SITE STORMWATER AND DOWNSTREAM ANALYSIS REPORT

Prepared For:

Lenity Architecture

3150 Kettle Ct SE

Salem, OR 97301

Project Location:

Bolton Terrace

1575 Burns Street

West Linn, OR 97068

Permit Number: CO -

Prepared By:

Westech Engineering, Inc. 3841 Fairview Industrial Drive SE, Suite 100 Salem, OR 97302 (503) 585-2474 FAX: (503) 585-3986

TABLE OF CONTENTS

Chap	pter Pa	age
1	Project Overview & Description	. 1-1
1.1	Size & Location of Project	. 1-1
1.2	Brief description of project scope and proposed improvements	. 1-1
1.3	Description of Size of Watershed Draining to the Site	. 1-1
1.4 Sensi	Description of the Existing Site Conditions, Trees & Native Vegetation, Constraints, itive Areas & Waterways	. 1-1
1.5	Regulatory Permits Required	. 1-1
1.6	Emergency Storm Escape Routes	. 1-1
2	Methodology	. 2-1
2.1	Depth to Groundwater	. 2-1
2.2	Maximum Infiltration and Vegetative Treatment	. 2-1
2.3	Soil Information	. 2-1
2.4	Hazardous Material	. 2-1
3	Analysis	. 3-1
3.1	Methods & Software Used	. 3-1
3.2	Curve Number and Time of Concentration Calculations	. 3-1
3.3	Review of Resources & Drainage Basin	. 3-1
3.4	Inspection of Affected Area	. 3-1
3.5	Treatment & Water Quality	. 3-2
3.6	Conveyance System & Analysis of Downstream Effects	. 3-3
3.7	Summary	. 3-4

LIST OF TABLES

Table	Page
Table 1 City of West Linn 24-hour Design Storms	3-1
Table 2 Summary of Site Peak Flows	3-2
Table 3 Summary of Stormwater Flow-Through Planter Sizing	3-2
Table 4 Summary of Facility Release Rate and Peak Water Surface Elevations	3-3
Table 5 Surface Filtration Test Summary – WQ Storm	3-3
Table 6 City of Gresham Conveyance Design Storm Sizing Criteria	3-3
Table 7 Summary of Cascade Springs Pond Creek During 50-year Storm	3-4

APPENDICES

Appendix A	Basin Maps & Resources
Appendix B	NRCS Soil Report
Appendix C	HydroCAD Summaries
Appendix D	Geotechnical Report
Appendix E	Field Visit Explorations
Appendix F	Water Quality Treatment

PROJECT OVERVIEW & DESCRIPTION

1.1 SIZE & LOCATION OF PROJECT

The proposed project is located on a primarily undeveloped 27,210 square feet lot at 1575 Burns Street in West Linn, Oregon. There is currently a 1,000 square foot house on the lot that will be removed prior to construction. Refer to the Civil Drawings for more detail.

1.2 BRIEF DESCRIPTION OF PROJECT SCOPE AND PROPOSED IMPROVEMENTS

The project scope is to develop the full 27,210 square foot lot. The new development will include two one new commercial building and associated parking and landscaping.

1.3 DESCRIPTION OF SIZE OF WATERSHED DRAINING TO THE SITE

The 27,210 square foot developed site will drain to an existing 12-inch stormwater pipe located in the southeast corner of the lot. This stormwater pipe then drains into the north fork of Cascade Springs Pond Creek. No other areas drain to the developed site.

1.4 DESCRIPTION OF THE EXISTING SITE CONDITIONS, TREES & NATIVE VEGETATION, CONSTRAINTS, SENSITIVE AREAS & WATERWAYS

The existing site is currently undeveloped with a 1,000 square feet single family home on the lot. There are multiple trees on the site and the ground is covered with grass. The westerly portion of the lot is relatively flat, while the eastern portion is moderately sloped descending to the east. Numerous small to large sized trees exist on site.

1.5 REGULATORY PERMITS REQUIRED

City of West Linn permits are required. No other permits are required for this project.

1.6 EMERGENCY STORM ESCAPE ROUTES

Please refer to the Developed Basin Map in Appendix A for emergency overflow routes.

Per the Geotechnical Report in Appendix D, groundwater seepage was not encountered and is not expected during construction. See the Geotech Report in Appendix D for details.

2.2 MAXIMUM INFILTRATION AND VEGETATIVE TREATMENT

The proposed stormwater design will not provide detention for onsite runoff due topography constraints. Detention is not required because Cascade Springs Pond Creek has adequate downstream capacity. During the field visit conducted on April 14, 2020, it was determined that Cascade Springs Pond Creek will not see adverse effects due to the increase in stormwater runoff, created by the site, draining into the creek. See Appendix E for details on the field explorations. A Contech stormfilter will be designed to treat the water quality storm event because the site is extremely steep and infiltration is not feasible. See the Civil Drawings for more details.

2.3 SOIL INFORMATION

The pre-developed project site contains hydrologic soil group C soils. Refer to the Soils Report in Appendix B for more details.

2.4 HAZARDOUS MATERIAL

The owner is not aware of any hazardous material contamination onsite.

3.1 METHODS & SOFTWARE USED

HydroCAD modeling software was used to size the stormwater facilities. The Santa Barbara Unit Hydrograph Type 1A storm was used to model the required design storms. Per the City of West Linn Design Standards the design storms used were the 1.2 inch, 24-hour (water quality storm), half the 2-year, 24-hour and the 10-year, 24-hour storm events.

 Table 1 | City of West Linn 24-hour Design Storms

	24-Hour Rainfall Depths for West Linn, OR									
Recurrence Interval, Years	2	5	10	25	50	100	500	WQ		
24-Hour Depths, Inches	2.5	3.0	3.4	3.9	4.3	4.5	5.3	1.2		

Source: City of West Linn Stormwater Management Plan

3.2 CURVE NUMBER AND TIME OF CONCENTRATION CALCULATIONS

Curve numbers were derived from the NRCS runoff curve numbers contained in TR-55 *Urban Hydrology for Small Watersheds* per the City of Gresham Standards. The developed impervious area and pervious areas were assigned curve numbers of 98 and 74 respectively. The impervious areas were assigned a curve number of 98 which corresponds to paved/parking areas. The pervious areas were assigned a curve number of 74 which corresponds to amended soil coverage with C-rated soils.

Time of concentration (Tc) for the pre-developed conditions was calculated to be 17.3 minutes using the sheet flow equation. See the Pre-Developed Basin Map in Appendix A for the flow path used and refer to the HydroCAD Summaries in Appendix C for calculations. A minimum time of concentration of 5 minutes is applied to the developed basin due to the minimum time-step used by the HydroCAD modeling software.

3.3 REVIEW OF RESOURCES & DRAINAGE BASIN

The entire 27,210 square foot lot will drain into Cascade Springs Pond Creek. There are five sub-basins within the Cascade Springs basin. The project site is located within the CS2N1 sub-basin per the West Linn Stormwater Management Plan. For more detail and resources refer to Appendix A.

3.4 INSPECTION OF AFFECTED AREA

No problem areas or areas of concern were notable during the review of resources. Additionally, there were no existing or potential areas where flooding, capacity problems, channel destruction, or significant destruction of aquatic habitat identified in the inspection.

3.5 TREATMENT & WATER QUALITY

The site was analyzed as one (1) basin for the predeveloped and developed stormwater calculations. General basin characteristics of both pre-developed and developed conditions are listed in Table 2. For more detail refer to the Basin Maps in Appendix A and the Civil Drawings.

	Source	Impervious	_	[Design Storn	าร	-		
Basin ID	(Roof/Road/ Other)	Area (sq ft)	Pervious Area (sq ft)	WQ (cfs)	10 Year (cfs)	100 Year (cfs)	CN	Тс	
PD	Native	-	27,570	-	0.17	0.30	74	17.3	
DEV	Paved/ Landscape	19,920	7,650	0.12	0.40	0.56	98/79 ²	5.0	

Table 2 | Summary of Site Peak Flows

¹ PD = pre-developed site conditions (i.e., pre-developed release rates)

² The first curve number listed is for the impervious area in the basin (98), then for the pervious area (80)

Table 2 above depicts the runoff experience from developed site compared to that of the predeveloped site. The design storms analyzed were provided in the West Linn Stormwater Management Plan and consisted of the water quality, 10-year, and 100-year, 24-hour storm events.

A stormwater filtration planter is proposed to treat the water quality storm event and provide adequate capacity for the 100-year storm for the Developed Basin. Approximately 5,880 square feet of pervious area will not drain to the proposed filtration planter due to slope constraints. All the new impervious surfaces will drain to and be treated by the proposed filtration planter. Refer to Table 3 below for a summary of the filtration planter sizing.

Facility ID ¹ -	Facility E (Elevations ² (ft)	· ·	rface Area ² sf)	Required Drain Rock Surface Area	Depth of Drain Rock
	Тор	Bottom	Тор	Bottom	(sf)	(in)
Planter	103.0	100.5	280	280	280	12

 Table 3 | Summary of Stormwater Flow-Through Planter Sizing

¹ The facility is a privately owned and maintained filtration planter.

²Top elevation is the top of the facility wall. Bottom elevation is the surface of the growing media.

The proposed Flow-Through Planter is designed to provide treatment for the water quality storm event and have capacity for the 100-year storm. Refer to Table 4 below for a summary of the release rates and water surface elevations within the planter during the water quality and 100-year storm events.

	Infiltration Rate	WQ S	torm	100-Yea	r Storm
Facility ID	(in/hr) –	Release	WSE ¹	Release	WSE ¹
		(cfs)	(ft)	(cfs)	(ft)
Planter	0.20	0.11	97.50	0.50	97.51

¹ WSE = Water Surface Elevation. See "Surface Test" printouts in Appendix C.

The HydroCAD modeled release rates and water surface elevations (WSE) shown in Table 4 assume free-flow though the filtration planter growing media. Release from the Flow-Through Planter can also be controlled by the filtration capacity of the growing media. To verify the entire WQ storm event is filtered through the growing media for treatment, the planter hydraulics were also modeled at the facility surface with an assumed filtration rate of 4 in/hr. The surface test was calculated using Darcy's Law of hydraulic conductivity with the groundwater elevation set 1.5 feet below the surface to represent the 1.5 feet (18 inches) of growing media thickness per COG Design Standards. See the HydroCAD analysis in Appendix F for surface test calculations.

Table 5 | Surface Filtration Test Summary – WQ Storm

Facility ID ¹	Facility Bottom Elevation (ft)	Max. Treatment Elevation ²	WSE (ft)
Planter	100.50	101.50	100.68

¹ The facility is a privately owned and maintained rain garden

² Elevation at which water overtops the overflow orifice within the planter and is directed to flow control structure

3.6 CONVEYANCE SYSTEM & ANALYSIS OF DOWNSTREAM EFFECTS

Per City of West Linn Design Standards, this project is exempt from detention requirements due to adequate downstream capacity of conveyance system. However, a downstream analysis was conducted per the City of Gresham Standards to determine if Cascade Springs Pond Creek will have adequate capacity. The following table provides the COG design storm sizing criteria.

Structure or Facility		Design Storm Recurrence Interval (years)
Storm sewers, ditches,	Draining less than 250 acres	10
and outfall pipes	Draining greater than 250 acres	50
Creek or stream	Without designated floodplain	50
Channels	With designated floodplain	100
Culverts and bridges		100

 Table 6 | City of Gresham Conveyance Design Storm Sizing Criteria

The downstream analysis was conducted using the 50-year, 24-hour design storm per COG Design Standards for a creek with drainage area less than 50 acres.

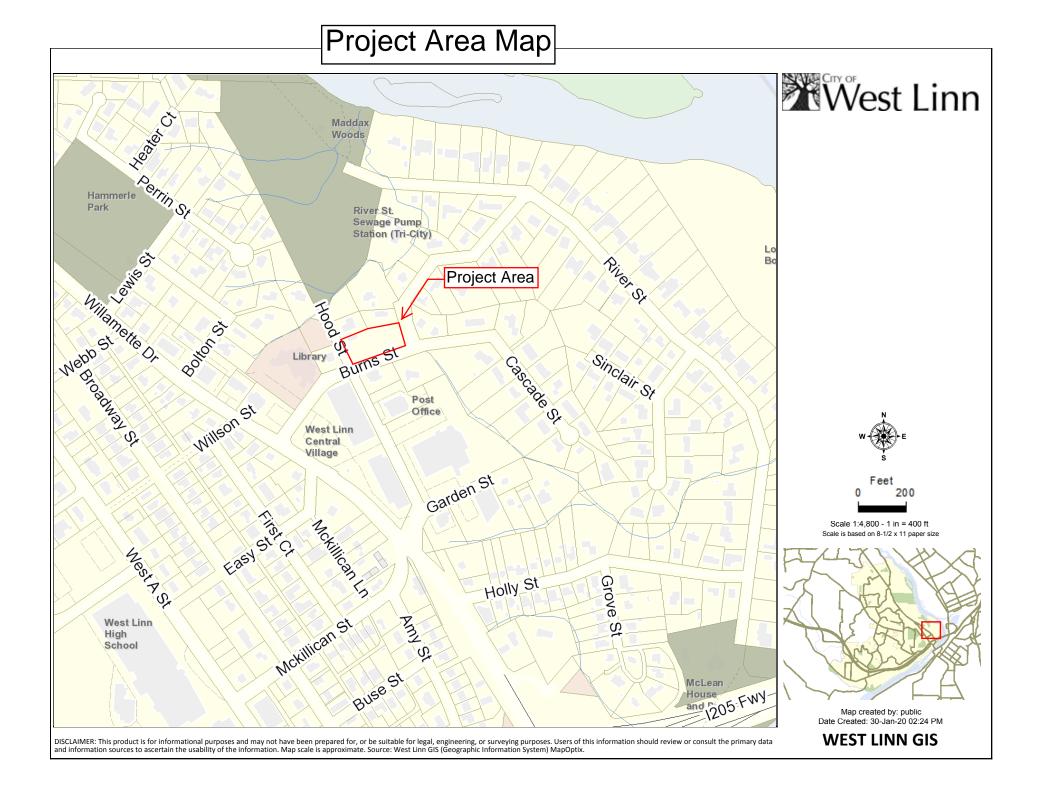
Peak flow rates for each sub-basin within the Cascade Springs basin were provided by the West Linn Stormwater Management Plan. Additionally, peak flow rates for the junction of sub-basins were also provided. The junction node CSJ2 was selected for this analysis. The peak flow of CSJ2 was combined with the added onsite runoff for the 50-year, 24-hour storm event to determine adequate downstream capacity. Based on inspection and mapping, the creek has 1,500 feet of length, 3:1 side slopes, a width varying 10-30 feet at the bottom, slope of 1.50%, a depth of 10-30 feet, and a Manning's number of 0.03 was used, corresponding to a typical open, earth channel, that is grassed and winding. See below for water depth in channel, calculated using Manning's Equation.

