Development Review Application

Type of Review (Please check all that apply):

\square Annexation (ANX)	\square Historic Review	\square Subdivision (SUB)
\square Appeal and Review (AP) *	\square Legislative Plan or Change	\square Temporary Uses*
\square Conditional Use (CUP)	\square Lot Line Adjustment (LLA)*/**	\square Time Extension *
\square Design Review (DR)	\square Minor Partition (MIP) (Preliminary Plat or Plan)	\square Variance (VAR)
\square Easement Vacation	\square Non-Conforming Lots, Uses \& Structures	\square Water Resource Area Protection/Single Lot (WAP)
\square Extraterritorial Ext. of Utilities	\square Planned Unit Development (PUD)	\square Water Resource Area Protection/ Wetland (WAP)
\square Final Plat or Plan (FP)	\square Pre-Application Conference (PA)*/**	\square Willamette \& Tualatin River Greenway (WRG)
\square Flood Management Area	\square Street Vacation	\square Zone Change
\square Hillside Protection \& Erosion Control		

Home Occupation, Pre-Application, Sidewalk Use, Sign Review Permit, and Temporary Sign Permit applications require different or additional application forms, available on the City website or at City Hall.

Site Location/Address:
 1969 WILLAMETTE PALLS DELVE

Brief Description of Proposal:

Applicant Name: $/ C O N$ CONSTRUCTION

Address: 1980 WILLAMENTE FALCS DR \#200 city State Zip: WEST LINN, OR 97068 Email: MARK@ CONCCNSTRUCTN. NET. NET
Owner Name (required): ICON CONSTRUCTION Address: 1980 WMLANETIE FATS PANE 200 City State Zip: NNe LNN, op 97958 Darrantoiconcontrercaran. Phone:

Consultant Name: 5 (please print) (please print) 10940 SW BARNESS RD *364
Address: Email:
MARK / LON constantan. Ni plain Clcovcangtixation. Ne? Phone: 503-201-0725 City State Zip: PORTLAND, OR 97225

Email: KGODWIN@SG~ARCH.NET

1. All application fees are non-refundable (excluding deposit). Any overruns to deposit wi l re y tin add ion marbling 2. The owner/applicant or their representative should be present at all public hearings 3.A denial or approval may be reversed on appeal. No permit will be in effect until the

2. Three (3) complete hard-copy sets (single sided) of application materials must be submitted with this application. One (1) complete set of digital application materials must also be submitted on CD
If large sets of plans are required in application please submit only two sets.

* No CD required / ** Only one hard-copy set needed
 comply with all code requirements applicable to my application. Acceptance of this application does not infra complete sutmitual. Arramendments tolthe Community Development Code and to other regulations adopted after the application is approved shatlibeenforecwhere-applicatieApprovedangligations and subsequent development is not vested under the provisions in place at the time of the initial application.

Willamette Falls Mixed Use

West Linn, Oregon
 Design Review Class II Submittal - Chapter 58
 February 2016

A. Introduction

The following Narrative, Plans and Supplemental materials will demonstrate that the proposed project is in compliance with the applicable site plan and design review standards set forth in the West Linn Community Development Code.

B. Narrative

Icon Development is proposing a new two-story development located at 1912 Willamette Falls Drive- east of 12 "' Street. The site has one temporary existing structure that will be demolished and is boarded primarily by commercial development with some residential development to the north.

The proposed mixed use development is two-story office/retail with an underground parking facility. The total building area is ap proximately 24,510 s.f. of leasable building area and 42 onsite parking spaces have been provided behind and under the building. Spring/Summer 2016 construction start is a ntic ip ated.

C. Conformance

1

58.90 STANDARDS

A.Standards are needed to provide a clearand objective list of design elements that are needed to bring new construction and remodels into conformance with 80c 1915 a rchitecture. Buildings of the period saw relatively few deviations in design. Consequently, the Historic Review Board will require conformance with the standards. Deviations or deletionsfrom the standards are addressed in the variance procedure of this chapter.
B. The use of "neo-designs" or simply contextual designs which only attempt to capture the basic orgeneralized elements such as building line, massing and form, etc. is not acceptable.
C. The following standards shall apply to new construction and remodels.

1. Dimensional sta nda rds:
a. Front: zero-foot setback. Building may not be set back from the property line unless it is consistent with predominant build ing line.
RESPONSE: The proposed building frontage (north elevation) is located on this property line.
b. Side and Side Street: zero-foot setback. Building may not be set back from the side property line except for side passageway, accessway, or stairway unlessfire codes dictate otherwise. The setback shall not exceed sixfeet. The setback should be consistent with the rhythm of adjacent structures, or at least not deleterious to it. (ORD. 1391)
RESPONSE: West (side) building elevation is setback 2'0' from the existing property line to allow for the building to have reliefs and pilasters without extending into the adjac ent property.
c. Rear. 20-foot setback. Setbacks between 0-20 feet arepermitted only ifthe applicant can demonstrate that he can successfully mitigate any impacts associated with the building in current andfuture usesasthey would relate to abutting residential and otherproperties.
RESPONSE: South (rear) building elevation is on the property line, and fronts onto Knapp's Alley The alley provides the separation from adjacent properties to mitigate the impact of this project Access to employee parking and the trash enclosure will oc cur from Knapp's Alley as well.
d. Lot coverage: Up to 100 percent of lot may be developed depending upon ability to mitigate impacts upon abutting residential and other uses.
RESPONSE: The proposed lot coverage based on the street level ground floorarea is 66.33\%.

Site area $=.0344$ acres $=15,000$ s.f.
2. Minimum landscaping required: Structures in this area are exempt from landscaping requirements as identified in Section 55.100 (A)(II)(b), Design Review. The provision of CDC Section $55.100(A)(I)(c)(1-8)$ shall still apply where parking lots are proposed.
RESPONSE: There is no landscaping required forthis project There will be landscaping provided at the proposed water quality facility at the west property line.
3. Building height limitations: Maximum building height shall be 35 feet (as measured by this Code), and two stories. False fronts shall be considered as the peak of the building if it exceeds the gable roof ridgeline.
RESPONSE: All proposed building heights are at orbelow the maximum allowable by code ($35{ }^{\prime} 0^{\prime \prime}$ high)
Front (north) parapet $=32-35$ feet
Rear(south) parapet $=30-33$ feet
Side (west) parapet $=26$ feet
Side (east) parapet $=32-35$ feet
4. Extemal ground level or first story minimum height: 10feet to allow transoms.

RESPONSE: The ground level firststory height is 14'0" A.F.F to allow for window transoms.
5. Rooffom: Flat orpitched roofs. Pitched roof ridgeline shall run from the front of the building to the back.

RESPONSE: All proposed flat sloped roofs run from front to back of the building.
6. Building form, scale and depth: Build ing shall emphasize the vertical through na row, tall windows (especially on second floor), vertical awning supports, engaged columns, and exaggerated facadescreating a height-to-width ratio of I.5:I. Building depth shall be flat, only relieved by awning and comice projections and the indented doorway. RESPONSE: The proposed exterior elevations emphasize many vertic al elements using tall windows, comices, and awnings. The second floor has been provided with many windows that align with the main floor below thatenhance the "vertic ality" of each building elevation. Building reliefs have been incorporated throughout the overall design by off- setting the building footprint and providing awnings and comice projections.
7. Spacing and mythm: Buildings shallfollow a regular mythm. Strong vertical breaks or lines should be regularly spaced every 25 to 50 feet.

RESPONSE: Appropriate spac ing and vertic al breaks in the building vemacular, have been incorporated into all the building elevations. No vertic al spacing exceeds 50'-0' in length (see elevation sheet).
8. Facades: No gables, hipped, orpitched roofsshall be exposed to the street at the front. The "Westem false front" shall be the preferred style although va riations shall be allowed.

RESPONSE: All roofs are 'flat' for the entire building, and are concealed by "Westem False Front' fac ades (see elevations sheet).
9. Comice: Comicesshall be broad and may include regularly spaced supporting brackets. A comice is not required, butpreferred.

RESPONSE: The comice at the northeast comer is enhanced with supporting brackets. All other comices are enhanced with framed panel dec oration (see elevations \& wall section sheets.)
10. Building materials and orientation: Wood shall be the principal building material. Horizontal wood siding in I"X 8" dimensions shall be used for siding. Brick and certain concrete configurations are permitted only by a variance under Section 58.090.

RESPONSE: The primary materials list will be wood:
Siding: $\quad 1 \times 8$ horizontal siding minimum (hardiplank)
Comices/trim: $\quad 2 \times$ wood trim - painted
Omamental trim: Wood - painted

The applic ant requests a variance under the terms of Section 55.100 for a brick masonry base and partial elevation.
11. Awnings: All buildings shall have a wnings extending out from building/ace. Awnings are preferred for micro-climate benefits. Ideally, the building will have both transom and a wnings, although transoms are not required. Awnings shall be either canvas orvinyl, or similar approved material, supported by an intemal metal framework or metal or wood supported by a curved metal support, either attached to the building or a simple 4"X4" wood post extending down to the outside of the sidewalk. Awnings shall, therefore, extend beyond the front property line to the outside edge of the sidewalk, and shall possess a seven-foot clearance to the valance or any other part. The pitch of the a wning shall be I 0-40 degrees. No "bubble-type" a wnings are pemitted. No backlit a wnings are pemitted. Canvas or matte finish vinyl, or similar approved •material awnings may be one color or striped and shall have afree-hangi.ng plain or crenelated valance. Canvas or matte finish vinyl, or similar approved material a wnings should not be shared between two structures. Each structure should have itsown awning. (ORD. 1401)

RESPONSE: Building awnings will be a combination of fabric awnings and metal canopies that extend beyond the building and above the existing sidewalk. However, due to the possibility of vehicles damaging the awnings, the applic ant would petition to reducing the awnings depth to $\mathbf{7 '}^{\prime}-\mathbf{0}^{\prime \prime}$ instead of the full sidewalk width of 8 '-6". All supports will be fastened to the building by metal supports and have a minimum clearance height of 7'-0'. Each building window facade will have a separate awning with a slope between 10-40 degrees (see elevations.)
12. Extruded roofs: As a substitute for an awning, extruded roofs have a $10-40$ degree pitch and extend l-2feetfrom the building face just above the transom windows where the first and second stories meet. The roof runs along the entire building frontage. Standard roofing materials are used. Transoms are required with extruded roofs.

RESPONSE: No "extruded roofs" are being proposed. Transom windows will be provided beneath both the fabric awnings and metal canopies.
13. Doors and entryways: The entryway shall be centered in the middle of the building at grade. The buildings on street comers may position their door on the comer at an angle as depicted in the illustration. The doors may be single ordouble doors. The doors shall be recessed 3 -5feet back from the building line. Doors shall have glazing in the upper two-thirds to half of the door. Panels should decorate the lower portions. The entryway shall have windows all the way a round at the same level as the other display windows. Wood doors are preferable although altematives with a dark matte finish may be acceptable.

RESPONSE: Recessed double entrance doors have been provided at the center of the building along with additional recessed entry doors at each end of the building (see elevation and floor plan). The door styles will be full glass light style and will meet the intent of the code.
14. Glazing: Clearglassonly. No mirrored ortinted glass. No films applied to glass. Lettering on glass is permitted (see item 25(b) of this section).

RESPONSE: Clearglass is proposed forall windows.
15. Display or pedestrian level windows: Shall extend across at least 80 percent of building front. The windows shall start 1-112-2-l/2feet above grade to a height of 7-8 feet, and shall be level with the top of the height of the adjacent entryway area, exc luding transom. A single sheet of glass is not permitted. The window shall be broken up into numerous sections, also known as lights. From 1880 onwards, the number of lights
was generally no more than six in a pedestrian level window. The frames may be wood or vinyl clad wood, or othermaterials so long as matte finish impossible.

RESPONSE: The proposed street level windows and storefionts extend ac ross the entire front elevation and meets or exceeds the intent of the code (see elevation sheet).
16. Second floorand other windows: Double and single hung windows proportionately spaced and centered should be used. Smaller square shaped windows may be pemitted (1-112'-2' perside). A typical window should have a 3:1 height to width ratio for the glass area. There should be a minimum of two lights: "one over one" of equal size. "Two overone" or "four over one" is a ppropriate.

RESPONSE: The proposed upper level windows have a double-hung appearance that meets or exceeds the intent of the code (see elevation sheet).
17. Wa inscoting: Wainsc oting shall be consistent with primary material of the building, typic ally wood.

RESPONSE: The applic ant would like to propose an altemate brick masonry wainsc oting instead of the primary wood material used on the building (see 55.090.10). This altemative provides fora more durable building longevity and is consistent with other buildings in the district (see attached photo for example).
18. Shutters: Shutters are not a llowed.

RESPONSE: No shutters are proposed.
19. Balconies: No balconies are permitted except on rear of building.

RESPONSE: No balconies are proposed.
20. Exteriorstairs: Simple stairs are pemitted on the rear orside of the building only.

RESPONSE: All exit stairs are fully enc losed within the building envelope design (see elevation sheet).
21. Roof mounted mechanic al equipment: Equipment shall be screened from view on all sides by normal and consistent architectural features of the building. Section 55.100(A)(4), "Priva cy a nd Noise, "shall apply.

RESPONSE: The mechanical rooftop units (RIUs) will be loc ated in a structurally designed"mechanic al zone" that is loc ated at the middle of the building. This location will allow the parapets to provide adequate screening from below to hide the units (see roof plan sheet). A preliminary noise study has been provided with this application.
22. Air conditioning: No window type on avenue or street side are permitted. Window mounted air conditioners are not allowed at rear where abutting residential.

RESPONSE: All air conditioning/ units will be mounted on the roof (see ltem 21).
23. Exterior lighting fixtures: Any lighting fixtures that can be traced to $1880-1915$ period is permitted. Simple modem fixtures that are screened and/or do not attract attention are acceptable. Overlay omate fixtures of the Victorian era are to be discouraged.

RESPONSE: All exterior light fixtures will meet the intent of the code "period fixtures 1880-1915". A cutsheet of the light fixture can be provided to the city ata later date.
24. Transoms: Transom windows are required with extruded roofs and optional with awnings. Transom windows shall cover the front of the building above, but not beyond, the main
display windows and the entryway area. Transoms should be broken up into sections every six inc hes to three feet in a consistent and equal pattem. Height should not exceed three feet. Transoms may or may not open. False ceilings are allowed behind the transoms.

RESPONSE: The storefront windows proposed will have a metal canopies or fabric awnings above their entire width. No upper separate transom windows are proposed, however the window style will have transom influence by the use of grids and mullions. All window sizes will meet the intent of the code (see elevations).
25. Signs:
a. Signs shall not exceed 10 percent of the square footage of the front elevation. The calculation of allowable signage is explained in Section 52.300. The sign(s) shall be proportionate to buildings and signs on adjacent buildings. The "10percent" shall be broken up into multiple signs. The sign(s) shall be mounted orpainted on the second floor, on the valance of the awning, on the windows at pedestrian level, or on 4×4 a wning posts. Signs shall not be of the intemally lit "can" type or channel light type. No backlit a wnings a re allowed. Illumination by spotlight is pemitted. Neon signs are permitted only inside the windows. No flashing signs are allowed. By temporary sign pemit only, neon colored lettering or designs painted on windows or on paper or banners in the windows are allowed, but disc ouraged. Small signs or pla ques which describe the building in a historical sense are exempt from the allowable square footage restrictions. Signs cannot project out from building face.
b. Sign typeface: Antique lettering as shown in the illustration is required. Variations are permitted where the lettering would not clash with the predominant font orstyle. "Gay Nineties or P. TBamum" type styles and other exaggerated styles are discouraged. Lettering may be horizontal, vertical, or slanting up from lowerleft to upper right. Semi-circle designs on windows are permitted. Window lettering should be either white, black, or gold with black shading.
c. Temporary signs: Temporary sandwich board signs are permitted and shall be designed to be consistent with the aforementioned sign and typeface provision.
RESPONSE: All signage shall meet the intent of the code. A separate sign permit will be obtained from the City prior to the installation of any tenant or building signage.
26. Planters: No planters are allowed.

RESPONSE: The proposed site/plaza plan provides for "no planters."
27. Paint colors: Body color typic ally included white, cream, or a light warm color of low intensity. Accents, trims, windows, etc. should be dark colored. Contrasting colors should be compatible. Existing colors shall not enjoy protected status when repainting is proposed. A palette or color wheel of acceptable 1880-1915 period colors shall be the basis for color selection. No other colors are allowed. The palette is a va ilable at the Planning Department.

RESPONSE: A material and colorboard has been submitted with this applic ation. The applicant was told by the city that a color palette that was referenced in the city code was not available at this time. The City will review the proposed colors/materials submitted by the applic ant The colored elevations provided indic ate the proposed color locations.
28. Omamental or advertising flags, pennants, or banners: Not pemitted on buildings. RESPONSE: No flags, pennants, or banners are being proposed.
29. New materials: Permitted where it is demonstrated that new material visually replic ates originally required material, except siding, which must be wood.

RESPONSE: The only 'new' material being proposed is the brick masonry on the north and east walls of the building. This material will help provide longevity to the building
for years to come due to the amount of pedestrian traffic, and is consistent with similar materials on buildings along Willamette Falls Drive.

58.100 VARIANCE PROCEDURES

In those circumstances where a design proposal cannot meet the standards, or proposes an altemative to the standard, the Historic Review Board may grant a variance in those cases where one of the following criteria is met:

1. The applicant can demonstrate by review of historical records or photographs that the altemative is correct and appropriate to architecture in the region, and especially West Linn, in 1880-1915.
2. The applicant is incorporating exceptional 1880-1915 architecture into the building which overcompensates for an omission. The emphasis is upon superior design, detail, or workmanship.

RESPONSE: A variance to the standards is requested to allow the lower portion of the north and east walls, along with a full height portion of the north wall, to be brick masonry. This altemative provides superior design and detail to the wood standard by helping to break up the elevations in a more attractive way than strictly wood and pain. Italso provides a more durable base to the building which will withstand ongoing pedestrian traffic and the elements.

Willamette Falls Mixed Use

West Linn, Oregon
 Design Review Class II-Chapter 55
 February 2016

55.010 PURPOSE AND INTENT- G ENERAL

No response required.

55.020 CLASSES OF DESIGN REVIEW

No response required.

55.025 EXEMPIIONS

No response required.

55.030 ADMINISTRATION AND APPROVAL PROCESS

No response required.

55.040 EXPIRATION OR EXIENSION OF APPROVAL

No response required.

55.050 DESIGN REVIEW AMENDMENTTRIGGER

No response required.

55.060 STAGED OR PHASED DEVELOPMENT

No response required.

55.070 SUBMITIAL REQUREMENTS

No response required.

55.085 ADDITIONAL INFORMATION REQUIRED AND WAIVER OF REQUREMENTS

No response required.

55.090 APPROVALSTANDARDS - CLASS I DESIGN REVIEW

No response required.

55.100 APPROVALSTANDARDS - CLASS II DESIG N REVIEW

The approval authority shall make findings with respect to the following criteria when approving, approving with conditions, or denying a Class II design review application.
A. The provisions of the following chapters shall be met:

1. Chapter 34 CDC, Ac cessory Structures, Accessory Dwelling Units, and Accessory Uses. RESPONSE: There are no accessory stuctures inc luded as part of this proposal. The requirements of this chapter do not apply.
2. Chapter 38 CDC, Additional Yard Area Required; Exceptions to Yard Requirements; Storage in Yards; Projections into Yards.
RESPONSE: Per 38.020, no sideyard setback is required. The west wall of the building is set back 3'0" per the standard. The othersections of this c hapterdo not apply.
3. Chapter 40 CDC, Build ing Height Limitations, Exceptions.

RESPONSE: This chapter has been repealed by ordinance.
4. Chapter 42 CDC, Clear Vision Areas.

RESPONSE: The building and property line sit approximately 48 feet behind the curb at the intersection of 11 ${ }^{\text {th }}$ Street and Willamette Falls Drive. The requirement of the chapter are met
5. Chapter 44 CDC, Fences.

RESPONSE: There are no fences or retaining walls planned as part of this proposal. The requirements of this chapter do not apply.
6. Chapter 46 CDC, Off-Street Parking, Loading and Reservoir Areas.

RESPONSE: Per section 46.140, no off-street parking spaces are required in the Willamette Falls Dive Commercial Design District Spaces provided in the garage and along Knapps Alley comply with the design standards of this chapter. Bic ycle parking complying with the standards of this chapter are located in the garage.
7. Chapter 48 CDC, Access, Egress and Circulation.

RESPONSE: The subject property is a legal lot of record (T3S, R1E, Sec. 2, TL4100) and has directaccess to 11th Street on the east, a platted alley to the south, and fronts Willamette Falls Drive on the north. Vehicle ac cess is proposed via the alley for street parking and a driveway cut to underground parking with access to 11th Street at a point as farremoved as possible from the intersection with Willamette Falls Drive as possible. An existing 8-foot sidewalk on 11th Sreet and on Willamette Falls Dive provides pedestrian access. Street parking exists along Willamette Falls Drive and bicycle parking is provided on site.
8. Chapter 52 CDC, Signs.

RESPONSE: All signs will be building wall signs and will be submitted by the tenants under separate permits. All signs will meet the standards for the Willamette Falls Drive Commercial Design District per 52.210.
9. Chapter 54 CDC, Landsc aping.

RESPONSE: Per 58.090, projects in the Willamette Falls Drive Commercial Design District are exempt from the requirement of c hapter 54.
B. Relationship to the natural and physic al environment.

1. The build ings and other site elements shall be designed and located so that all hentage trees, as defined in the municipal code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction.

RESPONSE: There are no heritage orothenvise signific ant trees existing on the site. The standards of this section do not apply.
2. All heritage trees, as defined in the municipal code, all trees and clusters of trees ("cluster" is defined as three or more trees with overlapping driplines; however, native oaks need not
have an overlapping dripline) that are considered signific ant by the City Arborist, either individually or in consultation with certified arborists or simila rly qualified professionals, based on a c cepted arboricultural standards including consideration of their size, type, location, health, long term survivability, and/or numbers, shall be protected pursuant to the criteria of subsections (B)(2)(a) through (f) of this section. In cases where there is a difference of opinion on the signific ance of a tree or tree cluster, the City Arborist's findings sha ll prevail. It is important to acknowledge that all trees are not signific ant and, further, that this code section will not necessarily protect all trees deemed signific ant.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

a. Non-residential and residential projects on Type I and II lands sha ll protect all heritage trees and all significant trees and tree clusters by either the dedication of these a reasor esta blishing tree conservation ea sements. Development of Type I and II lands shall require the careful layout of streets, driveways, build ing pads, lots, and utilities to avoid heritage trees and signific ant trees a nd tree clusters, and other natural resources pursuant to this code. The method fordelineating the protected trees or tree clusters ("dripline +10 feet") is expla ined in subsection (B)(2)(b) of this section. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply.

RESPONSE: There are no heritage orotherwise signific ant trees existing on the site. The standards of this section do not apply.

b. Non-residential and residential projects on non-Type I and II lands shall set aside up to 20 percent of the area to protect trees and tree clusters that are detemined to be significant, plus any heritage trees. Therefore, in the event that the City Arborist determines that a signific ant tree cluster exists at a development site, then up to 20 percent of the non-Type I and Il lands shall be devoted to the protection of those trees, either by dedic ation or easement. The exact percentage is determined by establishing the driplines of the trees or tree clusters that are to be protected. In order to protect the roots which typic ally extend further, an additional 10 -foot measurement beyond the dripline shall be added. The square footage of the area inside this "dripline plus 10 feet" measurement shall be the basis forcalculating the percentage (see figure below). The City Arborist will identify which tree(s) are to be protected. Development of non-Type I and II lands shall also require the careful layout of streets, driveways, building pads, lots, and utilities to avoid signific ant trees, tree clusters, heritage trees, and other natural resourc es pursuant to this code. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply. Please note that in the event that more than 20 percent of the non-Type I and II lands comprise signific ant trees or tree clusters, the developer shall not be required to save the excess trees, but is encouraged to do so.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

c. Where stubouts of streets occur on abutting properties, and the extension of those streets will mean the loss of signific ant trees, tree clusters, or herita ge trees, it is understood that tree loss may be inevitable. In these cases, the objective shall be to minimize tree loss. These provisions shall also apply in those caseswhere access, perconstruction code standards, to a lot or parcel is blocked by a row or sc reen of signific ant trees or tree clusters.

RESPONSE: There are no heritage orotherwise signific ant trees existing on the site. The standards of this section do not apply.

d. For both non-residential and residential development, the la yout shall a chieve at least 70 percent of maximum density for the developable net area. The developable net area excludes all Type I and II lands and up to 20 percent of the remainder of the site for the purpose of protection of stands or clusters of trees asdefined in subsection $(B)(2)$ of this section.

RESPONSE: There are no heritage or otherwise signific ant trees existing on the site. The standards of this sec tion do not apply.
e. For arterial and collector street projects, including Oregon Department of Tra nsportation street improvements, the roads and graded a reas shall avoid tree clusters where possible. Signific a nt trees, tree clusters, a nd hentage tree loss may occur, however, but shall be minimized.

RESPONSE: There are no heritage or otherwise signific ant trees existing on the site. The standards of this section do not apply.
f. If the protection of signific ant tree(s) or tree clusters is to occur in an area of grading that is necessary for the development of street grades, per City construction codes, which will result in an adjustment in the grade of over or undertwo feet, which will then threaten the health of the tree(s), the a pplic ant will submit evidence to the Planning Direc tor that all reasonable altemative grading plans have been considered and cannot work. The applicant will then submit a mitigation plan to the City Arborist to compensate for the removal of the tree(s) on an "inch by inch" basis (e.g., a 48-inch Douglas fir could be replaced by 12 trees, each four-inch). The mix of tree sizes and types shall be approved by the City Arborist.
3. The topography and natural drainage shall be preserved to the greatest degree possible.

RESPONSE: The site slopes at less than 5\% and generally from southwest to northeast Since this is a commercial property almost the entire site will be covered with a building no surface flow will exist after construction. The flow from the new impervious roof will be collected and detained on site and meted with a control structure to the pre-development rates and connec ted to the public system in the same local drainage basin.
4. The structures shall not be loc ated in a reas subject to slumping and sliding. The Comprehensive Plan Background Report's Hazard Map, or updated material as available and as deemed acceptable by the Planning Director, shall be the basisfor preliminary determination.

RESPONSE: The West Linn geologic hazard maps (SUDO) indic ates no slumping or sliding in this area.
5. There shall be adequate distance between on-site buildings a nd on-site and off-site buildings on adjoining propertiesto provide for adequate light and aircirculation and forfire protection.

RESPONSE: On the north, east, and south property boundaries, the proposed building faces onto public ways. On the west property boundary, a $3^{\prime}-0^{\prime \prime}$ setback has been provided (no sideyard setback is required in the district), persection 38.020. There shall be adequate distance between on-site buildings and on-site and off-site building on adjoining properties to provide adequate light and air circ ulation and for fire protection
6. Architecture.
a. The proposed structure(s) scale shall be compatible with the existing structure(s) on site and on adjoining sites. Contextual design is required. Contextual design means respecting and
inc opporating prominent arc hitectural styles, building lines, roof forms, hythm of windows, building scale and massing of surrounding buildings in the proposed structure. The materials and colors shall be complementary to the surrounding buildings.

RESPONSE: The architecture for this building meets the standards for the Willamette Falls Drive Commercial Design District found in chapter 58 and thus complies with the standards of this section. Please referto the building elevations.
b. While there has been disc ussion in Chapter $\underline{24}$ CDC about transition, it is appropriate that new buildings should architecturally transition in terms of bulk and mass to work with, or fit, adjacent existing buildings. This transition can be accomplished by selecting designs that "step down" or "step up" from small to big structures and vice versa (see figure below). Transitions may also take the form of carrying building pattems and lines (e.g., parapets, windows, etc.) from the existing building to the new one.

