

Presentation Objectives

- Outline changes made in response to Planning Commission review of the Storm Drainage Master Plan (SMP).
- Provide an overview of the City's storm drainage system.
- Review the SMP development process/ timeline
- Summarize capital project, program, and policy recommendations and costs.

Brown and Caldwel

Public Outreach Schedule – Storm Drainage Master Plan (SMP)

- SMP presented to the Utility Advisory Board
 - April 9, 2019
 - May 14, 2019
 - July 9, 2019
- Public Review Draft SMP July 1, 2019
 - Online viewing
- SMP Presented to Planning Commission
 - August 7, 2019
 - September 4, 2019
 - October 2, 2019
- Draft Final SMP September 2019
 - Online viewing

Brown and Caldwell

3

Response to Comments – Draft-Final SMP

- Updated document name and references from Surface Water Master Plan to Storm Drainage Master Plan, for consistency with Comprehensive Plan.
- Updated Project Number P-1 name (P-1: Tannler Drive/ Bernert Creek Basin Feasibility Study) and adjusted to high priority.
- Clarified storm system asset information and added reference to stream length (Section 2.5 and Figure 2-5).
- Added Table A-3 to Appendix B, documenting the City's detention pond inventory.
- Utilized consecutive page numbering.

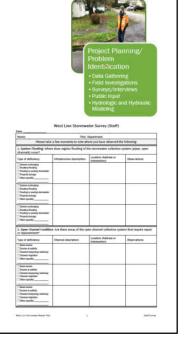
Brown and Caldwell

Where Does Stormwater Go?

- Surface Water Bodies
 - Storm drainage system (catchbasins, pipes, open channels) collects and conveys stormwater to streams and rivers
- Ground Water
 - Surface infiltration via pervious surfaces, low impact development
 - Underground injection (drywells, UICs)
- Pollutants can be conveyed via stormwater
- No end of pipe treatment system (treatment plant)

City's Storm Drainage System

- Collects and conveys stormwater to receiving water bodies.
- Storm drainage system assets are managed by the City and include pipes, open channels (drainage ditches), ponds, water quality facilities, culverts, and structures (manholes, catch basins)
 - 595,000 feet of stormwater pipe
 - 52,000 feet of roadside ditches
 - 4.000+ structures
 - 203 swales (public or private)
 - 53 public ponds and wetlands
- 30 miles of mapped stream corridors discharge stormwater to the Tualatin and Willamette Rivers

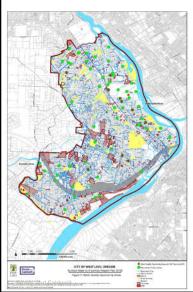


Project Planning/ Problem Identification

- Public and Staff Surveys
- Staff discussions/ meetings
- GIS Data Review
- 2006 Surface Water Master Plan CIP Review
- 2015 Hydromodification Assessment Review
- Site Visits

Outcome: 65 "Stormwater Problem Areas"

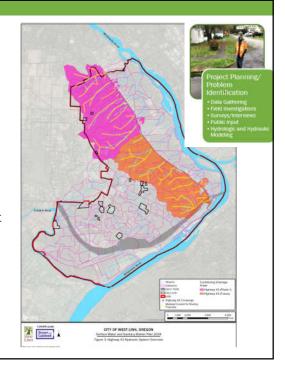
Project Planning/ Code Review


- Review of the City's stormwater public works/ stormwater design standards and municipal code.
 - West Linn Municipal Code (WLMC), Chapters 4 (Utilities), 5 (Nuisances), and 8.105 (Erosion Control)
 - Public Works Standards (PWDS), Section 2 (Storm Drain Requirements)
 - PW Construction Specifications, Division 6 (Storm Drain)
 - Community Development Code (CDC), Chapters 55 (Design Review), 56 (Parks and Natural Area), 92 (Required Improvements)

Goals:

- Identify basis of design/ design criteria for system evaluation and CIP development
- Identify gaps or inconsistencies between code and the NPDES MS4 permit requirements
- · Confirm city/ private property responsibilities

Project Planning/ Water Quality Assessment


- Water quality retrofits are a priority in the NPDES MS4 permit.
- Four strategies developed to characterize identified water quality projects:
 - 1. Green infrastructure in public ROW
 - New facilities on public property
 - New facilities to directly manage runoff associated with Highway 43
 - Pond retrofits