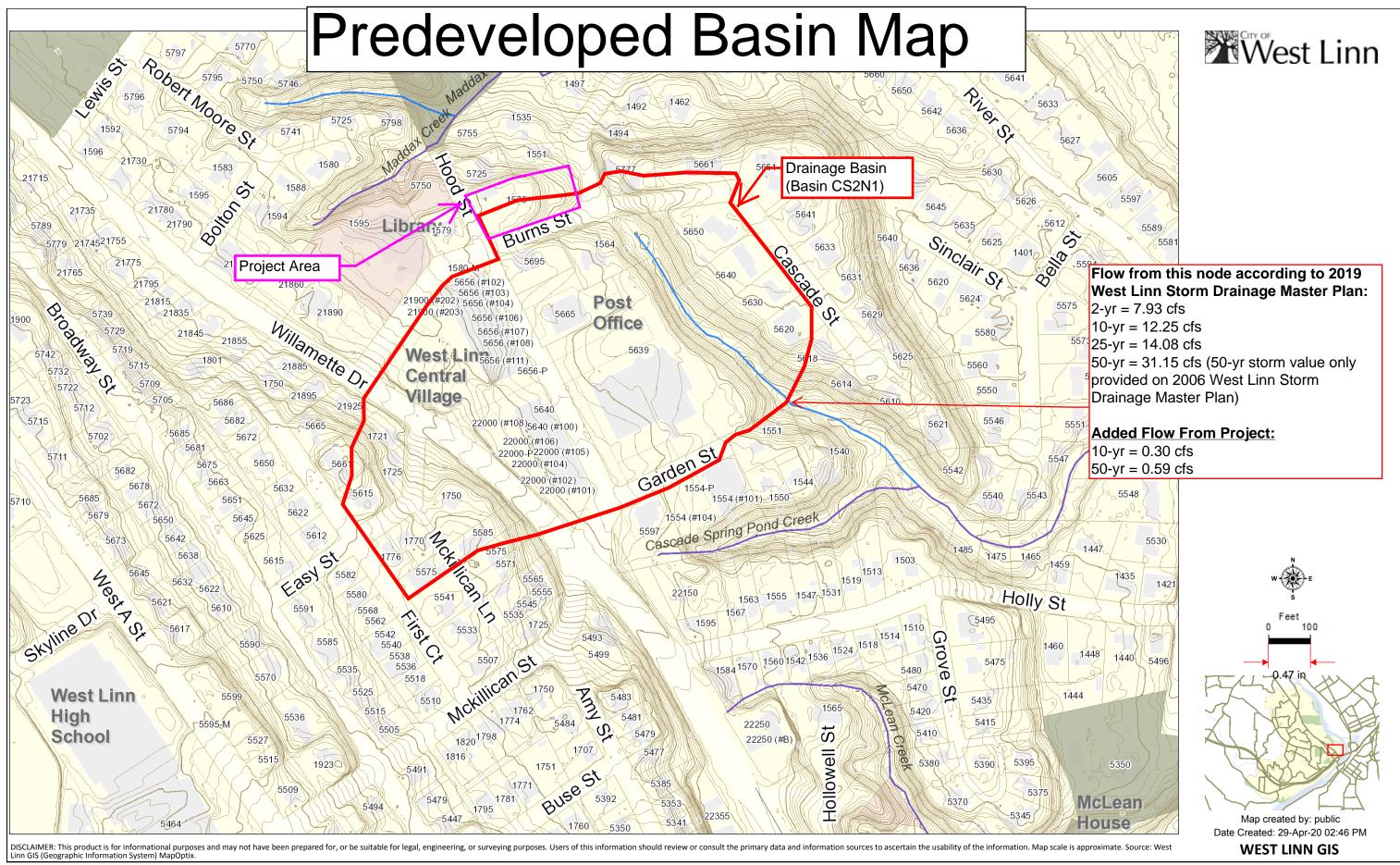
Basin ID	Drainage Area (acres)	50-Year (cfs)	Water Depth in Channel (ft) ^a
CSJ2	55.04	31.15	1.31
DEV	0.62	0.59	0.20
Total	55.56	31.74	1.32 ^a

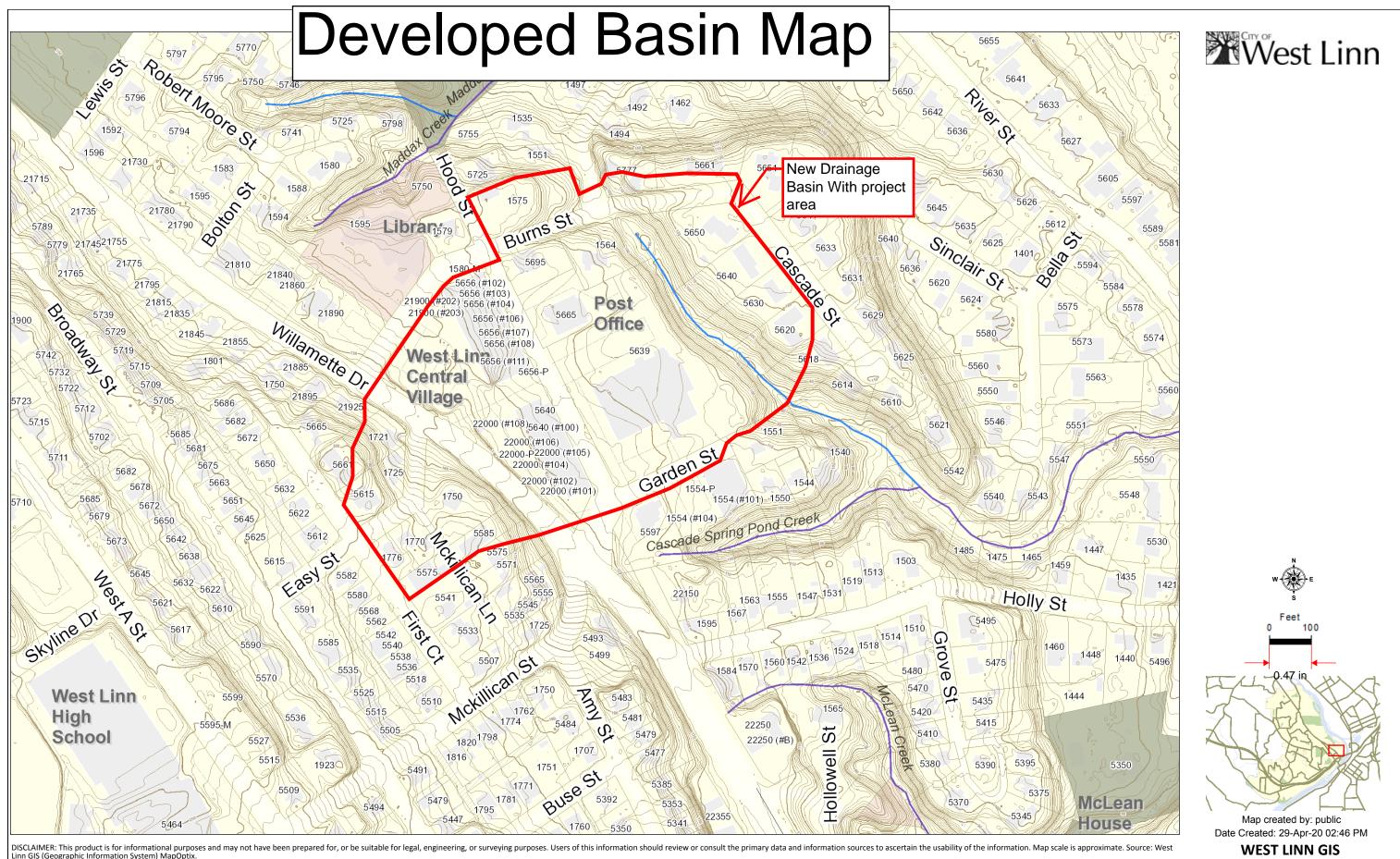
Table 7 | Summary of Cascade Springs Pond Creek During 50-year Storm

^aTotals do not sum to the addition of the individual flows. This is due to the fact that the time of concentration per basin varies. The totals are the combination of the basin hydrographs. Refer to Link: OUT in Appendix D.

The calculations in Table 7 above display the added runoff to the Cascade Springs Pond Creek that will result from the developed project. The undetained developed 50-year event runoff peak for the site is 0.59 cfs. The developed runoff only contributes to approximately 2% of the total runoff conveyed by Cascade Springs Pond Creek. The peak water surface elevation will rise approximately a tenth of an inch with the added runoff from the developed site. Therefore, the conveyance system will provide adequate capacity for developed stormwater runoff and detention facilities are not required onsite.

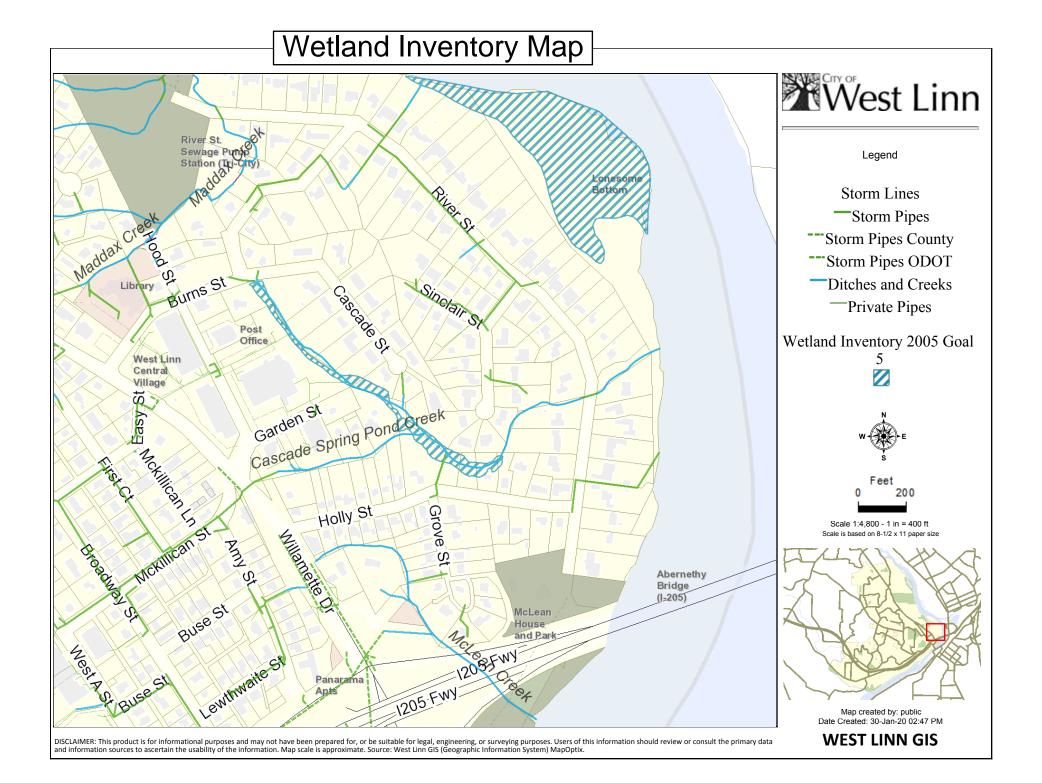

3.7 SUMMARY

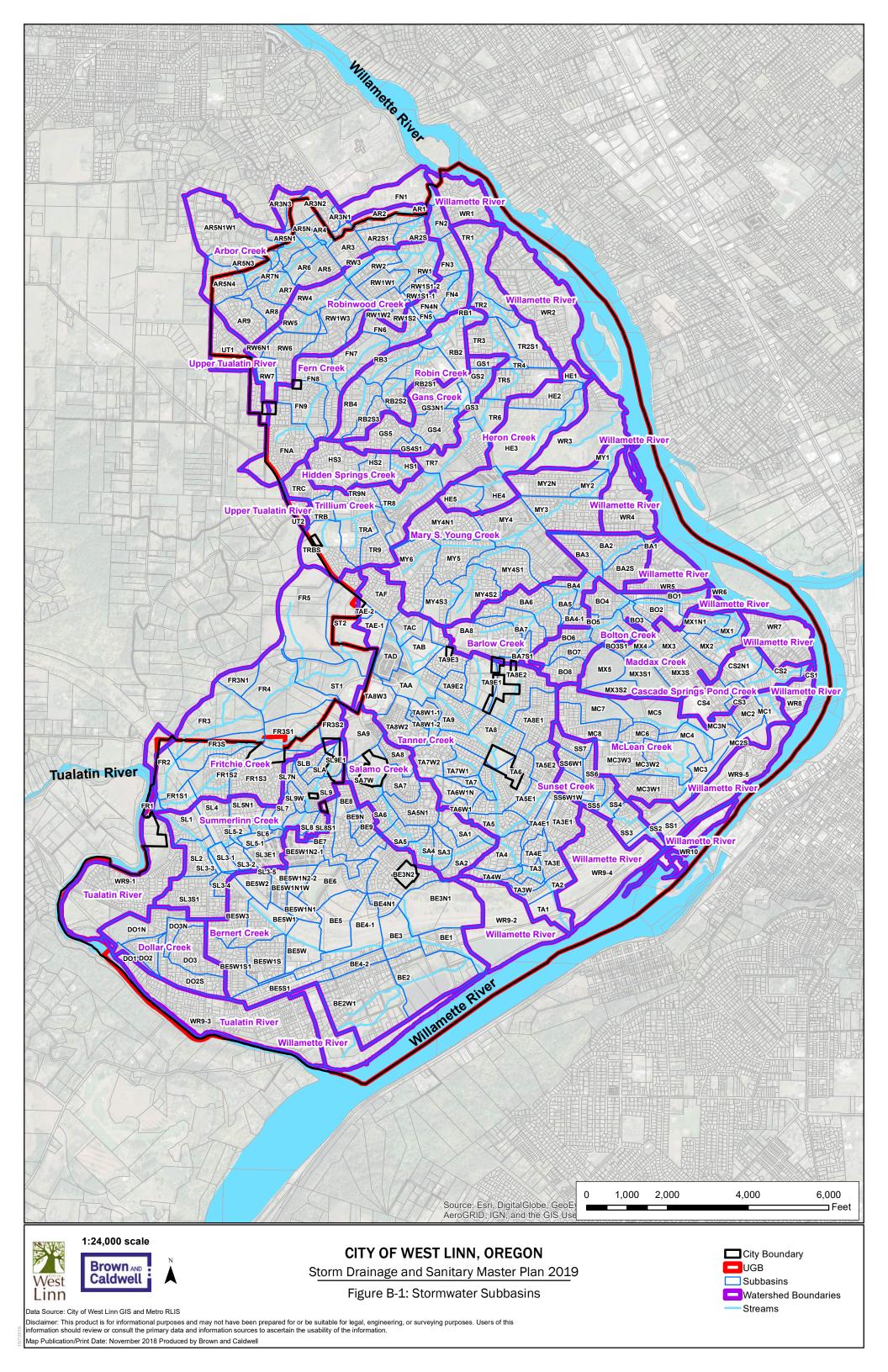

The treatment system consisting of a Flow-Through Planter has been designed to treat the water quality storm, and have capacity for the 100-year storm event. Detention was not required to be provided on site because Cascade Springs Pond Creek has adequate downstream capacity. Therefore, the project can meet the flow control and treatment requirements as set forth in the City of West Linn Stormwater Management Plan and the City of Gresham Stormwater Management Manual.