RESPONSE: The subject property is adjacent to a single story residential style structure housing a commercial use. The adjacent buildings on the opposite side of Willamette Falls Dive are two-story commercial structures. The planned building design is similar in height, size, and style to those structures across the street, while maintaining individual window openings on the first floor that are similar in shape, sill, and head heights.
c. Contrasting a rchitecture shall only be pemitted when the design is manifestly superior to adjacent arc hitec ture in tems of c reativity, design, and workmanship, and/or it is adequately separated from other buildings by distance, screening, grade variations, or is part of a development site that is large enough to set its own style of architecture.

RESPONSE: The building's arc hitecture contrasts with the adjacent neighbors to the west, but is in accordance with the standards of c hapter 58 and is consistent with other buildings in the Willamette Falls Drive Commercial Design District
d. Human scale is a term that seeks to accommodate the users of the building and the notion that buildings should be designed around the human scale (i.e., their size and the average range of their perception). Human scale shall be accommodated in all designs by, for example, multi-light windows that are broken up into numerous panes, intimately scaled entryways, and visual breaks (exaggerated eaves, indentations, ledges, parapets, awnings, engaged columns, etc.) in the facades of buildings, both vertic ally and horizontally.

The human scale is enhanced by bringing the building and itsmain entrance up to the edge of the sidewalk. It creates a more dramatic and interesting streetscape and improvesthe "height and width" ratio referenced in this section.

RESPONSE: The project design achieves human sc ale through the use of multi-light windows, intimately scaled entryways, parapets, awnings, and the building's loc ation at the edge of the sidewalk. The façade is divided into distinct sections that emphasize a pleasing height-to-width ratio.
e. The main front elevation of commercial and office buildings shall provide at least 60 percent windows or transparency at the pedestrian level to create more interesting streetsc ape and window shopping opportunities. One side elevation shall provide at least 30 percent transparency. Any additional side or rearelevation, which is visible from a collector road orgreaterclassific ation, shall also have at least 30 percent transparency. Transparency on other elevations is optional. The transparency is mea sured in lineal fashion. For example, a

100-foot-long building elevation shall have at least 60 feet (60 percent of 100 feet) in length of windows. The window height shall be, at minimum, three feet tall. The exception to transparency would be cases where demonstrated functional constraints ortopography restrict that elevation from being used. When this exemption is a pplied to the main front elevation, the square footage of transparency that would ordina rily be required by the above formula shall be installed on the remaining elevationsat pedestrian level in addition to any transparency required by a side elevation, and vice versa. The rear of the building is not required to include transparency. The transpa rency must be flush with the building elevation.

RESPONSE: The front elevation is $1477^{\prime \prime} \mathbf{0}^{\prime \prime}$ long with $112^{\prime} 6^{\prime \prime}$ of windows, or 76.7%. The eastelevation is $99^{\prime \prime} 8^{\prime \prime}$ long, with $59^{\prime} 0^{\prime \prime}$ of window or other openings, or 59\%. The remaining south and west elevations are exempt from the requirement.
f. Variations in depth a nd roof line are encouraged for all elevations.

To vary the otherwise blank wall of most rear elevations, continuous flat elevations of over 100 feet in length should be avoided by indents orvariations in the wall. The use of decorative brick, masonry, orstone insets and/or designs is encouraged. Another way to vary or soften this elevation is through terain variations such as an undulating grass area with trees to provide vertic al relief.

RESPONSE: The rear elevation is divided into five distinct segments through the use of plaster trim and varying parapet heights.
g. Consideration of the mic ro-climate (e.g., sensitivity to wind, sun a ngles, shade, etc.) shall be made for building users, pedestrians, and transit users, including featureslike awnings.

RESPONSE: On the north and east sides, pedestrians are protec ted by nearly continuous awnings and canopies. On the south side, awnings provide shade for building users. There are no openings on the west side.
h. The vision statement identified a strong commitment to developing safe and attractive pedestrian environments with broad sidewalks, canopied with trees a nd awnings.

RESPONSE: The existing $\mathbf{1 0 ' 0}^{\prime \prime}$ wide sidewalk is tree lined via the existing street trees in the median separating Willamette Falls Drive from the existing surface parking area. See the site plan. The building has awnings and canopies overthe sidewalk.
i. Sidewalk cafes, kiosks, vendors, and street fumiture are encouraged. However, at least a four-foot-wide pedestrian accessway must be mainta ined per Chapter 53 CDC, Sidewalk Use.

RESPONSE: It is not known at this time if there will be a sidewalk café'. However, the 10 '0" walkway would provide plenty of room for one while maintaining at least 4'0' feet of pedestrian area.
7. Transportation Planning Rule (TPR) compliance. The automobile shall be shifted from a dominant role, relative to othermodes of transportation, by the following means:
a. Commercial and office development shall be oriented to the street. At least one public entrance shall be located facing an arterial street; or, if the project does not front on an arterial, facing a collector street; or, if the project does not front on a collector, facing the local
street with highest traffic levels. Pa rking lots shall be placed behind or to the side of commercial and office development. When a large and/or multi-building development is occuming on a large undeveloped tract (three plus acres), it is acceptable to foc us intemally; however, at least 20 percent of the main adjacent right-of-way shall have buildings contiguous to it unless waived per subsection (B)(7)(c) of this section. These buildings shall be oriented to the adjacent street and include pedestrian-oriented transparencies on those elevations.

For individual buildings on smaller individual lots, at least 30 lineal feet or 50 percent of the building must be adja cent to the right-of-way unless waived per subsection (B)(7)(c) of this section. The elevations oriented to the right-of-way must incorporate pedestrian-oriented transparency.

RESPONSE: 100% of the building elevation fronting on streets are located at the lot line, with multiple entry points along the north (front) elevation.

b. Multi-family projects shall be required to keep the parking at the side or rear of the buildings or behind the building line of the structure as it would appear from the right-of-way inside the multi-family project. For any garage which is loc ated behind the building line of the structure, but still facing the front of the structure, architectural features such as patios, patio walls, trellis, porch roofs, overhangs, pergolas, etc., shall be used to downplay the visual impact of the garage, and to emphasize the rest of the house and front entry.

The parking may be positioned inside small courtyard areas a round which the units are built. These courtyard spaces encourage socialization, defensible space, and can provide a central location forlandsc a ping, partic ula ly trees, which can provide an effective canopy and softening effect on the courtyard in only a few years. Vehicular access and driveways through these courtyard areas is permitted.

RESPONSE: This project is not multi-family so this standard does not apply.

c. Commercial, office, and multi-family projects shall be built asclose to the adjacent main right-of-way as practical to facilitate safe pedestrian and transit access. Reduced frontages by buildings on public rights-of-way may be allowed due to extreme topographic (e.g., slope, creek, wetla nds, etc.) conditions or compelling functional limitations, not just inc onveniences or design challenges.

RESPONSE: 100\% of the building elevations fronting onto public rights-of-way are located on the lot lines. Please refer to the site plan.

d. Accessways, parking lots, a nd intemal driveways shall accommodate pedestrian circulation and access by specially textured, colored, or clearly defined footpaths at least six feet wide. Paths shall be eight feet wide when abutting parking areas ortravel lanes. Paths shall be separated from parking ortravel lanes by either la ndsca ping, pla nters, curbs, bollards, or raised surfaces. Sidewalks in front of storefronts on the arterials and main store entrances on the a rterials identified in CDC $85.200(A)(3)$ shall be 12 feet wide to accommodate pedestrians, sidewalk sales, sidewalk cafes, etc. Sidewalks in front of storefronts and main store entrances in commercial/OBC zone development on local streets a nd collectors shall be eight feet wide.

RESPONSE: The sidewalks at the north and east retail elevations are existing. $\mathbf{1 0}^{\prime \prime} \mathbf{0}^{\prime \prime}$ and $\mathbf{8 0}^{\prime \prime} \mathbf{0}^{\prime \prime}$ respectively.
e. Paths shall provide direct routes that pedestrians will use between buildings, a djacent rights-of-way, and adjacent commercial developments. They shall be clearly identified. They
shall be laid out to attract use and to discourage people from cutting through parking lots and impacting environmentally sensitive a reas.

RESPONSE: The pedestrian access walkways along the north and east sides of the site are existing public walks that directly connect to adjacent properties.
f. At least one entrance to the building shall be on the main street, or as close as possible to the main street. The entrance shall be designed to identify itself as a main point of ingress/egress.

RESPONSE: There are three primary entries fronting on Willamette Falls Drive, along with one facing onto 11 ${ }^{\text {th }}$ Street
g. Where transit service exists, or is expected to exist, there shall be a main entrance within a safe and reasonable distance of the transit stop. A pathway shall be provided to facilitate a direct connection.

RESPONSE: There is a bus stop at the comer of Willamette Falls Drive and 1114 Street, with access to a main entry to the building on the same comer.
h. Projects shall bring at least part of the project adjacent to or near the main street right-ofway in orderto enhance the height-to-width ratio along that partic ularstreet. (The "height-towidth ratio" is a n arc hitec tural term that emphasizes height or vertic al dimension of buildings adjacent to streets. The higher and closerthe building is, a nd the narrower the width of the street, the more attractive and intimate the streetsc ape becomes.) For every one foot in street width, the adjacent building ideally should be one to two feet higher. This ratio is considered ideal in framing and defining the streetsc ape.

RESPONSE: The building is loc ated on the lot line along both Willamette Falls Drive and 11 ${ }^{\text {th }}$ Street At its tallest point (at the comer of Willamette Falls Drive and 11th Street), the building is $35^{\prime \prime} 0^{\prime \prime}$ tall, which is the height limit allowed in the district
i. These architectural standards shall apply to public facilities such as reservoirs, water towers, treatment plants, fire stations, pump stations, powertransmission facilities, etc. It is rec ognized that many of these facilities, due to their functional requirements, cannot readily be configured to meet these architectural standards. However, attempts shall be made to make the design sympathetic to surrounding properties by landscaping, setbacks, buffers, a nd all rea sonable arc hitec tural means.

RESPONSE: This project is a private mixed-use building. The requirements of this standard do not apply.
j. Parking spacesat trailheadsshall be located so as to preserve the view of, and access to, the trailhead entrance from the roadway. The entrance apron to the trailhead shall be marked: "No Parking," and include design features to fostertrail recognition.

RESPONSE: This project is not loc ated at a trailhead. The requirements of this standard do not apply.
C. Compatibility between adjoining uses, buffering, and sc reening.

1. In addition to the compatibility requirements contained in Chapter 24 CDC , buffering shall be provided between different types of la nd uses; forexample, buffering between single-family homes and a partment blocks. However, no buffering is required between single-family homes and duplexes or single-family attached units. The following factors shall be considered in determining the adequacy of the type and extent of the buffer:
a. The purpose of the buffer, forexample to decrease noise levels, absorb air pollution, filter dust, or to provide a visual bamier.
b. The size of the buffer required to achieve the purpose in tems of width a nd height.
c. The direction(s) from which buffering is needed.
d. The required density of the buffering.
e. Whether the viewer is stationary or mobile.

RESPONSE: This project has public right-of-way on three sides. The lot to the west is the same land use as the project site.
2. On-site screening from view from a djoining properties of such things as service a reas, storage areas, and parking lots shall be provided and the following factors will be considered in detemining the adequacy of the type a nd extent of the screening:
a. What needsto be screened?
b. The direction from which it is needed.
c. How dense the screen needsto be.
d. Whether the viewer is stationary ormobile.
e. Whetherthe screening needs to be year-round.

RESPONSE: All trash, storage, and parking are screened or enclosed by building walls.
3. Rooftop air cooling and heating systems and othermechanical equipment shall be screened from view from adjoining properties.

RESPONSE: Rooftop HVAC units are screened by parapets on all sides that will keep the units from being visible from the street
D. Privacy and noise.

1. Structures which include residential dwelling units shall provide private outdoor areas foreach ground floor unit which isscreened from view from adjoining units.
2. Residential dwelling units shall be placed on the site in areas having minimal noise exposure to the extent possible. Natural-appearing sound bariers shall be used to lessen noise impacts where noise levelsexceed the noise standards contained in West Linn Municipal Code Section 5.487.
3. Structures or on-site a ctivity a reas which generate noise, lights, or glare shall be buffered from adjoining residential uses in accordance with the standards in subsection C of this section where a pplic able.
4. Businesses or activitiesthat can reasonably be expected to generate noise in excess of the noise standards contained in West Linn Munic ipal C ode Section 5.487 shall undertake and submit a ppropriate noise studies and mitigate as necessary to comply with the code. (See CDC 55.110(B)(11) and 55.120(M).)

If the decision-making authority reasonably believes a proposed use may generate noise exceeding the standards specified in the municipal code, then the authority may require the applicant to supply professional noise studies from time to time during the user's first year of operation to monitor compliance with City standards and permit requirements.

> RESPONSE: There are no residential dwelling units planned as part of this project The requirements of parts 1 and 2 of this standard do not apply. There are no businesses or uses proposed at the time of the submittal that are antic ipated to generate noise in excess of the allowable in the requirements. Therefore, parts 3 and 4 of this standard do not apply.
E. Private outdoorarea. This section only applies to multi-fa mily projects.

1. In addition to the requirements of residential living, unit shall have an outdoor private area (patio, terrace, porch) of not less than 48 square feet in area;
2. The outdoor space shall be oriented towardsthe sun where possible; and
3. The area shall be screened ordesigned to provide privacy forthe users of the space.
4. Where balconies are added to units, the balconies shall not be less than 48 square feet, if they are intended to be counted as private outdoor areas.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.
F. Shared outdoor recreation areas. This section only a pplies to multi-family projects and projects with 10 or more duplexes orsingle-family attached dwellings on lots under 4,000 square feet. In those cases, shared outdoor recreation areas are calculated on the duplexes orsingle-family attached dwellings only. It also applies to qualifying PUDs under the provisions of CDC $\underline{24.170}$.

1. In addition to the requirements of subsection E of this section, usable outdoor recreation space shall be provided in residential developments for the shared or common use of all the residents in the following amounts:
a. Studio up to and including two-bedroom units: 200 square feet per unit.
b. Three ormore bedroom units: 300 square feet per unit.
2. The required recreation space may be provided asfollows:
a. It may be all outdoor space; or
b. It may be part outdoorspace and part indoorspace; for example, an outdoortennis court and indoor recreation room; and
c. Where some or all of the required recreation area is indoor, such as an indoor recreation room, then these indoor areas must be readily accessible to all residents of the development subject to clearly posted restrictions as to hours of operation and such regulations necessary for the safety of minors.
d. In considering the requirements of this subsection F, the emphasis shall be on usable recreation space. No single area of outdoor recreational space shall encompass an area of less than 250 square feet. All common outdoor recreational space shall be clearly delineated
and readily identifia ble as such. Small, marginal, a nd incidental lots or parcels of la nd are not usable recreation spaces. The location of outdoor recreation space should be integral to the overall design concept of the site and be free of hazards or constraints that would interfere with active recreation.
3. The shared space shall be readily observable to facilitate crime prevention and safety.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.

G. Demarcation of public, semi-public, a nd private spaces. The structures a nd site improvements shall be designed so that public areassuch asstreets or public gathering places, semi-public areas, and private outdoor areas are clearly defined in order to establish persons having a right to be in the space, to provide forcrime prevention, and to establish maintenance responsibility. These areas may be defined by:

1. A deck, patio, fence, low wall, hedge, ordraping vine;
2. A trellis or arbor,
3. A change in level;
4. A change in the texture of the path material;
5. Sign; or
6. Landscaping.

Use of gates to demarcate the boundary between a public street and a private access driveway is prohibited.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.

H. Public transit.

1. Provisions for public transit may be required where the site abuts an existing or planned public transit route. The required facilities shall be based on the following:
a. The location of other transit facilities in the area.
b. The size and type of the proposed development.
c. The rough proportionality between the impacts from the development and the required facility.
2. The required facilities shall be limited to such facilities as the following:
a. A waiting shelter with a bench surrounded by a three-sided covered structure, with transparency to allow easy surveillance of approaching buses.
b. A tumout area forloading and unloading designed per regional transit agency standards.
c. Hard-surface pathsconnecting the development to the waiting and boarding areas.
d. Regional transit agency standards shall, however, prevail if they supersede these standards.
3. The transit stop shall be located asclose as possible to the main entrance to the shopping center, public or office building, or multi-family project. The entrance shall not be more than 200 feet from the transit stop with a clearly identified pedestrian link.
4. All commercial business centers (over three ac res) and multi-family projects (over 40 units) may be required to provide forthe relocation of transit stops to the front of the site if the existing stop is within 200 to 400 yards of the site and the exaction is roughly proportional to the impact of the development. The commercial ormulti-family project may be required to provide new facilities in those cases where the nearest stop is over 400 yardsaway. The transit stop shall be built per subsection (H)(2) of this section.
5. If a commercial business center or multi-family project is adjacent to an existing or planned public transit stop, the parking requirement may be reduced by the multiplier of 0.9 , or 10 percent. If a commercial center is within 200 feet of a multi-family project, with over 80 units and pedestrian access, the parking requirement may be reduced by 10 percent or by a 0.90 multiplier.
6. Standards of CDC 85.200(D), Transit Facilities, shall also apply.

> RESPONSE: There is an existing bus stop at the comer of Willamette Falls Drive and $11^{\text {th }}$ Street, which is immediately adjacent to the main entry of the building at the northeast comer and is within 200 feet of all primary entries to the building. The stop is constructed with a bench, but without a shelter, consistent with other bus stops in the Willamette Falls Drive Commercial Design District. There is no parking requirement in the district, so parts 4 and 5 of the standard do not apply.
I. Public facilities. An applic ation may only be approved if adequate public facilities will be available to provide service to the property priorto occupancy.

1. Streets. Sufficient night-of-way and slope easement shall be dedic ated to accommodate all abutting streets to be improved to the City's Improvement Standards and Specifications. The City Engineer shall detemine the appropriate level of street and traffic control improvements to be required, including any off-site street and traffic control improvements, based upon the transportation analysis submitted. The City Engineer's determination of developer obligation, the extent of road improvement and City's share, if any, of improvements and the timing of improvements shall be made based upon the City's systems development charge ordinance and capital improvement program, and the rough proportionality between the impact of the development and the street improvements.

In determining the appropriate sizing of the street in commercial, office, multi-family, and public settings, the street should be the minimum necessary to accommodate antic ipated traffic load and needs and should provide substantial accommodations for pedestrians and bicyclists. Road and driveway alignment should consider and mitigate impacts on adja cent properties and in neighborhoods in tems of inc reased traffic loads, noise, vibrations, a nd glare.

The realignment or redesign of roads shall consider how the proposal meets accepted engineering standards, enhances public safety, and favorably relatesto adjacent lands and land uses. Consideration should also be given to selecting an alignment or design that minimizes or avoids hazard areas and loss of signific ant natural features (drainageways, wetlands, heavily forested a reas, etc.) unless site mitigation can clearly produce a superior landscape in tems of shape, grades, and reforestation, and is fully consistent with a pplic able code restrictions regarding resource areas.

Streets shall be installed perChapter 85 CDC standards. The City Engineer has the authority to require that street widths match adja cent street widths. Sidewalks shall be installed per CDC 85.200(A)(3) for commercial and office projects, and CDC 85.200(A)(16) and 92.010(H) for residential projects, and applicable provisions of this chapter. Where streets bisect or traverse water resource areas (WRAs) the street width shall be reduced to the minimum standard of 20 feet (two 10 -foot travel lanes) plus four-foot-wide curb flush sidewalks or altemate configurations which are appropriate to site conditions, minimize WRA disturbance or are consistent with an adopted transportation system plan. The street design shall also be consistent with habitat friendly provisions of CDC 32.060(H).

Based upon the City Manager's or Manager's designee's determination, the applic ant shall construct or cause to be constructed, orcontribute a proportionate share of the costs, for all necessary off-site improvements identified by the transportation a nalysis commissioned to address CDC 55.125 that are required to mitigate impacts from the proposed development. Proportionate share of the costs shall be detemined by the City Manager or Manager's designee, who shall a ssume that the proposed development provides improvements in rough proportion to identified impacts of the development.

RESPONSE: All streets adjac ent to the project are existing public streets that will remain.

2. Repealed by Ord. 1635.
3. Municipal water. A registered civil engineer shall prepare a plan for the provision of water which demonstrates to the City Engineer's satisfaction the availability of sufficient volume, capacity, and pressure to serve the proposed development's domestic, commercial, and industrial fire flows. All plans will then be reviewed by the City Engineer.

RESPONSE: Water fac ilities senving the project site are existing and will remain.
4. Sanitary sewers. A registered civil engineer shall prepare a sewerage collection system plan which demonstrates sufficient on-site capacity to serve the proposed development. The City Engineer shall determine whether the existing City system has sufficient capacity to serve the development.

RESPONSE: Sewer facilities senving the project site are existing and will remain.

5. Solid waste and recycling storage areas. Appropriately sized and located solid waste and recycling storage areas shall be provided. Metro standards shall be used.

RESPONSE: An appropriately sized solid waste and recyc ling storage area is provided inside the southwest comer of the building and is ac cessed from Knapps Alley.

J. C rime prevention and safety/defensible space.

1. Windows shall be located so that a reas vulnerable to crime can be surveyed by the occupants.

RESPONSE: Windows overlook the public walks and Knapps Alley. There are no windows on the west elevation due to fire ratings.

2. Interior laundry and service areas shall be located in a way that they can be observed by others.

RESPONSE: No interior laundry is planned for the project
3. Mailboxes, rec ycling, and solid waste facilities shall be loc ated in lighted a reas having vehicular or pedestrian traffic.

RESPONSE: Mailboxes and trash containers will be located inside the building lobby.
4. The exterior lighting levels shall be selected and the angles shall be oriented towards areas vulnerable to crime.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district
5. Light fixtures shall be provided in areas having heavy pedestrian or vehic ular traffic and in potentially dangerous a reas such as parking lots, stairs, ramps, and abrupt grade changes.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district
6. Fixtures shall be placed at a height so that light pattems overlap at a height of seven feet which is sufficient to illuminate a person. All commercial, industrial, residential, and public facility projects undergoing design review shall use low or high pressure sodium bulbsand be able to demonstrate effective shielding so that the light is directed downwards ratherthan omnidirectional. Omni-directional lights of an omamental nature may be used in general commercial distric ts only.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district
7. Lines of sight sha ll be reasonably esta blished so that the development site is visible to police and residents.

RESPONSE: The entire project is loc ated at the property lines. Public sidewalks and Knapps Alley allow for adequate lines of sight.
8. Sec urity fences for utilities (e.g., power transformers, pump stations, pipeline control equipment, etc.) or wireless communic ation facilities may be up to eight feet tall in orderto protect public safety. No variances are required regardless of loc ation.

RESPONSE: No utility fences are planned for the project
K. Provisions for persons with disabilities.

1. The needs of a person with a disability shall be provided for. Ac cessible routes shall be provided between all buildings and accessible site facilities. The accessible route shall be the most practic al direct route between accessible building entries, accessible site facilities, and the accessible entry to the site. An accessible route shall connect to the public right-of-way and to at least one on-site oradjacent transit stop (if the area is served by transit). All facilities shall conform to, or exceed, the Americ ans with Disa bilities Act (ADA) standards, including those included in the Uniform Building Code.

RESPONSE: Ac cessible parking spaces are provided both in the surface parking area and in the garage and connect to accessible building entries which lead to a fully accessible interior. Additionally, the central entry at the lobby exits onto a public sidewalk that connects to public transit stops. All facilities will comply with ADD requirements.

L Signs.

1. Based on considerations of crime prevention and the needs of emergency vehicles, a system of signsfor identifying the location of each residential unit, store, or industry shall be established.

RESPONSE: Building identification signage will be provided to meet the requirements of local emergency service providers.
2. The signs, graphics, and letterstyles shall be designed to be compatible with surrounding development, to contribute to a sense of project identity, or, when appropriate, to reflect a sense of the history of the area and the arc hitec tural style.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign pemit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District
3. The sign graphics and letterstyles shall announce, inform, a nd designate partic ular a reas or uses as simply and clearly as possible.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District
4. The signs shall not obscure vehicle driver's sight distance.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District
5. Signs indic ating future use shall be installed on land dedic ated for public facilities (e.g., parks, water reservoir, fire halls, etc.).

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District
6. Signs and appropriate traffic control devices and markings shall be installed or painted in the driveway and parking lot areasto identify bicycle and pedestrian routes.

> RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under separate sign pemit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District
M. Utilities. The developer shall make necessary a rrangements with utility compa nies or other persons or comporations affected for the installation of underground lines and facilities. Electric al lines and other wires, including but not limited to communication, street lighting, a nd cable television, shall be placed
underground, as practical. The design standards of Tables 1 and 2 above, and of subsection 5.487 of the West Linn Municipal Code relative to existing high ambient noise levels shall apply to this section.

RESPONSE: All utilities to the site are existing and will remain. The secondary feeds from the main lines to the building will be the only new work.

N. Wireless communic ation facilities (WCFs). (This section only applic able to WC Fs.) WCFs as defined in Chapter 57 CDC may be required to go through Class I or Class II design review. The approval criteria for ClassI design review is that the visual impact of the WCF shall be minimal to the extent allowed by Cha pter 57 CDC. Stealth designs shall be suffic iently camouflaged so that they a re not easily seen by passersby in the public right-of-way or from any adjoining residential unit. WCFs that are classified as Class Il design review must respond to all of the approval criteria of this chapter.

RESPONSE: Not applicable - none proposed.

O. Refuse and recycling standards

1. All commercial, industrial and multi-family developments over five units requiring Class II design review shall comply with the standards set forth in these provisions. Modific ations to these provisions may be permitted if the Planning Commission determines that the changes are consistent with the purpose of these provisions and the City receives written evidence from the local franchised solid waste and recycling firm that they are in agreement with the proposed modifications.

RESPONSE: No modifications proposed for this development

2. Compactors, containers, a nd drop boxesshall be located on a level Portla nd cement concrete pad, a minimum of four inches thick, at ground elevation or other location compatible with the local franchise collection fim's equipment at the time of construction. The pad shall be designed to discharge surface water runoff to avoid ponding.

RESPONSE: A min. 4 " thick conc rete slab will be constructed in the trash enclosures where the containers will be placed on.

3. Recycling and solid waste service areas.
a. Recycling receptaclesshall be designed and located to serve the collection requirements for the specific type of material.
b. The recycling area shall be located in close proximity to the garbage container areas and be accessible to the local franchised collection fim's equipment.
c. Recycling receptacles or shelterslocated outside a structure shall have lids and be covered by a roof constructed of water and insect-resistive material. The maintenance of enclosures, receptacles and shelters is the responsibility of the property owner.
d. The location of the recycling area and method of storage shall be approved by the local fire marshal.
e. Recycling and solid waste service areasshall be at ground level and/or otherwise accessible to the franchised solid waste and recycling collection fim.
f. Recycling and solid waste service areas shall be used only for puposes of storing solid waste and recyclable materials and shall not be a general storage area to store personal belongings of tenants, lessees, property mana gement or owners of the development or premises.
g. Recyclable material service areas shall be maintained in a clean and safe condition.

RESPONSE: Solid waste containers will be for the storage of trash and recyc ling containers provided by the local waste management company. These containers will be provided in a screened enc losures with swing gates. Size of containers and frequenc y of pic k-ups will be determined by the Building Owner and the waste management company.
4. Special wastes or recyclable materials.
a. Environmentally haza rdous wastes defined in ORS 466.005 shall be located, prepared, stored, maintained, collected, transported, a nd disposed in a manner acceptable to the Oregon Department of Environmental Quality.

RESPONSE: Hazardous wastes will be handled and disposed of per state law. Cooking grease, if any, will be stored in approved containers within the restaurant.
b. Containers used to store cooking oils, grease or animal renderings for recycling or disposal shall not be located in the principal recyclable materials or solid waste storage areas. These materials shall be stored in a separate storage area designed for such purpose.

RESPONSE: Hazardous wastes will be handled and disposed of perstate law. Cooking grease, if any, will be stored in approved containers within the restaurant.
5. Screening and buffering.
a. Enclosures shall include a curbed landscape area at least three feet in width on the sides and rear. Landscaping shall include, at a minimum, a continuous hedge maintained at a height of 36 inches.

RESPONSE: The enc losure is fully contained within the building struc ture. Other screening requirements of this section do not apply.
b. Placement of enclosures adjacent to residentially zoned property and along street frontages is strongly disc ouraged. They shall be located so as to conceal them from public view to the maximum extent possible.