Outcome: 5 New Stormwater Quality Opportunities

Project Planning/ Modeling Evaluation

- Detailed Modeling Areas:
 - Blankenship Road
 - Fairview Way
- Capacity Modeling Areas:
 - 5th Avenue Culvert
 - Sunset Creek at I-205
 - Kantara Way
 - Maddox Creek at River Street
- Highway 43 Evaluation
 - 24 Crossings
 - Upstream and Downstream Structures and Conveyance Channel

Project Development/ Needs Assessment

- Project Needs Workshop
 - Identified Project Opportunity Areas
 - Defined Project versus Programmatic Activity
- Project/ Program Objectives
 - Increase System Capacity
 - Improve System Configuration
 - Add Infrastructure
 - Improve Water Quality (Retrofits)
 - Prevent Erosion
 - Address Maintenance Need

Project
Downtopmont

- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
- Project
Downtopmont
- Project
Downtopmont
- Project
Downtopmont
- Project
- Project
- Project
Downtopmont
- Project
- Proje

Prown and Caldwo

Project Development/ Prioritization and Phasing

- High Priority Needs (2019-2024)
 - · Addresses current system flooding
 - · Addresses failing infrastructure
 - Project timing in next 5-years
 - 10 projects
- Medium Priority Needs (2025-2029)
 - · Addresses local issue
 - Project timing in next 10-years
 - 8 projects
 - 5 annual programs
- Low Priority/ Not Costed (2030-2039)
 - 8 projects

Project Development/ Results

- Capacity Projects Replace existing infrastructure
 - 6 total, 4 are high priority
- Infrastructure Projects Construct new infrastructure
 - 6 total, all are high/medium priority
- Retrofit Projects Modify infrastructure to enhance water quality functionality
 - 9 total, 3 are high/medium priority
- **Planning Projects**
 - 5 total, all are high/ medium priority
- General/ Annual Maintenance Programs
 - 5 total, all are medium priority

Master Plan Development/ Cost Summary

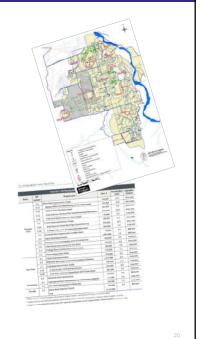
Improvement Category	Capital Improvement Cost Total (One Time)	SDC Eligibility	
Capacity Projects	\$2,559,000	\$146,000	
Infrastructure Projects	\$6,301,000	\$265,000	
Retrofit Projects	\$2,338,000	\$1,000	
Planning Projects	\$790,000		
TOTAL	\$11,988,000	\$412,000	
	Capital Improvement Cost Total (Annual)	SDC Eligibility	
Maintenance Programs	\$1,269,000		

Master Plan Development/
Programmatic Needs

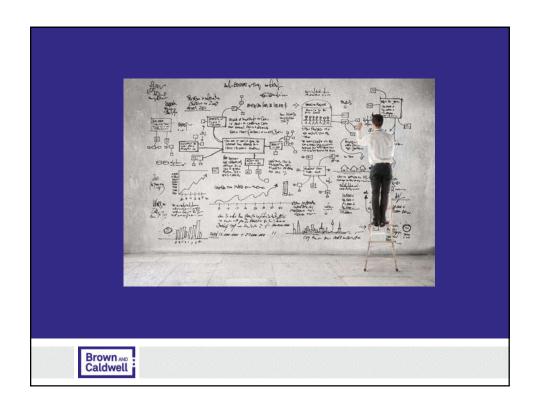
 General/ Maintenance Programs (5 total)

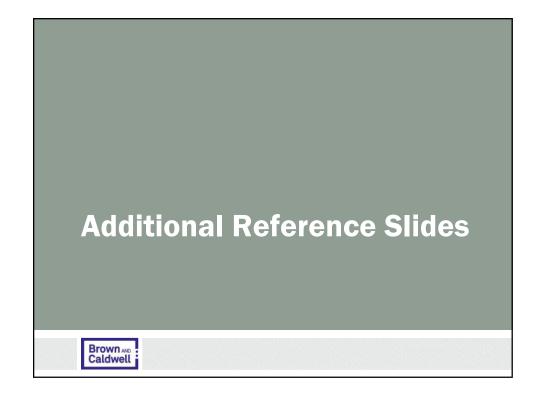
- G-1: CCTV Program
- G-2: Repair and Replacement Program
- G-3: Inlet Installation and Replacement Program
- G-4: Public Pond Maintenance Program
- G-5: Green Street Pilot Program

