in^2	in^2	in^2	k-ft	
X-X, +1.40D	1.485	+Z	Bottom	0.2592	AsMin	0.2667	10.486	ок
X-X, +1.40D	1.485	-Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D+1.60L	1.973	+Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D+1.60L	1.973	-Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D+0.50L	1.492	+Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D+0.50L	1.492	-Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D	1.273	+Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +1.20D	1.273	-Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +0.90D	0.9547	+Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
X-X, +0.90D	0.9547	-Z	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.40D	1.485	-X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.40D	1.485	+X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.20D+1.60L	1.973	-X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.20D+1.60L	1.973	+X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.20D+0.50L	1.492	-X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.20D+0.50L	1.492	+X	Bottom	0.2592	AsMin	0.2667	10.486	OK
Z-Z, +1.20D	1.273	-X	Bottom	0.2592	AsMin	0.2667	10.486	OK

LIC# : KW-06014810, Build:20.22.12.28

DESCRIPTION: PF4

Footing Flexure

Flexure Axis & Load Combinatio	on Mu k-ft	Side	Tension Surface	n As Req'o e in^2	I Gvrn. A in^2	As Actual in^2	As Pl	n i*Mn k-ft	Status
Z-Z, +1.20D	1.273	+X	Bottom	0.2592	AsMin	0.266	67	10.486	ОК
Z-Z, +0.90D	0.9547	-X	Bottom	0.2592	AsMin	0.266	67	10.486	ΟΚ
Z-Z, +0.90D	0.9547	+X	Bottom	0.2592	AsMin	0.266	67	10.486	ΟΚ
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X V	u@-Z Vu	u @ +Z	Vu:Max	Phi Vn	Vu / Phi*Vn	Status
+1.40D	9.17 p	si	9.17 psi	9.17 psi	9.17 ps	i 9.17 psi	82.16 p	si 0.11	OK
+1.20D+1.60L	12.18 p	si	12.18 psi	12.18 psi	12.18 ps	i 12.18 psi	82.16 p	si 0.15	OK
+1.20D+0.50L	9.21 p	si	9.21 psi	9.21 psi	9.21 ps	i 9.21 psi	82.16 p	si 0.11	OK
+1.20D	7.86 р	si	7.86 psi	7.86 psi	7.86 ps	i 7.86 psi	82.16 p	si 0.10	OK
+0.90D	5.89 p	si	5.89 psi	5.89 psi	5.89 ps	i 5.89 psi	82.16 p	si 0.07	ΟΚ
Two-Way "Punching" Shear			•		·			All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vr	ı		Status
+1.40D		34.3	8 psi	164.32	2psi	0.2092			OK
+1.20D+1.60L		45.6	7 psi	164.3	2psi	0.2779			ок
+1.20D+0.50L		34.5	3 psi	164.3	2psi	0.2101			OK
+1.20D		29.4	7 psi	164.3	2psi	0.1793			OK
+0.90D		22.1	0 psi	164.3	2psi	0.1345			ΟΚ