RESPONSE: The enc losure is fully contained within the building struc ture. Other screening requirements of this section do not apply.
c. All dumpsters a nd other trash containers shall be completely screened on all four sides with an enclosure that is comprised of a durable material such asmasonry with a finish that is arc hitec turally compatible with the project. Chain link fencing, with or without slats, will not be allowed.

RESPONSE: The enc losure is fully contained within the building struc ture. Other screening requirements of this section do not apply.
6. Litter receptacles.
a. Location. Litter receptaclesmay not encroach upon the minimum required walkway widths.

RESPONSE: Site fumishings, such as litter receptacles, have not been selec ted at the time of this applic ation. Future selections will be submitted for approval.
b. Litter receptacles may not be loc ated within public nights-of-way except as pemitted through an agreement with the City in a manner acceptable to the City Attomey or his/her designee.

RESPONSE: Site fumishings, such as litter receptacles, have not been selected at the time of this application. Future selections will be submitted for approval.
c. Number. The number and location of proposed litter receptacles shall be based on the type and size of the proposed uses. However, at a minimum, fornon-residential uses, at least one extemal litter receptacle shall be provided for every 25 parking spaces for first 100 spaces, plus one receptacle for every additional 100 spaces. (Ord. 1547, 2007; Ord. 1604 § 52, 2011; Ord. 1613 § 12, 2013; amended during J uly 2014 supplement; Ord. 1623§ 6, 2014; Ord. 1635 § 26, 2014; Ord. 1636 § 37, 2014)

RESPONSE: Site fumishings, such as litter receptac les, have not been selected at the time of this applic ation. Future selections will be submitted for approval.

55.110 SITE ANALYSIS

The site a nalysis shall include:
A. A vicinity map showing the location of the property in relation to adjacent properties, roads, pedestrian and bike ways, transit stops and utility access.

RESPONSE: See Civil drawings for this information.
B. A site analysis on a drawing at a suitable scale (in order of preference, one inch equals 10 feet to one inch equals 30 feet) which shows:

1. The property bounda ries, dimensions, and gross area.

RESPONSE: See Civil drawings for this information.
2. Contourlines at the following minimum intervals:
a. Two-foot intervals for slopes from zero to 25 percent; and
b. Five- or 10 -foot intervals for slopes in excess of 25 percent.

RESPONSE: See Civil drawings for this information.
3. A slope a nalysis which identifies portions of the site according to the slope ranges as follows:
a. Type I (under 15 percent);
b. Type II (between 15 to 25 percent);
c. Type III (between 25 to 35 percent);
d. Type IV (over 35 percent).

RESPONSE: See Civil drawings for this information.
4. The location and width of adjoining streets.

RESPONSE: See Civil drawings for this information and Existing Conditions plan (Survey).
5. The drainage pattems and drainage courses on the site and on adjacent lands.

RESPONSE: See Civil drawings for this information.
6. Potential natural hazard a reas including:
a. Floodplain areas pursuant to the site's applic able FEMA Flood Map panel;
b. Water resource areas as defined by Chapter 32 CDC;
c. Landslide areas designated by the Natural Hazard Mitigation Plan, Map 16; and
d. Landslide vulnerable analysis areas, designated by the Natural Hazard Mitigation Plan, Map 17.

RESPONSE: See Civil drawings for this information.
7. Resource areas including:
a. Wetlands;
b. Riparian comidors;
c. Streams, including intermittent and ephemeral streams;
d. Habitat conservation areas; and
e. Large rock outcroppings.

RESPONSE: See Civil drawings for this information.
8. Potential historic landmarks and registered a rchaeologic al sites. The existence of such sites on the property shall be verified from records maintained by the Community Development Department and other recognized sources.

RESPONSE: None exist on the site. Further doc umentation will be provided to the City if requested.
9. Identific ation information including the name and address of the owner, developer, project designer, lineal sc ale and north a rrow.

RESPONSE: See Civil \& Architectural drawings for this information.

10. Identify Type I and II lands in map form. Provide a table which identifies square footage of Type I and II lands also as percentage of total site square footage. (Ord. 1408, 1998; Ord. 1425, 1998; Ord. 1442, 1999; Ord. 1463, 2000; Ord. 1526, 2005; Ord. 1544, 2007; Ord. 1565, 2008; Ord. 1590 § 1, 2009; Ord. 1613 § 13, 2013; Ord. 1621 § 25, 2014; Ord. 1635 § 27, 2014; Ord. 1636 § 38, 2014)

55.120 STIE PLAN

The site plan shall be at the same scale as the site a nalysis (CDC $\underline{55.110}$) and shall show:
A. The applicant's entire property and the surounding property to a distance sufficient to determine the relationship between the applic ant's property and proposed development and adjacent property and development.

RESPONSE: See provided site plan.
B. Boundary lines and dimensions for the perimeter of the property and the dimensions for all proposed lot orparcel lines.

RESPONSE: See provided site plan.
C. Streams and stream coridors.

RESPONSE: See provided site plan.
D. Identific ation information, including the name and address of the owner, developer, project designer, lineal sc ale and north a rrow.

RESPONSE: See provided site plan.
E. The location, dimensions, and names of all existing and proposed streets, public pathways, ea sements on adjacent properties and on the site, and all associated rights-of-way.

RESPONSE: See provided site plan.
F. The loc ation, dimensions and setback distances of all:

1. Existing and proposed structures, improvements, and utility facilities on site; and
2. Existing structures and driveways on adjoining properties.

RESPONSE: See provided site plan.
G. The location and dimensions of:

1. The entrances and exits to the site;
2. The parking and circulation areas;
3. Areas for waste disposal, recycling, loading, and delivery;
4. Pedestrian and bic ycle routes, including designated routes, through parking lots and to adjacent rights-of-way;
5. On-site outdoor recreation spaces and common areas;
6. All utilities, inc luding stomwater detention and treatment; and
7. Sign locations.

RESPONSE: See provided site plan.
H. The location of areasto be landscaped. (Ord. 1442, 1999; Ord. 1613 § 14, 2013; Ord. 1622 § 28, 2014; Ord. 1636 § 39, 2014)

RESPONSE: See provided site plan.

55.125 TRANSPORIATION ANALYSIS

Certain development proposals required that a Traffic Impact Analysis (TIA) be provided which may result in modific ations to the site plan orconditions of a pproval to address or minimize a ny adverse impacts c reated by the proposal. The purpose, applicability a nd standards of this analysis are found in CDC 85.170(B)(2). (Ord. 1584, 2008)

RESPONSE: A Traffic Impact Analysis has been prepared by Lancaster Engineering on February $9^{\text {th }} \mathbf{2 0 1 6}$ and included in this applic ation.

55.130 GRADING PLAN

The grading and drainage plan shall be at a scale sufficient to evaluate all aspects of the proposal and shall include the following:
A. The location and extent to which grading will take place indic ating general contour lines, slope ratios, slope stabilization proposals, and location and height of retaining walls, if proposed.

RESPONSE: The civil site drawings show the existing contours. The proposed building will match the existing grades along the frontages and on the property line to the west Finish grades are shown on the civil and arc hitectural plans to demonstrate how the building fits with the existing grades
B. A registered civil engineer shall prepare a plan and statement that shall be supported by factual data that clearly shows that there will be no adverse impacts from inc reased intensity of runoff off site, or the plan and statement shall identify all off-site impacts and measures to mitigate those impacts. The plan and statement shall, at a minimum, determine the off-site impacts from a 10-yearstom.

RESPONSE: A preliminary storm report has been prepared to demonstrate how the impenvious roof area will be collected into a detention tanks with orifices that release storm water at the pre-development rates for the 2 through $\mathbf{2 5}$ year events. The stom water from this site will be connected to the public system with a 8 -inch line at a point where the public system has a larger 12 -inch line with a capacity approximately 35 times the 25-year flow from this development.
C. Storm detention and treatment plans may be required.

RESPONSE: A storm detention tank is proposed as shown on the site utility plan whic h will detain the developed flows and discharge at the pre-developed rates for stom events of 2-though $\mathbf{2 5}$ years. Because the building covers almost this entire site no infiltration or water quality swales or rain gardens are possible. A storm water pollution control manhole will provide treatment. Roof water generally does not c ontain hamful pollutants and in most cases is exempt from DEQ regulations for water quality.
D. Identific ation, information, including the name a nd address of the owner, developer, project designer, a nd the project engineer. (Ord. 1463, 2000; Ord. 1613 § 15, 2013; Ord. 1622 § 28, 2014)

RESPONSE: The civil plans provide a listing of the owner/ developer, arc hitect, engineer and surveyor with names and contact information.

55.140 ARC HITEC TURAL DRAWNGS

This section does not apply to single-family residential subdivisions or partitions, or up to two duplexes or single-family attac hed dwellings.

Arc hitectural drawings shall be submitted showing:
A. Building elevations and sections tied to curb elevation;

RESPONSE: See provided plans.
B. Building materials: colorand type; and

RESPONSE: See provided plans.
C. The name of the architect or designer. (Ord. 1408, 1998; Ord. 1613 § 16, 2013)

RESPONSE: See provided plans.

55.150 LANDSCAPE PLAN

This section does not apply to detached single-family residential subdivisions or partitions, or up to two duplexes orsingle-family attac hed dwellings.
A. The landscape plan shall be prepared and shall show the following:

1. Preliminary underground ingation system, if proposed;
2. The location and height of fences and other buffering of screening materials, if proposed;
3. The location of terraces, decks, patios, shelters, and play areas, if proposed;
4. The location, size, and species of the existing and proposed plant materials, if proposed; and
5. Building and pavement outlines.

RESPONSE: Due to the allowable site coverage of 100% the proposed development will only be providing concrete raised planters along the front entrances of the major Tenants. Any plantings would adhere to the list of City approved species.
B. The landscape plan shall be accompanied by:

1. The erosion controls that will be used, if necessary;
2. Planting list; and
3. Supplemental information as required by the Planning Director orCity Arborist. (Ord. 1408, 1998; Ord. 1613 § 17, 2013)

RESPONSE: No erosion control measures required for this development A planting list will be provided to the City Arborist priorto any installation.

55.170 EXC EPIIONS TO UNDERLYING ZONE, YARD, PARKING, SGN PROVISIONS, AND LANDSCAPING PROVISIONS

A. The Planning Directormay grant an exception to the dimensional building setback or yard requirements in the applic able zone based on findings that the approval will satisfy the following criteria:

1. A minorexception that is not greaterthan 20 percent of the required setback.
2. A more effic ient use of the site.
3. The preservation of natural features that have been incomorated into the overall design of the project.
4. No adverse affect to adjoining properties in tems of light, air circulation, noise levels, priva cy, and fire hazard.
5. Safe vehic ular and pedestrian access to the site and safe on-site vehicular and pedestrian c irculation.

RESPONSE: No exceptions are being requested as part of this application.
B. The Planning Directormay grant an exception to the off-street parking dimensional and minimum number of space requirements in the applicable zone so long as the following criteria are met:

1. The minor exception is not greater than 10 percent of the required parking;
2. The application is for a use designed for a specific purpose which is intended to be permanent in nature (for example, a nursing home) and which has a low demand for off-street parking; or
3. There is an opportunity forsharing parking and there is written evidence that the property owners are willing to enterinto a legal agreement; or
4. Public transportation is available to the site reducing the standards a nd will not adversely affect adjoining uses, and there is a community interest in the preservation of partic ular natural feature(s) of the site which make it in the public interest to grant an exception to parking standards.

RESPONSE: No exceptions are being requested as part of this applic ation.
C. The Pla nning Directormay grant an exception to the sign dimensional requirements in the applicable zone when the following criteria are met:

1. The minorexception is not greater than 10 percent of the required applicable dimensional standard for signs;
2. The exception is necessary for a dequate identific ation of the use on the property; and
3. The sign will be compatible with the overall site plan, the structural improvements, a nd with the stuctures and uses on adjoining properties.

RESPONSE: No exceptions are being requested as part of this applic ation.
D. The Planning Directormay grant an exception to the landscaping requirements in the applicable zone based on findings that the following criteria will be met:

1. A minorexception that is not greater than 10 percent of the required landscaped area.
2. A more efficient use of the site.
3. The preservation of natural features that have been incorporated into the overall design of the project.
4. No adverse effect to adjoining property.

RESPONSE: No exc eptions are being requested as part of this applic ation.

55.180 MAINIENANCE

All on-site improvements shall be the ongoing responsibility of the property owner or occupant.
RESPONSE: The applic ant ac knowledges this responsibility.

55.190 SHARED OPEN SPACE

Where the open space is designated on the plan ascommon open space, the following shall apply:
A. The open space area shall be shown on the final plan and recorded with the Planning Director.

RESPONSE: There is no shared open space planned as part of this application.
B. The open space shall be conveyed in accordance with one of the following methods:

1. By dedic ation to the City as publicly owned and mainta ined as open space. Open space proposed fordedication to the City must be acceptable to it with regard to the size, shape, location, improvement, and budgetary and maintenance limitations.

RESPONSE: There is no shared open space planned as part of this applic ation.
2. By leasing or conveying title (including beneficial ownership) to a comoration, home association, or other legal entity with the City retaining the development rights to the property. The terms of such lease or other instrument of conveya nce must include provisions suita ble to the City Attomey for guaranteeing the following:
a. The continued use of such land for intended purposes.
b. Continuity of property maintenance.
c. When appropriate, the availability of funds required for such maintenance.
d. Adequate insurance protection.
e. Recovery for loss sustained by casualty and condemnation, or otherwise.

RESPONSE: There is no shared open space planned as part of this applic ation.
3. By a ny method that a chieves the objectives set forth in subsection (B)(2) of this section.

RESPONSE: There is no shared open space planned as part of this application.

55.195 ANNEXATION AND STRETUGHIS

As a condition of approval fordesign review for any project that is being annexed to the City, the developer and/or homeowners association shall pay for all expenses related to street light energy and maintena nce costs until annexed into the City. The approval for a ny property a nnexed must state: "This approval is contingent on voter approval of annexation of the subject property." This means that no permit, final plat, or certific ate of occupancy may be issued or approved until annexation is complete. (Ord. 1442, 1999; Ord. 1604 § 53, 2011).

RESPONSE: The subject property is located within the city limits. The requirements of this section do not apply.

End of Chapter Responses

Willamette Neighborhood NA
Minutes of November 11, 2015
7pm West Linn Police Station
The meeting was called to order by president, Gail Holmes, at 7pm. Minutes from last month's meeting were summarized and approved.

Treasury has a balance of $\$ 4,299.35$ with obligations of appx $\$ 800$ for a wooden Willamette sign, $\$ 150$ for Halloween treats and $\$ 200$ for Main Street seasonal banners.

Transportation: Midge Pierce reported on the considerations of the TSP plan. The Planning Commission will address this subject Wednesday November 18 and Midge urges WNA to attend.
Traffic calming devices for Willamette Falls Drive are:

1. curb extensions
2. pavement textures and striped crosswalks
3. stop signs at 14th at bus stop (will affect Dollar Street also)

Signage considerations:
"No parking" on roadway at Field's Bridge Park
Final decisions are yet to occur. WNA urged to attend and testify.
Main Street: Jody Carson mentioned a new manager, Noelle Brooks, who will work 10 to 15 hours a week and work with local merchants. With a manager in place, Main Street will then be eligible to apply for grants.

The Holiday Parade on Willamette Falls Drive will occur December 5th followed by Santa at the Fire Station.
Red decorative seasonal banners will soon appear on posts along WF Drive.
Plans are developing for median strip improvements, flower bed revitalizing and reshaping plus future "period" light standards.
Willamette entrance signs: WNA has chosen the south end of 10th Street in the median strip plus the east end of Field's Bridge as appropriate locations. A third sign would be nice at Johnson Road and Blankenship. Suggestions will be forwardrd to Parks and Rec who will install signs.

Annual WNA Report: Gail will organize a report including accomplishments and goals.
A tri-fold flyer about the WNA would be a priority. In addition, a goal will be to support the Main Street Design Committee's efforts to improve WF Drive.

Historic Review Board: Jody Carson described a sculpture planned for the entrance to the river path along the Willamette. It will include original grinding stones and an interpretation of paper shredding and manufacture. Donations encouraged.
iCon Construction: Scot Sutton and Kevin Godwin of SGR Architects presented plans for an office building at 11th and WF Drive. The building will be 25,000 sf with underground parking plus alley parking totally 42 slots. Office and retail space is planned with a possible boutique hotel on the second floor.

Members of the WNA were very pleased with design and offered suggestions.

Dogs in Mary Young Park: David Baker described a petition circulating which requests Mary Young Park be open in entirety for off leash dogs at certain hours. The Parks Advisory Board unanimously voted down this petition of 500 persons. An existing off leash area near the parking area could be fenced.

The WNA voted to support the decision of the Parks Advisory Board and urged a negative vote among the City Council for the following reasons:

1. safety to humans and other dogs
2. detriment to vegetation and wildlife in this natural area
3. liability should someone be hurt
4. potential unsanitary effect on play fields
5. a poor president for other city parks

The WNA will meet December 9th at the police station if room is available.
Meeting adjourned 8:30pm
Elizabeth Rocchia

SG ARCHITECTURE, LLC

Code Analysis

February 2016

Willamette Falls Drive Mixed Use 1969 Willamette Falls Drive, West Linn, OR

Planner: Peter Spir
Development Engineer: Khoi Le

GENERAL

A two story mixed use building at the corner of Willamette Falls Drive and 11th Street, West Linn, OR. Possible uses include retail, restaurant, office, or hotel

Codes:

2014 Oregon Structural Specialty Code
2014 Oregon Mechanical Specialty Code
2014 Oregon Plumbing Specialty Code
2014 Oregon Energy Efficiency Specialty Code cover

Zoning:

Jurisdiction: City of West Linn
Code: Community Development Code
Zone: GC (General Commercial - CDC Chapter 19)
Zone Overlays: Willamette Commercial Historic Overlay Zone
Utilities:
Water/Sewer: West Linn Public Works - 503 656-6081 (Operations)
Trash: West Linn Refuse - 503-557-3900
Electric: Portland General Electric - 800-542-8818
Gas: NW Natural - 800-422-4012

ZONING ANALYSIS

Legal Description:

Lots 1,2, \& 3, Block 10, City of West Linn, Clackamas County, Oregon

Tax Lot Number:

31E02BA04100

Adjacent Zones:

MU (North \& East), R-5 medium density residential (South), GC (West)

Permitted Uses (19.030, anticipated uses):

Business uses, restaurant, retail, hotel, professional/medical services.

Dimensional Requirements (19.070):

Minimum Front Lot Line Width: 35'
Average Minimum Front Lot Line Width: 50'
Average Minimum Lot Depth: 90^{\prime}
Building Height (CDC): 2 stories/35’
Building Height (OSSC):
Ground Level Minimum Height: 10^{\prime}
Setbacks: Front - 0^{\prime} min. $/ 0^{\prime}$ max., Side - $0^{\prime} / 0^{\prime}$, Rear $20^{\prime} / 20^{\prime}$
Lot Coverage: 100% max.
Site Landscaping:
None required.

Parking lot landscaping:

$5 \%+$ perimeter at surface parking
Site Access (information based on City's 2005 review of the project):
Knapps Alley may be used for parking access and may be backed into from parking stalls, but 20^{\prime} width of alley must be paved for entire length of site. On-site parking that is accessed from Knapps Alley can only be used by employees of the building and not by visitors. Even high volume employee use may not be allowed.

On-site parking access from 11th Street may be allowed, but curb cut must be 35^{\prime} away from the corner.

46.140 PARKING

Exemptions:

To facilitate the design requirements of Chapter 58 CDC , properties in the Willamette Falls Drive Commercial District/Overlay Zone, located between 10th and 16th Streets, shall be exempt from the requirements for off-street parking as identified in this chapter. Any offstreet parking spaces provided shall be designed and installed per the dimensional standards of this code.

Standards:

Standard Stall: 9' x 18^{\prime}
Compact Stall: $8^{\prime} \times 16^{\prime}$
ADA Stalls: (1) Van Accessible $9^{\prime} \times 18^{\prime}$ space with 8^{\prime} x 18^{\prime} access aisle required.
Drive Aisle: 23^{\prime} drive aisle required for 90° head-in parking (City has previously agreed that the 20^{\prime} alley may be used in lieu of the required 23^{\prime} aisle.
Parallel (on-street): 9' x 23'

Code Analysis

Willamette Falls Mixed Use
February 2016

On-Street parking:

Existing on Willamette Falls Drive and 11th Avenue.

Bicycle parking (varies by occupancy):

Retail: 1/3000 s.f., 50% covered
Office, Medical: $2+0.5 / 1000$ s.f., 10% covered
Restaurant: $1 / 1000$ s.f., 25% covered
Hotel (residential): 1/unit, 50% covered

Off-street loading required:

Retail: first stall required when area $>10,000$ s.f.
Restaurant: first stall required when area $>5,000$ s.f.
Office: first stall required when area $>10,000$ s.f.
Hotel: first stall required when area $>10,000$ s.f.

Off-street loading area:

Size: 14^{\prime} x 20 '

52.000 SIGNS

Sign Permit:

A separate sign permit is required.

Sign Exemptions:

Signs placed inside windows are exempt from the chapter provisions. Parking lot signs up to three square feet in area with a maximum height no greater than five feet above grade and directed to the interior of a parking lot and not to a right-of-way shall not require a sign permit.

Sign Variances:

Sign height and area variances shall be a Class II variance procedure, reviewed pursuant to the provisions of subsection C of this section and Chapter 75 CDC. All other sign variances shall be Class I variance procedures, and shall be reviewed pursuant to the provisions of subsection C of this section and CDC 75.050.

Signs in the Willamette Falls Drive Commercial District:

Signs shall not exceed 10 percent of the square footage of the front elevation. The sign(s) shall be proportionate to buildings and signs on adjacent buildings. The " 10 percent" shall be broken up into multiple signs. The sign(s) shall be mounted or painted on the second floor, on the valance of the awning, on the windows at pedestrian level, or on four-by-four awning posts.

Signs shall not be of the internally lit can type or channel light type. No backlit awnings are allowed. Illumination by spotlight is permitted. Neon signs are permitted only inside the windows. No flashing signs are allowed. Small signs or plaques which describe the building in a historical sense are exempt from the allowable square footage restrictions.

Sign fonts: Antique lettering is required. Variations are permitted where the lettering would not clash with the predominant font or style. "Gay Nineties" or "P.T. Barnum" type styles, and other exaggerated styles are discouraged. Lettering may be horizontal, vertical, or slanting up from lower left to upper right. Semi-circle designs on windows are permitted. Window lettering should be white, black, or gold with black shading.

Signs Quantity:

Maximum of 3 on-wall signs.

58.090 WILLAMETTE FALLS DRIVE COMMERCIAL DISTRICT DESIGN STANDARDS

Building form, scale and depth:

Emphasize the vertical through narrow, tall windows (especially on second floor), vertical awning supports, engaged columns, and exaggerated facades creating a height-to-width ratio of 1.5:1. Building depth shall be flat, only relieved by awning and cornice projections and the indented doorway.

Spacing and rhythm:

Provide strong vertical breaks or lines should be regularly spaced every 25 to 50 feet.

Facades:

No gables, hipped, or pitched roofs shall be exposed to the street at the front. The "Western false front" shall be the preferred style although variations shall be allowed.

Cornice:

Broad and may include regularly spaced supporting brackets. A cornice is not required, but preferred.

Building materials:

1×8 horizontal wood siding. Brick and certain concrete configurations are permitted only by a variance under CDC 58.090 .

Awnings:

All buildings shall have awnings extending out from building face. Transoms are preferred but not required. Awnings shall be either canvas or vinyl, with internal metal framework, curved metal supports, or a 4×4 wood post at the outside of the sidewalk. Minimum clearance of 7,10 to 40 degree angle slope.

Extruded roofs:

Extruded roofs may be substituted for awnings, must have a 10 - to 40 -degree pitch and extend one to two feet from the building face just above the transom windows where the first and second stories meet. The roof runs along the entire building frontage.
Standard roofing materials are used. Transoms are required with extruded roofs.

Doors and entryways:

The entryway shall be centered in the middle of the building at grade. The buildings on street corners may position their entries on the corner at an angle. Doors may be single or double,

Code Analysis

Willamette Falls Mixed Use
February 2016
and shall be recessed three to five feet back from the building line. Doors shall have glazing in the upper two-thirds to half of the door, with panels below. The entryway shall have windows on all sides at the same level as the other display windows. Wood doors are preferred.

Glazing:

Clear glass only. Lettering on glass is permitted.

Display or pedestrian level windows:

Shall extend across at least 80 percent of building front. The windows shall start one and onehalf to two and one-half feet above grade to a height of seven to eight feet, and shall be level with the top of the height of the adjacent entryway area, excluding transom. The window shall be broken up into numerous lights. From 1880 onwards, the number of lights was generally no more than six in a pedestrian-level window. The frames may be wood or vinylclad wood, or other materials so long as a matte finish is possible.

Second floor and other windows:

Double- and single-hung windows proportionately spaced and centered. Smaller square shaped windows may be permitted (one and one-half feet to two feet per side). A typical window should have a $3: 1$ height to width ratio for the glass area. There should be a minimum of two lights: "one over one" of equal size. "Two over one" or "four over one" is appropriate.

Wainscoting:

Where provided, wainscoting shall be consistent with primary material of the building, typically wood.

Shutters:

Shutters are not allowed.

Balconies:

No balconies are permitted except on rear of building.

Exterior stairs:

Exposed exterior stairs are permitted on the rear or side of the building only.

Roof mounted mechanical equipment:

Equipment shall be screened from view on all sides by normal and consistent architectural features of the building. CDC 55.100(D), Privacy and noise restrictions apply.

Exterior lighting fixtures:

Any lighting fixtures that can be traced to 1880 - 1915 period are permitted. Simple modern fixtures that are screened and/or do not attract attention are acceptable. Overly ornate fixtures of the Victorian era are not acceptable.

Transoms:

Transom windows are required with extruded roofs and optional with awnings. Transom windows shall cover the front of the building above the main display windows and the entryway area. Transoms should be broken up into sections every six inches to three feet in a
consistent and equal pattern. Height should not exceed three feet. Transoms may or may not open. False (drop) ceilings are allowed behind the transoms.

Planters:

No planters are allowed.

Paint colors:

Typical body colors include white, cream, or a light, warm color of low intensity. Accents, trims, windows, etc., should be dark-colored. Contrasting colors should be compatible. Existing colors shall not enjoy protected status when repainting is proposed. A palette or color wheel of acceptable 1880 - 1915 period colors, available at the Community Development Department, shall be the basis for color selection. No other colors are allowed. The palette is.

Flags, pennants, or banners: Ornamental or advertising flags, pennants, or banners are not permitted.

BUILDING CODE ANALYSIS

Note that many aspects of the Building Code analysis cannot be determined until building plans are more definitive. The following analysis describes the limits in the Code for the various occupancies anticipated.

Possible Occupancy Groups:

A-2: Restaurant
B: Business
M: Retail
R-1: Hotel
S-2: Parking Garage

Construction Type:

Projected Construction Type - Ground \& Second Floors: V-B Sprinklered (frame construction).
Projected Construction Type - Garage: Type 1 or 2 (concrete or masonry construction).

Allowable Areas by Occupancy Group

(includes increases for sprinkler and separations)*:
A-2: Restaurant - $\quad 6000+[6000 \times 2($ sprinkler $)]+[6000 \times .17$ (separation $)]=19,020$ s.f.

B: Business - $9000+[9000 \times 2($ sprinkler $)]+[9000 \times .17($ separation $)]=28,530$ s.f.

M: Retail - $9000+[9000 \times 2($ sprinkler $)]+[9000 \times .17($ separation $)]=28,530$
s.f.

R-1: Hotel - $\quad 7000+[7000 \times 2$ (sprinkler) $]+[7000 \times .17$ (separation) $]=22,190$ s.f.
S-2: Garage - $\quad 13,500+[13,500 \times 2$ (sprinkler) $]+[13,500 \times .17$ (separation) $]=42,795$ s.f.
*Subject to the 'Sum of the Ratios' limitation: the combined areas of each occupancy divided by the overall building area must result in a ratio of less than 1.0.