Brown and Caldwel



- Study Area Characteristics (Section 2)
- Code Evaluation (Section 3)
- Project Planning Process (Section 4)
 - Problem Area Identification
 - Project Needs Assessment
 - Water Quality Assessment
- Modeling/ Capacity Evaluation (Section 5)
- Capital Improvement Program (Section 6)
 - Project Summaries
 - Program Summaries
 - Cost Estimates
 - Policy Recommendations



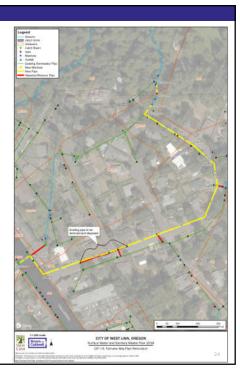

Next Steps

- Draft-Final Master Plan currently available for public review/ comment
- City Council Presentation(s)
- Master Plan Finalization

Brown and Caldwe

Proposed Projects (* high priority projects)

- Capacity Projects (6 total)
 - *C-1: Phase I Highway 43 Culvert Improvements
 - *C-2: 5th Avenue Culvert Replacement
 - *C-3: Sunset Creek Culvert Replacement
 - *C-4: Maddox Creek Culvert Replacement
 - C-5: Phase II Highway 43 Culvert Improvements
 - C-6: Kantara Way Capacity Deficiency


- Retrofit Projects (9 total)
 - *R-1: Public Pond 22 Retrofit
 - R-2: Mary S Young Parking
 - R-3: Public Works Planters
 - R-4: Mary S Young Erosion Control
 - R-5: Trillium Creek Restoration
 - R-6: Mary S Young Fish Restoration
 - R-7: Arbor Creek Culvert
 - R-8: Willamette Park Parking
 - R-9: Public Pond 18 Retrofit

Brown and Caldwell

23

Proposed Projects (* high priority projects)

- Infrastructure Projects (6 total)
 - *I-1: Blankenship
 - *I-2: 5th Avenue Culvert Replacement
 - *I-3: Buck Street
 - I-4: Fairview Pipe Relocation
 - I-5: Nixon Pipe Relocation
 - I-6: Sunset Ave. Improvements

Brown and Caldwel

Proposed Projects (* priority projects)

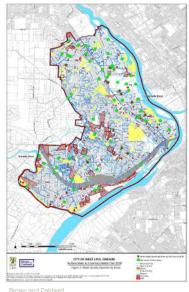
- Planning Projects (5 total)
 - *P-1: Tannler Open Ditch Feasibility Study
 - P-2: Fish Passage Evaluation
 - P-3: Surface Water Master Plan Update
 - P-4: Asset Management Program
 - *P-5: Stormwater System Survey

Brown and Caldwel

Proposed City-wide Programs

- General/ Maintenance Programs (5 total)
 - G-1: CCTV Program
 - G-2: Repair and Replacement Program
 - G-3: Inlet Installation and Replacement Program
 - G-4: Public Pond Maintenance Program
 - G-5: Green Street Pilot Program

Brown and Caldwell


Problem Area Identification

- Public and Staff Surveys
- Staff discussions/ meetings
- GIS Data Review
- 2006 Stormwater Master Plan CIP Review
- 2015 Hydromodification Assessment Review
- Site Visits

65 Stormwater "Problem Areas"

Water Quality Assessment

- Water quality retrofits are a priority in the NPDES MS4 permit.
- Four strategies developed to characterize identified water quality projects:
 - Green infrastructure in public ROW
 - New facilities on public property
 - 3. New facilities to directly manage runoff associated with Highway 43 (public property or property acquisition)
 - 4. Pond retrofits