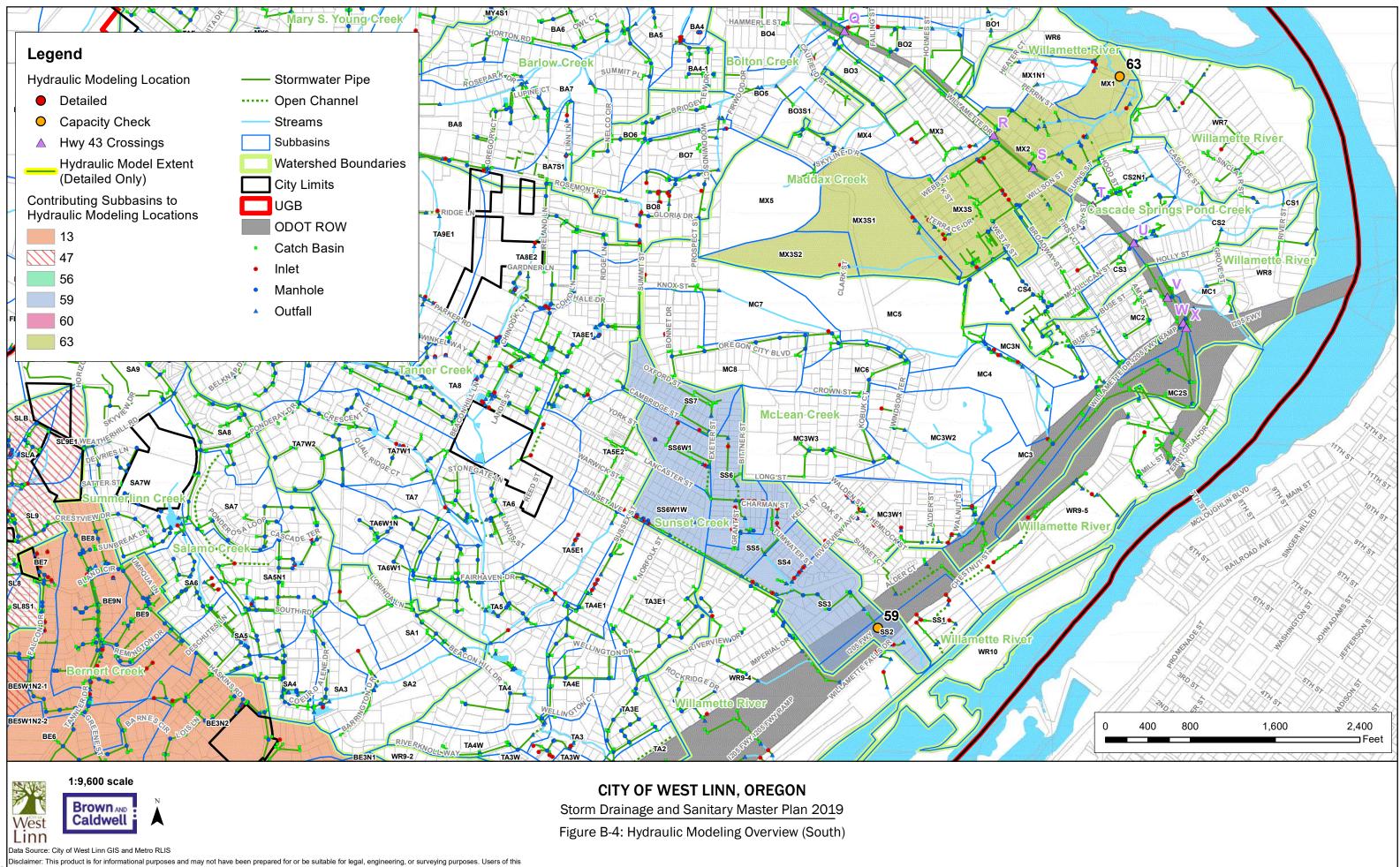

BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

APPENDIX A BASIN MAPS & RESOURCES

BASIN & AREA MAPS



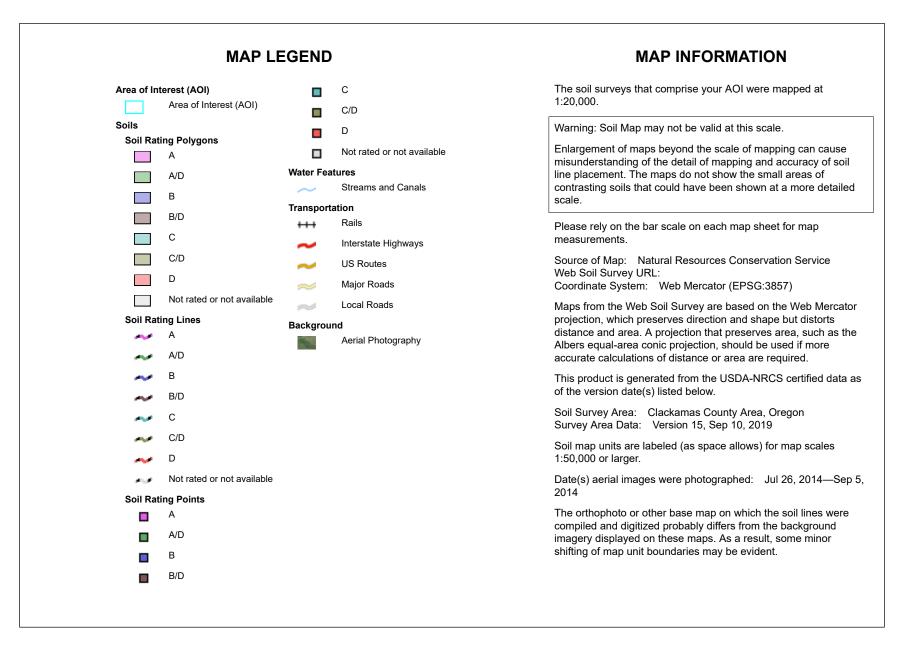



Linn GIS (Geographic Information System) MapOptix.

WETLAND, AND HABITAT INVENTORY

BASIN INFORMATION

formation should review or consult the primary data and information sources to ascertain the usability of the information Map Publication/Print Date: November 2018 Produced by Brown and Caldwell


					Attachment A. Ta	able A-1: I	Hydrology	Parame	ters and N	lodel Resu	lts						
						Exis	ting Land L	Jse	Fu	ture Land Us	е	Fi	iture Land L	lse	F	uture Land U	se
Basin ID	Area (acres)	Width	Slope	Existing Impervious	Future Impervious		mum Flow (Maximum Flow (cfs)			Absolute	Increase in	Maximum	Percent Increase in Maximum Flow		
		(ft)	(ft/ft)	Percentage	Percentage	2-yr	10-yr	25-yr	2-yr	10-yr	25-yr	2-yr	10-yr	25-yr	2-yr	10-yr	25-yr
BE5W	21.46	862.53	0.03	56.19	56.19	9.37	15.47	17.78	9.37	15.47	17.78	0.00	0.00	0.00	0.00	0.00	0.00
BE5W1	23.58	631.68	0.06	32.24	32.24	7.82	15.52	18.21	7.82	15.52	18.21	0.00	0.00	0.00	0.00	0.01	0.00
BE5W1N1	7.87	423.89	0.05	84.69	84.69	4.29	6.16	7.02	4.29	6.16	7.02	0.00	0.00	0.00	0.00	0.00	0.00
BE5W1N1W	9.50	210.81	0.05	66.69	66.69	4.27	6.82	7.84	4.27	6.82	7.84	0.00	0.00	0.00	0.00	0.00	0.00
BE5W1N2-1	15.77	363.01	0.07	34.26	48.79	5.18	10.27	12.09	6.23	10.98	12.72	1.05	0.70	0.63	20.36	6.85	5.23
BE5W1N2-2	8.98	361.75	0.15	68.66	84.98	4.73	7.03	8.01	5.02	7.13	8.11	0.29	0.10	0.10	6.18	1.39	1.21
BE5W1S	21.41	550.38	0.04	31.82	31.95	6.44	13.34	15.87	6.45	13.35	15.88	0.01	0.01	0.01	0.22	0.09	0.06
BE5W1S1	22.68	464.81	0.02	31.11	31.67	5.77	12.42	15.20	5.83	12.48	15.26	0.06	0.06	0.06	1.06	0.50	0.39
BE5W2	11.96	526.59	0.02	43.29	43.29	4.61	8.29	9.61	4.61	8.29	9.61	0.00	0.00	0.00	0.00	0.00	0.00
BE5W3	21.99	632.15	0.06	30.71	30.71	7.27	14.49	17.00	7.27	14.49	17.00	0.00	0.00	0.00	0.00	0.00	0.00
BE6	28.38	505.71	0.13	21.24	48.79	7.75	17.42	20.79	11.48	19.97	23.08	3.73	2.54	2.29	48.17	14.60	11.01
BE7	15.60	291.98	0.08	29.67	30.21	4.57	9.64	11.50	4.61	9.68	11.53	0.04	0.04	0.03	0.94	0.36	0.28
BE8	25.60	534.32	0.10	28.95	28.96	8.04	16.52	19.48	8.04	16.52	19.48	0.00	0.00	0.00	0.01	0.00	0.01
BE9	8.75	313.98	0.09	29.73	29.73	3.26	6.05	7.04	3.26	6.05	7.04	0.00	0.00	0.00	0.00	0.00	0.00
BE9N	3.60	252.10	0.11	30.00	30.00	1.60	2.65	3.05	1.60	2.65	3.05	0.00	0.00	0.00	0.00	0.00	0.00
Bolton Creek																	
B01	14.30	417.48	0.09	25.42	28.48	4.71	9.50	11.10	4.92	9.62	11.22	0.21	0.13	0.11	4.42	1.33	1.03
B02	14.35	520.28	0.08	36.27	37.39	5.69	10.11	11.75	5.76	10.16	11.79	0.07	0.05	0.04	1.19	0.46	0.37
BO3	6.71	302.28	0.06	31.84	32.46	2.55	4.66	5.42	2.57	4.67	5.43	0.02	0.01	0.01	0.71	0.19	0.20
B03S1	4.64	563.72	0.25	28.38	30.85	2.28	3.49	4.00	2.31	3.50	4.01	0.03	0.02	0.01	1.14	0.46	0.38
BO4	15.40	454.25	0.14	31.79	33.00	5.90	10.73	12.49	5.98	10.78	12.54	0.08	0.06	0.05	1.36	0.52	0.42
B05	12.47	523.04	0.16	31.54	31.68	2.30	5.50	7.80	2.40	5.50	7.80	0.10	0.00	0.00	4.35	0.00	0.00
B06	13.53	310.87	0.10	30.00	30.00	4.44	8.90	10.44	4.44	8.90	10.44	0.00	0.00	0.00	0.00	0.00	0.00
B07	8.91	385.28	0.11	25.09	25.09	3.43	6.25	7.25	3.43	6.25	7.25	0.00	0.00	0.00	0.00	0.00	0.00
B08	13.32	457.55	0.10	30.00	30.00	4.98	9.21	10.71	4.98	9.21	10.71	0.00	0.00	0.00	0.00	0.00	0.00
Cascade Spring	s Pond Creek																
CS1	1.77	157.47	0.06	25.36	29.99	0.76	1.29	1.49	0.79	1.31	1.50	0.03	0.02	0.01	3.28	1.24	1.01
CS2	16.54	390.84	0.05	39.60	40.74	5.60	10.79	12.71	5.69	10.86	12.77	0.09	0.07	0.06	1.57	0.61	0.47
CS2N1	16.50	482.55	0.07	65.01	65.01	<mark>7.93</mark>	<mark>12.25</mark>	<mark>14.08</mark>	7.93	12.25	14.08	0.00	0.00	0.00	0.00	0.00	0.00
CS3	5.47	282.05	0.07	41.27	41.89	2.41	4.03	4.63	2.42	4.03	4.64	0.01	0.01	0.01	0.50	0.20	0.15
CS4	20.45	499.57	0.05	32.10	32.36	6.29	12.91	15.32	6.32	12.93	15.34	0.03	0.02	0.02	0.41	0.16	0.13
Dollar Creek																	
D01	3.75	119.44	0.06	30.02	30.13	1.25	2.48	2.91	1.25	2.49	2.91	0.00	0.00	0.00	0.16	0.04	0.03
DO1N	24.53	508.68	0.04	18.07	29.91	5.20	12.97	16.05	6.71	14.42	17.40	1.51	1.45	1.35	29.07	11.15	8.40
D02	10.85	368.67	0.02	34.97	34.97	3.30	6.72	8.01	3.30	6.72	8.01	0.00	0.00	0.00	0.00	0.00	0.00
D02S	21.52	398.94	0.02	29.97	30.26	5.06	11.04	13.68	5.09	11.07	13.71	0.03	0.03	0.03	0.59	0.29	0.23
DO3	23.72	642.92	0.01	30.00	30.00	5.89	12.83	15.75	5.89	12.83	15.75	0.00	0.00	0.00	0.00	0.00	0.00
DO3N	8.00	209.29	0.02	29.94	30.00	2.13	4.59	5.57	2.13	4.60	5.57	0.00	0.00	0.00	0.09	0.07	0.04
Fern Creek							•						•				
FN1	31.74	437.01	0.05	30.00	30.00	7.98	17.36	21.27	7.98	17.36	21.27	0.00	0.00	0.00	0.00	0.00	0.00
FN2	9.27	408.46	0.05	29.52	29.52	3.33	6.33	7.35	3.33	6.33	7.35	0.00	0.00	0.00	0.00	0.00	0.00
FN3	13.99	418.88	0.04	16.37	16.37	3.27	8.03	9.75	3.27	8.03	9.75	0.00	0.00	0.00	0.00	0.00	0.00
FN4	11.60	328.13	0.03	29.67	30.00	3.26	6.97	8.37	3.28	6.99	8.38	0.02	0.02	0.02	0.58	0.24	0.18
FN4N	13.46	372.26	0.05	38.80	38.80	4.85	9.11	10.62	4.85	9.11	10.62	0.00	0.00	0.00	0.00	0.00	0.00
FN5	3.66	169.57	0.03	82.17	82.17	1.91	2.75	3.14	1.91	2.75	3.14	0.00	0.00	0.00	0.00	0.00	0.00
FN6	18.67	520.42	0.08	30.34	33.15	6.39	12.51	14.60	6.64	12.66	14.74	0.25	0.15	0.14	3.90	1.22	0.94

BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

> APPENDIX B NRCS SOIL REPORT

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
91B	Woodburn silt loam, 3 to 8 percent slopes	С	0.6	100.0%
Totals for Area of Intere	st		0.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