Allowable Building Height Above Grade:
By Construction Type: 40'

Code Analysis

Willamette Falls Mixed Use
February 2016
By Zone: 35^{\prime} (The height limitation in the zone governs)
Occupancy Separations (vertical and horizontal):
A-2: Restaurant / B: Business, M: Retail, or R-1: Hotel $=1$-hour
R-1: Hotel / B: Business, M: Retail, or A-2: Restaurant $=1$-hour
S-2: Garage / B: Business \& M: Retail = 1-hour
S-2: Garage $/ \mathrm{R}-1$: Hotel $=$ none

Fire Resistive Requirements:

Primary Structural Frame: None
Bearing \& non-bearing walls (exterior, north/east/south): None
Bearing \& non-bearing walls (exterior, west): 2 hour at ground floor retail / 1 hour at 2nd floor
Bearing \& non-bearing walls (interior): None
Floor \& Roof construction: None
Shaft Enclosures (Stairs \& Elevator): 1-hour
Parapets:
Per OSSC Section 705.11
Openings in Rated Walls (based upon separation from property line):
0 ' to less than 3': Not permitted
3^{\prime} to less than $5^{\prime}: 15 \%$ of wall area per story
5^{\prime} to less than $10^{\prime}: 25 \%$ of wall area per story
10^{\prime} to less than $15^{\prime}: 45 \%$ of wall area per story
15 ' to less than $20^{\prime}: 75 \%$ of wall area per story
20'+: Unlimited

Exiting:

Elevator: Required
Stairs: Two Stairs will be required. At least one stair must be enclosed on the upper floors, with both enclosed at the garage level.
All required exits must meet accessibility standards per Chapters $10 \& 11$.

Sincerely,
SG Architecture, LLC

Willamette Falls Drive Mixed-Use Building Traffic Impact Study

West Linn, Oregon

Date:

February 9, 2016

Prepared For:
Mark Handris

Prepared By:
William Farley, PE

Table of Contents

Executive Summary 3
Project Description 4
Trip Generation \& Distribution 11
Safety Analysis 15
Operational Analysis 18
Conclusions 26
Appendix 27

ExECutive Summary

1. A two-story mixed-use commercial building has been proposed for the lot located at 1969 Willamette Falls Drive in West Linn, Oregon. The new building will consist of 10,511 square feet of ground-floor retail and 14,560 square feet of second floor office space or a second floor 19-room hotel.
2. The proposed mixed-use building, assuming that the second floor is used for office space, is projected to generate up to 33 trips during the morning peak hour and up to 61 trips during the evening peak hour. If the second floor of the building is used for a 19-room hotel, the trip generation would be reduced to 20 trips during the morning peak hour and 50 trips during the evening peak hour.
3. A detailed examination of the crash history at the study intersections shows no significant safety concerns and no trends that are indicative of design deficiencies. No safety mitigations are recommended.
4. Warrant 1, Eight-Hour Vehicular Volume, was found to be met for the intersection of Willamette Falls Drive at $10^{\text {th }}$ Street under existing conditions. However, since plans impacting the intersection are being evaluated by the City of West Linn regarding the $10^{\text {th }}$ Street corridor and considering the fact that the signal is warranted under existing conditions, the installation of a traffic signal is not recommended as mitigation for the proposed development.
5. Left-turn lane warrants were found to be met for the intersection of Willamette Falls Drive at $11^{\text {th }}$ Street under existing conditions. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.
6. The intersection of Willamette Falls Drive at $10^{\text {th }}$ Street is projected to operate at LOS E following completion of the proposed development.
7. The intersections of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court and Willamette Falls Drive at $12^{\text {th }}$ Street are currently operating above the City's performance standard of LOS D. Since the proposed development does not add any trips to the critical movements at these intersections, no mitigation is recommended in conjunction with the proposed development.
8. The intersections of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road, $10^{\text {th }}$ Street at the Interstate 205 southbound ramps, and $10^{\text {th }}$ Street at the Interstate 205 northbound ramps are projected to continue operating within the Oregon Department of Transportations required performance standards either with or without the addition of site trips from the proposed development.

Project Description

INTRODUCTION

This Transportation Impact Study (TIS) addresses the development of a proposed mixed-use commercial building located at 1969 Willamette Falls Drive in West Linn, Oregon. The two-story development will comprise 10,511 square feet of ground-floor retail space and either 14,560 square feet of second-floor office or a 19-room hotel.

This report looks at the traffic impacts of the proposed development on the transportation system in the vicinity of the site and addresses concerns raised by the City of West Linn, Clackamas County, and the Oregon Department of Transportation. The purpose of this report is to provide an analysis that addresses the impacts on adjacent streets as well as the operation of nearby study intersections to ensure safe and efficient performance.

All supporting data and calculations are included in the appendix to this report.

Project Location

The subject property is located on the southwest corner of the intersection of Willamette Falls Drive at $11^{\text {th }}$ Street in West Linn, Oregon. The proposed mixed-use development will take access to the transportation network via a driveway ramp to an underground parking garage on $11^{\text {th }}$ Street, as well as additional access and parking from Knapp’s Alley. The building frontage will face Williamette Falls Drive where there is additional head-in on-street parking.

To identify impacts resulting from the proposed development, the following intersections were selected for full analysis during the weekday AM and PM peak hours:

- Willamette Falls Drive at $12^{\text {th }}$ Street
- Willamette Falls Drive at $11^{\text {th }}$ Street
- Willamette Falls Drive at $10^{\text {th }}$ Street
- $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court
- $10^{\text {th }}$ Street at Interstate 205 Eastbound ramp access
- $10^{\text {th }}$ Street at Interstate 205 westbound ramp access
- $10^{\text {th }}$ Street at Blankenship Road/Salamo Road

VICINITY STREETS

Willamette Falls Drive is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial. It is generally a two-lane roadway with one standard lane in each direction and has a posted speed of 20 mph in the site vicinity within the central business district. East of the central business district, Willamette Falls Drive is classified as a principal arterial and the speed limit is increased to 40 mph . The roadway has on-street parking on both sides of the street as well as head-in parking
served by frontage streets separated by raised medians. There are curb and sidewalks on both sides of the roadway, as well as frequent pedestrian bulb-outs located on the corners of most cross streets.
$12^{\text {th }}$ Street is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial south of Willamette Falls Drive and a Local Road to the north. It is a two-lane facility with no posted speed limit. There are curbs, sidewalks, and on-street parking areas along both sides of the roadway.
$11^{\text {th }}$ Street is under the jurisdiction of the City of West Linn and is classified as a Local Road. It is a two-lane facility with a statutory residential speed limit of 25 mph . Intermittent curbs and sidewalks are provided along both sides of the street. On-street parking is permitted in areas with sufficient width where vehicles can park without impeding the flow of through traffic.
$10^{\text {th }}$ Street is classified by the City of West Linn as a Minor Arterial. The road cross-section varies between three and four lanes for two-way traffic and does not have a posted speed limit. There are curbs along both sides of the street and continuous sidewalks along the west side. On-street parking is not available.
$8^{\text {th }}$ Avenue and $8^{\text {th }}$ Court are under the jurisdiction of the City of West Linn and are classified as Local Roads. Both are two-lane facilities with one standard lane in each direction and each has a statutory residential speed limit of 25 mph . Curbs and sidewalks are provided intermittently on both sides of the streets. On-street parking is permitted in areas with sufficient width as to not impede the flow of through traffic.

Interstate 205 is under the jurisdiction of the Oregon Department of Transportation. It is generally a four-lane divided freeway with a posted speed of 65 mph to the west of $10^{\text {th }}$ Street and 55 mph to the east.

Salamo Road is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial. It is generally a two-lane roadway with a posted speed of 40 mph west of $10^{\text {th }}$ Street. No curbs or sidewalks are provided near the intersection with $10^{\text {th }}$ Street. On-street parking is not permitted on either side of the roadway.

West of $10^{\text {th }}$ Street, Salamo Road becomes Blankship Road. Blankenship Road is under the jurisdiction of the City of West Linn and is classified as a Collector west of Tannler Drive. It generally is a three-lane roadway, including a center two-way left-turn lane, and has a posted speed limit of 25 mph. Curbs and sidewalks are provided continuously along the southern side of the street and intermittently along the northern side. On-street parking is not permitted on either side of the roadway.

STUDY INTERSECTIONS

The intersection of Willamette Falls Drive at $12^{\text {th }}$ Street if a four-legged intersection under all-way stop control. The eastbound and westbound approaches on Willamette Falls Drive each have a dedi-
cated left-turn lane and a shared through/right-turn lane. The northbound and southbound approaches have a single, shared lane for all turning movements.

The intersection of Willamette Falls Drive at $11^{\text {th }}$ Street is a four-legged intersection with stop control for the northbound approach on $11^{\text {th }}$ Street and for the southbound approach from a frontage street. Each approach at the intersection has a single, shared lane for all turning movements. Access to a frontage street with additional on-street parking is available on the north side of the intersection.

The intersection of Willamette Falls Drive at $10^{\text {th }}$ Street is a three-legged intersection operating under all-way stop control. The eastbound approach on Willamette Falls Drive has a dedicated leftturn lane and a through lane while the westbound approach has a single, shared lane for all turning movements. The southbound approach has dedicated lanes for left and right turns.

The intersection of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court is a four-legged intersection operating under two-way stop control for the eastbound and westbound approaches. The northbound approach on $10^{\text {th }}$ Street has a single, shared lane for all turning movements and a left-turn restriction weekdays from 4PM to 6PM. The southbound approach has a dedicated left-turn lane and a shared through/right-turn lane. The eastbound approach on $8^{\text {th }}$ Avenue has a dedicated left-turn lane and a shared through/right-turn lane while the westbound approach on $8^{\text {th }}$ Court has a dedicated right-turn lane and a shared through/left-turn lane.

The intersection of $10^{\text {th }}$ Street at the Interstate 205 northbound ramps is a four-legged, signalized intersection. The northbound approach on $10^{\text {th }}$ Street has a dedicated right-turn lane and a through lane while the southbound approach has a dedicated left-turn lane served with flashing-yellow-arrow phasing and a through lane. The eastbound approach from northbound Interstate 205 has a shared through/left-turn lane and a dedicated right-turn lane.

The intersection of $10^{\text {th }}$ Street at the Interstate 205 southbound ramps is a four-legged, signalized intersection. The northbound approach on $10^{\text {th }}$ Street has a dedicated left-turn lane served by flash-ing-yellow-arrow phasing and a through lane while the southbound approach has a through lane and a shared through/right-turn lane. The westbound approach from southbound Interstate 205 has a shared through/left-turn lane and a dedicated right-turn lane.

The intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road is a three-legged intersection controlled by a traffic signal. The northbound approach on $10^{\text {th }}$ Street has a dedicated left and a channelized right-turn lane. The westbound approach on Salamo Road has a dedicated left-turn lane and a through lane. The eastbound approach on Blankenship Road has a through lane and a channelized right-turn lane. It should be noted that a single controller operates this intersection and the intersection of $10^{\text {th }}$ Street at the Interstate 205 southbound ramps.

A vicinity map showing the project site and the study area intersections is shown in Figure 1 on page eight.

PUBLIC TRANSIT

TriMet Bus Line 154-Willamette/Clackamas Heights provides bus service along Willamette Falls Drive, $10^{\text {th }}$ Street, and Blankenship Road on its route from Oregon City. The bus provides weekday service from 6 AM to 7 PM with headways of approximately 60 minutes. The bus route has no weekend service.

TRAFFIC COUNTS

Traffic counts were conducted for the study intersections along $10^{\text {th }}$ Street on April $14^{\text {th }}, 2015$, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM to capture the weekday peak periods. Traffic counts were conducted for the intersections of Willamette Falls Drive at $11^{\text {th }}$ Street and Willamette Falls Drive at $12^{\text {th }}$ Street on July $21^{\text {st }}, 2015$, for the same periods. Data was used for the system-wide peaks of 7:20 AM to 8:20 AM for the morning and from 4:15 PM to 5:15 PM for the evening.

Since the counts along Willamette Falls Drive were collected at different periods, one of which was when a nearby school was not in session, adjustments were made to the traffic counts at $11^{\text {th }}$ Street and $12^{\text {th }}$ Street. Traffic volumes observed at the intersections of Willamette Falls Drive at $11^{\text {th }}$ Street and Willamette Falls Drive at $12^{\text {th }}$ Street were increased to balance with the traffic counts collected at Willamette Falls Drive at $10^{\text {th }}$ Street.

Figure 2 on page nine shows the existing traffic volumes at each of the study intersections for the AM peak hour and Figure 3 on page ten shows the existing traffic volumes for the PM peak hour.

TRIP Generation \& Distribution

TRIP GENERATION

The ground floor of the proposed mixed-use commercial building will consist of 10,511 square-feet of retail space. The second floor is proposed as either 14,560 square-feet of office space or a 19room hotel. To ensure a conservative analysis, it was assumed that the second floor would be occupied by office space, since this use results in the highest traffic volumes of the potential uses.

To estimate the number of trips that will be generated by the proposed mixed-use building, trip rates from TRIP GENERATION MANUAL, Ninth Edition, published by the Institute of Transportation Engineers (ITE), were used. Land use code \#820, Shopping Center, and land use code \#710, General Office, were used to calculate the total trip generation of the proposed development.

The trip generation calculations show that the proposed mixed-use building will generate up to 33 trips during the morning peak hour with 26 entering the site and 7 exiting. During the evening peak hour, the development will generate up to 61 trips with 23 entering and 38 exiting the site. Up to a total of 608 daily trips will be generated by the project.

The following table offers a summary of the trip generation. Detailed ITE trip generation calculations are included in the appendix to this report.

It should be noted that the above trip generation calculations do not account for any reductions due to internalization or pass-by trips.

TRIP DISTRIBUTION

It is projected that majority of the trips generated by the proposed mixed-use building will arrive and depart using Interstate 205. Based on the observed traffic trends, it is projected that approximately 45 percent of the trips will travel to and from the east on Interstate 205 while 25 percent will travel to and from the west. Approximately 10 percent of the trips to and from the site will use Salamo Road and 5 percent will each use Blankenship Road to the north, Willamette Falls Drive to the east or west, or Tualatin Avenue to the south.

The trip distribution and assignment for the mixed-use commercial building is shown in Figure 4 on page 13 for the AM peak hour and Figure 5 on page 14 for the PM peak hour.

Safety Analysis

Crash Data Analysis

Using data obtained from the Oregon Department of Transportation's Crash Analysis and Reporting Unit, a review was performed for the most recent available five years of crash data (January 2010 to December 2014) for each of the study intersections. A crash rate was calculated under the common assumption that traffic counted during the PM peak period represents 10 percent of the average daily traffic (ADT) at the intersection. Crash rates greater than 1.0 crashes per million entering vehicles (CMEV) are generally indicative of a need for further investigation and possible mitigation.

The intersection of Willamette Falls Drive at $12^{\text {th }}$ Street had a total of four reported crashes during the analysis period. Of the reported crashes, two were rear-end collisions, one was an angle collision involving a bicyclist, and one occurred during a turning movement. Two of the crashes resulted in property damage only ($P D O$) while the remaining two resulted in possible injuries or complaints of pain (Injury-C). The calculated crash rate for the intersection was 0.16 CMEV.

The crash involving a bicyclist occurred when a westbound vehicle failed to give right-of-way to a bicyclist who was making a left-turn through the intersection. The crash resulted in the bicyclist sustaining possible injuries.

The intersection of Willamette Falls Drive at $11^{\text {th }}$ Street had one reported crash during the analysis period. The crash was a rear-end collision that resulted in non-incapacitating injuries (Injury-B). The crash rate for the intersection was calculated to be 0.04 CMEV.

The intersection of Willamette Falls Drive at $10^{\text {th }}$ Street had five crashes reported during the fiveyear analysis period. Three were rear-end collisions while the remaining two involved vehicles making a turning movement. All five crashes resulted in only property damage. The intersection's crash rate was calculated at 0.18 CMEV.

The intersection of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court had 13 crashes reported during the analysis period. Seven of the crashes reported involved turning vehicles, five were angle-type collisions, and one crash was with a fixed object. Nine of these crashes resulted in property damage only while four resulted in possible injuries or complaints of pain. The crash rate was calculated to be 0.31 CMEV.

The intersection of $10^{\text {th }}$ Street at the Interstate 205 northbound ramps had 13 crashes reported during the five-year period. Of the reported crashes, eight were rear-end collisions, three occurred during a turning movement, one was a sideswipe collision while overtaking, and one involved a vehicle backing up in traffic. Eight of the crashes resulted in only property damage while three resulted in possible injuries, one in a non-incapacitating injury, and one in an incapacitating injury (Injury-A). The crash rate for the intersection was calculated to be 0.46 CMEV.

The incapacitating injury that occurred at the intersection of $10^{\text {th }}$ Street at Interstate 205 northbound ramps was a result from a rear-end collision between two vehicles traveling eastbound exiting from the Interstate. The driver at fault was following too closely and collided with the stopped vehicle.

The intersection of $10^{\text {th }}$ Street at the Interstate 205 southbound ramps had 13 reported crashes during the analysis period. These crashes included eleven rear-end collisions, one turning crash, and one with a fixed object. Eight crashes resulted in property damage only while four resulted in possible injuries or complaints of pain and one resulted in a non-incapacitating injury. The crash rate for the intersection was calculated to be 0.43 CMEV.

The intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road had nine crashes reported during the analysis period. These crashes included four rear-end collisions, two sideswipe-meeting collisions, one non-collision, one involving a fixed object, and one pedestrian collision. Four of the crashes resulted in property damage only, four resulted in possible injuries or complaints of pain, and one crash resulted in a non-incapacitating injury. The intersection's crash rate was calculated to be 0.32 CMEV.

The crash involving a pedestrian at the intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road occurred between an pedestrian walking on the shoulder and a westbound vehicle and resulted in the pedestrian suffering a possible injury or complaining of pain.

Based on the detailed review of the crash history, no significant patterns or contributing design concerns were identified at the study intersections.

WARRANT ANALYSIS

Left-turn lane warrants and traffic signal warrants were examined for the applicable study intersections.

Warrant 1, Eight-Hour Vehicular Volume, was examined for the intersection of Willamette Falls Drive at $10^{\text {th }}$ Street and was found to be met under existing conditions. However, since the City of West Linn is considering other treatments to the $10^{\text {th }}$ Street corridor that could divert traffic or change the operation of the intersection, installation of a traffic signal is not recommended at this time.

Traffic signal warrants were also examined for the intersections of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court and Willamette Falls Drive at $12^{\text {th }}$ Street. Due to low volumes on the minor street approaches, traffic signal warrants are not projected to be met under year 2017 traffic conditions, regardless of trips resulting from the proposed mixed-use building.

Left-turn lane warrants were examined for the intersection of Willamette Falls Drive at $11^{\text {th }}$ Street. A left-turn refuge is primarily a safety consideration for the major street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants examined for facilities under the
jurisdiction of West Linn used the methodology outlined in the NCHRP Report \#457, published by the Transportation Research Board. These turn-lane warrants are evaluated based on the number of left-turning vehicles, the number of advancing and opposing vehicles, and the roadway travel speed.

Due to the significant amount of traffic along Willamette Falls Drive, left-turn lane warrants were found to be met during the PM peak period under existing conditions for a westbound left-turn lane. The warrant is projected to continue to be met as traffic increases from growth as well as the proposed development.

Although the left-turn lane warrant is met for the intersection, the crash history and operational analysis of Willamette Falls Drive at $11^{\text {th }}$ Street indicates that the intersection is operating safely and efficiently under the existing configuration. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.

Operational Analysis

BACKGROUND TRAFFIC

To provide analysis of the traffic impact resulting from the construction of the proposed mixed-use commercial building, an estimate of future traffic volumes is required. In order to calculate the future traffic volumes, a compounded growth rate of two percent per year for an assumed build-out condition of two years was applied to the measured existing traffic volumes to approximate year 2017 background conditions.

In addition to the projected growth, in-process trips associated with the Tannler Mixed-Use Project, located northwest of the intersection of Blankenship Road at Tannler Drive, as well as trips associated with a 61 single-family dwellings that are part of other projects located north of Interstate 205, were incorporated into the year 2017 background traffic volumes.

Figure 6 on page 19 and Figure 7 on page 20 show the projected year 2017 background volumes during the AM and PM peak hours, respectively.

Background Traffic

Peak hour trips calculated to be generated from the proposed development of 10,511 square feet of ground-floor retail and 14,560 square-feet of second-floor office, as described earlier within the Trip Generation section, were added to the projected year 2017 background traffic volumes to obtain the expected 2017 background plus site trips.

Figure 8 on page 21 and Figure 9 on page 22 show the projected year 2017 peak hour background traffic volumes with the addition of site trips from the proposed development.

CAPACITY ANALYSIS

To determine traffic impacts resulting from the proposed development of the mixed-use commercial building, an operational analysis was conducted for each of the study-area intersections. The analysis was conducted according to the signalized and unsignalized intersection methodologies provided in the HIGHWAY CAPACITY MANUAL, published by the Transportation Research Board. The analysis periods include morning and evening peak hours for existing conditions, year 2017 background conditions, and year 2017 background plus trips generated by the proposed mixed-use building.

The intersections of $10^{\text {th }}$ Street at the Interstate 205 northbound and southbound ramps, in addition to the intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road which runs on the same controller as the southbound ramps, are under the jurisdiction of the Oregon Department of Transportation (ODOT). The applicable minimum operation standards for ODOT facilities are established under the Oregon Highway Plan and are based on the volume-to-capacity (v/c) ratio. The v/c ratio compares the actual traffic demand to the potential capacity to determine the portion that is utilized by traffic. ODOT's v/c operating standard for the Interstate 205 interchange ramps and the intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road is 0.85 .

Since the intersection of $10^{\text {th }}$ Street at the Interstate 205 southbound ramp operates on the same traffic signal controller with $10^{\text {th }}$ Street at Blankenship Road/Salamo Road, analysis was conducted using signal timing information obtained from ODOT staff. The signal timing details for the intersection are provided in the appendix.

The City of West Linn's Comprehensive Plan requires intersections to operate at level of service (LOS) D or better. Levels of service can range from A, which indicates very little or no delay, to F, which indicates a high degree of congestion and delay.

The intersection of Willamette Falls Drive at $12^{\text {th }}$ Street is currently operating at LOS E during the evening peak hour. Under year 2017 traffic conditions, the intersection is projected to continue operating at LOS E, regardless of additional trips from the proposed development. Since the traffic impact to the intersection from the proposed development is negligible, no mitigations are recommended.

The intersection of Willamette Falls Drive at $11^{\text {th }}$ Street is projected to operate at LOS D or better under all analysis scenarios, with or without additional trips from the proposed development.

The intersection of Willamette Falls Drive at $10^{\text {th }}$ Street is currently operating at LOS D with significant delays being experienced by the eastbound left-turning vehicles during the evening peak hour. Under year 2017 traffic conditions, the intersection is projected to continue operating at LOS D with approximately 29 percent longer delays for the same approach. With the addition of up to 32 trips from the proposed development to the eastbound left-turn approach, the intersection is projected to operate at LOS E.

The intersection of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court is presently operating at LOS F during the evening peak hour due to significant delays to the minor street approaches. The intersection is projected to continue operating at LOS F under year 2017 conditions, regardless of additional trips from the proposed development.

Since traffic signal warrants are not met due to low traffic volumes associated with the minor street approaches, the city is currently evaluating possible mitigations for the intersection including extending $8^{\text {th }}$ Court to Willamette Falls Drive and limiting the intersection to right turns only. Since the proposed development does not contribute trips to the minor street approaches, no mitigations associated with the mixed-use building are recommended.

The intersections of $10^{\text {th }}$ Street at the Interstate 205 northbound and southbound ramps and the intersection of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road are projected to operate within ODOT's performance standard, regardless of trips associated with the proposed development.

The results of the capacity analysis for the weekday AM and PM peak hours, along with the levels of service, delay, and v/c ratios are shown in the table on the following page. Detailed calculations, as well as tables showing the relationships between delay and level of service are included in the appendix to this report.

CAPACITY ANALYSIS SUMMARY						
	Morning Peak Hour			Evening Peak Hour		
	LOS	Delay (s)	v/c	LOS	Delay (s)	v/c
Willamette Falls Dr at 12th St						
2015 Existing	B	12	-	E	37	-
2017 Background	B	13	-	E	37	-
2017 Background + Site	B	13	-	E	37	-
Willamette Falls Dr at 11th St						
2015 Existing	C	16	0.27	C	22	0.55
2017 Background	C	17	0.28	C	23	0.57
2017 Background + Site	C	18	0.30	D	27	0.58
Willamette Falls Dr at 10th St						
2015 Existing	C	24	-	D	26	-
2017 Background	D	30	-	D	32	-
2017 Background + Site	D	32	-	E	37	-
10th St at 8th Ave/8th Ct						
2015 Existing	F	62	0.45	F	>120	>1.0
2017 Background	F	81	0.52	F	>120	>1.0
2017 Background + Site	F	89	0.56	F	>120	>1.0
10th St at I-205 NB Ramps						
2015 Existing	B	15	0.57	B	10	0.50
2017 Background	B	17	0.66	B	13	0.57
2017 Background + Site	B	17	0.66	B	13	0.58
10th St at I-205 SB Ramps						
2015 Existing	D	38	0.63	C	34	0.66
2017 Background	D	42	0.71	D	41	0.75
2017 Background + Site	D	43	0.73	D	43	0.77
10th St at Blankenship/Salamo						
2015 Existing	C	34	0.68	C	26	0.63
2017 Background	D	46	0.82	C	29	0.72
2017 Background + Site	D	47	0.83	C	29	0.72

Conclusions

The proposed mixed-use building consisting of 10,511 square feet of ground-floor retail and either 14,560 square feet of office space or a 19 -room hotel is projected to have acceptable impacts to the surrounding transportation system.

The intersections of $10^{\text {th }}$ Street at Blankenship Road/Salamo Road, $10^{\text {th }}$ Street at the Interstate 205 southbound ramps, and $10^{\text {th }}$ Street at the Interstate 205 northbound ramps are projected to continue operating within the Oregon Department of Transportations required performance standards either with or without the addition of site trips from the proposed development.

The intersections of $10^{\text {th }}$ Street at $8^{\text {th }}$ Avenue $/ 8^{\text {th }}$ Court and Willamette Falls Drive at $12^{\text {th }}$ Street are currently operating above the City's performance standard of LOS D. Since the proposed development does not add any trips to the critical movements at these intersections, no mitigation is recommended in conjunction with the proposed development.

The intersection of Willamette Falls Drive at $10^{\text {th }}$ Street is projected to operate at LOS E following completion of the proposed development.

Left-turn lane warrants were found to be met for the intersection of Willamette Falls Drive at $11^{\text {th }}$ Street under existing conditions. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.

Warrant 1, Eight-Hour Vehicular Volume, was found to be met for the intersection of Willamette Falls Drive at $10^{\text {th }}$ Street under existing conditions. However, since plans impacting the intersection are being evaluated by the City of West Linn that involve the $10^{\text {th }}$ Street corridor and considering the fact that the signal is warranted under existing conditions, the installation of a traffic signal is not recommended as mitigation for the proposed development.

A detailed examination of the crash history at the study intersections shows no significant safety concerns and no trends that are indicative of design deficiencies. No safety mitigations are recommended.

APPENDIX

Project Location

GARAGE LEVEL PLAN(parking)
$14,415 \mathrm{SF}$

UPPER PLAN (offices)

$9,950 \mathrm{~S}$

SGA

10940 SW barnes Road \#364
Portland Oregon 97225 ortiand. Oregon 97220
www.sg-arch.net

Willamette Falls
Mixed -Use Willamette Falls Drive \& 11 th ST.