5 New Stormwater Quality Opportunities

Projects will use AACE Class 5 Capital Estimates and will be in 2018 ENR dollars

ESTIMATE CLASS	Primary Characteristic LEVEL OF PROJECT DEFINITION Expressed as % of complete definition	Secondary Characteristic			
		END USAGE Typical purpose of estimate	METHODOLOGY Typical estimating method	EXPECTED ACCURACY RANGE Typical variation in low and high ranges [a]	PREPARATION EFFORT Typical degree of effort relative to least cost index of 1 [5]
Class 5	0% to 2%	Concept Screening	Capacity Factored, Parametric Models, Judgment, or Analogy	L: -20% to -50% H: +30% to +100%	1
Class 4	1% to 15%	Study or Feasibility	Equipment Factored or Parametric Models	L: -15% to -30% H: +20% to +50%	2 to 4
Class 3	10% to 40%	Budget, Authorization, or Control	Semi-Detailed Unit Costs with Assembly Level Line Items	L: -10% to -20% H: +10% to +30%	3 to 10
Class 2	30% to 70%	Control or Bid/ Tender	Detailed Unit Cost with Forced Detailed Take-Off	L: -5% to -15% H: +5% to +20%	4 to 20
Class 1	50% to 100%	Check Estimate or Bid/Tender	Detailed Unit Cost with Detailed Take- Off	L: -3% to -10% H: +3% to +15%	5 to 100

Notes: [a] The state of process technology and availability of applicable reference cost data affect the range markedly. The +/- value represents typical percentage variation of actual costs from the cost estimate after application

[b] If the range index value of 1" represents 0.00% of project costs, then an index value of 100 represents 0.5% Estimate preparation effort is highly dependent upon the size of the project and the quality of estimating data at teach.

Figure 1. - Cost Estimate Classification Matrix for Process Industries

Code Review Outcomes

- Recommendations
 - Technical Standards and Policy
 - Clarity and Implementation
- PWDS Update, effective October 15, 2018
 - Technical Standards and Policy
 - Updated impervious area thresholds
 - Provided guidelines for sizing facilities
 - · Clarity and Implementation Changes
 - Standards apply to public and private projects
 - Correct references and version inconsistencies

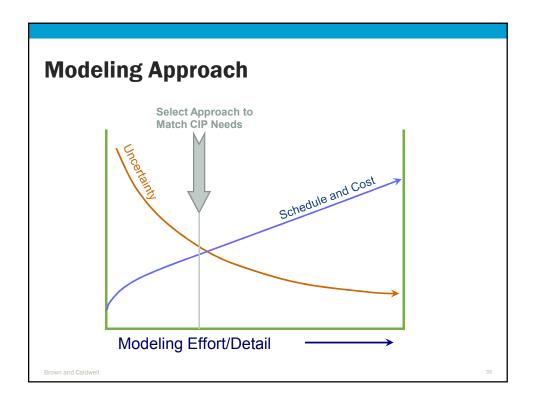
Code Review Outcomes

- Outstanding Recommendations
 - Technical Standards and Policy
 - CDC/ WLMC. Move floodplain management regulations to the WLMC from CDC. Update to reflect current floodplain standards for the NFIP Program for Oregon.
 - PWDS, Section 2.0013. Specify design storms.
 - PWDS, Section 2.0040/2.0050. Specific facility selection hierarchy to prioritize green infrastructure and impervious area reduction techniques.
 - Clarity and Implementation Changes
 - PWDS. Specify Portland SWMM references and applicable technical guidelines
 - Additional clarification edits

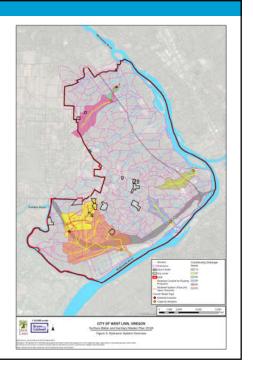
Project Needs Assessment

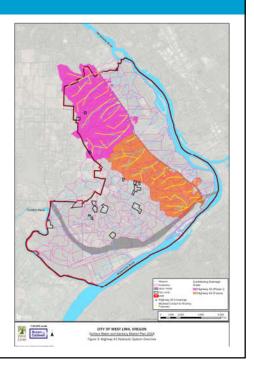
- Projects
 - Capacity Improvement
 - Improve System Configuration
 - Add Infrastructure (with and without water quality)
 - Water Quality
 - System Repair
 - Erosion
- Planning Efforts
- Programs