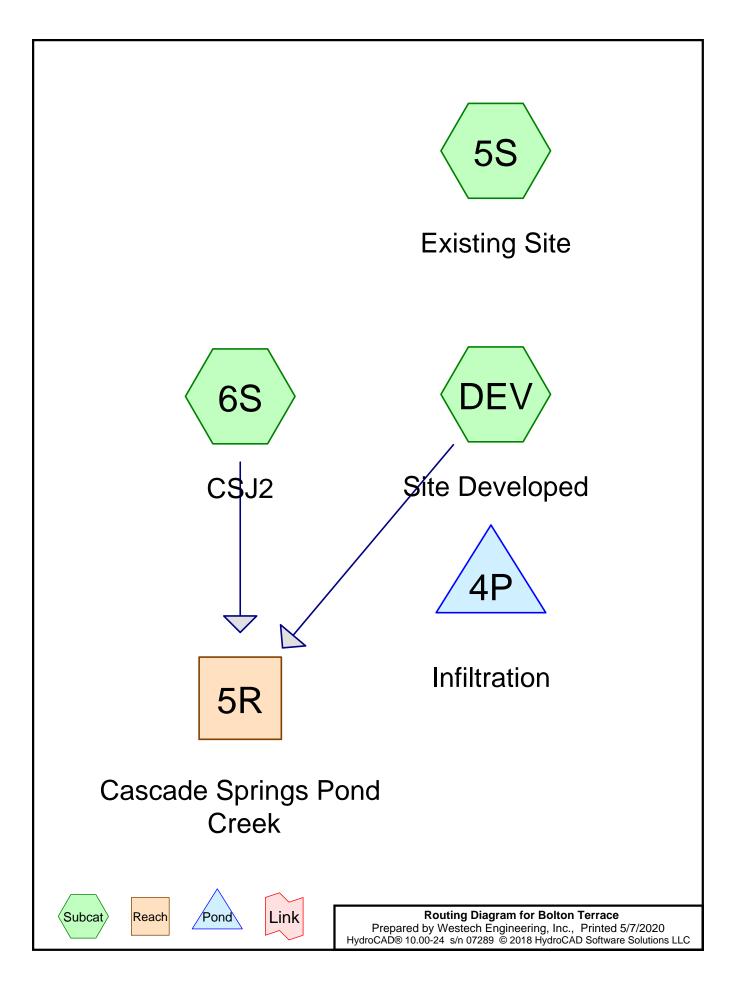
USDA

Tie-break Rule: Higher

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

MAP L	EGEND	MAP INFORMATION			
Area of Interest (AOI) △ Area of Interest (AOI) Soils Area of Interest (AOI) △ Soil Map Unit Polygons △ Soil Map Unit Polygons △ Soil Map Unit Intes ○ Soil Map Unit Points ○ Soil Map Unit Points ○ Borrow Pit ○ Clay Spot ○ Closed Depression ○ Gravel Pit ○ Gravel Pit ○ Landfill	Image: Spoil Area Image: Spoil Area <	The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more			
 Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot 	Background Aerial Photography	 accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Clackamas County Area, Oregon Survey Area Data: Version 15, Sep 10, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jul 26, 2014—Sep 2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. 			

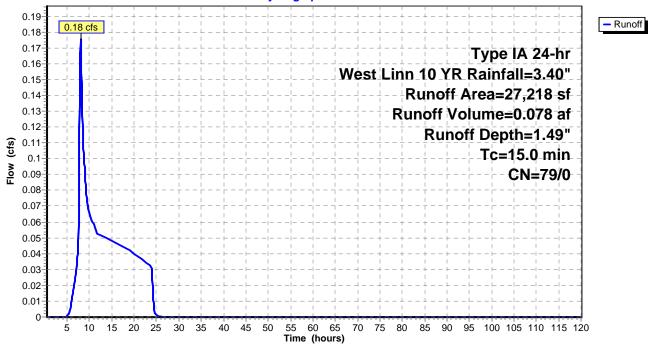
Map Unit Legend


Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
91B	Woodburn silt loam, 3 to 8 percent slopes	0.6	100.0%
Totals for Area of Interest		0.6	100.0%

BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

APPENDIX C

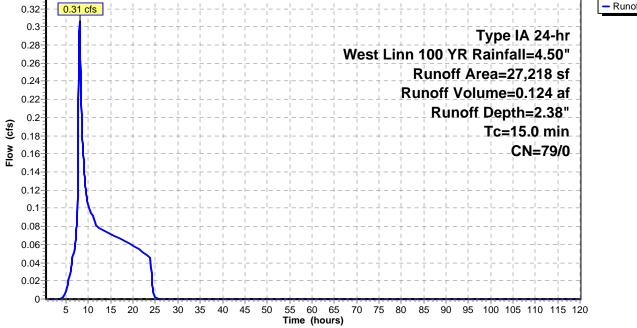
HYDROCAD SUMMARIES


Runoff = 0.18 cfs @ 8.03 hrs, Volume= 0.078 af, Depth= 1.49"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 10 YR Rainfall=3.40"

	A	rea (sf)	CN I	Description		
*		27,218	79			
		27,218		100.00% P	ervious Are	a
	Tc	Length	Slope		Capacity	Description
	<u>(min)</u> 15.0	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry,
	10.0					5

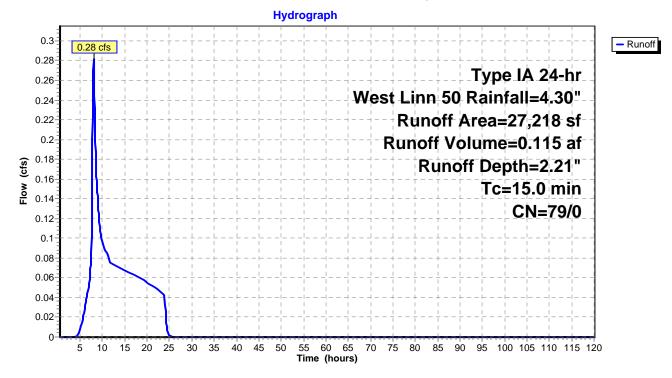
Subcatchment 5S: Existing Site


Hydrograph

Runoff = 0.31 cfs @ 8.02 hrs, Volume= 0.124 af, Depth= 2.38"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 100 YR Rainfall=4.50"

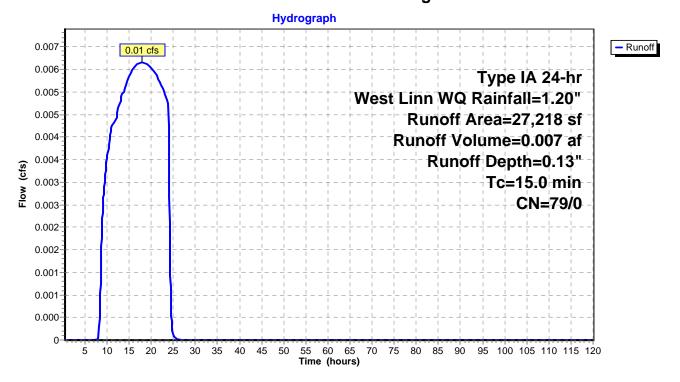
	A	rea (sf)	CN	Desc	ription											
*		27,218	79													
	27,218 100.00% Pervious Area															
	Tc (min)	Length (feet)	Slop (ft/f		locity /sec)	Ca	pacity (cfs)	De	script	on						
	15.0							Dir	ect E	ntry,						
	Subcatchment 5S: Existing Site															
	0.34-0.32-			-+-+			11 11 		 		· - + - · - - 	- + -	- + - 		 	- Runoff



Runoff = 0.28 cfs @ 8.02 hrs, Volume= 0.115 af, Depth= 2.21"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 50 Rainfall=4.30"

	A	rea (sf)	CN	Description		
*		27,218	79			
		27,218		100.00% P	ervious Are	ea
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
	<u>(11111)</u> 15.0	(leel)	(11/11)	(11/Sec)	(015)	Direct Entry,

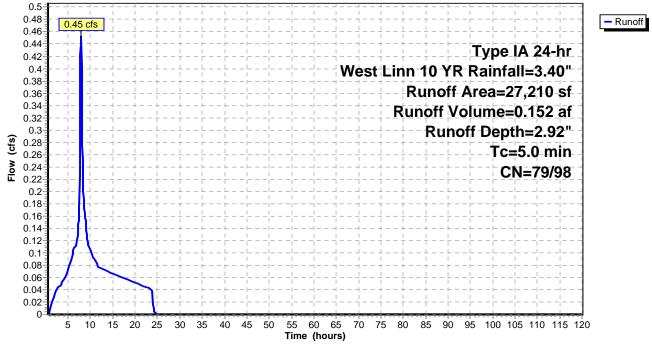

Subcatchment 5S: Existing Site

Runoff = 0.01 cfs @ 17.99 hrs, Volume= 0.007 af, Depth= 0.13"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn WQ Rainfall=1.20"

	A	rea (sf)	CN E	Description						
*		27,218	79							
	a									
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	15.0									
	Subcatchment 5S: Existing Site									

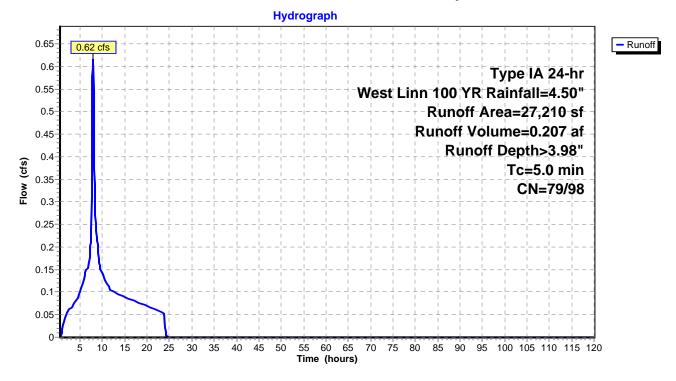
Summary for Subcatchment DEV: Site Developed


Runoff = 0.45 cfs @ 7.91 hrs, Volume= 0.152 af, Depth= 2.92"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 10 YR Rainfall=3.40"

_	A	rea (sf)	CN	Description					
*		23,130	98	rooftop					
_		4,080	79	50-75% Grass cover, Fair, HSG C					
		27,21095Weighted Average4,08014.99% Pervious Area23,13085.01% Impervious Area			vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
	5.0					Direct Entry,			

Subcatchment DEV: Site Developed

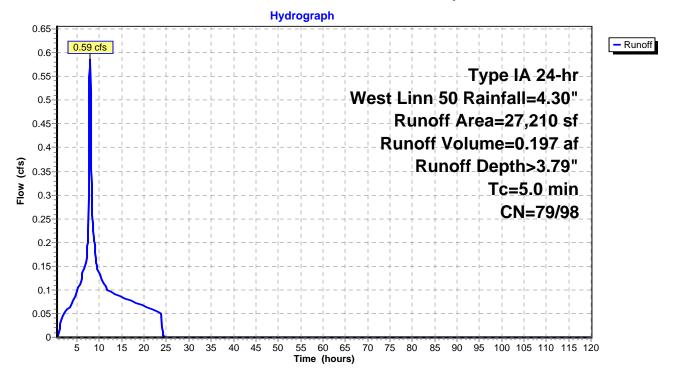

Summary for Subcatchment DEV: Site Developed

Runoff = 0.62 cfs @ 7.90 hrs, Volume= 0.207 af, Depth> 3.98"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 100 YR Rainfall=4.50"

_	A	rea (sf)	CN	Description					
*		23,130	98	rooftop					
_		4,080	79	50-75% Grass cover, Fair, HSG C					
		27,210 4,080 23,130	14.99% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description			
	5.0					Direct Entry,			

Subcatchment DEV: Site Developed

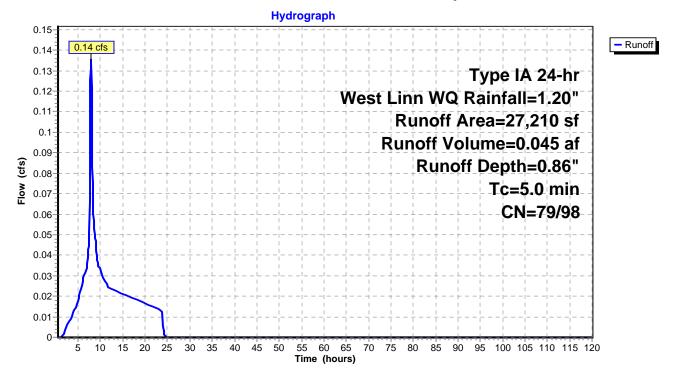

Summary for Subcatchment DEV: Site Developed

Runoff = 0.59 cfs @ 7.90 hrs, Volume= 0.197 af, Depth> 3.79"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 50 Rainfall=4.30"

_	A	rea (sf)	CN	Description							
*		23,130	98	rooftop	ooftop						
_		4,080	79	50-75% Gra	0-75% Grass cover, Fair, HSG C						
		27,210	95	Weighted A	verage						
		4,080		14.99% Per	vious Area	3					
		23,130		85.01% Imp	pervious Ar	rea					
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
_	5.0	/			(/	Direct Entry,					

Subcatchment DEV: Site Developed


Summary for Subcatchment DEV: Site Developed

Runoff = 0.14 cfs @ 7.91 hrs, Volume= 0.045 af, Depth= 0.86"

Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn WQ Rainfall=1.20"

	A	rea (sf)	CN	Description						
*		23,130	98	rooftop	ooftop					
		4,080	79	50-75% Gra	0-75% Grass cover, Fair, HSG C					
		27,210	95	Weighted A	verage					
		4,080		14.99% Per	vious Area	l				
		23,130		85.01% Imp	pervious Ar	ea				
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description				
	5.0					Direct Entry,				

Subcatchment DEV: Site Developed

Summary for Subcatchment 6S: CSJ2

Runoff = 31.82 cfs @ 7.98 hrs, Volume= 10.898 af, Depth= 2.38"