West Linn, OR

WILLAMETTE NEIGHBORHOOD ASSOCIATION MEETING
NOVEMBER 2015

Floor Plan (retail /office)

Project Location

GARAGE LEVEL PLAN(parking)

UPPER PLAN (hotel)

Willamette Falls
Mixed -Use

STREET LEVEL PLAN $\underset{9,950 \mathrm{sf}}{(\mathrm{shops})}$

$\prod_{20}-$
Floor Plan (retail /hotel)

TRIP GENERATION CALCULATIONS

Land Use: Shopping Center
Land Use Code: 820
Variable: 1,000 Sq Ft Gross Leasable Area
Variable Value: 10.51

AM PEAK HOUR
Trip Rate: 0.96

	Enter	Exit	Total
Directional Distribution	62%	38%	
Trip Ends	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{1 0}$

WEEKDAY

Trip Rate: 42.7

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 2 4}$	$\mathbf{2 2 4}$	$\mathbf{4 4 8}$

PM PEAK HOUR
Trip Rate: 3.71

	Enter	Exit	Total
Directional Distribution	48%	52%	
Trip Ends	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{3 9}$

SATURDAY

Trip Rate: 49.97

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 6 3}$	$\mathbf{2 6 3}$	$\mathbf{5 2 6}$

TRIP GENERATION CALCULATIONS

Land Use: General Office Building
Land Use Code: 710
Variable: 1000 Sq Ft Gross Floor Area
Variable Value: 14.6

AM PEAK HOUR

Trip Rate: 1.56

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	$\mathbf{2 0}$	$\mathbf{3}$	$\mathbf{2 3}$

WEEKDAY

Trip Rate: 11.03

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{8 0}$	$\mathbf{8 0}$	$\mathbf{1 6 0}$

PM PEAK HOUR
Trip Rate: 1.49

	Enter	Exit	Total
Directional Distribution	17%	83%	
Trip Ends	$\mathbf{4}$	$\mathbf{1 8}$	$\mathbf{2 2}$

SATURDAY
Trip Rate: 2.46

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 8}$	$\mathbf{1 8}$	$\mathbf{3 6}$

TRIP GENERATION CALCULATIONS

Land Use: Hotel
Land Use Code: 310
Variable: Rooms
Variable Value: 19

AM PEAK HOUR

Trip Rate: 0.53

	Enter	Exit	Total
Directional Distribution	59%	41%	
Trip Ends	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{1 0}$

Trip Rate: 8.17

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{7 8}$	$\mathbf{7 8}$	$\mathbf{1 5 6}$

PM PEAK HOUR
Trip Rate: 0.6

	Enter	Exit	Total
Directional Distribution	51%	49%	
Trip Ends	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{1 1}$

SATURDAY
Trip Rate: 8.19

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{7 8}$	$\mathbf{7 8}$	$\mathbf{1 5 6}$

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

WILLAMETTE FALLS DR and 12 TH ST, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2012														
REAR-END	0	0	1	1	0	0	0	0	0	1	0	0	0	0
YEAR 2012 total	0	0	1	1	0	0	0	0	0	1	0	0	0	0
YEAR: 2011														
REAR-END	0	1	0	1	0	1	0	0	1	0	1	0	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2011 TOTAL	0	1	1	2	0	1	0	1	1	1	1	1	0	0
YEAR: 2010														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2010 total	0	1	0	1	0	1	0	1	0	1	0	1	0	0
FINAL TOTAL	0	2	2	4	0	2	0	2	1	3	1	2	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

URban non-system Crash Listing

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE
WILLAMETTE FALLS DR and 11TH ST, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	$\begin{aligned} & \text { FATAL } \\ & \text { CRASHES } \end{aligned}$	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	$\begin{aligned} & \text { TOTAL } \\ & \text { CRASHES } \end{aligned}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTER- SECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2013														
REAR-END	0	1	0	1	0	1	0	0	0	1	0	0	0	0
Year 2013 total	0	1	0	1	0	1	0	0	0	1	0	0	0	0
FINAL total	0	1	0	1	0	1	0	0	0	1	0	0	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380

02/04/2016
CITY of west linn, clackamas county

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WILLAMETTE FALLS DR, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTER- SECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2014 total	0	0	2	2	0	0	0	2	0	1	1	2	0	0
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
Year 2011 total	0	0	2	2	0	0	0	2	0	2	0	2	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
Year 2010 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
FINAL TOTAL	0	0	5	5	0	0	0	5	0	4	1	5	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10 TH ST and 8 TH AVE, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2014 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2013														
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	0	1	0	1	0	0	1
YEAR 2013 TOTAL	0	0	1	1	0	0	0	0	1	0	1	0	0	1
YEAR: 2012														
ANGLE	0	0	1	1	0	0	0	0	1	0	1	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	0	1	1	0	0
Year 2012 total	0	0	2	2	0	0	0	1	1	0	2	2	0	0
YEAR: 2010														
ANGLE	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
FINAL TOTAL	0	0	5	5	0	0	0	2	3	1	4	4	0	1

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

$$
\text { Total crash records: } 5
$$

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE
$10 T H$ ST and 8 TH CT, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	fatal CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFFROAD
YEAR: 2014														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR 2014 TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR: 2013														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	2	0	2	0	3	0	2	0	1	1	2	0	0
YEAR 2013 TOTAL	0	2	1	3	0	3	0	3	0	2	1	3	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR 2012 total	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR: 2011														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YeAR 2011 total	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2010														
TURNING MOVEMENTS	0	0	2	2	0	0	0	1	1	1	1	2	0	0
Year 2010 total	0	0	2	2	0	0	0	1	1	1	1	2	0	0
FINAL TOTAL	0	4	4	8	0	5	0	6	2	4	4	8	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

[^0]$$
\text { Total crash records: } 8
$$

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and EB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD
YEAR: 2014														
REAR-END	0	1	1	2	0	4	0	2	0	2	0	0	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YeAR 2014 total	0	1	2	3	0	4	0	2	1	2	1	1	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	0	1	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
Year 2013 total	0	0	2	2	0	0	0	1	1	0	2	1	1	0
YEAR: 2012														
REAR-END	0	0	1	1	0	0	0	0	1	0	1	0	0	0
Year 2012 total	0	0	1	1	0	0	0	0	1	0	1	0	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	1	0	0
Year 2010 total	0	0	1	1	0	0	0	1	0	0	1	1	0	0
FINAL TOTAL	0	1	6	7	0	4	0	4	3	2	5	3	1	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

tRANSPORTATION DATA SECTIon - CRASH ANAYLYSIS AND REPORTING UNIT

City of west linn, clackamas county
URbAN non-System crash listing
10TH ST and EB ENFR 10 TH , City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

$$
\text { Total crash records: } 7
$$

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and EB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	$\begin{aligned} & \text { PEOPLE } \\ & \text { KILLED } \end{aligned}$	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTERSECTION RELATED	OFF- ROAD
YEAR: 2014														
REAR-END	0	1	0	1	0	1	0	0	1	1	0	1	0	0
SIDESWIPE - OVERTAKING	0	0	1	1	0	0	0	1	0	1	0	0	0	0
TURNING MOVEMENTS	0	1	0	1	0	1	0	0	1	0	1	1	0	0
YEAR 2014 TOTAL	0	2	1	3	0	2	0	1	2	2	1	2	0	0
YEAR: 2013														
REAR-END	0	1	0	1	0	1	0	1	0	0	1	1	0	0
Year 2013 total	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR: 2012														
BACKING	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2012 TOTAL	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2011														
REAR-END	0	1	0	1	0	1	0	1	0	1	0	0	0	0
YEAR 2011 TOTAL	0	1	0	1	0	1	0	1	0	1	0	0	0	0
FINAL TOTAL	0	4	2	6	0	4	0	4	2	4	2	3	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

urban non-System crash listing

10Th ST and EB EXTO 10Th, City of west Linn, Clackamas County, 01/01/2010 to $12 / 31 / 2014$

$$
\text { Total crash records: } 6
$$

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTERSECTION RELATED	OFFROAD
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2013 total	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2012 total	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	0	0	0
Year 2010 total	0	0	1	1	0	0	0	1	0	0	1	0	0	0
FINAL TOTAL	0	1	2	3	0	1	0	3	0	2	1	1	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

$$
\text { Total crash records: } 3
$$

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
REAR-END	0	1	2	3	0	1	0	2	1	3	0	2	0	0
YEAR 2014 TOTAL	0	1	2	3	0	1	0	2	1	3	0	2	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	0	1	0
YEAR 2013 TOTAL	0	0	1	1	0	0	0	1	0	0	1	0	1	0
YEAR: 2012														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	1	0	0	0	1
REAR-END	0	2	1	3	0	2	0	2	0	3	0	1	0	0
Year 2012 total	0	3	1	4	0	3	0	2	1	4	0	1	0	1
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2011 TOTAL	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	0	0	1	0	1	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	0	0	1	0	1	0	0
FINAL TOTAL	0	4	6	10	0	4	0	6	2	9	1	4	1	1

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and BLANKENSHIP RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	NON- FATAL CRASHES	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTERSECTION RELATED	OFFROAD
YEAR: 2014														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	1	0	0	1	1
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2014 total	0	2	0	2	0	2	0	1	1	2	0	1	1	1
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	1	0	0
YEAR 2013 TOTAL	0	0	1	1	0	0	0	1	0	0	1	1	0	0
FINAL TOTAL	0	2	1	3	0	2	0	2	1	2	1	2	1	1

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE

$10 T H$ ST and SALAMO RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	$\begin{aligned} & \text { INTER- } \\ & \text { SECTION } \end{aligned}$	INTER- SECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2014														
MISCELLANEOUS	0	1	0	1	0	1	0	1	0	1	0	0	0	0
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
SIDESWIPE - MEETING	0	1	0	1	0	2	0	1	0	1	0	0	0	0
YEAR 2014 TOTAL	0	2	1	3	0	3	0	3	0	3	0	1	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	0	1	1	0	0	0	0
SIDESWIPE - MEETING	0	0	1	1	0	0	1	1	0	1	0	0	0	0
YEAR 2013 TOTAL	0	0	2	2	0	0	1	1	1	2	0	0	0	0
YEAR: 2011														
PEDESTRIAN	0	1	0	1	0	1	0	0	1	0	1	0	0	0
YEAR 2011 TOTAL	0	1	0	1	0	1	0	0	1	0	1	0	0	0
FINAL TOTAL	0	3	3	6	0	4	1	4	2	5	1	1	0	0

 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

Traffic Signal Warrant Analysis

Traffic Signal Warrant Analysis

Traffic Signal Warrant Analysis

Left-Turn Lane Warrant Analysis

Project: 1969 Willamette Falls Drive
Intersection: Willamette Falls Drive at 11th Street
Date: 2/4/2016
Scenario: 2015 Existing Conditions - PM Peak Hour

2-lane roadway (English)

INPUT

Variable	Value
$85^{\text {th }}$ percentile speed, $\mathrm{mph}:$	25
Percent of left-turns in advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right), \%:$	5%
Advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh $/ \mathrm{h:}$	419
Opposing volume $\left(\mathrm{V}_{\mathrm{O}}\right)$, veh/h:	865

OUTPUT

Variable	Value
Limiting advancing volume $\left(\mathrm{V}_{\mathrm{A}}\right)$, veh/h:	379

Guidance for determining the need for a major-road left-turn bay:
Left-turn treatment warranted.

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, $\mathrm{s}:$	1.9

\square

Zero Tables

DetectorPlans
DetectorFailMonitor PedOverlaps ADVANCE WARNING DYNAMIC FYLTA ServicePlans1 4 ServicePlans5 8 MaxPlans CoordinationPlans CoordinationPlansCont PlatoonProgression ForceOffPercents DayProgram 4180 DayProgram 81120 DayProgram 121160 DayProgram 161200 ExceptionDays PreemptionSequence 58 PriorityReturnAndSpecialIntervals LightRailTrain IEEE1570 TransitPriorityAOFP GroupTiming TruckPriority IO Options
CommandBox 196 CommandBox 97192 CommandBox 193256

Non-Zero Tables

ControllerFunctionTiming
Phase Timing
Dual Entry
OtherControllerFunctions
DetectorData
SystemDetector
Vehicle Overlaps
FYLTA
CoordinationModes
CircuitMapping
DynamicPhaseLength
DayProgram 140
WeekProgram
YearDays
TimeClockReferences
CircuitOverrides 1100
CircuitOverrides 101199
PreemptionSequence 14
SequenceTiming
TransitPriority
170 Inputs
170 Outputs
CONTROLLER ID

Controller Function and Timing

Security, Sequence and Timing (Next/2/1, Next/2/2/3/A, Next/2/2/5)									
Security Code		0	0 = disabled, or 1000-9999			First All Red		8.0	0.0 to 25.5 seconds
Sequence		7	0 = sequential, 1 = quad left turn, 2-6 = special A-E, 7 = lead lag						
Power up Flash		0.0	0.0-25.5 seconds						
Initialization (Next/2/2/5)				Lead Lag (Next/2/2/3/A)					
Ring 1	Ring 2		Interval	Phases 1-2	Phases		Phas	5-6	Phases 7-8
1	0		0	2	2				2
Phase 1-8		0 = Red, 1 = Yel, 2 = Grn		0 = no reversal, 1 = reversal, 2 = by coord plan or clock					

(Next/2/2/3)					Phase Functions				(Next/2/2/1)									
Phase Used	1	23	4	5	6	7			Yellow Lock	-	-	-	-	-	-	-	-	-
Restricted Phases	-	- -	-	-	-	-			Min Recall	-	2	-	-	-	5	-	- -	-
Exclusive Phases	-	- -	-	-	-	7			Max Recall	-	-	-	-	-	-	-	-	-
									Ped Recall	-	-		-	-	-	-	-	-
									Red Lock	-	-	-	-	-	-	-	-	-
									Max Out Recall Inhibit	1	2	3	3	4	5	6	7	8
									Soft Recall	-	-		-	-	-	-	-	-
									Free Walk Rest	-	-		-	-	-	-	-	-
									Conditional Ped	-	-	-	-	-	-	-	-	-
									nhibit Max Termination	-	-	-	-	-	-	-	-	-
									Call To Non-Act 1	-	-	-	-	-	-	-	-	-
									Call To Non-Act 2	-	-	-	-	-	-	-	-	-

Phase Times (Next/2/2/2)									
Phase	1	2	3	4	5	6	7	8	
Movement									
Minimum Green	4	6	4	6	10	2	6	6	$0-255$ sec.
Passage	2.3	2.3	2.3	2.3	5.2	0.5	2.3	2.3	$0.0-25.5$ sec.
Yellow	4.0	4.0	4.0	4.0	4.0	4.0	4.0	5.0	$0.0-25.5$ sec.
Red Clearance	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.0	$0.0-25.5$ sec. or 0-255 sec.
Max 1	21	37	30	16	40	6	25	32	$0-255$ sec.
Max 2	21	37	30	16	40	6	25	32	$0-255$ sec.
Walk	0	5	5	5	5	0	5	0	$0-255$ sec.
Ped Clear	0	11	10	23	12	0	13	0	$0-255$ sec.
Seconds Per Actuation	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	$0.0-25.5$ sec.
Time Before Reduction	8	8	8	8	10	0	8	8	$0-255$ sec.
Time to Reduce	3	3	3	3	20	0	3	3	$0-255$ sec.
Minimum Gap	0.5	0.5	0.5	0.5	3.2	0.5	0.5	0.5	$0.0-25.5$ sec.
Max Variable Initial	4	6	4	6	13	2	6	6	$0-255$ sec.
Max Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0.0-25.5$ sec.
Auto Max	0	0	0	0	0	0	0	0	$0-255$ sec.
Advanced walk	0	0	0	0	0	0	0	0	$0-255$ sec.

| Phase Times (Next/2/2/9/5) | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Inhibit Min Yellow | | | | | | | $X=$ On |
| Red Decimal Off | | | | | | | $X=$ On |

Dual Entry (Next/2/2/9/3)

Mode	1	$0=$ off, $1=$ on, $2=$ Not Used, $3=$ by coord plan, $4=$ by time clock circuit 61

Dual Entry Ph -->	1	2	3	4	5	6	7	8	
Phase	0	0	0	8	0	0	0	4	$0=$ none, $1-8=$ phase $1-8$

Cond Service (Next/2/2/9/3/A)			5 Sec Head Logic (Next/2/2/9/4)				

Other Controller Functions (Next/2/2/9/1, Next/2/2/9/5)

Inhibit Simultaneous Gap Out	$1-345-78$	
Last Car Passage	2	$0=$ recall phase, 1 = last car passage, 2 = NOT recall - Not last car passage
Red Revert (+2seconds)	0.0	$0-25.5$ sec.
Auto Ped Clear	On	X = On
FDW thru Yellow	Off	X = On
Red Rest Delay	0.0	$0-25.5$ sec.
Change Sequence	Off	X = On (After a download without a power on - off cycle)
Advanced Flash Rate	60 FPM	$0=$ Disabled (60 FPM), $1=120$ FPM
Ped Push Button Time	null	$0=$ Disable, $0-5$ Seconds

Phase $->$	1	2	3	4	5	6	7	8	
Red Clear Extension Detector	0	0	0	0	0	0	0	0	$0=$ none $1-32=$ detector $1-32$
Red Clear Extension Red Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0-25.5$ sec.

Local Detectors (Next/2/2/4/1)									
Detector Data									
Detector	Description	$\left\|\right\|$		Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnect Mode
1				1	1	0	0	2.0	0
2				1	1	0	0	0.0	0
3				3	3	0	0	2.0	0
4				3	3	0	0	0.0	0
5				5	5	0	0	0.0	0
6				5	5	0	0	0.0	0
7				7	7	0	0	2.0	0
8				7	7	0	0	0.0	0
9				2	2	0	0	0.0	0
10				2	2	3	0	2.0	0
11				2	2	3	0	0.0	0
12				2	2	3	0	0.0	0
13				2	2	0	0	0.0	0
14				4	4	0	0	2.0	0
15				4	4	0	0	0.0	0
16				4	4	0	0	0.0	0
17				4	4	0	0	0.0	0
18				4	4	0	0	0.0	0
19				7	7	0	0	2.0	0
20				7	7	0	0	2.0	0
21				5	5	0	0	2.0	0
22				5	5	0	0	0.0	0
23				5	5	0	0	0.0	0
24				8	8	0	0	2.0	0
25				8	8	0	0	0.0	0
26				8	8	0	0	0.0	0
27				8	8	0	0	0.0	0
28				8	8	0	0	0.0	0
29				5	5	4	3	0.0	0
30				7	7	0	0	0.0	0
31				0	0	0	0	0.0	0
32				0	0	0	0	0.0	0

yellow lock, detector inhibit, - $\mathrm{X}=\mathrm{On}$; call, extend, phase $-0=$ none $1-8=$ phase $1-8$; delay time $-0-255$ sec stretch / disconnect time - 0.0-25.5 sec.; delay or disconnect Mode - 0-12

Local Detectors 33-64 (Next/2/2/4/6)									
Detector Data									
Detector	Description			Call Phase	Extend Phase	Switch Phase	Delay Time	$\begin{array}{\|c} \hline \text { Stretch / } \\ \text { Disconnect } \\ \text { Time } \\ \hline \end{array}$	Delay or Disconnect Mode
33		N/A	N/A	0	0	N/A	N/A	N/A	N/A
34		N/A	N/A	0	0	N/A	N/A	N/A	N/A
35		N/A	N/A	0	0	N/A	N/A	N/A	N/A
36		N/A	N/A	0	0	N/A	N/A	N/A	N/A
37		N/A	N/A	0	0	N/A	N/A	N/A	N/A
38		N/A	N/A	0	0	N/A	N/A	N/A	N/A
39		N/A	N/A	0	0	N/A	N/A	N/A	N/A
40		N/A	N/A	0	0	N/A	N/A	N/A	N/A
41		N/A	N/A	0	0	N/A	N/A	N/A	N/A
42		N/A	N/A	0	0	N/A	N/A	N/A	N/A
43		N/A	N/A	0	0	N/A	N/A	N/A	N/A
44		N/A	N/A	0	0	N/A	N/A	N/A	N/A
45		N/A	N/A	0	0	N/A	N/A	N/A	N/A
46		N/A	N/A	0	0	N/A	N/A	N/A	N/A
47		N/A	N/A	0	0	N/A	N/A	N/A	N/A
48		N/A	N/A	0	0	N/A	N/A	N/A	N/A
49		N/A	N/A	0	0	N/A	N/A	N/A	N/A
50		N/A	N/A	0	0	N/A	N/A	N/A	N/A
51		N/A	N/A	0	0	N/A	N/A	N/A	N/A
52		N/A	N/A	0	0	N/A	N/A	N/A	N/A
53		N/A	N/A	0	0	N/A	N/A	N/A	N/A
54		N/A	N/A	0	0	N/A	N/A	N/A	N/A
55		N/A	N/A	0	0	N/A	N/A	N/A	N/A
56		N/A	N/A	0	0	N/A	N/A	N/A	N/A
57		N/A	N/A	0	0	N/A	N/A	N/A	N/A
58		N/A	N/A	0	0	N/A	N/A	N/A	N/A
59		N/A	N/A	0	0	N/A	N/A	N/A	N/A
60		N/A	N/A	0	0	N/A	N/A	N/A	N/A
61		N/A	N/A	0	0	N/A	N/A	N/A	N/A
62		N/A	N/A	0	0	N/A	N/A	N/A	N/A
63		N/A	N/A	0	0	N/A	N/A	N/A	N/A
64		N/A	N/A	0	0	N/A	N/A	N/A	N/A
yellow lock, detector inhibit, $-\mathrm{X}=\mathrm{On}$; call, extend, phase $-0=$ none $1-8=$ phase $1-8$; delay time $-0-255$ sec stretch / disconnect time-0.0-25.5 sec.; delay or disconnect Mode - 0-12									

Detector Plans (Next/2/2/4/5)										
Loop Number										
	Plan Detectors	0	0	0	0	0	0	0	0	$0-32,0=$ none, $1-32=$ detectors 1-32
Detector Plan 1	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14
Detector Plan 2	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14
Detector Plan 3	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14

Detector Fail (Next/2/2/4/3)		
Detector Fail Sample Period (all detectors)	0	$0-255$ minutes
Dynamic Phase Length Fail Period	0	$0-255$ minutes

Video Fail Inputs	1	2	3	4	5	6	7	8	$0=$ none, $1-8=$ phase $1-8$
Phase Recalled	0	0	0	0	0	0	0	0	
System Detectors	1	2	3	4	5	6	7	8	0 = none, 1-32 = detector 1-32
Local Detector	1	5	9	10	19	20	29	30	

Flash (Next/2/2/5)					
	Flash Entry		Flash Exit		
Ring 1	Ring 2	Interval	Ring 1	Ring 2	Interval
0	0	red	1	0	0
$0=$ none, phase 1-8	$0=$ red, 1 $=$ yel, 2 $=$ grn	$0=$ none, phase 1-8	$0=$ red, $1=$ yel, $2=$ grn		

Soft Flash (Next/2/2/5/A)												
Phase	1	2	3	4	5	6	7	8				
	3	4	3	4	3	4	3	4				
Overlap	A	B	C	D	E	F	G	H	1	J	K	L
	3	4	3	4	3	4	3	4	3	4	3	4

0 = dark, 1=flash yel WIG, 2 = flash yel WAG, 3 = flash red WIG, 4 = flash red WAG

Internal Logic													
Output	1	2	3	4	5	6	7	8	9	10	11	12	$0=$ normal, $1=$ dark, 2

Overlaps (Next/2/2/8/1)													
Vehicle	Phase or Movement	Phase or Movement								Extension Green	Clearance		$\begin{aligned} & \text { A - D } \\ & 0=\text { no overlap } \\ & 1=\text { overlap } \\ & 2=60 \text { FPM } \\ & 3=\text { Not ped overlap } \\ & 4=\text { Comp Phase } \\ & 5=\text { Prevent Ext } \\ & 6=\text { Not Vehicle } \end{aligned}$
Overlaps		1	2	3	4	5	6	7	8		Yellow	Red	
A		0	0	0	0	1	1	1	0	0.0	0.0	0.0	
B		0	1	1	1	0	0	0	0	0.0	0.0	0.0	
C		0	0	1	0	1	1	1	0	0.0	0.0	0.0	
D		0	0	0	1	1	0	1	0	0.0	0.0	0.0	
E		0	0	0	0	0	0	1	0	0.0	0.0	0.0	$0 \text { = no Overlap }$
F		0	0	0	0	0	0	0	0	0.0	0.0	0.0	1 = Overlap
G		0	0	0	0	0	0	0	0	0.0	0.0	0.0	
H		0	0	0	0	0	0	0	0	0.0	0.0	0.0	Green, Yellow, Red $0.0-25.5 \mathrm{sec}$
1		0	0	0	0	0	0	0	0	0.0	0.0	0.0	
J		0	0	0	0	0	0	0	0	0.0	0.0	0.0	
K		0	0	0	0	0	0	0	0	0.0	0.0	0.0	
L		0	0	0	0	0	0	0	0	0.0	0.0	0.0	

(Next/2/2/8/6/8)						Ped Overlaps							(Next/2/2/8/5)					
	Not Ped-Ped Overlaps					Ped Overlap	Phase								Recall	$\frac{\text { Walk }}{0}$	$\frac{\text { Ped Clear }}{0}$	Walk, Ped Clear 0-255 seconds
Overlap	A B	C D	E F	G		A	-	-	-	- -		-		-				
A	- -	- -	- -	-	-	B	-	-	-	-		-		-		0	0	
B	- -	- -	-	-	-	C	-	-	-	-		-		-		0	0	
C	- -	-	- -	-	-	D	-	-	-	-		-		-		0	0	
D	-	- -	- -	-	-	E	-	-	-	-		-		-		0	0	
						F	-	-	-	-		-		-		0	0	
						G	-	-	-	-		-		-		0	0	
						H	-	-	-	-	-	-	-	-		0	0	

Advance Warning (Next/2/2/8/3)

	E	F	G	H	1	J	K	L	
Enable	0	0	0	0	0	0	0	0	0 = Disable, 1 = Enable
1st Conditional Overlaps	0	0	0	0	0	0	0	0	$0=$ None, $1=$ OL E, $2=\mathrm{OL} \mathrm{F}, 3=\mathrm{OL} \mathrm{G} 4=$,
2nd Conditional Overlaps	0	0	0	0	0	0	0	0	$\mathrm{OLH}, 5=\mathrm{OLI}, 6=\mathrm{OLJ}, 7=\mathrm{OLK}, 8=\mathrm{OLL}$
Advance Deactivation Delay	0	0	0	0	0	0	0	0	0-99 sec

Flashing Yellow Left Turn Arrow (FYLTA) (Next/2/2/8/6)

Phase Pairs ->	$1-2$	$3-4$	$5-6$	$7-8$	
Enable	0	0	0	0	$0=$ off, $3=3$ outputs, $4=4$ outputs, $5=5$ outputs
Even Omits Odd	0	0	0	0	$0 / 1 / 2$
Detector Switch Odd / Even	1	1	1	1	$X=$ on, odd phase must be omitted
Red Transition	2.0	2.0	2.0	2.0	0.0 or $2.0-25.5$ sec.
Red Extension	0.0	0.0	0.0	0.0	$0.0-25.5$ sec.
Return to GLTA	0	0	0	0	$0=$ off, $1=$ max out, $2=$ yellow lock

Gap Dependent FYLTA											
Detector Input	0	0	0	0	$0=$ Disabled, $1-64=$ Local Detector $1-64$						
Minimum Delay	0	0	0	0	$0-255$ seconds						
Detector Gap Time	0.0	0.0	0.0	0.0	$0-25.5$ seconds.						
Maximum Delay	0	0	0	0	$0-255$ seconds						
Not Ped	0	0	0	0							

Dynamic Flashing Yellow Left Turn Arrow

Phase Pairs	$\mathbf{1 - 2}$	$\mathbf{3 - 4}$	$\mathbf{5 - 6}$	$\mathbf{7 - \mathbf { 8 }}$	
[Plan A] Detector Input	0	0	0	0	Detectors $\mathbf{1 - 6 4 ; 0} \mathbf{=}$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan B] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan C] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan D] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

Coordination Plans (Next/2/3/2)								
Coord Plan	Coordination Phases		Cycle Length	Offset Time	Min Cycle Len Dwell Time	Permissive	Service Plan	Max Plan
	Ring 1	Ring 2						
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0
				0-2	55 sec			

Circuit Mapping (Next/2/3/3)

		Time Clock Circuit							
Circuit Map	Coord Plan	1	2	3	4	5	6	7	8
1	34	0	0	0	0	0	0	0	0
2	34	0	0	0	0	0	0	0	0
3	34	0	0	0	0	0	0	0	0
4	34	0	0	0	0	0	0	0	0
5	34	0	0	0	0	0	0	0	0
6	34	0	0	0	0	0	0	0	0
7	34	0	0	0	0	0	0	0	0
8	34	0	0	0	0	0	0	0	0
9	34	0	0	0	0	0	0	0	0
10	34	0	0	0	0	0	0	0	0
11	34	0	0	0	0	0	0	0	0
12	34	0	0	0	0	0	0	0	0
13	34	0	0	0	0	0	0	0	0
14	34	0	0	0	0	0	0	0	0
15	34	0	0	0	0	0	0	0	0
16	34	0	0	0	0	0	0	0	0
17	34	0	0	0	0	0	0	0	0
18	34	0	0	0	0	0	0	0	0
19	34	0	0	0	0	0	0	0	0
20	34	0	0	0	0	0	0	0	0

coord plan - $0=$ free, $1-32$ = coord plan 1-32, 33 = any, 34 none selected
time clock circuits - $0=$ not used, or circuits 6-199
Dynamic Phase Lengths (Next/2/3/4/4)

Phase ->		1	2	3	4	5	6	7	8	
Back Detector		1	31	0	29	5	32	0	30	0 = none, 1-32 = detector 1-32
Lane Factor		1.0	1.9	0.0	1.3	1.0	1.9	0.0	1.5	$0=$ none, 0.5-5.0
Check Out Detector		0	0	0	0	0	0	0	0	$0=$ none, 1-32 $=$ detector 1-32
Coord Delta Force Off	Set A	5	5	0	5	5	5	0	5	0-255 sec
	Set B	0	0	0	5	5	0	0	5	
	Set C	0	0	0	0	0	0	0	0	
	Set D	0	0	0	0	0	0	0	0	
Free Delta Max	Set A	0	0	0	0	0	0	0	0	
	Set B	0	0	0	0	0	0	0	0	
	Set C	0	0	0	0	0	0	0	0	
	Set D	0	0	0	0	0	0	0	0	

Auto Permissive Min Green (Next/2/3/4/3)

Phase ->	1	2	3	4	5	6	7	8	
Auto Perm Min Green	0	0	0	0	0	0	0	0	$0-255 \mathrm{sec}$.