44 Stormwater Opportunity Areas


33

Modeling Needs Identification


- Project needs were reviewed to determine if modeling would help inform project solutions.
 - Category 1: Detailed hydraulic modeling to inform sources and solutions
 - Category 2: Hydrology modeling only to inform system sizing
 - Category 3: Limited hydraulic modeling to evaluate capacity
 - Category 4: No modeling required
- Survey conducted by City staff in Summer 2018


Modeling Overview

- Detailed Modeling Areas:
 - Blankenship Road
 - Fairview Way
- Capacity Modeling Areas:
 - 5th Avenue Culvert
 - Sunset Creek at I-205
 - Kantara Way
 - Maddox Creek at River Street

Modeling Overview

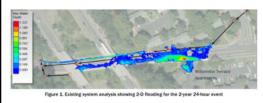
- Highway 43
 - 24 Crossings
 - Phase 1: Arbor to Hidden Springs
 - Phase 2: Hidden Springs to I-205
 - Upstream and Downstream Structures and Conveyance Channel
 - · Water Quality is not considered.

Highway 43 System Evaluation Assumptions

- Stemming from the 2016 Highway 43 Concept Plan
- Phase I of the Highway 43 Improvements (Arbor to Hidden Springs)
 - Design: 2018 (Conducted by ODOT), Construction: ~2020
 - Capacity deficient culverts to be sized and costed as a CIP.
 - Water quality improvements not included in CIP concepts.
- Phase II of the Highway 43 Improvements (Hidden Springs to I-205)
- Guidelines:
 - Cooperative Maintenance Agreement (February 2018)
 - City charter amendment (Chapter 11, Section 46) stormwater management associated with OR43 is an authorized use. Water quality mitigation for Highway 43 may be permitted in parks.

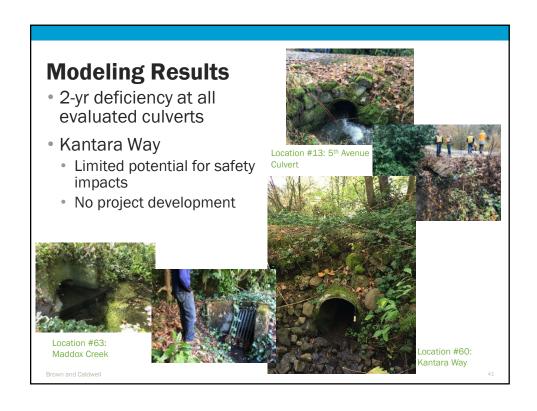
Brown and Caldwel

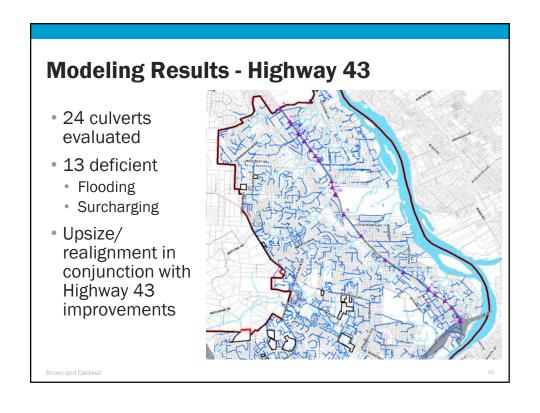
Analysis Criteria Used to Identify "Deficiencies"


- Water Quality Facility Design
 - Portland SWMM
 - 1"/ 24 hour design storm
- Structure Spacing
 - Max 500' between structures
- Pipe Design
 - 10-year design storm, surcharge is acceptable
 - 12" min pipe size in public ROW
- Culverts
 - 25-year design storm, such that headwater does not exceed 1.5 times culvert diameter.

Brown and Caldwe

39


Modeling Results


- Blankenship Road
 - 2-yr and 10-yr deficiencies
 - Upsizing and realignment
- Fairview Way
 - 10-yr deficiencies
 - Upsizing and relocation

rown and Caldwell

Planning Efforts

- One-time effort to evaluate feasibility and need for a project opportunity
- Planning efforts are all considered Medium Priority and a preliminary cost developed.

Brown and Caldwell