45 50

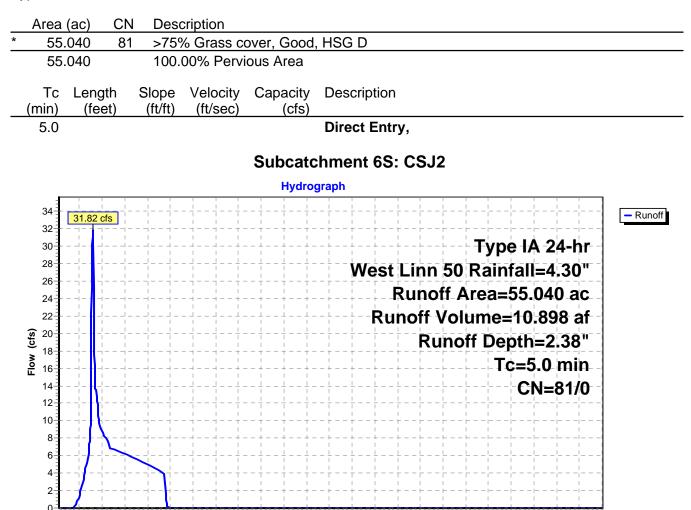
40

55 60 65

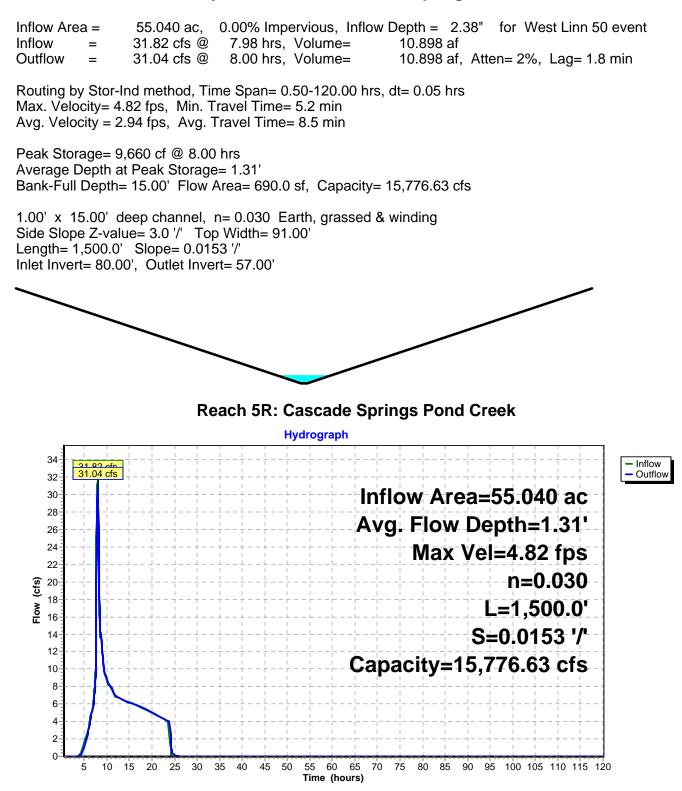
Time (hours)

70

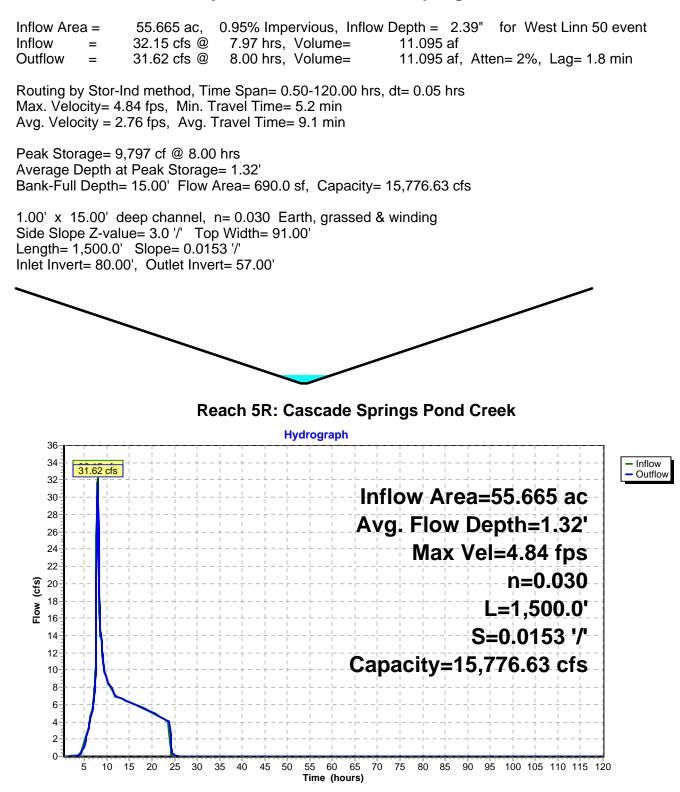
75 80


85

90 95 100 105 110 115 120


10 15 20 25 30 35

5


Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn 50 Rainfall=4.30"

Summary for Reach 5R: Cascade Springs Pond Creek

Summary for Reach 5R: Cascade Springs Pond Creek

BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

APPENDIX D

GEOTECHNICAL REPORT

REDMOND & ASSOCIATES

Geotechnical Investigation

Proposed Commercial Building Site

1575 Burns Street

West Linn (Clackamas County), Oregon

for

Mr. Rolf Olson

Project No. 943.001.G May 20, 2005

REDMOND & ASSOCIATES

Project No. 943.001.G Page No. 1

May 20, 2005

Mr. Rolf Olson 3453 Augusta National Drive South Salem, Oregon 97302

Dear Mr. Olson:

Re: Geotechnical Investigation, Proposed Commercial Building Site, 1575 Burns Street, West Linn (Clackamas County), Oregon

INTRODUCTION

In accordance with the request of Mr. Rolf Olson, we have completed our Geotechnical Investigation at the above subject proposed commercial building site. The site, a rectangular shaped property, is located to the north of Burns Street and to the east of Hood Street in West Linn (Clackamas County), Oregon.

We understand that present plans are to develop the site by constructing a new commercial building. Although the project is still in the preliminary planning and design stages, we understand that the commercial structure will be a one- and/or two-story structure which will include a below grade parking level. Specific building materials are not presently known but are anticipated to include wood- and/or metal frame with concrete and/or masonry blocks walls. The planned commercial structure is anticipated to be supported on conventional continuous (strip) and/or individual spread (column) footings with a concrete slab-on-grade floor. Structural loading is anticipated to result in maximum dead plus live continuous footing and column footing loads on the order of about 2.0 to 4.0 kips per lineal foot (klf) and 50 to 100 kips, respectively. Other associated site improvements will include asphalt pavements for both automobile drive and parking areas, underground utility services and landscaping.

SITE DESCRIPTION

The proposed commercial site, located within Township 2 South, Range 2 East, and Section 30 of the Willamette Meridian, is presently unimproved and consists of existing open commercial lot.

Topographically, the westerly portion of the site is characterized as relatively flat-lying terrain while the easterly portion of the site is characterized as moderately sloping terrain descending down to the east with overall topographic relief across the entire estimated at about 10 to 15 feet and is estimated lie near to Elevation 180 feet.

P.O. Box 301545 • Portland, OR 97294 • Phone: (503) 760-1060 • Fax: (503) 760-1372

Vegetation across most of the site consists of a moderate growth of grass, weeds, and brush as well as numerous small to large sized trees.

SCOPE OF WORK

The purpose of our geotechnical studies is to evaluate the overall site subsurface soil and ground water characteristics as well as any associated impacts or concerns with regard to the planned construction and development of the site. Specifically, our geotechnical investigation included the following scope of work items:

- 1. Site exploration by means of three (3) exploratory backhoe test pit excavations. The exploratory test pits were excavated at various locations across the site as shown on the Site Exploration Map, Figure No. 2 to depths ranging from about 8 to 11 feet beneath existing site grades. Detailed logs of the exploratory test pit excavations, presenting conditions encountered at each location explored, are presented on the Log of Test Pits, Figure No's. 5 and 6. Additionally, representative samples of the subsurface soils encountered at the site were collected at selected depths and/or intervals and returned to our laboratory for further examination and testing.
- 2. A laboratory testing program to assess the pertinent physical and engineering characteristics of the subsurface soils. The laboratory program consisted of tests to evaluate the natural (field) moisture content and dry density, Atterberg Limits, gradational properties and Direct Shear Strength tests. Results of the moisture content and dry density tests are shown on their respective test pit log, Figure No's. 5 and 6. Results of the Atterberg Limits, gradation and direct shear strength tests are shown graphically on Figure No's. 7 through 9.
- 3. Recommendations and our final written report presenting the results of our investigation. Our report includes recommendations for site preparation and grading including any overexcavation of unsuitable materials revealed by the explorations, placement and compaction of any required structural fill(s), suitability of the on-site soils for use as structural fill as well as criteria for import fill materials, and preparation of pavement and foundation areas.
- 4. Recommendations for foundation support and design including allowable contact bearing pressures for proportioning footings, minimum width and embedment depths, and estimates of foundation settlement as well as lateral earth pressures for below grade walls. Additionally, we have developed flexible pavement sections for automobile and/or truck traffic areas.

SUBSURFACE CONDITIONS

Our understanding of the subsurface conditions which underlie the site was developed by means of three (3) exploratory test pits excavated on April 23, 2005 with a rubber-tired excavator at the approximate locations shown on Figure No. 2. The test pits revealed that the site is underlain by native soil deposits comprised of lacustrine and fluvial sedimentary soil deposits of Pleistocene age. Specifically, the native soil materials were comprised of very moist to wet, medium stiff to stiff, clayey, sandy silt to the maximum depth explored of about 11.0 feet beneath existing site grades. These clayey, sandy silt subgrade soils are best characterized by relatively low to moderate strength and compressibility.

Ground water was not encountered at the site during our field exploration work and is not expected to be a factor during construction. However, topsoil materials were encountered at the site and consist of about 12 to 16 inches of organic, clayey and sandy silt. All soils encountered at the site were classified in accordance with the Unified Soil Classification System (USCS) which is outlined on Figure No. 4.

CONCLUSIONS AND RECOMMENDATIONS

From a geotechnical engineering and constructability standpoint, we are of the opinion that the site is suitable for the planned new commercial structure and its associated site improvements provided that the recommendations contained within this report are properly incorporated into the design and construction of the project.

The primary feature of concern at the site is the moisture sensitivity characteristics of the underlying clayey, sandy silt subgrade soil materials

In regards to the moisture sensitivity characteristics of the underlying clayey, sandy silt subgrade soils, we recommend that all foundation excavation and site grading work be performed during the drier summer months which is typically June through September.

The following sections of this report present specific recommendations for site preparation and grading as well as foundation design and construction for the commercial building project.

SITE PREPARATION

In general, we recommend that all planned structural improvement areas for the commercial building and pavements be stripped and cleared of any existing site improvements, vegetation, topsoil materials, and any deleterious materials present at the time of construction. In general, we envision that about 12 to 16 inches of topsoil stripping may be required to remove existing topsoil materials. Holes resulting from the removal of any buried obstructions, such as old foundation remnants and/or boulders, should be backfilled and compacted with structural fill materials. Areas resulting in deeper stripping and removals should be evaluated at the time of construction by the Geotechnical Engineer. The stripped and cleared materials should be properly disposed of as they are generally not considered suitable for use/reuse as structural fill.

Following the stripping and clearing operations, and prior to the placement of any required structural fills and/or structural improvements, the exposed subgrade soils within the planned building and pavement areas should be inspected by the Geotechnical Engineer and possibly proof-rolled with a half-loaded dump truck. Areas found to be soft or otherwise unsuitable for support of structural loads or improvements should be scarified and recompacted or overexcavated and replaced with structural fill. During wet or inclement weather conditions, proof-rolling as recommended above will not be appropriate.

The on-site native clayey, sandy silt subgrade soils are considered suitable for use/reuse as structural fill provided that they are free of organic materials, debris, and rock fragments in excess of 8 inches in dimension. If grading is conducted during wet weather, the use of the on-site clayey, sandy silt soils may be difficult and the use of an import granular fill material may be required. In general, we recommend that a free-draining (clean) granular fill (sand & gravel) containing no more than about 5 percent fines be used during wet weather grading. Representative samples of the material(s) to be used as structural fill should be submitted to our laboratory for approval and to determine the maximum dry density and optimum moisture content for compaction.

All required structural fill materials placed within the building and pavement (structural) areas should be moistened or dried as necessary to near (within 3 percent) optimum moisture conditions and compacted by mechanical means to a minimum of 92 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Fill materials should be placed in lifts (layers) such that when compacted do not exceed about 8 inches.

FOUNDATION SUPPORT

Based on the results of our investigation, it is our opinion that the proposed commercial building structure may be supported directly on the underlying native medium stiff to stiff, clayey, sandy silt subgrade soil deposits and/or by structural fill materials with conventional continuous and individual spread footings. As such, were foundations are constructed on approved native subgrade soils and/or properly placed and compacted structural fill materials, an allowable contact bearing pressure of about 2,500 pounds per square foot (psf) is recommended for design. However, where higher allowable contact bearing pressures are required, an allowable contact bearing pressure of 3,000 psf may be used for design where the foundations are supported by a minimum of at least 12 inches of compacted crushed aggregate base rock structural fill materials. These allowable contact bearing pressures are intended for dead loads and sustained live loads and may be increased by one-third for the total of all loads including short-term wind or seismic loads.

In general, continuous strip footings should have a minimum width of at least 16 inches and be embedded at least 18 inches below the lowest adjacent finish grade (includes frost protection). Individual column footings (if required) should be embedded at least 16 inches below grade and have a minimum width of about 24 inches.

Total and differential settlements of foundations constructed as recommended above and supported directly by approved native subgrade soils or on properly placed and compacted structural fill materials are expected to be well within tolerable limits for this type of structure and should generally be less than about 1-inch and 1/2-inch, respectively.

Allowable lateral frictional resistance between the base of the footings and the clayey, sandy silt or a gravel subgrade soil can be expressed as the applied vertical load multiplied by a coefficient of friction of 0.35 and 0.45, respectively. In addition, lateral loads may be resisted by passive pressures on footings poured "neat" against in-situ native soils or properly compacted structural fill materials. For passive earth pressure resistance we recommend that an equivalent fluid density of 300 pounds per cubic foot (pcf) be used for design.

FLOOR SLAB SUPPORT

In order to provide uniform subgrade reaction beneath concrete slab-on-grade floors, we recommend that the floor slabs be underlain by a minimum of 6 inches of free-draining (less than 5 percent passing the No. 200 sieve), well-graded, crushed rock. The crushed rock should provide a capillary break to prevent migration of moisture through the slab. Additional moisture protection can be provided by using a 6-mil visqueen vapor barrier covered with a 1-inch protective layer of sand on the top and bottom. The base course materials should be compacted to at least 95 percent of the maximum dry density obtainable by the ASTM D-1557 (AASHTO T-180) test procedures.

BELOW GRADE/RETAINING WALLS

Below grade walls should be designed to resist lateral earth pressures imposed by native soils and/or granular backfill materials as well as any adjacent surcharge loads. For walls which are fully restrained from rotation at the top and supporting level backfill, we recommend that at-rest earth pressures be computed on the basis of an equivalent fluid density of 50 pcf and 60 pcf for granular backfill or sandy silt soil backfill materials, respectively. However, for walls which are free to rotate at the top and retaining level backfill, we recommend that active earth pressures be computed on the basis of an equivalent fluid density of 30 pcf and 40 pcf for granular backfill and sandy silt soil backfill materials, respectively. The above recommended lateral earth pressure values assume that the wall(s) will adequately drained to prevent the buildup of hydrostatic pressures. Where wall drainage will not be present and/or where adjacent surcharge loading and/or sloping ground conditions are present, the above recommended lateral earth pressure values will be higher.

Non structural backfill materials behind retaining walls should be compacted to at least 85 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. Where structural backfill materials are required, the degree of compaction should be at least 90 percent of the maximum dry density. However, special care should be taken to avoid overcompaction near the wall(s) which could result in higher lateral earth pressures than those indicated herein. In an area within about three (3) to five (5) feet behind walls, we recommend the use of light hand operated compaction equipment.

EXCAVATIONS

Temporary excavations within native subgrade soils of up to four (4) feet in depth are expected to remain fairly stable at near vertical inclinations. Excavations to depths of between four (4) feet to ten (10) feet should be properly braced and shored or backcut to inclinations of at least 1 to 1 (Horizontal to Vertical). Where excavations are planned to exceed ten (10) feet, this office should be consulted. Additionally, at present levels, we do not anticipate that ground water will not be a factor during construction.