Time of Day Data (Next/2/4/1)

Day Program						
	Day Prog	Time	Coord Plan or Circuit	Coord Plan \# or Circuit \#	Circuit Abbrev	State On/Off
1	1	16:00	Circuit	13	MX2	X
2	1	18:30	Circuit	13	MX2	
3	0	00:00	Circuit	0	None / Coord Plan	
4	0	00:00	Circuit	0	None / Coord Plan	
5	0	00:00	Circuit	0	None / Coord Plan	
6	0	00:00	Circuit	0	None / Coord Plan	
7	0	00:00	Circuit	0	None / Coord Plan	
8	0	00:00	Circuit	0	None / Coord Plan	
9	0	00:00	Circuit	0	None / Coord Plan	
10	0	00:00	Circuit	0	None / Coord Plan	
11	0	00:00	Circuit	0	None / Coord Plan	
12	0	00:00	Circuit	0	None / Coord Plan	
13	0	00:00	Circuit	0	None / Coord Plan	
14	0	00:00	Circuit	0	None / Coord Plan	
15	0	00:00	Circuit	0	None / Coord Plan	
16	0	00:00	Circuit	0	None / Coord Plan	
17	0	00:00	Circuit	0	None / Coord Plan	
18	0	00:00	Circuit	0	None / Coord Plan	
19	0	00:00	Circuit	0	None / Coord Plan	
20	0	00:00	Circuit	0	None / Coord Plan	
21	0	00:00	Circuit	0	None / Coord Plan	
22	0	00:00	Circuit	0	None / Coord Plan	
23	0	00:00	Circuit	0	None / Coord Plan	
24	0	00:00	Circuit	0	None / Coord Plan	
25	0	00:00	Circuit	0	None / Coord Plan	
26	0	00:00	Circuit	0	None / Coord Plan	
27	0	00:00	Circuit	0	None / Coord Plan	
28	0	00:00	Circuit	0	None / Coord Plan	
29	0	00:00	Circuit	0	None / Coord Plan	
30	0	00:00	Circuit	0	None / Coord Plan	
31	0	00:00	Circuit	0	None / Coord Plan	
32	0	00:00	Circuit	0	None / Coord Plan	
33	0	00:00	Circuit	0	None / Coord Plan	
34	0	00:00	Circuit	0	None / Coord Plan	
35	0	00:00	Circuit	0	None / Coord Plan	
36	0	00:00	Circuit	0	None / Coord Plan	
37	0	00:00	Circuit	0	None / Coord Plan	
38	0	00:00	Circuit	0	None / Coord Plan	
39	0	00:00	Circuit	0	None / Coord Plan	
40	0	00:00	Circuit	0	None / Coord Plan	
	1-15	hh:mm	$\begin{gathered} \text { X = On }=\text { Coord } \\ \text { Plan } \end{gathered}$	coord plan 0-32 or circuit 1-199		X = On

Time Zone Offset (Next/2/4/8)

Time Zone
Not Loaded

CIRCUIT OVERRIDES 1-100 (Next/2/4/4)

1 - Coord Line 1	CL1	$2=$ TOD	51 - Ped Omit 3	PO3	2	= TOD
2 - Coord Line 2	CL2	$2=$ TOD	52 - Ped Omit 4	PO4	2	= TOD
3 - Coord Line 4	CL4	$2=$ TOD	53 - Ped Omit 5	PO5	2	= TOD
4 - Coord Line 8	CL8	$2=\mathrm{TOD}$	54 - Ped Omit 6	PO6	2	= TOD
5 - Coord Line 16	C16	$2=$ TOD	55 - Ped Omit 7	PO7	2	= TOD
6 - Coordinated Operation	CRD	$2=\mathrm{TOD}$	56 - Ped Omit 8	PO8	2	= TOD
7 - Soft Flash	SFL	$2=$ TOD	57 - Conditonal Service	CVS	2	$=\mathrm{TOD}$
8 - Enable System Relays	ESR	$2=$ TOD	58 - Inhibit Simultaneous Gap Out	ISG	1	$=\mathrm{On}$
9 - Call to Non Actuated Ring 1	CN1	$2=$ TOD	59 - Inhibit Hardwire	HWI	2	$=\mathrm{TOD}$
	CN2	$2=\mathrm{TOD}$	60 - Ped Override Mode	POM	1	= On
11 - Walk Rest Modifier	WRM	$2=$ TOD	61 - Dual Entry	DLE	1	= On
12 - Min Recall	MIN	$2=$ TOD	62 - Exclusive Ped	EPD	2	$=\mathrm{TOD}$
13 - Max 2 Both Rings	MX2	$2=$ TOD	63 - Call to Time Clock Mode	CTC	2	= TOD
14 - Coord Inhibit Max Ring 1	IM1	$2=T O D$	64 - Dual Enhanced Ped	DEP	2	$=\mathrm{TOD}$
15 - Coord Inhibit Max Ring 2	IM2	$1=0 n$	65 - Service Plan 1	SP1	2	= TOD
16 - Call to Free	CTF	$2=$ TOD	66 - Service Plan 2	SP2	2	= TOD
17 - TOD Output 1	TO1	$2=$ TOD	67 - Service Plan 3	SP3	2	= TOD
18 - TOD Output 2	TO2	$2=$ TOD	68 - Service Plan 4	SP4	2	= TOD
19 - TOD Output 3	TO3	$2=$ TOD	69 - Service Plan 5	SP5	2	= TOD
20 - TOD Output 4	TO4	$2=T O D$	70 - Service Plan 6	SP6	2	= TOD
21 - TOD Output 5	TO5	$2=$ TOD	71 - Service Plan 7	SP7	2	= TOD
22 - TOD Output 6	TO6	$2=$ TOD	72 - Service Plan 8	SP8	2	= TOD
23 - TOD Output 7	TO7	$2=$ TOD	73 - Max Plan 1	MP1	2	= TOD
24 - TOD Output 8	T08	2 = TOD	74 - Max Plan 2	MP2	2	= TOD
25 - Vehicle Call Phase 1	VC1	2 = TOD	75 - Max Plan 3	MP3	2	= TOD
26 - Vehicle Call Phase 2	VC2	2 = TOD	76 - Max Plan 4	MP4	2	= TOD
27 - Vehicle Call Phase 3	VC3	$2=T O D$	77 - Max Plan 5	MP5	2	= TOD
28 - Vehicle Call Phase 4	VC4	$2=$ TOD	78 - Max Plan 6	MP6	2	= TOD
29 - Vehicle Call Phase 5	VC5	$2=$ TOD	79 - Max Plan 7	MP7	2	= TOD
30 - Vehicle Call Phase 6	VC6	$2=$ TOD	80 - Max Plan 8	MP8	2	= TOD
31 - Vehicle Call Phase 7	VC7	$2=\mathrm{TOD}$	81 - Transit Priority Max Group 1	TG1	2	= TOD
32 - Vehicle Call Phase 8	VC8	$2=$ TOD	82 - Transit Priority Max Group 2	TG2	2	= TOD
33 - Ped Call Phase 1	PC1	$2=$ TOD	83 - Transit Priority Max Group 3	TG3	2	$=\mathrm{TOD}$
34 - Ped Call Phase 2	PC2	$2=\mathrm{TOD}$	84 - Transit Priority Max Group 4	TG4	2	= TOD
35 - Ped Call Phase 3	PC3	$2=$ TOD	85 - Transit Priority Max Group 5	TG5	2	= TOD
36 - Ped Call Phase 4	PC4	$2=\mathrm{TOD}$	86 - Transit Priority Max Group 6	TG6	2	= TOD
37 - Ped Call Phase 5	PC5	$2=\mathrm{TOD}$	87 - Transit Priority Max Group 7	TG7	2	= TOD
38 - Ped Call Phase 6	PC6	$2=T O D$	88 - Transit Priority Max Group 8	TG8	2	= TOD
39 - Ped Call Phase 7	PC7	2 = TOD	89 - Inhibit Gap Reducing 1	GR1	2	= TOD
40 - Ped Call Phase 8	PC8	$2=$ TOD	90 - Inhibit Gap Reducing 2	GR2	2	= TOD
41 - Phase Omit 1	VO1	$2=$ TOD	91 - Inhibit Gap Reducing 3	GR3	2	= TOD
42 - Phase Omit 2	VO2	2 = TOD	92 - Inhibit Gap Reducing 4	GR4	2	= TOD
43 - Phase Omit 3	VO3	$2=$ TOD	93 - Inhibit Gap Reducing 5	GR5	2	= TOD
44 - Phase Omit 4	VO4	$2=$ TOD	94 - Inhibit Gap Reducing 6	GR6	2	= TOD
45 - Phase Omit 5	VO5	$2=$ TOD	95 - Inhibit Gap Reducing 7	GR7	2	= TOD
46 - Phase Omit 6	VO6	$2=$ TOD	96 - Inhibit Gap Reducing 8	GR8	2	= TOD
47 - Phase Omit 7	VO7	$2=$ TOD	$97-$ Lag 1	LG1	2	= TOD
48 - Phase Omit 8	VO8	$2=$ TOD	$98-\operatorname{Lag} 3$	LG3	2	= TOD
49 - Ped Omit 1	PO1	$2=$ TOD	99 - Lag 5	LG5	2	= TOD
50 - Ped Omit 2	PO2	$2=$ TOD	100-Lag 7	LG8	2	$=\mathrm{TOD}$

CIRCUIT OVERRIDES 101-199 (Next/2/4/4)

101 - Inhibit Overlap A	OLA	$2=\mathrm{TOD}$	151 - Coord Hold 7	HD7	$2=$ TOD
102 - Inhibit Overlap B	OLB	$2=\mathrm{TOD}$	152 - Coord Hold 8	HD8	$2=$ TOD
103 - Inhibit Overlap C	OLC	$2=\mathrm{TOD}$	153 - PE Priority Return B	PRB	$2=$ TOD
104 - Inhibit Overlap D	OLD	$2=\mathrm{TOD}$	154 - PE Priority Return C	PRC	$2=$ TOD
105 - Enable Schedule A Phone 1	AT1	$2=\mathrm{TOD}$	155 - PE Priority Return D	PRD	$2=$ TOD
106 - Enable Schedule A Phone 2	AT2	$2=\mathrm{TOD}$	156 - PE Priority Return E	PRE	$2=$ TOD
107 - Enable Schedule B Phone 1	BT1	$2=\mathrm{TOD}$	157 - Platoon Inbound	PPI	$2=$ TOD
108 - Enable Schedule B Phone 2	BT2	$2=\mathrm{TOD}$	158 - Platoon Outbound	PPO	$2=$ TOD
109 - Enable Schedule C Phone 1	CT1	$2=\mathrm{TOD}$	159 - Platoon Spl 2	PS2	$2=$ TOD
110 - Enable Schedule C Phone 2	CT2	$2=\mathrm{TOD}$	160 - Coord Walk Rest	CWR	$2=$ TOD
111 - Enable Volume to Call Phone 1	VT1	$2=\mathrm{TOD}$	161 - Dynamic Phase Length Short Inhibit 1	SL1	$2=$ TOD
112 - Enable Volume to Call Phone 1	VT2	$2=\mathrm{TOD}$	162 - Dynamic Phase Length Short Inhibit 2	SL2	$2=$ TOD
113 - Enable Volume Logging	EVL	$1=0 n$	163 - Dynamic Phase Length Short Inhibit 3	SL3	$2=$ TOD
114 - Enable MOE Logging	EML	$1=0 n$	164 - Dynamic Phase Length Short Inhibit 4	SL4	$2=\mathrm{TOD}$
115 - Detector Low Threshold Inhibit	DLI	$2=\mathrm{TOD}$	165 - Dynamic Phase Length Short Inhibit 5	SL5	$2=$ TOD
116 - Detector Continue Presence Inhibit	DPI	$2=\mathrm{TOD}$	166 - Dynamic Phase Length Short Inhibit 6	SL6	$2=$ TOD
117 - Inhibit Detector Based On Progrmming	IND	$2=\mathrm{TOD}$	167 - Dynamic Phase Length Short Inhibit 7	SL7	$2=$ TOD
118 - Inhibit Detector Delay	IDD	$2=\mathrm{TOD}$	168 - Dynamic Phase Length Short Inhibit 8	SL8	$2=$ TOD
119 - Inhibit Conditional Ped	ICP	$2=\mathrm{TOD}$	169 - Coord Late Left Turn 1	CT1	$2=$ TOD
120 - Inhibit Transit Priority	ITP	$2=\mathrm{TOD}$	170 - Coord Late Left Turn 3	CT3	$2=\mathrm{TOD}$
121 - Red Rest Ring 1	RR1	$2=$ TOD	171 - Coord Late Left Turn 5	CT5	$2=$ TOD
122 - Red Rest Ring 2	RR2	$2=\mathrm{TOD}$	172 - Coord Late Left Turn 7	CT7	$2=\mathrm{TOD}$
123 - Omit Red Clear Ring 1	OR1	$2=$ TOD	173 - Dynamic Phase Length Enable A	DPA	$2=$ TOD
124 - Omit Red Clear Ring 2	OR2	$2=\mathrm{TOD}$	174 - Dynamic Phase Length Enable B	DPB	$2=$ TOD
125 - Ped Recycle Ring 1	PR1	$2=$ TOD	175 - Dynamic Phase Length Enable C	DPC	$2=\mathrm{TOD}$
126 - Ped Recycle Ring 2	PR2	$2=\mathrm{TOD}$	176 - Dynamic Phase Length Enable D	DPD	$2=\mathrm{TOD}$
127 - Enable MOE Log to Call Phone 1	MT1	$2=\mathrm{TOD}$	177 - Proactive Plan Select Average	PSA	$2=$ TOD
128 - Enable MOE Log to Call Phone 2	MT2	$2=$ TOD	178 - Proactive Plan Select Inbound	PSI	$2=\mathrm{TOD}$
129 - Transit Inhibit Short Time 1	IS1	$2=\mathrm{TOD}$	179 - Proactive Plan Select Outbound	PSO	$2=$ TOD
130 - Transit Inhibit Short Time 2	IS2	$2=\mathrm{TOD}$	180 - Split Variant Inbound	SVI	$2=$ TOD
131 - Transit Inhibit Short Time 3	IS3	$2=\mathrm{TOD}$	181 - Split Variant Outbound	SVO	$2=$ TOD
132 - Transit Inhibit Short Time 4	IS4	$2=\mathrm{TOD}$	182 - Disable Coord Walk Rest Ring 1	WR1	$2=$ TOD
133 - Transit Inhibit Short Time 5	IS5	$2=$ TOD	183 - Disable Coord Walk Rest Ring 2	WR2	$2=$ TOD
134 - Transit Inhibit Short Time 6	IS6	$2=\mathrm{TOD}$	184 - Proactive Plan Select New Look	NLK	$2=$ TOD
135 - Transit Inhibit Short Time 7	IS7	$2=\mathrm{TOD}$	185 - Disable Red Clearance Extension	DRX	$2=$ TOD
136 - Transit Inhibit Short Time 8	IS8	$2=$ TOD	186 - Detector Plan Line 1	DL1	$2=$ TOD
137 - Enable Transit Priority Logging	ETL	$2=\mathrm{TOD}$	187 - Detector Plan Line 2	DL2	$2=$ TOD
138 - Disable Flashing Yellow Arrow 1	DF1	$2=\mathrm{TOD}$	188 - Disable LRT 1 Vertical Flashing Bar	DV1	$2=$ TOD
139 - Disable Flashing Yellow Arrow 3	DF3	$2=$ TOD	189 - Disable LRT 2 Vertical Flashing Bar	DV2	$2=\mathrm{TOD}$
140 - Disable Flashing Yellow Arrow 5	DF5	$2=\mathrm{TOD}$	190 - Disable LRT 3 Vertical Flashing Bar	DV3	$2=$ TOD
141 - Disable Flashing Yellow Arrow 7	DF7	$2=$ TOD	191 - Disable LRT 4 Vertical Flashing Bar	DV4	$2=$ TOD
142 - Disable Auto Max	DAM	$2=$ TOD	192 - Datakey Enable	DKE	$1=0 n$
143 - Disable Repeated Phase Service	DRS	$2=\mathrm{TOD}$	193 - Dynamic Phase Reversal Enable 1	DR1	$2=$ TOD
144 - End of Main Street	EMS	$2=\mathrm{TOD}$	194 - Dynamic Phase Reversal Enable 3	DR3	$2=$ TOD
145 - Coord Hold 1	HD1	$2=\mathrm{TOD}$	195 - Dynamic Phase Reversal Enable 5	DR5	$2=$ TOD
146 - Coord Hold 2	HD2	$2=\mathrm{TOD}$	196 - Dynamic Phase Reversal Enable 7	DR7	$2=$ TOD
147 - Coord Hold 3	HD3	$2=\mathrm{TOD}$	197 - Enable Coordination Log	ECL	1 = On
148 - Coord Hold 4	HD4	$2=$ TOD	198 - Disable Gap For FYLTA	DGF	$2=\mathrm{TOD}$
149 - Coord Hold 5	HD5	$2=\mathrm{TOD}$	199-Coordination Auto Walk	CAW	$2=$ TOD

PREEMPTION SEQUENCE 1 - 4 (Next/2/5)

SEQUENCE TIMING (Next/2/5/0)											
Sequence			1	2	3	4	5	6	7	8	
Input Memory											X = on
Input Priority			6	6	6	6	0	0	0	0	$0=$ lowest, $-8=$ highest
Min Green			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 sec 0.0 would time the normal function time
Entry(Transition)Parameters	Ped Clear		0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Overlap Yellow		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 sec
	Overlap Red		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Delay to Preempt		0	0	0	0	0	0	0	0	0-255 sec
	Delay Ped Omit		0	0	0	0	0	0	0	0	
	Delay Phase Omit		0	0	0	0	0	0	0	0	
	Min Reservice		0	0	0	0	0	0	0	0	0-255 min
Overlap Inhibits		A									X $=$ on
		D									
Exit Parameters	Exit to Coord Plan Offset by X		0	0	0	0	0	0	0	0	0-20
	Exit Coord Plan	Time	0	0	0	0	0	0	0	0	0-60 min
	Exit to Max	Plan	0	0	0	0	0	0	0	0	0-8
	Exit Free Time		0	0	0	0	0	0	0	0	0-60 min
	Override Time		0	0	0	0	0	0	0	0	
	Fail Time		0	0	0	0	0	0	0	0	
	Exit Mode Time		0	0	0	0	0	0	0	0	

PRIORITY RETURN AND SPECIAL INTERVALS (Next/2/5/0/6, Next/2/5/9)														
Phase / Overlap		$\begin{array}{\|c\|} \hline 1 \\ \hline \text { Off } \\ \hline \end{array}$	2	3	4	5	6	7	8	A	B	C	D	
Priority Return	Enable	Off	$0=$ disabled; $1=$ enabled; 2 = enabled and skip preempt phase on exit											
			0	0	0	0	0	0	0	0-100\% of currently used max				
	B (max)	0	0	0	0	0	0	0	0					
	C (max)	0	0	0	0	0	0	0	0					
	D (max)	0	0	0	0	0	0	0	0					
	E (max)	0	0	0	0	0	0	0	0					
	Ped Clear	0	0	0	0	0	0	0	0	$\frac{0-100 \% \text { of }}{0-255 \mathrm{sec}}$,	d ped clearance
Queue Delay Recovery		0	0	0	0	0	0	0	0					
Special Intervals	1	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & 0=\text { Dark } \\ & 1=\text { green don't walk } \\ & 2=\text { green walk } \\ & 3=\text { green flashing don't walk } \end{aligned}$$4 \text { = yellow }$
	2	0	0	0	0	0	0	0	0	0	0	0	0	
	3	0	0	0	0	0	0	0	0	0	0	0	0	
	4	0	0	0	0	0	0	0	0	0	0	0	0	
	5	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & 5=\text { red } \\ & 6=\text { flashing yellow WIG } \end{aligned}$
	6	0	0	0	0	0	0	0	0	0	0	0	0	7 = flashing yellow WAG 8 = flashing red WIG 9 = flashing red WAG
	7	0	0	0	0	0	0	0	0	0	0	0	0	
	8	0	0	0	0	0	0	0	0	0	0	0	0	9 = flashing red WAG $10=$ walk only 11=flashing don't walk only
	9	0	0	0	0	0	0	0	0	0	0	0	0	

LIGHT RAIL TRAIN (Next/2/5/0/7)					
Light Rail Train	1	2	3	4	
Associated Preempt	0	0	0	0	$0=$ none, preempt 1-8
Time to Green	0	0	0	0	$0-255 \mathrm{sec}$
Horizontal Bar Flash Time	0.0	0.0	0.0	0.0	
Vertical Bar Flash Time	0.0	0.0	0.0	0.0	$0.0-25.5 \mathrm{sec}$
Min Duration	0	0	0	0	$0-255 \mathrm{sec}$

TRANSIT PRIORITY (Next/2/7)

	1	2	3	4	5	6	7	8	
Phases	NONE	Phases $1-8$ (max of 2 compatible phases)							
PE Enable (6.25Hz TP call on PE)	X	X	X	X	X	X	X	X	$\mathrm{X}=6.25 \mathrm{~Hz}$ signal will activate TP
Priority	0	0	0	0	0	0	0	0	$0-8,8=$ highest
Memory									$\mathrm{X}=$ on
Delay Time	0	0	0	0	0	0	0	0	$0-255$ sec
Minimum Reservice Time (per input)	0	0	0	0	0	0	0	0	$0-255 \mathrm{~min}$
Override Time	0	0	0	0	0	0	0	0	$0-255$ sec
Bus Extend	0	0	0	0	0	0	0	0	$0-255$ min
Minimum Reservice Time (all inputs)	0	$0-255$ min							
Free Operation Mode	0	$0=$ use shortest of max 1 or 2, 1-8 = use max time of group 1-8, 9 = use time of day circuit							

TRANSIT PRIORITY ALTERNATE FORCE OFF PLANS (Next/2/7/6)

Current Coord Plan	1	2	3	4	5	6	7	8	$\begin{aligned} & 0=\text { none } \\ & 17-32=\text { coord plan } 17-32 \end{aligned}$
Alternate TP Force Off Plan	0	0	0	0	0	0	0	0	
Current Coord Plan	9	10	11	12	13	14	15	16	
Alternate TP Force Off Plan	0	0	0	0	0	0	0	0	

GROUP TIMING (Next/2/7/5)

TRUCK PRIORITY (Next/2/7/9)					
Truck Priority -->	1	2	3	4	
Associated Transit Priority	0	0	0	0	$0=$ none $1-8=$ transit priority $1-8$
Leading Detector	0	0	0	0	$0=$ none, $1-32=$ detector $1-32$
Trailling Detector	0	0	0	0	
Stop Bar Distance	0	0	0	0	$0-999$ feet
Trap Distance	0.0	0.0	0.0	0.0	$0.0-99.9$ feet
Minimum Speed	0	0	0	0	$0-100 \mathrm{mph}$
Minimum Length	0	0	0	0	$0-255$ feet
Downhill Grade (\%)	0	0	0	0	$0-20 \%$
Uphill Grade (\%)	0	0	0	0	
Undersized Vehicle					$\mathrm{X}=$ Enabled

C1-39	101 - Veh Detector 9	C1-67	22 - Ped Detector 2
C1-40	113 - Veh Detector 19	C1-68	25 - Ped Detector 5
C1-41	106 - Veh Detector 14	C1-69	24 - Ped Detector 4
C1-42	118 - Veh Detector 24	C1-70	23 - Ped Detector 3
C1-43	102 - Veh Detector 10	C1-71	151 - Preempt In 1
C1-44	114 - Veh Detector 20	C1-72	152 - Preempt In 2
C1-45	107 - Veh Detector 15	C1-73	153 - Preempt In 3
C1-46	161 - Veh Detector 25	C1-74	154 - Preempt In 4
C1-47	105 - Veh Detector 13	C1-75	165 - Veh Detector 29
C1-48	117 - Veh Detector 23	C1-76	104 - Veh Detector 12
C1-49	27 - Ped Detector 7	C1-77	116 - Veh Detector 22
C1-50	164 - Veh Detector 28	C1-78	111 - Veh Detector 17
C1-51	199 - LRT Ped Inhibit	C1-79	163 - Veh Detector 27
C1-52	155 - Preempt In 5	C1-80	82 - Interval Advance
C1-53	85 - Manual Control Enable	C1-81	137 - Conflict Monitor Status/Flash
C1-54	166 - Veh Detector 30	C1-82	62 - Stop Timing Ring 1
C1-55	15 - Veh Detector 5	C11-15	254 - Pin Not Used
C1-56	11 - Veh Detector 1	C11-16	254 - Pin Not Used
C1-57	17 - Veh Detector 7	C11-17	254 - Pin Not Used
C1-58	13 - Veh Detector 3	C11-18	254 - Pin Not Used
C1-59	16 - Veh Detector 6	C11-19	254 - Pin Not Used
C1-60	12 - Veh Detector 2	C11-20	254 - Pin Not Used
C1-61	18 - Veh Detector 8	C11-21	254 - Pin Not Used
C1-62	14 - Veh Detector 4	C11-22	254 - Pin Not Used
C11-10	254 - Pin Not Used	C11-23	254 - Pin Not Used
C11-11	254 - Pin Not Used	C11-24	254 - Pin Not Used
C11-12	254 - Pin Not Used	C11-25	254 - Pin Not Used
C11-13	254 - Pin Not Used	C11-26	254 - Pin Not Used
C1-63	103 - Veh Detector 11	C11-27	254 - Pin Not Used
C1-64	115 - Veh Detector 21	C11-28	254 - Pin Not Used
C1-65	108 - Veh Detector 16	C11-29	254 - Pin Not Used
C1-66	162 - Veh Detector 26	C11-30	254 - Pin Not Used

INPUTS AND OUTPUTS OPTIONS (Next/2/8/3)

Connector Type	C1/C11	Change I/O	$0=$ Disabled
$0=$ C1/C11; $1=$ MS-A/B/C/D;	X		
$2=$ TS2 Port 1; 3 $3=$ ITS Cabinet	(After a download without a power on - off cycle)		

170 OUTPUTS (Next/2/8/2)			
C1-2	44 - Don't Walk, Ph 4	C1-35	131 - TOD Output 1
C1-3	64 - Walk, Ph 4	C1-36	132 - TOD Output 2
C1-4	14 - Red, Ph 4	C1-37	133 - TOD Output 3
C1-5	24 - Yellow, Ph 4	C1-38	134 - TOD Output 4
C1-6	34 - Green, Ph 4	C1-100	53 - Ped Clear, Ph 3
C1-7	13 - Red, Ph 3	C1-101	51 - Ped Clear, Ph 1
C1-8	23 - Yellow, Ph 3	C1-102	187 - Soft Flash
C1-9	33 - Green, Ph 3	C1-103	147 - Watchdog
C1-10	42 - Don't Walk, Ph 2	C1-83	43 - Don't Walk, Ph 3
C1-11	62 - Walk, Ph 2	C1-84	63 - Walk, Ph 3
C1-12	12 - Red, Ph 2	C1-85	116 - Overlap D, Red
C1-13	22 - Yellow, Ph 2	C1-86	115 - Overlap D, Yellow
C1-15	32 - Green, Ph 2	C1-87	114 - Overlap D, Green
C1-16	11 - Red, Ph 1	C1-88	113 - Overlap C, Red
C1-17	21 - Yellow, Ph 1	C1-89	112 - Overlap C, Yellow
C1-18	31 - Green, Ph 1	C1-90	111 - Overlap C, Green
C1-19	43 - Don't Walk, Ph 3	C1-91	47 - Don't Walk, Ph 7
C1-20	63 - Walk, Ph 3	C1-93	61 - Walk, Ph 1
C1-21	18 - Red, Ph 8	C1-94	106 - Overlap B, Red
C1-22	28 - Yellow, Ph 8	C1-95	105 - Overlap B, Yellow
C1-23	38 - Green, Ph 8	C1-96	104 - Overlap B, Green
C1-24	17 - Red, Ph 7	C1-97	103 - Overlap A, Red
C1-25	27 - Yellow, Ph 7	C1-98	102 - Overlap A, Yellow
C1-26	37 - Green, Ph 7	C1-99	101 - Overlap A, Green
C1-27	45 - Don't Walk, Ph 5	C11-1	254 - Pin Not Used
C1-28	65 - Walk, Ph 5	C11-2	254 - Pin Not Used
C1-29	16 - Red, Ph 6	C11-3	254 - Pin Not Used
C1-30	26 - Yellow, Ph 6	C11-4	254 - Pin Not Used
C1-31	36 - Green, Ph 6	C11-5	254 - Pin Not Used
C1-32	15 - Red, Ph 5	C11-6	254 - Pin Not Used
C1-33	25 - Yellow, Ph 5	C11-7	254 - Pin Not Used
C1-34	35 - Green, Ph 5	C11-8	254 - Pin Not Used

CONTROLLER ID

Manufacturer ID	NORTHWEST SIGNAL
Model ID	Voyage-0 v05.03.01
Protocol Revision ID	AB3418E V1

LEGEND

C) INSTAL MOOEL 170 CONTROLER MTH TEEEFHONE OROP IN MODEL 332
CABNET MTH RISER FRANE ORENT FRONT (LOUVEREO) OOOR AS SHOWN.
install (L) meier tranfic sicnal wast aru.
a) install terunal cabinet.
INSTALL PEDESTRIAN SIGNAL PEDESTAL MTH FRANGBLE BASE.
NSTAL PHASE (PH) PEDESTRIAN SICNAL, PUSHBUTTON AND INSTRUCTON
OECAL
NSTALL
$430 \mathrm{~mm} \times 255 \mathrm{~mm} \times 305 \mathrm{~mm}$ (MN. OIVENSION)

NSTALL $559 \mathrm{Smm} \times 305 \mathrm{~mm} \times 305 \mathrm{~mm}$ (UNN. OIMENSON) PRECAST CONCRETE
UNCTON BOX.