Project File: 2247 5th ave.ec6

ASCE 7-16 Seismic Base She	ar					Project File: 2247 5th ave.ect
LIC# : KW-06014810, Build:20.22.7.7 DESCRIPTION: Seismic Base Shea	r Analysis	DAVE GOWER S	S ENG	INEERING, LL	LC	(c) ENERCALC INC 1983-2022
Specific Description: 2247 5th Ave						
Risk Category						Calculations per ASCE 7-16
Risk Category of Building or Other Structure :	"II" : All Bui III. and IV	ldings and of	ther str	uctures exce	ept those listed as Cat	egory I, ^{ASCE 7-16,} Page 4, Table 1.5-1
Seismic Importance Factor =	1					ASCE 7-16, Page 5, Table 1.5-2
USER DEFINED Ground Motion						ASCE 7-16 11.4.2
Max. Ground Motions, 5% Damping :						
$S_{S} = 0.8320 \text{ g}, 0.2 \text{ sec response}$ $S_{1} = 0.3760 \text{ g}, 1.0 \text{ sec response}$	e e					
For the closest datapoint grid location Latitude = 0.000 deg N	lorth Vest					
Conforms to ASCE 7 Section 12.8.1.3. R	equiar struc	ture with neu	riod of	0 5 s or less	SDS limited to max o	f 0.7*SDS or 1.0 for calculation of
Site Classe Site Cooff and Design C			100 01	0.5 5 01 1655		
Classification: "D" : Shear Wave Velocity 600 to	1 200 ft/sec	`			ofoult por 11 4 2	ASCE 7 16 Table 20 2 1
	1,200 1/360	, _	=		erault per 11.4.3)	
(using straight-line interpolation from table val	L	Fa Fv	=	1.20 1.92		ASCE 7-16 Table 11.4-1 & 11.4-2
Maximum Considered Earthquake Accelerati	S _{MS} S _{M1}	= Fa * Ss = Fv * S1	= =	0.998 0.723		ASCE 7-16 Eq. 11.4-1 ASCE 7-16 Eq. 11.4-2
Design Spectral Acceleration	S=	S* 2/3	=	0.666		ASCE 7-16 Eq. 11.4-3
	S _{D1} =	S MS M1 * 2/3	=	0.482		ASCE 7-16 Eq. 11.4-4
Seismic Design Category			=	D		ASCE 7-16 Table 11.6-1 & -2
Resisting System						ASCE 7-16 Table 12.2-1
Basic Seismic Force Resisting System	Bearing Wa 15.Light-fra	III Systems me (wood)	walls	sheathed w	/wood structural pan	els rated for shear resistance.
Response Modification Coefficient "R =	6.50	Building	g heigh	it Limits :		
System Overstrength Factor "Wo " =	3.00	Categ	ory "A	& B" Limit:	No Limit	
Deflection Amplification Factor "Cd " =	4.00	Categ	ory "D	Limit:	Limit = 65	
NOTE! See ASCE 7-16 for all applicable footn	ot	Categ Categ	ory "E' ory "F'	' Limit: ' Limit:	Limit = 65 Limit = 65	
Lateral Force Procedure						ASCE 7-16 Section 12.8.2
Equivalent Lateral Force Procedure The "Equivalent Latera	al Force Pro	ocedure" is b	eing u	sed accordin	ng to the provisions of <i>i</i>	ASCE 7-16 12.8
Determine Building Period						Use ASCE 12.8-7
Structure Type for Building Period Calcula All C	Other Structu	ural Systems				
"Ct " value = 0.020 "x" value = 0.75	" hn " : Hei	ght from bas	e to hi	ghest level	25.0 ft	
" Ta " Approximate fundemental period using	Eg. 12.8-7	: Ta =	Ct * (h	n^x) =	0.224 sec	
"TL" : Long-period transition period per ASCE	E 7-16 Maps	; 22-14 -> 22	-17	- 7	8.000 sec	