PAVEMENTS

Flexible pavement design for the project was determined on the basis of projected traffic volume and loading conditions relative to assumed subgrade soil strength characteristics. Based on an assumed subgrade "R"-value of 35 (CBR = 4.0) and utilizing the Oregon State Highway Flexible Pavement Design Procedures, we recommend that the asphaltic concrete pavement sections for automobile parking and drive area use at the site consist of the following:

· · ·	Asphaltic Concrete <u>Thickness (inches)</u>	Crushed Base Rock Thickness (inches)
Automobile Parking Areas	2.5	8.0
Automobile Drive Areas	3.0	9.0

Note: Where heavy vehicle traffic is anticipated, we recommend that the main access drive area pavement section be increased by adding 1.0 inches of asphalt and 3.0 inches of aggregate base rock. Additionally, for wet and/or winter time construction, we recommend that a minimum of at least 12 inches of aggregate that a minimum of at least 12 inches aggregate that a minimum of at least 12 inches aggregate that aggregat

Project No. 943.001.G Page No. 6

The above recommended pavement section(s) assume that the subgrade will be prepared as recommended herein, that the exposed subgrade soils will be properly protected from rain and construction traffic, and that the subgrade is firm and unyielding at the time of paving. Additionally, it assumes that the subgrade is graded to prevent any ponding of water which may tend to accumulate in the base course. Further, the above recommended flexible pavement section(s) assumes a design life of about 20 years.

Pavement base course materials should consist of well-graded 1 1/2-inch and/or 3/4-inch minus crushed base rock having less than 5 percent fine materials passing the No. 200 sieve. The base course and asphaltic concrete materials should conform to the requirements set forth in the latest edition of the Oregon Department of Transportation, Standard Specifications of Highway Construction. The base course materials should be compacted to at least 95 percent of the maximum dry density as determined by the ASTM D-1557 (AASHTO T-180) test procedures. The asphaltic concrete materials should be compacted to at least 91 percent of the theoretical maximum density as determined by the ASTM D-2041 (Rice Gravity) test method.

SEISMIC DESIGN CONSIDERATIONS

Subgrade acceleration coefficients for the project were obtained from the seismic hazard/design mapping project performed by Geomatrix Consultants. Geomatrix mapping indicates that a peak ground acceleration on bedrock soils in the area of the site are 0.19g with a return period of about 500 years. The UBC seismic zone factor (Z) for the subject site is 0.30. Additionally, the IBC soil profile for the subject site to estimate the site class is recommended at D.

USE OF REPORT

This report is intended for the exclusive use of the addressee and their representatives to use to design the proposed commercial building structure and its associated site improvements described herein and to prepare any construction documents. The data, analyses, and recommendations may not be appropriate for other structures or purposes. We recommend that parties contemplating other structures or purposes contact our office. In the absence of our written approval, we make no representation and assume no responsibility to other parties regarding this report.

LEVEL OF CARE

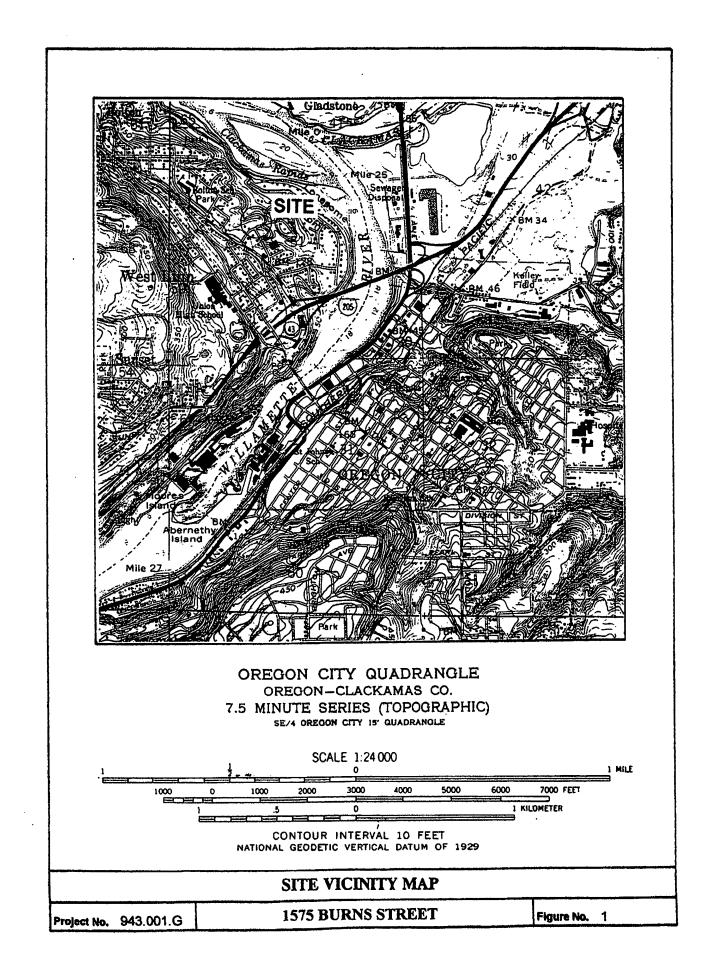
Services performed by the Geotechnical Engineer for this project have been conducted with that level of care and skill ordinarily exercised by members of the profession currently practicing in the area under similar budget and time restraints. No warranty, either expressed or implied, is made.

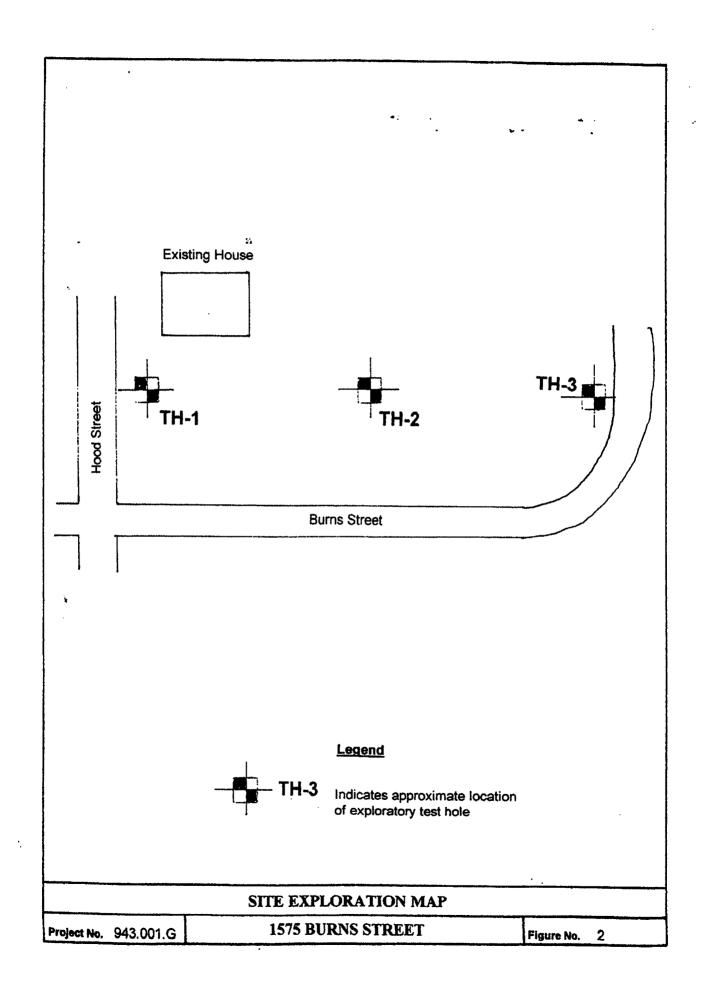
CONSTRUCTION MONITORING AND TESTING

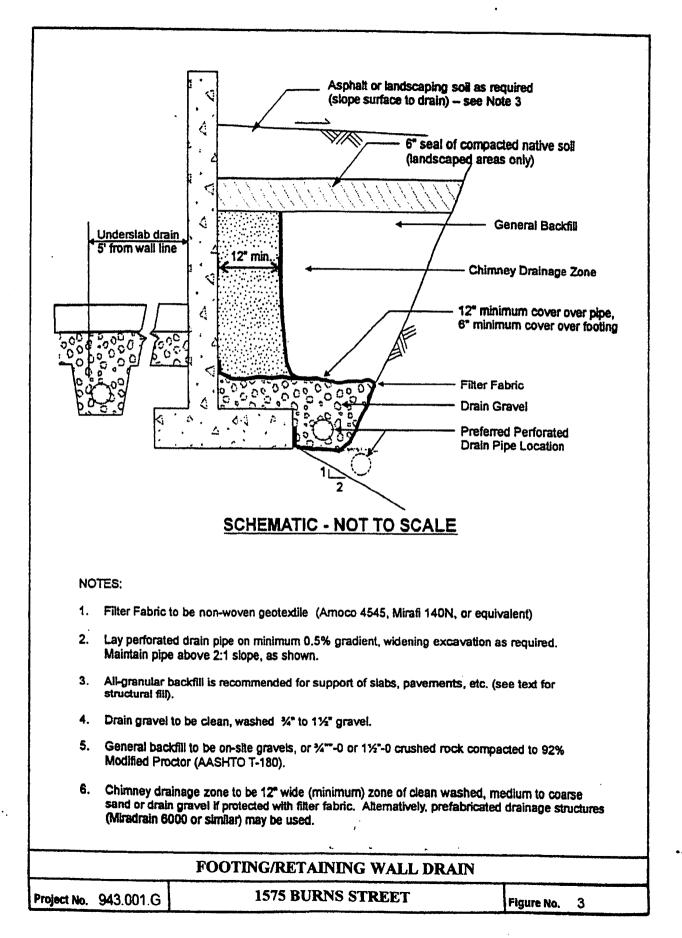
We recommend that **Redmond & Associates** be retained to provide construction monitoring and testing services during all earthwork operations. The purpose of our monitoring services would be to confirm that the site conditions which are encountered are as anticipated, provide field recommendations as necessary based on the actual conditions encountered, and document the activities of the contractor and assess his/her compliance with the project specifications and recommendations.

Project No. 943.001.G Page No. 7

It is important that we meet with the grading contractor prior to any site grading work to establish a plan that will minimize costly overexcavation and site preparation work. Of primary importance will be observations made during the site preparation, structural fill placement, footing excavation and preparation, and construction of all below grade retaining walls.


We will be pleased to provide such additional assistance or information as you may require in the balance of the design phase of this project and to aid in construction control or solution of unforeseen conditions which may arise during the construction period.


Sincerely,


Daniel M. Redmond, P.E.

President/Principal Geotechnical Engineer

--

-

PR	IMARY	DIVISION	S	GROUP SYMBOL		SEC	ONDARY D	IVISIONS	
. 1	/ELS	CLEAN GRAVELS	GW	Well grad	ed grav	els, gravel-sand m	nixtures, little	or no	
SOILS MATERIAL D. 200	MORE TH	AN HALF	(LESS THAN 5% FINES)	GP	Poorly gra no fine		avels or gravel-sar	nd mixtures,	little or
COARSE GRAINED SOILS ine that half of Materi is larger than NO. 200 sieve size	FRACTI	ION IS	GRAVEL WITH	GM	Silty gravels, gravel-sand-silt mixtures, non-plastic fines.				
COARSE GRAINED MORE THAM HALF OF IS LARGER THAN N SIEVE SIZE		R THAN SIEVE	FINES CLEAN SANDS	GC	Clayey gravels, gravel-sand-clay mixtures, plastic fines.				
E GRA		NDS		sw	Well grad	ed sand	ts, gravelly sands,	little or no	fines.
RSE THAN		IAN HALF DARSE	(LESS THAN 5% FINES)	SP			nds or gravelly sa		
COA ORE IS L		ION IS R THAN	SANDS WITH	SM			-silt mixtures, not		
ž		SIEVE	FINES	sc		Clayey sands, sand-clay mixtures, plastic fines.			
IILS OF LER SIZE		SILTS AND	CLAYS	ML			nd very fine sands		
ED SOILS HALF OF SMALLER SIEVE SIZ				CL	+		of low to medium clays, silty clays, l		
		LESS THAI	N 50%	OL	-		organic silty clays		
SRAINE THAN HAL IS 0. 200		SILTS AND	CLAYS	MH			aicaceous or diator		Sandy Ci
FINE GRAINE MORE THAN MATERIAL IS HIAN NO. 200				СН			of high plasticity.		
Ē 22	<u> </u>	GREATER TH	AN 50%	ОН		Organic clays of medium to high plasticity, organic silts.			
н	IGHLY OR	GANIC SOI	LS	Pt	<u></u>	other	highly organic so		
			DEFINIT	ION OF	TERMS				
			S. STANDARD SE	RIES SIEV 10		1	CLEAR SOUARE		NINGS
	20	0	40 SAND	10			GRAVEL		
SILTS AND	CLAYS	FINE	MEDIUN	1 0	OARSE	FIN	E COARSE	COBBLES	BOULDERS
		1	GR	AIN SIZ	ES				
	GRAVELS		WS/FOOT		LAYS ANI		STRENGTH*	BLOWS/F	юот [†]
					VERY SOFT		0 - 1/4	0 -	2
VE	RY LOOSE		0 - 4		SOFT		1/4 - 1/2 1/2 - 1	2 -	1
MEG	DIUM DENSE		10 - 30		FIRM		$v_2 - 1$ 1 - 2	4 - 8 -	-
	DENSE		30 - 50		VERY STIF	F	2 - 4	16 -	
VI	VERY DENSE OVER 50				HARD		OVER 4	OVER	32
		VE DENS					ONSISTENCY		
	¹ Number of blows of 140 pound hammer f split spoon (ASTM D-1586). ⁴ Unconfined compressive strength in tons/s by the standard penetration test (ASTM D-15						tory testing or app	proximated	
							DRATORY T cation Syste		
		Associ				rns s	TREET COMME	RCIAL SI	
P.O. Box	k 301545 ● l	Portland, Ol	K 9/230	PROJE	CT NO.	<u> </u>	DATE		20.000

...