PRECAST CONCRETE JUNCTON BOX MTH CONCRETE APRON.
INSTALL CHANNEL (CH). (N) BARREL FIRE PRE-EUPTON DETETOR UNIT.

 nstall

NSTAL SPEEML NOKNSTINSNRO) TRMFFIC SIGNAL MAST ARM POE.
(SEE SPECAL PROVSONS).

Install photoelectric cell on pole ($6 \mathrm{~m}-11 \mathrm{~m}$ ABoVE pole base)
install (s) mm ELEctrical conouit.
Detector conout (se deiector plan).
install conouit ano wre as reoureo ay pomer conpany.
install phase (ph) procranueo vehicle sicnal.
NINSTALL (N) NO. \& TTPE THWN (SICNAL STSTEM CONUON). INSTALL (N) No. (G) TTPE THWN MRES install (N) No. (G) TTPE XHHW WRES.
install poly pull une (ikn min. strengti)nstall as requred ay telephone coupan
CD(m) incluots 3 SPare wres for phase (ph) as per talle
(90) retan ano protect exsting luunare pae
(2) Install servce cabnet, 240 VOLt, For both sigul ano Illuminaton circuits.
(23) install 240 volt neter base.
(6W) install crosswalk closure sicns (both sots of post).
(3) install alluinuu street nave SiCn "oth sto on signal mast arm (see detal *a*)
(27) install alluinulu street naue sicn on sicmal wast aru (see detal "b")
(10) REVOVE EXSSNMG LUUNARE ANO WOOO PORE. OISCONNECT WRNG FROU
EXSTNG OVERHEAO UNES ON SMLAMO ROAD.
(1) INTERCONNECT CONOUTT (SEE OEEECTOR PUN).

(10) INSTALL VEHCLE SCWAL PEDESTAL MH TRNNS ORUER BASE
000 install stano none phone nooem in controler cabinet. (see specal pronsons)
(a25) wstall rewote pomer servce post
(10) REvove ano relocate existng Luvinne pole. remove founoaton.
(ii) REINSTALL LUUNARE POE OR NEW FOUNDATON ANO RECOUUENDED WRING.

NORMAL PHASE ROTATION

$$
\begin{aligned}
& \text { OLA }=5,6,7 \\
& \text { OLB }=2,3,4 \\
& \text { OLC }=3,5,6,7 \\
& \text { OLD }=4,5,7 \\
& \text { PH7 }=\text { EXCLUSIVE }
\end{aligned}
$$

DETAIL "A"

DETAIL "B'

ABBREVIATIONS

$T=$ TrPE SHOWN
PH $=$ PHASE SHOWN
$X=$ NuMEER OF CABLES SHOWN

$=$ LENGTH SHOWN \quad CH= CHANNEL SHOW

GNAL HEAO TMPES

REMOTE POWER SERVICE POST (UNDERGROUND)
(SEE Tu404 for octinls)

Intersection Name: I-205 NB @ 10th

Controller	122323.2	Channel: -	Drop: 0
System:	TransCore TransSuite TCS		
Controller Type:	Voyage Revision -	Version -	
TransCore Unified Controller Manager	10.3.1		

\square

Zero Tables
Dual Entry
DetectorPlans
DetectorFailMonitor
Vehicle Overlaps
PedOverlaps
ADVANCE WARNING
DYNAMIC FYLTA
ServicePlans1 4
ServicePlans5 8
MaxPlans
CoordinationPlansCont
PlatoonProgression
ForceOffPercents
DayProgram 140 DayProgram 4180 DayProgram 81120 DayProgram 121160 DayProgram 161200
ExceptionDays
PreemptionSequence 58
PriorityReturnAndSpeciallntervals LightRailTrain
IEEE1570
TransitPriorityAOFP
GroupTiming
TruckPriority
IO Options
CommandBox 97192
CommandBox 193256

Non-Zero Tables
ControllerFunctionTiming
Phase Timing
OtherControllerFunctions
DetectorData
SystemDetector
FYLTA
CoordinationModes
CoordinationPlans
CircuitMapping
DynamicPhaseLength
WeekProgram
YearDays
TimeClockReferences
CircuitOverrides 1100
CircuitOverrides 101199
PreemptionSequence 14
SequenceTiming
TransitPriority
170 Inputs
170 Outputs
CommandBox 196
CONTROLLER ID

Controller Function and Timing

Security, Sequence and Timing (Next/2/1, Next/2/2/3/A, Next/2/2/5)								
Security Code		0	0 = disabled, or 1000-9999			First All Red	8.0	0.0 to 25.5 seconds
Sequence		7	0 = sequential, 1 = quad left turn, 2-6 = special A-E, 7 = lead lag					
Power up Flash		0.0	0.0-25.5 seconds					
Initialization (Next/2/2/5)				Lead Lag (Next/2/2/3/A)				
Ring 1	Ring 2		terval	Phases 1-2	Phases 3	4 Phas	5-6	Phases 7-8
0	5		0	2	2			2
Phase 1-8		0 = Red, 1 = Yel, $2=$ Grn		0 = no reversal, 1 = reversal, 2 = by coord plan or clock				

(Next/2/2/3)				Phase Functions						(Next/2/2/1)									
Phase Used		2			5	-	- 8			Yellow Lock	-	-	-	-	-	-	-	-	-
Restricted Phases	-	-	-			-	-			Min Recall	-	2	-	-	-	-	6	-	-
Exclusive Phases	-	-								Max Recall	-	-	-	-	-	-	-	-	-
										Ped Recall	-	-		-	-	-	-	-	-
										Red Lock	-	-	-	-	-	-	-	-	-
										Max Out Recall Inhibit	1	2	3	3	4	5	6	7	8
										Soft Recall	-	-		-	-	-	-	-	-
										Free Walk Rest	-	-		-	-	-	-	-	-
										Conditional Ped	-	-	-	-	-	-	-	-	-
									Dis	nhibit Max Termination	-	-	-	-	-	-	-	-	-
										Call To Non-Act 1	-	-	-	-	-	-	-	-	-
										Call To Non-Act 2	-	-	-	-	-	-	-	-	-

Phase Times (Next/2/2/2)									
Phase	1	2	3	4	5	6	7	8	
Movement									
Minimum Green	0	10	0	0	4	10	0	6	$0-255$ sec.
Passage	0.0	6.9	0.0	0.0	2.3	6.9	0.0	2.3	$0.0-25.5$ sec.
Yellow	0.0	4.0	0.0	0.0	4.0	4.0	0.0	4.0	$0.0-25.5$ sec.
Red Clearance	0.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0	$0.0-25.5$ sec. or 0-255 sec.
Max 1	0	30	0	0	25	30	0	20	$0-255$ sec.
Max 2	0	30	0	0	25	30	0	20	$0-255$ sec.
Walk	0	7	0	0	0	7	0	0	$0-255$ sec.
Ped Clear	0	14	0	0	0	10	0	0	$0-255$ sec.
Seconds Per Actuation	0.0	1.2	0.0	0.0	0.0	1.2	0.0	0.0	$0.0-25.5$ sec.
Time Before Reduction	0	10	0	0	8	10	0	8	$0-255$ sec.
Time to Reduce	0	10	0	0	3	10	0	3	$0-255$ sec.
Minimum Gap	0.0	4.9	0.0	0.0	0.5	4.9	0.0	0.5	$0.0-25.5$ sec.
Max Variable Initial	0	15	0	0	4	15	0	6	$0-255$ sec.
Max Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0.0-25.5$ sec.
Auto Max	0	0	0	0	0	0	0	0	$0-255$ sec.
Advanced walk	0	0	0	0	0	0	0	0	$0-255$ sec.

| Phase Times (Next/2/2/9/5) | | | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Inhibit Min Yellow | | | | | | | $\mathrm{X}=$ On |
| Red Decimal Off | | | | | | | $\mathrm{X}=$ On |

Dual Entry (Next/2/2/9/3)

Mode	0	$0=$ off, $1=$ on, $2=$ Not Used, $3=$ by coord plan, $4=$ by time clock circuit 61

Dual Entry Ph -->	1	2	3	4	5	6	7	8	
Phase	0	0	0	0	0	0	0	0	$0=$ none, $1-8=$ phase $1-8$

Cond Service (Next/2/2/9/3/A)			5 Sec Head Logic (Next/2/2/9/4)				

Other Controller Functions (Next/2/2/9/1, Next/2/2/9/5)

Inhibit Simultaneous Gap Out	$1-345-78$	
Last Car Passage	2	$0=$ recall phase, 1 = last car passage, 2 = NOT recall - Not last car passage
Red Revert (+2seconds)	0.0	$0-25.5$ sec.
Auto Ped Clear	On	X = On
FDW thru Yellow	Off	X = On
Red Rest Delay	0.0	$0-25.5$ sec.
Change Sequence	Off	X = On (After a download without a power on - off cycle)
Advanced Flash Rate	60 FPM	$0=$ Disabled (60 FPM), $1=120$ FPM
Ped Push Button Time	null	$0=$ Disable, $0-5$ Seconds

Phase $->$	1	2	3	4	5	6	7	8	
Red Clear Extension Detector	0	0	0	0	0	0	0	0	$0=$ none $1-32=$ detector $1-32$
Red Clear Extension Red Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0-25.5$ sec.

Local Detectors (Next/2/2/4/1)									
Detector Data									
Detector	Description	$\left\|\right\|$		Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnect Mode
1				1	1	0	0	0.0	0
2				1	1	0	0	0.0	0
3				3	3	0	0	0.0	0
4				3	3	0	0	0.0	0
5				5	5	0	0	0.0	0
6				5	5	0	0	0.0	0
7				7	7	0	0	0.0	0
8				7	7	0	0	0.0	0
9				2	2	0	0	0.0	0
10				2	2	0	0	0.0	0
11				2	2	0	0	0.0	0
12				2	2	0	0	5.0	0
13				2	2	0	0	0.0	0
14				8	8	0	0	2.0	0
15				8	8	0	0	2.0	0
16				4	4	0	0	0.0	0
17				4	4	0	0	0.0	0
18				4	4	0	0	0.0	0
19				6	6	0	0	0.0	0
20				6	6	0	0	0.0	0
21				6	6	0	0	0.0	0
22				6	6	0	0	0.0	0
23				6	6	0	0	0.0	0
24				8	8	0	0	0.0	0
25				8	8	0	0	2.0	0
26				8	8	0	0	0.0	0
27				8	8	0	0	0.0	0
28				8	8	0	0	0.0	0
29				0	0	0	0	0.0	0
30				0	0	0	0	0.0	0
31				0	0	0	0	0.0	0
32				0	0	0	0	0.0	0

yellow lock, detector inhibit, - $\mathrm{X}=\mathrm{On}$; call, extend, phase $-0=$ none $1-8=$ phase $1-8$; delay time $-0-255$ sec stretch / disconnect time-0.0-25.5 sec.; delay or disconnect Mode - 0-12

Local Detectors 33-64 (Next/2/2/4/6)									
Detector Data									
Detector	Description			Call Phase	Extend Phase	Switch Phase	Delay Time	$\begin{array}{\|c} \hline \text { Stretch / } \\ \text { Disconnect } \\ \text { Time } \\ \hline \end{array}$	Delay or Disconnect Mode
33		N/A	N/A	0	0	N/A	N/A	N/A	N/A
34		N/A	N/A	0	0	N/A	N/A	N/A	N/A
35		N/A	N/A	0	0	N/A	N/A	N/A	N/A
36		N/A	N/A	0	0	N/A	N/A	N/A	N/A
37		N/A	N/A	0	0	N/A	N/A	N/A	N/A
38		N/A	N/A	0	0	N/A	N/A	N/A	N/A
39		N/A	N/A	0	0	N/A	N/A	N/A	N/A
40		N/A	N/A	0	0	N/A	N/A	N/A	N/A
41		N/A	N/A	0	0	N/A	N/A	N/A	N/A
42		N/A	N/A	0	0	N/A	N/A	N/A	N/A
43		N/A	N/A	0	0	N/A	N/A	N/A	N/A
44		N/A	N/A	0	0	N/A	N/A	N/A	N/A
45		N/A	N/A	0	0	N/A	N/A	N/A	N/A
46		N/A	N/A	0	0	N/A	N/A	N/A	N/A
47		N/A	N/A	0	0	N/A	N/A	N/A	N/A
48		N/A	N/A	0	0	N/A	N/A	N/A	N/A
49		N/A	N/A	0	0	N/A	N/A	N/A	N/A
50		N/A	N/A	0	0	N/A	N/A	N/A	N/A
51		N/A	N/A	0	0	N/A	N/A	N/A	N/A
52		N/A	N/A	0	0	N/A	N/A	N/A	N/A
53		N/A	N/A	0	0	N/A	N/A	N/A	N/A
54		N/A	N/A	0	0	N/A	N/A	N/A	N/A
55		N/A	N/A	0	0	N/A	N/A	N/A	N/A
56		N/A	N/A	0	0	N/A	N/A	N/A	N/A
57		N/A	N/A	0	0	N/A	N/A	N/A	N/A
58		N/A	N/A	0	0	N/A	N/A	N/A	N/A
59		N/A	N/A	0	0	N/A	N/A	N/A	N/A
60		N/A	N/A	0	0	N/A	N/A	N/A	N/A
61		N/A	N/A	0	0	N/A	N/A	N/A	N/A
62		N/A	N/A	0	0	N/A	N/A	N/A	N/A
63		N/A	N/A	0	0	N/A	N/A	N/A	N/A
64		N/A	N/A	0	0	N/A	N/A	N/A	N/A
yellow lock, detector inhibit, $-\mathrm{X}=\mathrm{On}$; call, extend, phase $-0=$ none $1-8=$ phase $1-8$; delay time $-0-255$ sec stretch / disconnect time-0.0-25.5 sec.; delay or disconnect Mode - 0-12									

Detector Plans (Next/2/2/4/5)										
Loop Number										
	Plan Detectors	0	0	0	0	0	0	0	0	$0-32,0=$ none, $1-32=$ detectors 1-32
Detector Plan 1	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14
Detector Plan 2	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14
Detector Plan 3	Call Phase	0	0	0	0	0	0	0	0	$0-8,0=$ none, $1-8=$ phase $1-8$
	Extended Phase	0	0	0	0	0	0	0	0	
	Switch Phase	0	0	0	0	0	0	0	0	
	Delay Time	0	0	0	0	0	0	0	0	0-255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0-25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0-14

Detector Fail (Next/2/2/4/3)		
Detector Fail Sample Period (all detectors)	0	$0-255$ minutes
Dynamic Phase Length Fail Period	0	$0-255$ minutes

Video Fail Inputs	1	2	3	4	5	6	7	8	$0=$ none, $1-8=$ phase $1-8$
Phase Recalled	0	0	0	0	0	0	0	0	
System Detectors	1	2	3	4	5	6	7	8	0 = none, 1-32 = detector 1-32
Local Detector	5	9	14	15	19	20	0	0	

Flash (Next/2/2/5)								
Flash Entry								Flash Exit
Ring 1	Ring 2	Interval	Ring 1	Ring 2	Interval			
0	0	red	0	5	0			
$0=$ none, phase 1-8		$0=$ red, 1 $=$ yel, 2 $=$ grn	$0=$ none, phase 1-8	$0=$ red, $1=$ yel, $2=$ grn				

Soft Flash (Next/2/2/5/A)												
Phase	1	2	3	4	5	6	7	8				
	3	4	3	4	3	4	3	4				
Overlap	A	B	C	D	E	F	G	H	1	J	K	L
	3	4	3	4	3	4	3	4	3	4	3	4

0 = dark, 1=flash yel WIG, 2 = flash yel WAG, 3 = flash red WIG, 4 = flash red WAG

Internal Logic													
Output	1	2	3	4	5	6	7	8	9	10	11	12	$0=$ normal, $1=$ dark, 2

Flashing Yellow Left Turn Arrow (FYLTA) (Next/2/2/8/6)

Phase Pairs ->	$1-2$	$3-4$	$5-6$	$7-8$	
Enable	0	0	4	0	$0=$ off, $3=3$ outputs, $4=4$ outputs, $5=5$ outputs
Even Omits Odd	0	0	0	0	$0 / 1 / 2$
Detector Switch Odd / Even	1	1	1	1	$X=$ on, odd phase must be omitted
Red Transition	2.0	2.0	3.0	2.0	0.0 or $2.0-25.5$ sec.
Red Extension	0.0	0.0	3.0	0.0	$0.0-25.5$ sec.
Return to GLTA	0	0	0	0	$0=$ off, $1=$ max out, $2=$ yellow lock

Gap Dependent FYLTA											
Detector Input	0	0	0	0	$0=$ Disabled, $1-64=$ Local Detector $1-64$						
Minimum Delay	0	0	0	0	$0-255$ seconds						
Detector Gap Time	0.0	0.0	0.0	0.0	$0-25.5$ seconds.						
Maximum Delay	0	0	0	0	$0-255$ seconds						
Not Ped	0	0	4	0							

Dynamic Flashing Yellow Left Turn Arrow

Phase Pairs	$\mathbf{1 - 2}$	$\mathbf{3 - 4}$	$\mathbf{5 - 6}$	$\mathbf{7 - \mathbf { 8 }}$	
[Plan A] Detector Input	0	0	0	0	Detectors $\mathbf{1 - 6 4 ; 0} \mathbf{=}$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan B] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan C] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

[Plan D] Detector Input	0	0	0	0	Detectors $1-64 ; 0=$ disabled
Detector Gap Time	0.0	0.0	0.0	0.0	$0.0-25.5$
FYLTA Max Delay	0	0	0	0	$0-255$
FYLTA Min Delay	0	0	0	0	$0-255$
Not Ped Mode	0	0	0	0	$0-4$

CoordinationData		
Coordination Modes (Next/2/3/1)		
Flash Mode	33	0=off, 1=on, 33=time clock, 34=comm, 35=hardwire
Coordination Plan Mode	34	0=free, 1-32 = coord plan 1-32, 33=time clock, 34=comm, 35=hardwire
Offset Seeking Mode	2	0=add only, 1=dwell, 2=fastway
Late Ped	0	$0=$ off, 1 = on
Coord Walk Rest	0	$0=$ off, $1=$ on, 2 = by tod circuit 160, 3 = end of walk, 4 = coord ped during perms
Zero Mode(TS2 only)	0	0=start of main street, 1=end of main street, 2=by TOD circuit 144, 3 = first green
(Next/2/3/4/1)		
Repeated Ped Service	0	0=off, 1=on (no coord ped), 2=on (beginning green coord ped), 3=on (coord ped always)
Omit Phase During Repeated Phase	- - - - - -	-- = service allowed ; \# = service prevented

Coordination Plans (Next/2/3/2)								
Coord Plan	Coordination Phases		Cycle Length	Offset Time	Min Cycle Len Dwell Time	Permissive	Service Plan	Max Plan
	Ring 1	Ring 2						
1	0	6	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0
				0-2	55 sec			

Circuit Mapping (Next/2/3/3)

		Time Clock Circuit							
Circuit Map	Coord Plan	1	2	3	4	5	6	7	8
1	34	0	0	0	0	0	0	0	0
2	34	0	0	0	0	0	0	0	0
3	34	0	0	0	0	0	0	0	0
4	34	0	0	0	0	0	0	0	0
5	34	0	0	0	0	0	0	0	0
6	34	0	0	0	0	0	0	0	0
7	34	0	0	0	0	0	0	0	0
8	34	0	0	0	0	0	0	0	0
9	34	0	0	0	0	0	0	0	0
10	34	0	0	0	0	0	0	0	0
11	34	0	0	0	0	0	0	0	0
12	34	0	0	0	0	0	0	0	0
13	34	0	0	0	0	0	0	0	0
14	34	0	0	0	0	0	0	0	0
15	34	0	0	0	0	0	0	0	0
16	34	0	0	0	0	0	0	0	0
17	34	0	0	0	0	0	0	0	0
18	34	0	0	0	0	0	0	0	0
19	34	0	0	0	0	0	0	0	0
20	34	0	0	0	0	0	0	0	0

coord plan - $0=$ free, $1-32$ = coord plan 1-32, 33 = any, 34 none selected
time clock circuits - $0=$ not used, or circuits 6-199
Dynamic Phase Lengths (Next/2/3/4/4)

Phase ->		1	2	3	4	5	6	7	8	
Back Detector		0	9	0	0	5	19	0	29	$0=$ none, 1-32 = detector 1-32
Lane Factor		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0=$ none, 0.5-5.0
Check Out Detector		0	0	0	0	0	20	0	0	$0=$ none, 1-32 = detector 1-32
Coord Delta Force Off	Set A	0	0	0	0	0	0	0	0	0-255 sec
	Set B	0	0	0	0	0	0	0	0	
	Set C	0	0	0	0	0	0	0	0	
	Set D	0	0	0	0	0	0	0	0	
Free Delta Max	Set A	0	0	0	0	0	0	0	0	
	Set B	0	0	0	0	0	0	0	0	
	Set C	0	0	0	0	0	0	0	0	
	Set D	0	0	0	0	0	0	0	0	

Auto Permissive Min Green (Next/2/3/4/3)

Phase ->	1	2	3	4	5	6	7	8	
Auto Perm Min Green	0	0	0	0	0	0	0	0	$0-255 \mathrm{sec}$.