Building Period " Ta " Calculated from Approximate Method selec= 0.224

ASCE 7-16	Seismic Base	e Shear					Project F	ile: 224	7 5th ave.ect
LIC# : KW-06014810), Build:20.22.7.7	D.	AVE GOWE	RS ENGINEERIN	G, LLC		(c) EN	ERCALC	INC 1983-2022
DESCRIPTIO	N: Seismic Base	e Snear Analysis	5						
" Cs " Respon	se Coefficient						ASC	E 7-16 S	Section 12.8.1.1
S _{DS} : Short Perio	d Design Spectral Re	sponse =	0.666	Fro	m Eq. 1	2.8-2, Prelimina	ry Cs	=	0.102
" R " : Response	Modification Factor	=	6.50	Fro	m Eq. 1	2.8-3 & 12.8-4 ,	Cs need not excee	: =	0.332
" I " : Seismic Imp	portance Factor	=	1	Fro	m Eq. 1	2.8-5 & 12.8-6,	Cs not be less than	=	0.029
User has selecte Less than 5 Stor	ed ASCE 12.8.1.3 : Ro ries and with T <<= 0	egular structure,).5 sec, SO Ss <= 1	C.5 for Cs c	s : Seismic l alculat	Respo	onse Coefficie	nt =	=	0.1024
Seismic Base	Shear						ASC	CE 7-16	Section 12.8.1
Cs =	0.1024 from 12.8.1	.1		W (see	Sum W	/i below) =	0.00 k		
			Se	eismic Base She	ear V	= Cs * W =	0.00 k		
Vertical Distrib	bution of Seismi	ic Forces					ASC	CE 7-16	Section 12.8.3
" k " : hx exponer	nt based on Ta =	1.00							
Table of building V	Neights by Floor Leve	el							
Level #	Wi : Weight	Hi : Height	(V)	/i * Hi^k)	Cvx	Fx=Cvx * V	Sum Story She	ar Su	um Story Momen
Sum Wi	i = 0.00 k	Sum Wi *	Hi =	0.00 k-ft		Total Base Shea	ar = 0.00 k		
							Base Momen	t =	0.0 k-ft
Diaphragm For	rces : Seismic D	esign Category	/ "B" to	"F"				ASCE	7-16 12.10.1.1
Level #	Wi Fi	Sum Fi	Sum Wi	Fpx : Calcd	F	px : Min	Fpx : Max	Fpx	Dsgn. Force
Wpx Fi Sum Fi MIN Req'd F	Force @ Level	Weight at level of Design Lateral For Sum of "Lat. For 0.20 * S _{DS} * I * V	f diaphrag prce appl ce" of cur Vpx	gm and other ied at the leve rent level plus	structu el. s all lev	ure elements a vels above	ttached to it.		
MAX Req'd	Force @ Level	0.40 * S _{DS} * I * V	Vрх		-				
Fpx : Desigr	n Force @ Level.	Wpx * SUM(x->n) Fi / SU	IM(x->n) wi, ⇒	(= Cu	rrent level, n =	Top Leve		

Project Title: Engineer: Project ID: Project Descr:

ASCE 7-16 Wind Forces	Chpt 28	3, Pt2 & Chpt 30), Pt2	Project File: 2247 5th ave.ect
LIC# : KW-06014810, Build:20.22.7.14				(c) ENERCALC INC 1983-2022
DESCRIPTION: 2247 5th Av	enue, Wes	st Linn, OR		
General Design Values				Calculations per ASCE 7-16
V : Basic Wind Speed per Sect 26.5-1	or 2	97.0 mph		
User specified minimum design press	ur	0.0 psf		
Occupancy per Table 1.5-1		II All Buildir	ngs and other structures except the	ose listed
Exposure Category per 26.7		Exposure C		
Topographic Factor Kzt per 26.8		1.00		
"Lambda" is interpolated between hei	ght tablular va	alues.		
Main Force Resisting System	n Valı	9	Component & Cladding V	alues
MRH : Mean Roof Height	20.0 ft	Effective Wind Area of Compone	ent & Cladd 10.0 ft^2	
Roof Slope Angle		0 to 5 degrees	Roof pitch for cladding pressur	Flat/Hip/Gable Root
		-	LHD : Least Horizontal Dimensio	on 37.50 ft
			a = max (0.04 * LHD, 3, min(0.10	0 * LHD, 0.4*MRH)) 3.75 ft
Lambda MWFRS: per Figur	e 26	1.29	Lambda Component &	Cladding : per Figur 1.29
Design Wind Pressures			mmm	
Horizontal Pressures				
Zone: A =	19.27 pst	Zone: C =	12.77 pst	PRESSURES ARE
(Zone: B =	-9.96 pst	Zone: D =	-5.93 pst	ULTIMATE.
Vertical Pressures			<u> </u>	
Zone: E =	-23.17 psf	Zone: G =	-16.15 psf	
Zone: F =	-13.16 psf	Zone: H =	-10.22 psf	FUR ASD
Overhangs				
Zone: Eoh =	-32.43 psf	Zone: Goh =	-25.34 psf	

ASCE 7-16 Section 28.5.4 Minimum Design Wind Loads requires that the load effects of the design wind pressures from Section 28.5.3 shall not be less than a minimum load defined by assuming the pressures, ps, for zones A and C equal to +16 psf, Zones B and D equal to +8 psf, while assuming ps for Zones E, F, G, and H are equal to 0 psf.