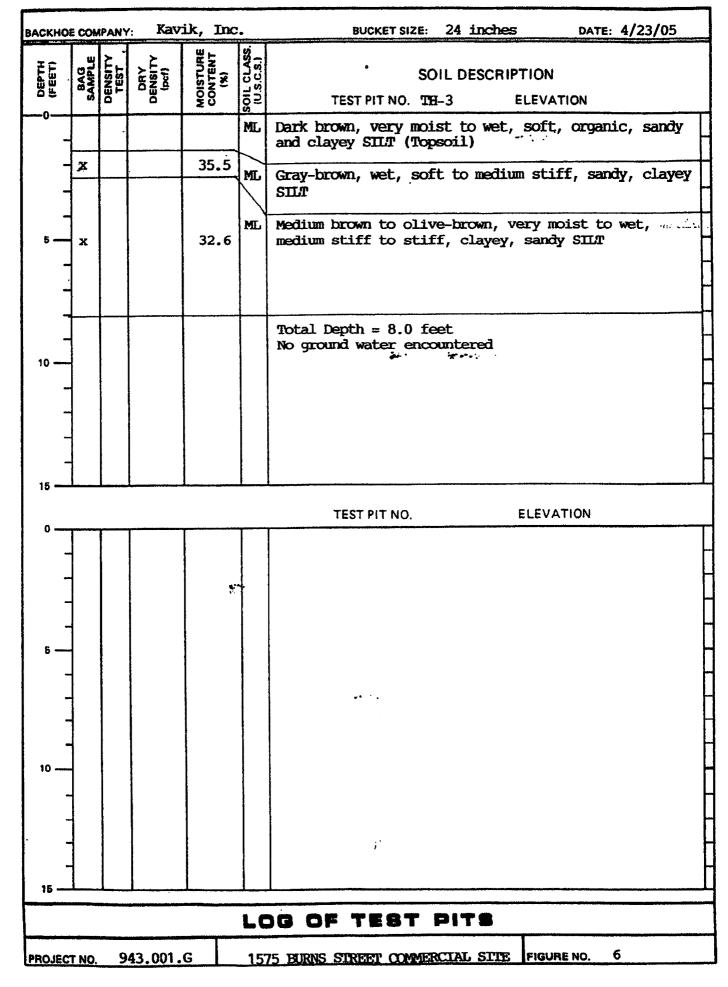
•••

•

Figure

May 20. 2005

943 001 C


ġ

				<u>ttl</u> .	vi I	
(FEET)	BAG SAMPLE	DENSITY	DRY DENSITY (pcf)	MOISTURE CONTENT (%)	SOIL CLASS. (U.S.C.S.)	SOIL DESCRIPTION
.0	Ŝ	õ	õ	¥0 ¥0	SS	TEST PIT NO. TH-1 ELEVATION
-					ML	Dark brown, very moist to wet, soft, organic, sandy and clayey SILT (Topsoil)
	х			24.4	ML	Medium brown to olive-brown, very moist, medium stif to stiff, clayey, sandy SILT
	×			27.2		
- -						
- 10						Total Depth - 9.0 feet No ground water encountered
-						
16						
0						TEST PIT NO. TH-2 ELEVATION
-		 			ML	Dark brown, very moist to wet, soft, organic, sandy and clayey SILT (Topsoil)
-	x			26.1	ML	Medium brown to olive-brown, very moist, medium stit to stiff, clayey, sandy SILT
				1	1	
5						
5	- x			28.3		
5				28.3		
-				28.3		Total Depth = 11.0 feet No ground water encountered
-				28.3		
10 —				28.3		

••••

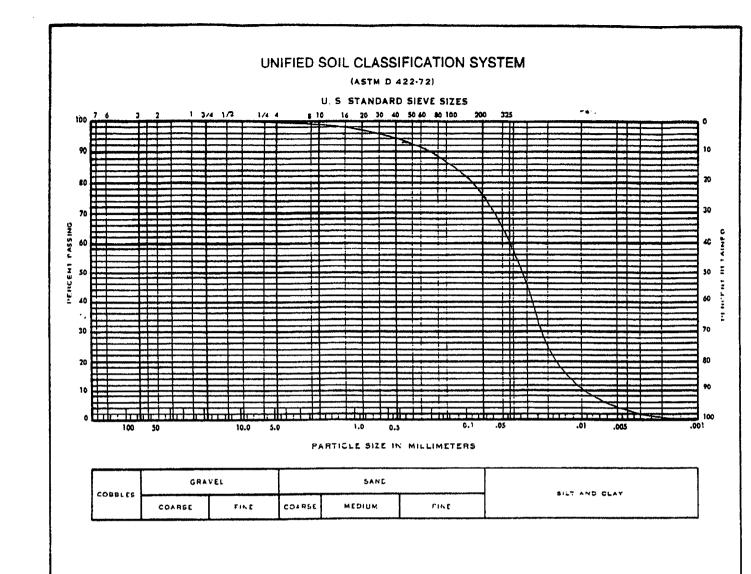
TTATES

.

60 50 LINE СН PLASTICITY INDEX C%) ٠Ř 40 CL 30 MH 20 or OH 10 7 CL - ML ML or OL 4 ML 0 - --0 70 10 20 30 40 50 60 80 90 100 LIQUID LIMIT (%) UNIFIED NATURAL PASSING BORING SAMPLE PLASTICITY LIQUID KEY LIQUIDITY SOIL WATER NO. 200 SYMBOL DEPTH LIMIT INDEX NO. INDEX CLASSIFICATION SIEVE CONTENT SYMBOL % (feet) % % \odot **TH-2** 3.0 28.3 30.6 5.5 76.0 ML -PLASTICITY CHART AND DATA **REDMOND & ASSOCIATES** 1575 BURNS STREET COMMERCIAL SITE P.O. Box 301545 • PORTLAND, OR 97294 West Linn, Oregon

DATE

2005

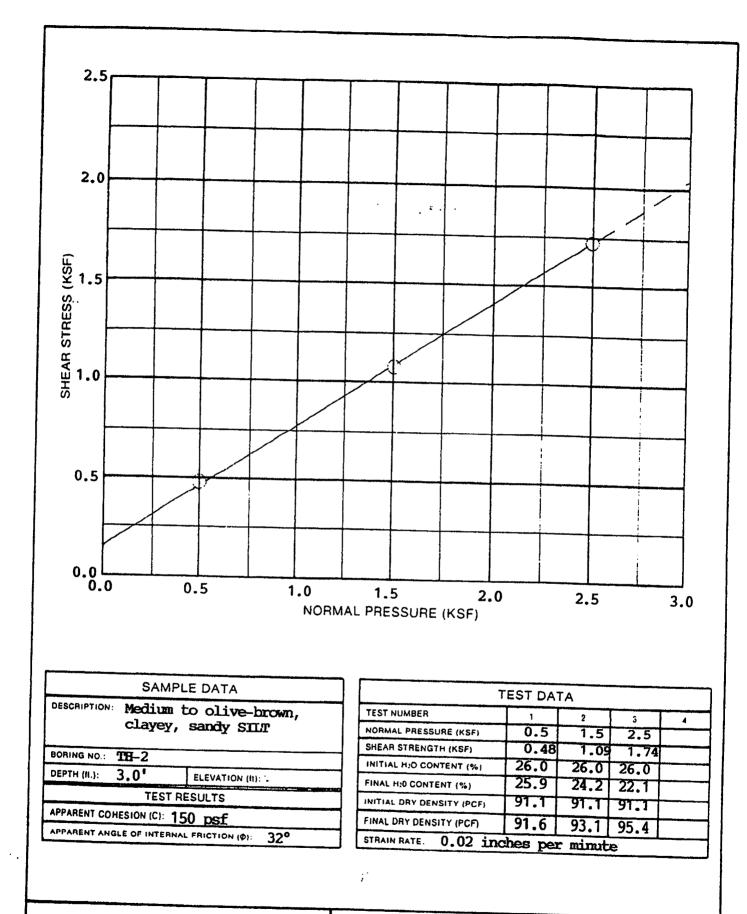

May 20

7

Figure

PROJECT NO.

943 001 C



KEY Symbol	BORING NO.	SAMPLE DEPTH (feet:	ELSV (leet)	UNIFIED SOIL CLASSIFICATION SYMBOL	SAMPLE DESCRIPTION
	TB1	3.0		MI,	Medium brown to olive-brown, clayey, sandy SILT

	GRADATION TEST DATA					
REDMOND & ASSOCIATES P.O. Box 301545 • Portland, OR 97294	1575 BURNS STREET COMMERCIAL STTE West Linn, Oregon					
1.0. DOX 301343 V TOKIDAND, OK 31234	PROJECT NO.	DATE				
	943.001.G	May 20, 2005				

ï

۰.

REDMOND & ASSOCIATES P.O. Box 301545 • Portland, OR 97294 DIRECT SHEAR TEST DATA

1575 1	BURNS S. West	REEI	COMM , One	ERCIAL GON	SITE	
PROJECT NO.		DATE				
943.001.G	May	20	2005	Figure	9	1

BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

APPENDIX E

FIELD VISIT EXPLORATIONS

Field Visit Notes:

A field visit for the Bolton Terrace project located at 1575 Burns Street in West Linn, OR 97068 was conducted on April 14th, 2020. The purpose of this visit was to determine if the north fork of Cascade Springs Pond Creek had adequate downstream capacity for the added runoff produced from the developed project site.

During the field visit it was observed that at the mouth of the creek, located near the southeast corner of the project site, the creek had a width of over 30 feet and depth of 10-15 feet. The observed slope at this area was 1.50%.

It was observed, that the creek increases in width and depth further downstream. The next measurement observed was 300 feet downstream. At this point, the creek was greater than 40 feet in depth and greater than 50 feet in width at the widest point. The slope at this point was 1.65%. The width at the bottom of the creek was on average 15 feet in diameter.

These characteristics continue until 1900 feet downstream. The creek decreases to 10 feet in width and approximately 6 feet in depth. The creek then flows through a 30-inch diameter concrete pipe, flowing under River Street and into a 25-foot depth and 30-foot wide creek on the other side. This creek then flows into the Willamette River.

Through field observations, it is determined that Cascade Springs Pond Creek will have more than enough downstream capacity to convey the 0.20 feet of added runoff depth produced by the proposed developed site.

Field Visit Pictures:

Picture 1:

From mouth of creek looking southeast

Picture 2:

From mouth of creek looking northwest

Picture 3:

From project site looking southeast

Picture 4:

300 ft downstream looking northwest

Picture 5:

300 ft downstream looking southeast

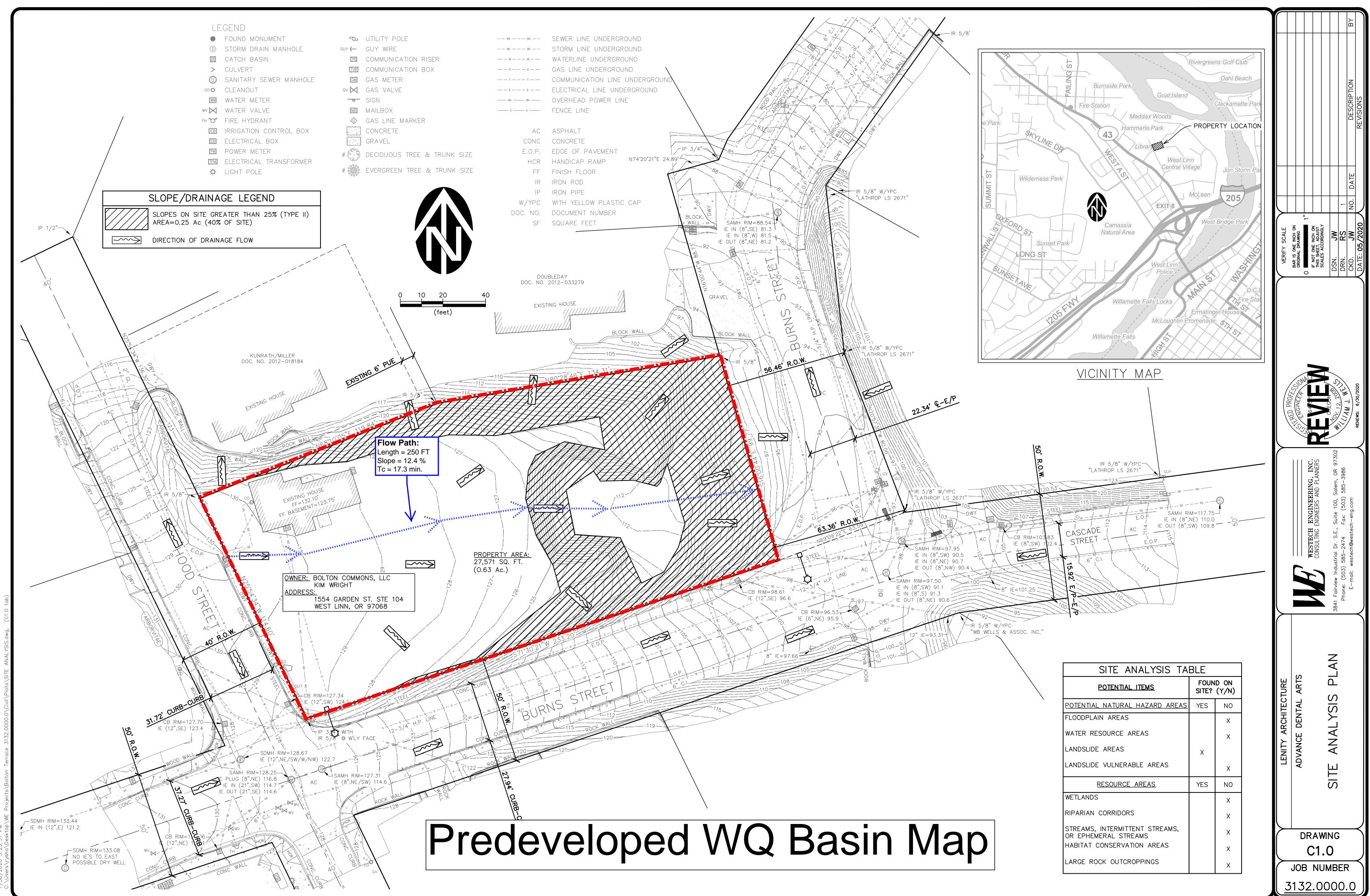
Picture 6:

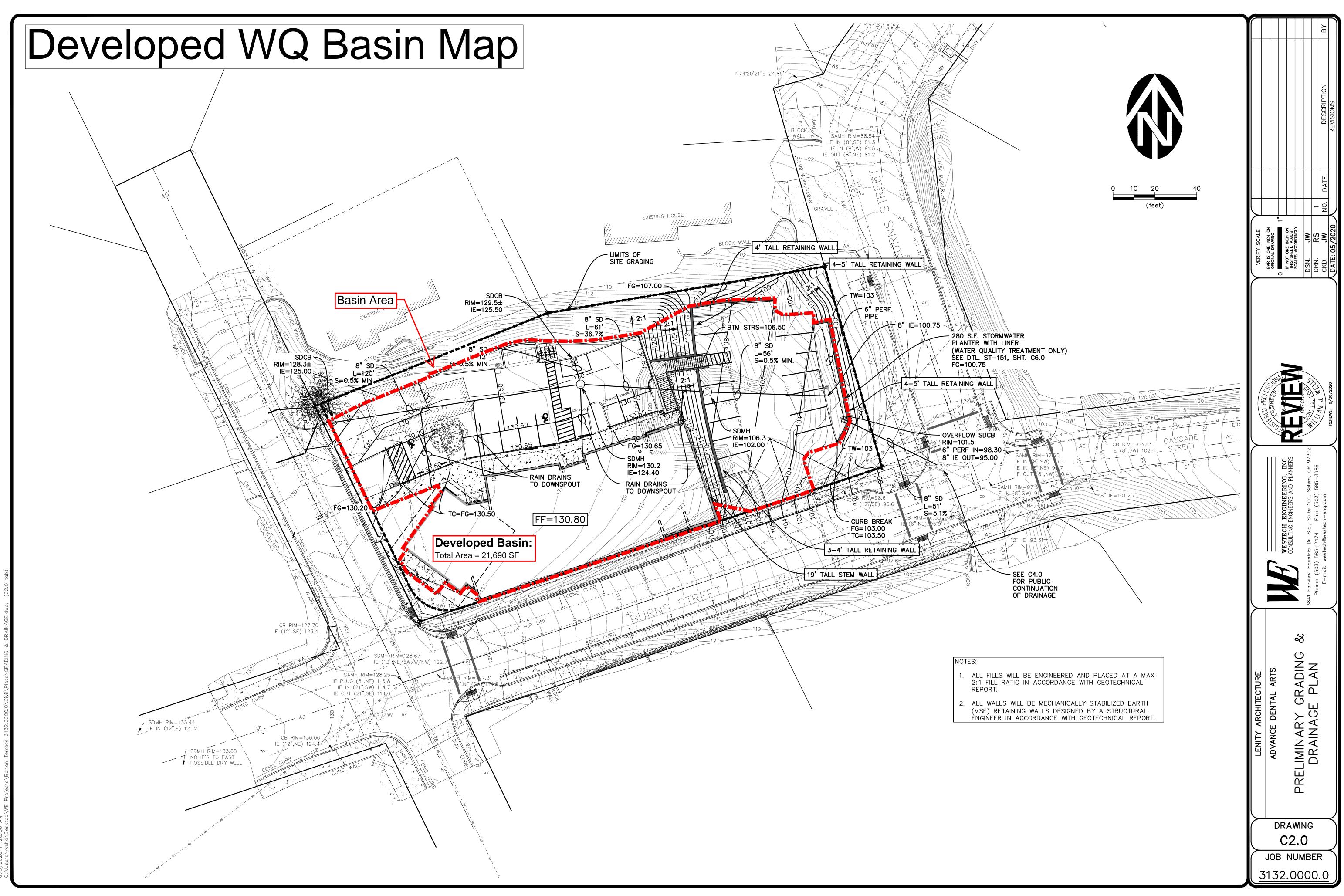
1900 ft downstream looking west

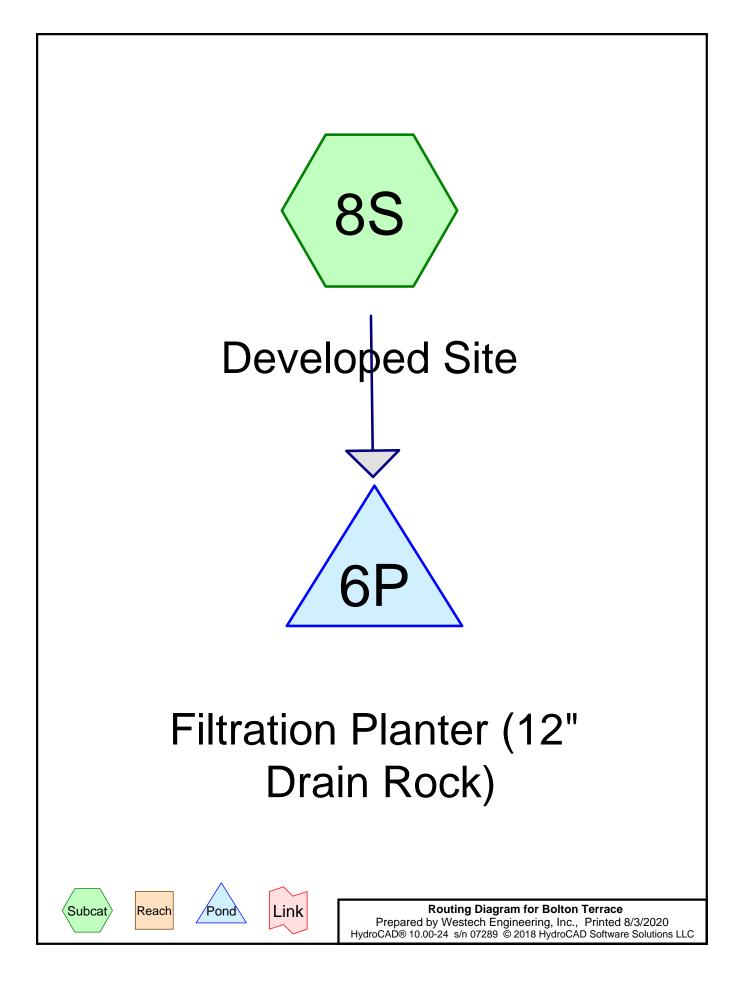
Picture 7:

1900 ft downstream looking east

Picture 8:



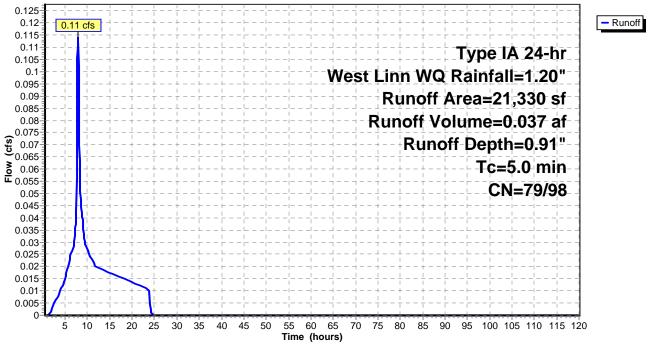

1920ft downstream looking east


BOLTON TERRACE COMMERCIAL BUILDING Stormwater Calculations West Linn, Oregon

APPENDIX F

WATER QUALITY TREATMENT

Summary for Subcatchment 8S: Developed Site


Runoff = 0.11 cfs @ 7.91 hrs, Volume= 0.037 af, Depth= 0.91"

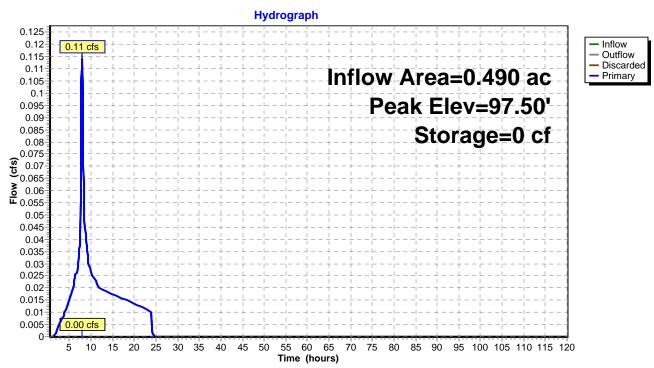
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn WQ Rainfall=1.20"

	A	rea (sf)	CN	Description					
*		19,470	98	rooftop					
		1,860	79	50-75% Gra	ass cover, l	Fair, HSG C			
		21,330 1,860 19,470	96	Weighted A 8.72% Perv 91.28% Imp	ious Area	ea			
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
	5.0					Direct Entry,			

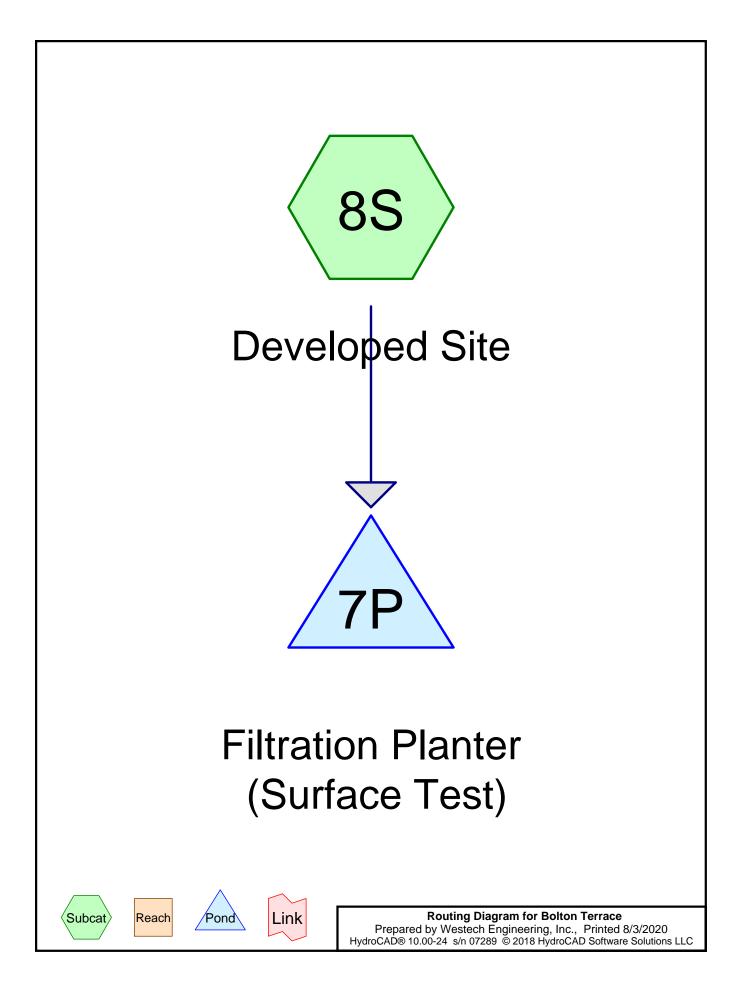
Subcatchment 8S: Developed Site

Hydrograph

Summary for Pond 6P: Filtration Planter (12" Drain Rock)


Inflow Area =	=	0.490 ac, 91	1.28% Impervious, Inflo	bw Depth = 0.91" for West Linn WQ event	
Inflow =	:	0.11 cfs @	7.91 hrs, Volume=	0.037 af	
Outflow =	:	0.11 cfs @	7.91 hrs, Volume=	0.037 af, Atten= 0%, Lag= 0.0 min	
Discarded =	:	0.00 cfs @	7.91 hrs, Volume=	0.000 af	
Primary =	:	0.11 cfs @	7.91 hrs, Volume=	0.037 af	

Routing by Stor-Ind method, Time Span= 0.50-120.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 97.50' @ 7.91 hrs Surf.Area= 280 sf Storage= 0 cf

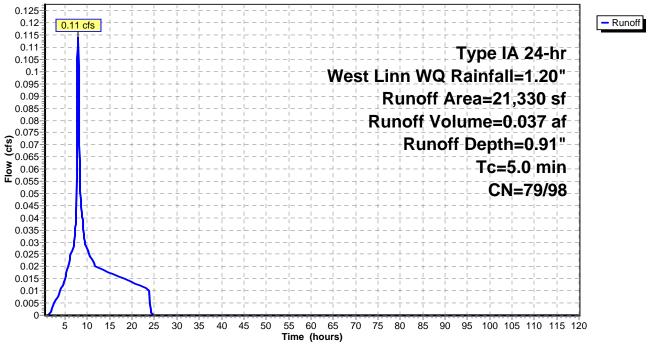

Plug-Flow detention time= 0.0 min calculated for 0.037 af (100% of inflow) Center-of-Mass det. time= 0.0 min (708.0 - 707.9)

Volume	Invert	Avail	.Storage	Storage Descriptio	n	
#1	97.50'		392 cf	Custom Stage Da	ta (Prismatic)Liste	ed below (Recalc)
Elevatio (fee 97.5 98.5 100.0 101.0	t) 0 0 0	(sq-ft) 280 280 280	Voids (%) 0.0 40.0 0.1 100.0	Inc.Store (cubic-feet) 0 112 0 280	Cum.Store (cubic-feet) 0 112 112 392	
Device	Routing	Inv	vert Out	let Devices		
#1	Discarded	97.		0 in/hr Exfiltration		a
#2	Primary	95.	00' 8.0 '	Vert. Orifice/Grate	C= 0.600	
Discarded OutFlow Max=0.00 cfs @ 1=Exfiltration (Exfiltration Controls					(Free Discharge)	

Primary OutFlow Max=2.47 cfs @ 7.91 hrs HW=97.50' (Free Discharge) ←2=Orifice/Grate (Orifice Controls 2.47 cfs @ 7.09 fps)

Pond 6P: Filtration Planter (12" Drain Rock)

Summary for Subcatchment 8S: Developed Site


Runoff = 0.11 cfs @ 7.91 hrs, Volume= 0.037 af, Depth= 0.91"

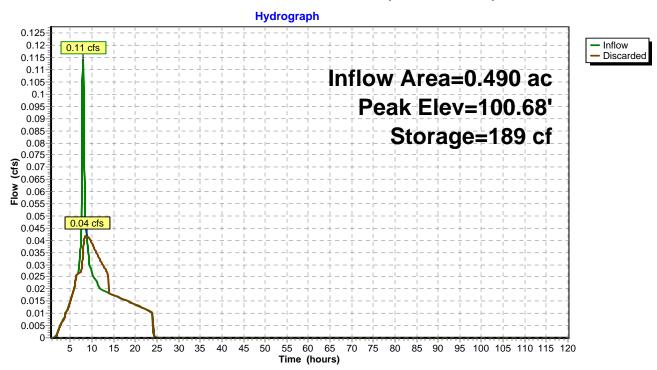
Runoff by SBUH method, Split Pervious/Imperv., Time Span= 0.50-120.00 hrs, dt= 0.05 hrs Type IA 24-hr West Linn WQ Rainfall=1.20"

_	A	rea (sf)	CN	Description							
*		19,470	98	rooftop	ooftop						
_		1,860	79	50-75% Gra	0-75% Grass cover, Fair, HSG C						
		21,330 1,860 19,470		Weighted A 8.72% Perv 91.28% Imp	ious Area	ea					
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description					
	5.0					Direct Entry,					

Subcatchment 8S: Developed Site

Hydrograph

Summary for Pond 7P: Filtration Planter (Surface Test)


Inflow Area =	0.490 ac, 91.28% Impervious, Inflov	w Depth = 0.91" for West Linn WQ event
Inflow =	0.11 cfs @ 7.91 hrs, Volume=	0.037 af
Outflow =	0.04 cfs @ 8.78 hrs, Volume=	0.037 af, Atten= 63%, Lag= 51.8 min
Discarded =	0.04 cfs @ 8.78 hrs, Volume=	0.037 af

Routing by Stor-Ind method, Time Span= 0.50-120.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 100.68' @ 8.78 hrs Surf.Area= 280 sf Storage= 189 cf

Plug-Flow detention time= 26.4 min calculated for 0.037 af (100% of inflow) Center-of-Mass det. time= 26.4 min (734.3 - 707.9)

Volume	Invert	Ava	il.Storage	Storage Descrip	otion		
#1	100.00'		560 cf	Custom Stage	Data (Conic)Listed	below (Recalc)	
Elevatior (feet		f.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
100.00		280	0.0	0	0	280	
102.00)	280	100.0	560	560	399	
Device	Routing	In	vert Out	et Devices			
#1	Discarded	100			on over Wetted are ndwater Elevation =		

Discarded OutFlow Max=0.04 cfs @ 8.78 hrs HW=100.68' (Free Discharge) **1=Exfiltration** (Controls 0.04 cfs)

Pond 7P: Filtration Planter (Surface Test)