Component & Cla	dding Design	Wind Pres	Design Wind Pressure = Lambda *	* Kzt * Ps30 pt
Roof Pressures	Positive	Negative	Overhang Pressures	<u>Negative</u>
Zone 1	8.875	-34.856 psf	Zone 1	-31.476 psf
Zone 1'	8.875	-20.047 psf	Zone 1'	-31.476 psf
Zone 2	8.875	-45.898 psf	Zone 2	-42.570 psf
Zone 2e	***	*** psf	Zone 2e	*** psf
Zone 2n	***	*** psf	Zone 2n	*** psf
Zone 2r	***	*** psf	Zone 2r	*** psf
Zone 3	8.875	-62.565 psf	Zone 3	-59.237 psf
Zone 3e	***	*** psf	Zone 3e	*** psf
Zone 3r	***	*** psf	Zone 3r	*** psf
Wall Pressures				
Wall Zone 4 :	21.827	-23.684 psf	'*** : There is no value ir	n Figure 30.4-1 Tabular Values
Wall Zone 5 :	21.827	-29.231 psf		

2247 5th Ave West Linn, OR

SEISMIC B	ASE SHEAR - GARAGE						
		DL (ksf)	Length (ft)	Width (ft)	Height (ft)	Area (ft ²)	Wt. (k)
1.	Mass of Roof (2x framing & mtl roofing)	0.017				765	13.0
2.	Mass of Exterior Wall (2x stud wall w/ std. finishes)	0.012	100		4.5		5.4
			TOTAL SEIS	MIC MASS F	OR GARAGE	ROOF (W _{RG})	18.4

REQUIRED BASE SHEAR (ELF)

ALSO

ALSO

$$\rho = 1.3$$
 (redundancy factor per ASCE 12.3.4.1)
THEREFORE
 $E_h = \rho \times V_{ELF}$
 $E_{h,ASD} = 0.7*E_h$
THEREFORE $E_{h,ASD} = \boxed{0.093 W}$
 $W = \underline{18.4}$ KIPS
 $\& E_h = \underline{1.71}$ KIPS

WIND FORCES: GARAGE

Zone	А	В	С	D
Pressure	11.6	6.0	7.7	3.6

WIND Design: Forces at Roof Diaphragm

	Zone A	Zone B	Zone C	Zone D	Total Wind
Line	Area	Area	Area	Area	Force
Line	(ft ²)	(ft ²)	(ft ²)	(ft ²)	(lbs)
X.1	26	24	39	28	842
Y.1	26	24	39	28	842

	Zone A	Zone B	Zone C	Zone D	Total Wind
Line	Area	Area	Area	Area	Force
Line	(ft ²)	(ft ²)	(ft ²)	(ft ²)	(lbs)
3.1	42	0	28	0	700
4.1	35	0	26	0	604

2247 5th Ave West Linn, OR

Garage Shear Walls and Holdowns

- Roof DL: 17 psf Wall DL: 12 psf Floor DL: 15 psf

Shearwall	Nailing		Dortal Eramo		6/12	6/12		6/12	6/12	
Holdown	/ Comment		HDU2	HDU2	n/a	n/a		n/a	n/a	
"⊥	(lb)		2422	2422	0	123		0	0	
Mr	(Ib*ft)		211	211	2231	776		58500	84240	
F _{trib}	(ft)		0	0	0	0		0	0	
W _{trib}	(ft)		6	6	6	6		6	6	
R _{trib}	(ft)		4	4	4	4		12	12	
Å	(lb*ft)		3844	3844	4836	2852		7688	7688	
> {	(plf)		214	214	83	83		34	28	
ď	(lb)		854	854	854	854		854	854	
ے	(ft)		6	6	6	6		6	6	
L _{des}	(ft)		1.5	1.5	9	3.333		24.5	29.5	
Ltot	(ft)		4	4	10.333	10.333		25	30	
_	(ft)	th Event	2	2	6.5	3.833	Event	25	30	
	Grid Line	Vorth - Sou	X.1		Υ.1		ast - West	3.1	4.1	

Search Information

Address:	2247 5th Ave, West Linn, OR 97068, USA
Coordinates:	45.34463239999999, -122.6480053
Elevation:	159 ft
Timestamp:	2022-07-17T16:55:38.190Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D-default

Basic Parameters

Name	Value	Description
SS	0.832	MCE _R ground motion (period=0.2s)
S ₁	0.376	MCE _R ground motion (period=1.0s)
S _{MS}	0.999	Site-modified spectral acceleration value
S _{M1}	* null	Site-modified spectral acceleration value
S _{DS}	0.666	Numeric seismic design value at 0.2s SA
S _{D1}	* null	Numeric seismic design value at 1.0s SA

* See Section 11.4.8

Additional Information

Name	Value	Description
SDC	* null	Seismic design category
Fa	1.2	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
CR _S	0.891	Coefficient of risk (0.2s)
CR ₁	0.865	Coefficient of risk (1.0s)
PGA	0.375	MCE _G peak ground acceleration
F _{PGA}	1.225	Site amplification factor at PGA
PGA _M	0.46	Site modified peak ground acceleration

7/17/22, 9:55 AM		ATC Hazards by Location	
TL	16	Long-period transition period (s)	
SsRT	0.832	Probabilistic risk-targeted ground motion (0.2s)	
SsUH	0.934	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)	
SsD	1.5	Factored deterministic acceleration value (0.2s)	
S1RT	0.376	Probabilistic risk-targeted ground motion (1.0s)	
S1UH	0.434	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)	
S1D	0.6	Factored deterministic acceleration value (1.0s)	
PGAd	0.5	Factored deterministic acceleration value (PGA)	

* See Section 11.4.8

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Search Information

Address:	2247 5th Ave, West Linn, OR 97068, USA
Coordinates:	45.34463239999999, -122.6480053
Elevation:	159 ft
Timestamp:	2022-07-17T16:55:19.959Z
Hazard Type:	Wind

ASCE 7-16

ASCE 7-10

MRI 10-Year 66 m	ph MRI 10-Year	ASCE 7-05 Wind Speed
MRI 25-Year	ph MRI 25-Year	
MRI 50-Year	nph MRI 50-Year	
MRI 100-Year	ph MRI 100-Year	
Risk Category I 91 m	Risk Category I 100 mph	
Risk Category II	Risk Category II 110 mph	
Risk Category III 103 m	Risk Category III-IV 115 mph	
Risk Category IV 107 m	iph	

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approaches the https://hazards.atcouncil.org/#/wind?lat=45.34463239999998&lng=-122.6480053&address=2247 5th Ave%2C West Linn%2C OR 97068%2C USA

HDU/DTT

Holdowns

This product is preferable to similar connectors because of (a) easier installation, (b) higher loads, (c) lower installed cost, or a combination of these features.

HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The DTT tension ties are designed for lighter-duty holdown applications on single 2x posts. The DTT1Z is installed with nails or Strong-Drive SD Connector screws and the DTT2 installs easily with the Strong-Drive SDS Heavy-Duty Connector screws (included). The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications (see p. 295 for deck applications).

For more information on holdown options, contact Simpson Strong-Tie.

HDU Features:

- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section area of the post compared to bolts
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used
- No stud bolts to countersink at openings

Material: See table

Finish: HDU – galvanized; DTT1Z and DTT2Z – ZMAX[®] coating; DTT2SS – stainless steel

Installation:

- See Holdown and Tension Tie General Notes on pp. 49–50.
- The HDU requires no additional washer; the DTT requires a standard-cut washer (included) be installed between the nut and the seat.
- Strong-Drive SDS Heavy-Duty Connector screws install best with a low-speed high-torque drill with a %" hex-head driver.
- Fasteners and crescent washer are included with the holdowns. For replacements, order part no. SDS25212-HDU__.
 (Fill in the size needed, e.g., HDU2.)

Codes: See p. 11 for Code Reference Key Chart

HDU/DTT

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

For stainless-steel fasteners, see p.21.

SD Many of these products are approved for installation with Strong-Drive[®] SD Connector screws. See pp. 348–352 for more information.

	Model No.	Ga.	Dimensions (in.)					Fasteners (in.)		Minimum Wood	Allowable Tension Loads (160)			Codo
			W	н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
									(6) #9 x 1 ½" SD		840	840	0.17	
	DTT1Z	14	1 1⁄2	71⁄8	1 7⁄16	3⁄4	3⁄16	3⁄8	(6) 0.148 x 1 ½	1½ x <mark>3½</mark>	910	640	0.167	
									(8) 0.148 x 1 ½		910	850	0.167	-
SS	DTT27	TT2Z 14	31⁄4	6 ¹⁵ /16	1 5%	13/16	3⁄16	1⁄2	(8) ¼ x 1 ½ SDS	1½x3½	1,825	1,800	0.105	
	DITZZ								(8) ¼ x 1 ½ SDS	3 x 31⁄2	2,145	1,835	0.128	
SS	DTT2Z-SDS2.5								(8) 1⁄4 x 21⁄2 SDS	3 x 31⁄2	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	811/16	31⁄4	1 5⁄16	1 %	5⁄8	(6) ¼ x 2½ SDS	3 x 31⁄2	3,075	2,215	0.088	IBC,
	HDU4-SDS2.5	14	3	1015/16	3¼	1 5⁄16	1%	5⁄8	(10) ¼ x 2½ SDS	3 x 31⁄2	4,565	3,285	0.114	FL, LA
	HDU5-SDS2.5	14	3	13¾6	31⁄4	1 5⁄16	1 %	5⁄8	(14) ¼ x 2½ SDS	3 x 31⁄2	5,645	4,340	0.115	
	HDU8-SDS2.5	10	3	16%	3½	13%	1½	7/8	(20) ¼ x 2½ SDS	3 x 31⁄2	6,765	5,820	0.11	-
										31⁄2 x 31⁄2	6,970	5,995	0.116	
										31⁄2 x 41⁄2	7,870	6,580	0.113	
	HDU11-SDS2.5	10	3	221⁄4	3½	1%	1½	1	(30) ¼ x 2½ SDS	31⁄2 x 51⁄2	9,535	8,030	0.137	
										31⁄2 x 71⁄4	11,175	9,610	0.137	
	HDU14-SDS2.5	7	3	25 ¹¹ /16	3½	1%16	1%6	1	(36) ¼ x 2½ SDS	31⁄2 x 51⁄2	10,770	9,260	0.122	
										31⁄2 x 71⁄4	14,390	12,375	0.177	IBC, FL, LA
										5½ x 5½	14,445	12,425	0.172	

1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.

3. Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Tice® Strong-Drive SD Connector

and SDS Heavy-Duty Connector screws. See pp. 21-22 for fastener information.

Typical HDU Tie Between Floors

Typical DTT2Z Installation

SIMPSON

Strong-Tie

53

EXHIBIT PD-2: COMPLETENESS LETTER

June 15th, 2023

Thomas Watton 1880 Willamette Falls Dr, Ste. 200-D West Linn, OR 97068

SUBJECT: Non-Conforming Structure Alteration at 2247 5th Avenue (MISC-23-02)

Thomas Watton:

Your application submitted on May 17th, 2023 has been deemed **complete**. The city has 120 days to exhaust all local review; that period ends October 13th, 2023.

Please be aware that determination of a complete application does not guarantee a recommendation of approval from staff for your proposal as submitted – it signals that staff believes you have provided the necessary information for the Planning Director to render a decision on your proposal.

A 14-day public notice will be prepared and mailed. This notice will identify the earliest potential decision date by the Planning Director.

Please contact me at 503-742-6057, or by email at bgardner@westlinnoregon.gov if you have any questions or comments.

Sincerely,

Ben Gardner Assistant Planner

EXHIBIT PD-3: AFFIDAVIT AND NOTICE PACKET

AFFIDAVIT OF NOTICE TYPE B PLANNING MANAGER DECISION

We, the undersigned, certify that, in the interest of the party initiating a proposed land use, the following took place on the dates indicated below:

PROJECT

File No.: MISC-23-02Address: 2247 5th AveApplicant's Name: Thomas Watton - Watton Design Works, Inc.Scheduled Decision Date: Planning Manager Decision no earlier than 7/25/23

MAILED NOTICE

Notice of Upcoming Planning Manager Decision was mailed at least 14 days before the decision date, per Section 99.080 of the Community Development Code to:

Thomas Watton, applicant	7/11/23	Lynn Schroder
Jim Walsh, owner	7/11/23	Lynn Schroder
Property owners within 300ft of the site perimeter	7/11/23	Lynn Schroder
Willamette Neighborhood Association	7/11/23	Lynn Schroder

WEBSITE

Notice was posted on the City's website 14 days before the decision date.

7/11/23 Lynn Schroder

<u>SIGN</u>

A sign was posted on the property at least 10 days before the decision, per Section 99.080 of the CDC.

7/12/23 Ben Gardner

FINAL DECISION

Notice of Final Decision was mailed to the applicant, all parties with standing, and posted on the City's website, per Section 99.040 of the Community Development Code.

8/16/23 Lynn Schroder

CITY OF WEST LINN NOTICE OF UPCOMING PLANNING MANAGER DECISION FILE NO. MISC-23-02

The West Linn Planning Manager is considering a request for an alteration of a non-conforming structure at 2247 5th Ave. The applicant is requesting approval for expanding an existing garage towards 5th Avenue.

You have been notified of this proposal because County records indicate that you own property within 300 feet of the property (Clackamas County Assessor's Map 31E02AB06600), or as otherwise required by CDC Chapter 99.080.

The Planning Manager will decide the application based on criteria in Chapters 11, 66, and 99. of the Community Development Code (CDC). The CDC approval criteria are available for review on the City website http://www.westlinnoregon.gov/cdc or at City Hall and the City Library.

The application is posted on the City's website, <u>https://westlinnoregon.gov/planning/2247-5th-avenue-</u><u>enlargement-residential-non-conforming-use</u>. The application, all documents or evidence relied upon by the applicant and applicable criteria are available for inspection at City Hall at no cost. Copies may be obtained at reasonable cost.

A public hearing will not be held for this decision. **Anyone wishing to submit comments for consideration** must submit all material before <u>4:00 p.m. on 7/25/23</u> to <u>bgardner@westlinnoregon.gov</u> or mail them to City Hall. All comments must be received by the deadline.

It is important to submit all testimony in response to this notice. All comments submitted for consideration of this application should relate specifically to the applicable criteria. Failure to raise an issue in a hearing, in person, or by letter, or failure to provide sufficient specificity to afford the decision-maker an opportunity to respond to the issue, precludes appeal to the Oregon Land Use Board of Appeals based on that issue (CDC Section 99.090).

The final decision will be posted on the website and available at City Hall. Persons with party status may appeal the decision by submitting an appeal application to the Planning Department within 14 days of mailing the notice of the final decision pursuant to CDC <u>99.240</u>.

For additional information, please contact Ben Gardner Assistant Planner, City Hall, 22500 Salamo Rd., West Linn, OR 97068, 503-742-6057.

Scan this QR Code to go to Project Web Page:

NOTICE OF UPCOMING PLANNING MANAGER DECISION

PROJECT # HDR-23-01 MAIL: 7/11/23 TIDINGS: N/A

CITIZEN CONTACT INFORMATION

To lessen the bulk of agenda packets and land use application notice, and to address the concerns of some City residents about testimony contact information and online application packets containing their names and addresses as a reflection of the mailing notice area, this sheet substitutes for the photocopy of the testimony forms and/or mailing labels. A copy is available upon request.