WEEK PROGRAM (Next/2/4/2)								YEAR PROGRAM (Next/2/4/3)					
	Sun	Mon	Tue	Wed	Thu	Fri	Sat	From	To	Week			
1	2	1	1	1	1	1	2	From Date	To Date	Program			
2	1	1	1	1	1	1	1	12/29/2013	01/03/2015	1			
3	1	1	1	1	1	1	1						
4	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
5	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
6	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
7	1	1	1	1	1	1	1						
8	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
9	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
10	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0			
$0=$ none, $1-15=$ day plan													
EXCEPTION DAYS (Next/2/4/6)								00/00/0000	00/00/0000	0			
	Week Month	Month		Day of Month	Day of Week		Day Prog	00/00/0000	00/00/0000	0			
				00/00/0000			00/00/0000	0					
1	0		0		0				0	00/00/0000	00/00/0000	0	
2	0		0	0			0	00/00/0000	00/00/0000	0			
3	0		0	0			0	00/00/0000	00/00/0000	0			
4	0		0	0			0	00/00/0000	00/00/0000	0			
5	0		0	0			0	00/00/0000	00/00/0000	0			
6	0		0	0			0	00/00/0000	00/00/0000	0			
7	0		0	0			0	00/00/0000	00/00/0000	0	st		
8	0		0	0			0	00/00/0000	00/00/0000	0	Martin Luther King Day - DOW WOM - 3rd Monday of January		
9	0		0	0			0	00/00/0000	00/00/0000	0			
10	0		0	0			0	00/00/0000	00/00/0000	0	President's Day - DOW WOM 3rd Monday February		
11	0		0	0			0	00/00/0000	00/00/0000	0			
12	0		0	0			0	00/00/0000	00/00/0000	0	Memorial Day - DOW WOM Last Monday May		
13	0		0	0			0	00/00/0000	00/00/0000	0			
14	0		0	0			0	00/00/0000	00/00/0000	0	Four of July - Date - July 4th		
15	0		0	0			0	00/00/0000	00/00/0000	0	Labor Day - DOW WOM 1st Monday September		
16	0		0	0			0	00/00/0000	00/00/0000	0			
17	0		0	0			0	00/00/0000	00/00/0000	0	Columbus Day - DOW WOM 2nd Monday October		
18	0		0	0			0	00/00/0000	00/00/0000	0			
19	0		0	0			0	00/00/0000	00/00/0000	0	Vetern's Day - Date - November 11th		
20	0		0	0			0	00/00/0000	00/00/0000	0	Thankgiving - DOW WOM -		
21	0		0	0			0	00/00/0000	00/00/0000	0	4th Thursday November		
22	0		0	0			0	00/00/0000	00/00/0000	0	Christmas - Date - December 25th		
23	0		0	0			0	00/00/0000	00/00/0000	0	Chistmas Date - December 2 2h		
24	0		0	0			0	00/00/0000	00/00/0000	0			
25	0		0	0			0	00/00/0000	00/00/0000	0			
26	0		0	0			0	00/00/0000	00/00/0000	0			
27	0		0	0			0	00/00/0000	00/00/0000	0			
28	0		0	0			0	00/00/0000	00/00/0000	0			
29	0		0	0			0	00/00/0000	00/00/0000	0			
30	0		0	0			0	00/00/0000	00/00/0000	0			
31	0		0	0			0	00/00/0000	00/00/0000	0			
32	0		0	0			0	00/00/0000	00/00/0000	0			
33	0		0	0			0	00/00/0000	00/00/0000	0			
34	0		0	0			0	00/00/0000	00/00/0000	0			
35	0		0	0			0	00/00/0000	00/00/0000	0			
	0-5		0-12	1-31	1-7		0-15	00/00/0000	00/00/0000	0			
Time Clock References (Next/2/4/5)								00/00/0000	00/00/0000	0			
Synch reference Mode					= timed,	= by	event	00/00/0000	00/00/0000	0			
Synch Reference Time			00:00		00:00-23:59			00/00/0000	00/00/0000	0			
Daylight Saving Enable			On		x $=0000$ - 23.59			00/00/0000	00/00/0000	0			
	Reset Time		00:00		X $=$ On 00:00-23:	00:00-23:59		00/00/0000	00/00/0000	0			

Time Zone Offset (Next/2/4/8)

Time Zone
Not Loaded
-43200-43200: EST -18000; CST -21600; MST -25200; PST -28800

CIRCUIT OVERRIDES 1-100 (Next/2/4/4)

1 - Coord Line 1	CL1	$2=$ TOD	51 - Ped Omit 3	PO3	2	= TOD
2 - Coord Line 2	CL2	$2=$ TOD	52 - Ped Omit 4	PO4	2	= TOD
3 - Coord Line 4	CL4	$2=$ TOD	53 - Ped Omit 5	PO5	2	= TOD
4 - Coord Line 8	CL8	$2=\mathrm{TOD}$	54 - Ped Omit 6	PO6	2	= TOD
5 - Coord Line 16	C16	$2=$ TOD	55 - Ped Omit 7	PO7	2	= TOD
6 - Coordinated Operation	CRD	$2=\mathrm{TOD}$	56 - Ped Omit 8	PO8	2	= TOD
7 - Soft Flash	SFL	$2=$ TOD	57 - Conditonal Service	CVS	2	$=\mathrm{TOD}$
8 - Enable System Relays	ESR	$2=$ TOD	58 - Inhibit Simultaneous Gap Out	ISG	1	$=\mathrm{On}$
9 - Call to Non Actuated Ring 1	CN1	$2=$ TOD	59 - Inhibit Hardwire	HWI	2	$=\mathrm{TOD}$
	CN2	$2=\mathrm{TOD}$	60 - Ped Override Mode	POM	1	= On
11 - Walk Rest Modifier	WRM	$2=$ TOD	61 - Dual Entry	DLE	1	= On
12 - Min Recall	MIN	$2=$ TOD	62 - Exclusive Ped	EPD	2	$=\mathrm{TOD}$
13 - Max 2 Both Rings	MX2	$2=$ TOD	63 - Call to Time Clock Mode	CTC	2	= TOD
14 - Coord Inhibit Max Ring 1	IM1	$2=T O D$	64 - Dual Enhanced Ped	DEP	2	$=\mathrm{TOD}$
15 - Coord Inhibit Max Ring 2	IM2	$1=0 n$	65 - Service Plan 1	SP1	2	= TOD
16 - Call to Free	CTF	$2=$ TOD	66 - Service Plan 2	SP2	2	= TOD
17 - TOD Output 1	TO1	$2=$ TOD	67 - Service Plan 3	SP3	2	= TOD
18 - TOD Output 2	TO2	$2=$ TOD	68 - Service Plan 4	SP4	2	= TOD
19 - TOD Output 3	TO3	$2=$ TOD	69 - Service Plan 5	SP5	2	= TOD
20 - TOD Output 4	TO4	$2=T O D$	70 - Service Plan 6	SP6	2	= TOD
21 - TOD Output 5	TO5	$2=$ TOD	71 - Service Plan 7	SP7	2	= TOD
22 - TOD Output 6	TO6	$2=$ TOD	72 - Service Plan 8	SP8	2	= TOD
23 - TOD Output 7	TO7	$2=$ TOD	73 - Max Plan 1	MP1	2	= TOD
24 - TOD Output 8	T08	2 = TOD	74 - Max Plan 2	MP2	2	= TOD
25 - Vehicle Call Phase 1	VC1	2 = TOD	75 - Max Plan 3	MP3	2	= TOD
26 - Vehicle Call Phase 2	VC2	2 = TOD	76 - Max Plan 4	MP4	2	= TOD
27 - Vehicle Call Phase 3	VC3	$2=T O D$	77 - Max Plan 5	MP5	2	= TOD
28 - Vehicle Call Phase 4	VC4	$2=$ TOD	78 - Max Plan 6	MP6	2	= TOD
29 - Vehicle Call Phase 5	VC5	$2=$ TOD	79 - Max Plan 7	MP7	2	= TOD
30 - Vehicle Call Phase 6	VC6	$2=$ TOD	80 - Max Plan 8	MP8	2	= TOD
31 - Vehicle Call Phase 7	VC7	$2=\mathrm{TOD}$	81 - Transit Priority Max Group 1	TG1	2	= TOD
32 - Vehicle Call Phase 8	VC8	$2=$ TOD	82 - Transit Priority Max Group 2	TG2	2	= TOD
33 - Ped Call Phase 1	PC1	$2=$ TOD	83 - Transit Priority Max Group 3	TG3	2	$=\mathrm{TOD}$
34 - Ped Call Phase 2	PC2	$2=\mathrm{TOD}$	84 - Transit Priority Max Group 4	TG4	2	= TOD
35 - Ped Call Phase 3	PC3	$2=$ TOD	85 - Transit Priority Max Group 5	TG5	2	= TOD
36 - Ped Call Phase 4	PC4	$2=\mathrm{TOD}$	86 - Transit Priority Max Group 6	TG6	2	= TOD
37 - Ped Call Phase 5	PC5	$2=\mathrm{TOD}$	87 - Transit Priority Max Group 7	TG7	2	= TOD
38 - Ped Call Phase 6	PC6	$2=T O D$	88 - Transit Priority Max Group 8	TG8	2	= TOD
39 - Ped Call Phase 7	PC7	2 = TOD	89 - Inhibit Gap Reducing 1	GR1	2	= TOD
40 - Ped Call Phase 8	PC8	$2=$ TOD	90 - Inhibit Gap Reducing 2	GR2	2	= TOD
41 - Phase Omit 1	VO1	$2=$ TOD	91 - Inhibit Gap Reducing 3	GR3	2	= TOD
42 - Phase Omit 2	VO2	2 = TOD	92 - Inhibit Gap Reducing 4	GR4	2	= TOD
43 - Phase Omit 3	VO3	$2=$ TOD	93 - Inhibit Gap Reducing 5	GR5	2	= TOD
44 - Phase Omit 4	VO4	$2=$ TOD	94 - Inhibit Gap Reducing 6	GR6	2	= TOD
45 - Phase Omit 5	VO5	$2=$ TOD	95 - Inhibit Gap Reducing 7	GR7	2	= TOD
46 - Phase Omit 6	VO6	$2=$ TOD	96 - Inhibit Gap Reducing 8	GR8	2	= TOD
47 - Phase Omit 7	VO7	$2=$ TOD	$97-$ Lag 1	LG1	2	= TOD
48 - Phase Omit 8	VO8	$2=$ TOD	$98-\operatorname{Lag} 3$	LG3	2	= TOD
49 - Ped Omit 1	PO1	$2=$ TOD	99 - Lag 5	LG5	2	= TOD
50 - Ped Omit 2	PO2	$2=$ TOD	100-Lag 7	LG8	2	$=\mathrm{TOD}$

CIRCUIT OVERRIDES 101-199 (Next/2/4/4)

101 - Inhibit Overlap A	OLA	$2=\mathrm{TOD}$	151 - Coord Hold 7	HD7	$2=$ TOD
102 - Inhibit Overlap B	OLB	$2=\mathrm{TOD}$	152 - Coord Hold 8	HD8	$2=$ TOD
103 - Inhibit Overlap C	OLC	$2=\mathrm{TOD}$	153 - PE Priority Return B	PRB	$2=$ TOD
104 - Inhibit Overlap D	OLD	$2=\mathrm{TOD}$	154 - PE Priority Return C	PRC	$2=$ TOD
105 - Enable Schedule A Phone 1	AT1	$2=\mathrm{TOD}$	155 - PE Priority Return D	PRD	$2=$ TOD
106 - Enable Schedule A Phone 2	AT2	$2=\mathrm{TOD}$	156 - PE Priority Return E	PRE	$2=$ TOD
107 - Enable Schedule B Phone 1	BT1	$2=\mathrm{TOD}$	157 - Platoon Inbound	PPI	$2=$ TOD
108 - Enable Schedule B Phone 2	BT2	$2=\mathrm{TOD}$	158 - Platoon Outbound	PPO	$2=$ TOD
109 - Enable Schedule C Phone 1	CT1	$2=\mathrm{TOD}$	159 - Platoon Spl 2	PS2	$2=$ TOD
110 - Enable Schedule C Phone 2	CT2	$2=\mathrm{TOD}$	160 - Coord Walk Rest	CWR	$2=$ TOD
111 - Enable Volume to Call Phone 1	VT1	$2=\mathrm{TOD}$	161 - Dynamic Phase Length Short Inhibit 1	SL1	$2=$ TOD
112 - Enable Volume to Call Phone 1	VT2	$2=\mathrm{TOD}$	162 - Dynamic Phase Length Short Inhibit 2	SL2	$2=$ TOD
113 - Enable Volume Logging	EVL	$1=0 n$	163 - Dynamic Phase Length Short Inhibit 3	SL3	$2=$ TOD
114 - Enable MOE Logging	EML	$1=0 n$	164 - Dynamic Phase Length Short Inhibit 4	SL4	$2=\mathrm{TOD}$
115 - Detector Low Threshold Inhibit	DLI	$2=\mathrm{TOD}$	165 - Dynamic Phase Length Short Inhibit 5	SL5	$2=$ TOD
116 - Detector Continue Presence Inhibit	DPI	$2=\mathrm{TOD}$	166 - Dynamic Phase Length Short Inhibit 6	SL6	$2=$ TOD
117 - Inhibit Detector Based On Progrmming	IND	$2=\mathrm{TOD}$	167 - Dynamic Phase Length Short Inhibit 7	SL7	$2=$ TOD
118 - Inhibit Detector Delay	IDD	$2=\mathrm{TOD}$	168 - Dynamic Phase Length Short Inhibit 8	SL8	$2=$ TOD
119 - Inhibit Conditional Ped	ICP	$2=\mathrm{TOD}$	169 - Coord Late Left Turn 1	CT1	$2=$ TOD
120 - Inhibit Transit Priority	ITP	$2=\mathrm{TOD}$	170 - Coord Late Left Turn 3	CT3	$2=\mathrm{TOD}$
121 - Red Rest Ring 1	RR1	$2=$ TOD	171 - Coord Late Left Turn 5	CT5	$2=$ TOD
122 - Red Rest Ring 2	RR2	$2=\mathrm{TOD}$	172 - Coord Late Left Turn 7	CT7	$2=\mathrm{TOD}$
123 - Omit Red Clear Ring 1	OR1	$2=$ TOD	173 - Dynamic Phase Length Enable A	DPA	$2=$ TOD
124 - Omit Red Clear Ring 2	OR2	$2=\mathrm{TOD}$	174 - Dynamic Phase Length Enable B	DPB	$2=$ TOD
125 - Ped Recycle Ring 1	PR1	$2=$ TOD	175 - Dynamic Phase Length Enable C	DPC	$2=\mathrm{TOD}$
126 - Ped Recycle Ring 2	PR2	$2=\mathrm{TOD}$	176 - Dynamic Phase Length Enable D	DPD	$2=\mathrm{TOD}$
127 - Enable MOE Log to Call Phone 1	MT1	$2=\mathrm{TOD}$	177 - Proactive Plan Select Average	PSA	$2=$ TOD
128 - Enable MOE Log to Call Phone 2	MT2	$2=$ TOD	178 - Proactive Plan Select Inbound	PSI	$2=\mathrm{TOD}$
129 - Transit Inhibit Short Time 1	IS1	$2=\mathrm{TOD}$	179 - Proactive Plan Select Outbound	PSO	$2=$ TOD
130 - Transit Inhibit Short Time 2	IS2	$2=\mathrm{TOD}$	180 - Split Variant Inbound	SVI	$2=$ TOD
131 - Transit Inhibit Short Time 3	IS3	$2=\mathrm{TOD}$	181 - Split Variant Outbound	SVO	$2=$ TOD
132 - Transit Inhibit Short Time 4	IS4	$2=\mathrm{TOD}$	182 - Disable Coord Walk Rest Ring 1	WR1	$2=$ TOD
133 - Transit Inhibit Short Time 5	IS5	$2=$ TOD	183 - Disable Coord Walk Rest Ring 2	WR2	$2=$ TOD
134 - Transit Inhibit Short Time 6	IS6	$2=\mathrm{TOD}$	184 - Proactive Plan Select New Look	NLK	$2=$ TOD
135 - Transit Inhibit Short Time 7	IS7	$2=\mathrm{TOD}$	185 - Disable Red Clearance Extension	DRX	$2=$ TOD
136 - Transit Inhibit Short Time 8	IS8	$2=$ TOD	186 - Detector Plan Line 1	DL1	$2=$ TOD
137 - Enable Transit Priority Logging	ETL	$2=\mathrm{TOD}$	187 - Detector Plan Line 2	DL2	$2=$ TOD
138 - Disable Flashing Yellow Arrow 1	DF1	$2=\mathrm{TOD}$	188 - Disable LRT 1 Vertical Flashing Bar	DV1	$2=$ TOD
139 - Disable Flashing Yellow Arrow 3	DF3	$2=$ TOD	189 - Disable LRT 2 Vertical Flashing Bar	DV2	$2=\mathrm{TOD}$
140 - Disable Flashing Yellow Arrow 5	DF5	$2=\mathrm{TOD}$	190 - Disable LRT 3 Vertical Flashing Bar	DV3	$2=$ TOD
141 - Disable Flashing Yellow Arrow 7	DF7	$2=$ TOD	191 - Disable LRT 4 Vertical Flashing Bar	DV4	$2=$ TOD
142 - Disable Auto Max	DAM	$2=$ TOD	192 - Datakey Enable	DKE	$1=0 n$
143 - Disable Repeated Phase Service	DRS	$2=\mathrm{TOD}$	193 - Dynamic Phase Reversal Enable 1	DR1	$2=$ TOD
144 - End of Main Street	EMS	$2=\mathrm{TOD}$	194 - Dynamic Phase Reversal Enable 3	DR3	$2=$ TOD
145 - Coord Hold 1	HD1	$2=\mathrm{TOD}$	195 - Dynamic Phase Reversal Enable 5	DR5	$2=$ TOD
146 - Coord Hold 2	HD2	$2=\mathrm{TOD}$	196 - Dynamic Phase Reversal Enable 7	DR7	$2=$ TOD
147 - Coord Hold 3	HD3	$2=\mathrm{TOD}$	197 - Enable Coordination Log	ECL	1 = On
148 - Coord Hold 4	HD4	$2=$ TOD	198 - Disable Gap For FYLTA	DGF	$2=\mathrm{TOD}$
149 - Coord Hold 5	HD5	$2=\mathrm{TOD}$	199-Coordination Auto Walk	CAW	$2=$ TOD

PREEMPTION SEQUENCE 1 - 4 (Next/2/5)

Seq	Interval	Instruction	Phases Serviced				Interval Time	Hold On Input	Output On						Output Mode	Instructions - $0=$ service phases defined in phases location	
1	1	197	- 2	5	- -		0	On	-	-	- -	- -	-	-	0		
	2	98	- -	- -	- -		0	Off		-	-	- -	-	-	0	1-9 = use special intervals 1-9 10 = preempt sequence allows fylta 11 = preempt interval disables fylta	
	3	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0		
	4	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
	5	0	- -	- - -	- -		0	Off		-	-	-	-	-	0	$15=$ alternate trap protection $90=$ go to all red	
	6	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0		
	7	0	- -	- - -	- -		0	Off		-	-	- -	-	-	0	91 = turn cvm off $92=$ turn cvm on	
	8	0	- -	- -	- -	-	0	Off		-	-	- -	-	-	0	93 = enable ped service and phases defined in phases location	
	9	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0		
	10	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0	94 = disable ped service $96=$ enable coordination w/peds	
	1	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0	97 = enable coordination w/o peds $98=$ return with no calls 99 = return with ped calls and phases defined in phases location	
	2	0	- -	-	- -		0	Off	-	-	-	- -	-	-	0		
	3	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
	4	0	- -	-	- -	-	0	Off		-	-	- -	-	-	0		
	5	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0	100 = jump to step defined in time location and input has to be active for jump	
	6	0	- -	-	- -	-	0	Off		-	-	- -	-	-	0		
	7	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0	101 = use time as resetable gap timer and service phases defined in phases location	
	8	0	- -	- - -	- -	-	0	Off	-	-	-	- -	-	-	0		
	9	0	- -	-	- -	-	0	Off		-	-	- -	-	-	0	$196 \text { = coordination sync }$w/peds	
	10	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
3	1	197	- -	- - -	6	-	0	On	-	-	-	- -	-	-	0	w/o peds $200=$ lit phase service w/o peds $201=$ Irt phase service w/peds $202=$ priority return queue/delay $216=$ Irt coordination sync w/peds $217=$ lrt coordination sync w/o peds	
	2	98	- -	- -	- -	-	0	Off		-	-	- -	-	-	0		
	3	0	- -	-	- -	-	0	Off		-	-	- -	-	-	0		
	4	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
	5	0	- -	- - -	- -	-	0	Off		-	-	- -	-		0		
	6	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
	7	0	- -	- -	- -	-	0	Off		-	-	- -	-	-	0		
	8	0	- -	- -	- -	-	0	Off	-	-	-	- -	-	-	0	```Phases Serviced - phases 1-8 Interval Time - 0-255 sec or interval 1-10```	
	9	0	- -	- -	- -		0	Off		-	-	- -	-	-	0		
	10	0	- -	- - -	- -		0	Off		-	-	- -	-	-	0		
4	1	197	-	- - -	- -	8	0	On		-	-	- -	-	-	0		
	2	98	- -	-	- -	-	0	Off		-	-	- -	-	-	0	Hold on Input - $\mathrm{X}=$ on Outputs On - output 1-8 Output Modes - $0=$ all steady on $1=$ all flash together 2 = odd flashes WIG, even flashes WAG $3=1-4$ steady on, 5-8 all flash together	
	3	0	- -	- - -	- -	-	0	Off		-	-	- -	-	-	0		
	4	0	- -	-	- -	-	0	Off		-	-	- -	-	-	0		
	5	0	- -	- -	- -		0	Off		-	-	- -	-	-	0		
	6	0	- -	- - -	- -		0	Off		-	-	- -	-	-	0		
	7	0	- -	- - -	- -		0	Off		-	-	- -	-	-	0		
	8	0	- -	- - -	- -		0	Off		-	-	-	-	-	0		
	9	0	- -	- - -	-		0	Off		-	-	- -	-	-	0		
	10	0	- -	- - -	-		0	Off		-	-	- -	-	-	0		

LIGHT RAIL TRAIN (Next/2/5/0/7)					
Light Rail Train	1	2	3	4	
Associated Preempt	0	0	0	0	$0=$ none, preempt 1-8
Time to Green	0	0	0	0	$0-255 \mathrm{sec}$
Horizontal Bar Flash Time	0.0	0.0	0.0	0.0	
Vertical Bar Flash Time	0.0	0.0	0.0	0.0	$0.0-25.5 \mathrm{sec}$
Min Duration	0	0	0	0	$0-255 \mathrm{sec}$

TRANSIT PRIORITY (Next/2/7)

	1	2	3	4	5	6	7	8	
Phases	NONE	Phases 1-8 (max of 2 compatible phases)							
PE Enable (6.25Hz TP call on PE)	X	X	X	X					$\mathrm{X}=6.25 \mathrm{~Hz}$ signal will activate TP
Priority	0	0	0	0	0	0	0	0	0-8, 8 = highest
Memory									X = on
Delay Time	0	0	0	0	0	0	0	0	0-255 sec
Minimum Reservice Time (per input)	0	0	0	0	0	0	0	0	0-255 min
Override Time	0	0	0	0	0	0	0	0	0-255 sec
Bus Extend	0	0	0	0	0	0	0	0	0-255 min
Minimum Reservice Time (all inputs)	0	0-255 min							
Free Operation Mode	0	$0=$ use shortest of max 1 or 2, 1-8 = use max time of group 1-8,9 $=$ use time of day circuit							

TRANSIT PRIORITY ALTERNATE FORCE OFF PLANS (Next/2/7/6)

Current Coord Plan	1	2	3	4	5	6	7	8	$\begin{aligned} & 0=\text { none } \\ & 17-32=\text { coord plan } 17-32 \end{aligned}$
Alternate TP Force Off Plan	0	0	0	0	0	0	0	0	
Current Coord Plan	9	10	11	12	13	14	15	16	
Alternate TP Force Off Plan	0	0	0	0	0	0	0	0	

GROUP TIMING (Next/2/7/5)

TRUCK PRIORITY (Next/2/7/9)					
Truck Priority -->	1	2	3	4	
Associated Transit Priority	0	0	0	0	$0=$ none $1-8=$ transit priority $1-8$
Leading Detector	0	0	0	0	$0=$ none, $1-32=$ detector $1-32$
Trailling Detector	0	0	0	0	
Stop Bar Distance	0	0	0	0	$0-999$ feet
Trap Distance	0.0	0.0	0.0	0.0	$0.0-99.9$ feet
Minimum Speed	0	0	0	0	$0-100$ mph
Minimum Length	0	0	0	0	$0-255$ feet
Downhill Grade (\%)	0	0	0	0	$0-20 \%$
Uphill Grade (\%)	0	0	0	0	0
Undersized Vehicle					$\mathrm{X}=$ Enabled

C1-39	101 - Veh Detector 9	C1-67	22 - Ped Detector 2
C1-40	113 - Veh Detector 19	C1-68	26 - Ped Detector 6
C1-41	106 - Veh Detector 14	C1-69	24 - Ped Detector 4
C1-42	118 - Veh Detector 24	C1-70	28 - Ped Detector 8
C1-43	102 - Veh Detector 10	C1-71	151 - Preempt In 1
C1-44	114 - Veh Detector 20	C1-72	152 - Preempt In 2
C1-45	107 - Veh Detector 15	C1-73	153 - Preempt In 3
C1-46	161 - Veh Detector 25	C1-74	154 - Preempt In 4
C1-47	105 - Veh Detector 13	C1-75	254 - Pin Not Used
C1-48	117 - Veh Detector 23	C1-76	104 - Veh Detector 12
C1-49	112 - Veh Detector 18	C1-77	116 - Veh Detector 22
C1-50	164 - Veh Detector 28	C1-78	111 - Veh Detector 17
C1-51	199 - LRT Ped Inhibit	C1-79	163 - Veh Detector 27
C1-52	155 - Preempt In 5	C1-80	82 - Interval Advance
C1-53	85 - Manual Control Enable	C1-81	137 - Conflict Monitor Status/Flash
C1-54	254 - Pin Not Used	C1-82	62 - Stop Timing Ring 1
C1-55	15 - Veh Detector 5	C11-15	254 - Pin Not Used
C1-56	11 - Veh Detector 1	C11-16	254 - Pin Not Used
C1-57	17 - Veh Detector 7	C11-17	254 - Pin Not Used
C1-58	13 - Veh Detector 3	C11-18	254 - Pin Not Used
C1-59	16 - Veh Detector 6	C11-19	254 - Pin Not Used
C1-60	12 - Veh Detector 2	C11-20	254 - Pin Not Used
C1-61	18 - Veh Detector 8	C11-21	254 - Pin Not Used
C1-62	14 - Veh Detector 4	C11-22	254 - Pin Not Used
C11-10	254 - Pin Not Used	C11-23	254 - Pin Not Used
C11-11	254 - Pin Not Used	C11-24	254 - Pin Not Used
C11-12	254 - Pin Not Used	C11-25	254 - Pin Not Used
C11-13	254 - Pin Not Used	C11-26	254 - Pin Not Used
C1-63	103 - Veh Detector 11	C11-27	254 - Pin Not Used
C1-64	115 - Veh Detector 21	C11-28	254 - Pin Not Used
C1-65	108 - Veh Detector 16	C11-29	254 - Pin Not Used
C1-66	162 - Veh Detector 26	C11-30	254 - Pin Not Used

INPUTS AND OUTPUTS OPTIONS (Next/2/8/3)

Connector Type	C1/C11	Change I/O	$0=$ Disabled
$0=$ C1/C11; $1=$ MS-A/B/C/D;	X		
$2=$ TS2 Port 1; 3 $3=$ ITS Cabinet	(After a download without a power on - off cycle)		

170 OUTPUTS (Next/2/8/2)			
C1-2	44 - Don't Walk, Ph 4	C1-35	131 - TOD Output 1
C1-3	64 - Walk, Ph 4	C1-36	132 - TOD Output 2
C1-4	14 - Red, Ph 4	C1-37	133 - TOD Output 3
C1-5	24 - Yellow, Ph 4	C1-38	134 - TOD Output 4
C1-6	34 - Green, Ph 4	C1-100	53 - Ped Clear, Ph 3
C1-7	13 - Red, Ph 3	C1-101	51 - Ped Clear, Ph 1
C1-8	23 - Yellow, Ph 3	C1-102	187 - Soft Flash
C1-9	33 - Green, Ph 3	C1-103	147 - Watchdog
C1-10	42 - Don't Walk, Ph 2	C1-83	43 - Don't Walk, Ph 3
C1-11	62 - Walk, Ph 2	C1-84	63 - Walk, Ph 3
C1-12	12 - Red, Ph 2	C1-85	116 - Overlap D, Red
C1-13	22 - Yellow, Ph 2	C1-86	115 - Overlap D, Yellow
C1-15	32 - Green, Ph 2	C1-87	114 - Overlap D, Green
C1-16	11 - Red, Ph 1	C1-88	113 - Overlap C, Red
C1-17	21 - Yellow, Ph 1	C1-89	112 - Overlap C, Yellow
C1-18	31 - Green, Ph 1	C1-90	111 - Overlap C, Green
C1-19	48 - Don't Walk, Ph 8	C1-91	41 - Don't Walk, Ph 1
C1-20	68 - Walk, Ph 8	C1-93	61 - Walk, Ph 1
C1-21	18 - Red, Ph 8	C1-94	106 - Overlap B, Red
C1-22	28 - Yellow, Ph 8	C1-95	105 - Overlap B, Yellow
C1-23	38 - Green, Ph 8	C1-96	104 - Overlap B, Green
C1-24	17 - Red, Ph 7	C1-97	103 - Overlap A, Red
C1-25	27 - Yellow, Ph 7	C1-98	102 - Overlap A, Yellow
C1-26	217 - FYLTA, 5	C1-99	101 - Overlap A, Green
C1-27	46 - Don't Walk, Ph 6	C11-1	254 - Pin Not Used
C1-28	66 - Walk, Ph 6	C11-2	254 - Pin Not Used
C1-29	16 - Red, Ph 6	C11-3	254 - Pin Not Used
C1-30	26 - Yellow, Ph 6	C11-4	254 - Pin Not Used
C1-31	36 - Green, Ph 6	C11-5	254 - Pin Not Used
C1-32	15 - Red, Ph 5	C11-6	254 - Pin Not Used
C1-33	223 - FYLTA CLR, 5	C11-7	254 - Pin Not Used
C1-34	35 - Green, Ph 5	C11-8	254 - Pin Not Used

INTERNAL LOGIC 1-96 (Next/2/9)

Step	Inst.	Comment	Step	Inst.	Comment
1	201		49	0	
2	106		50	0	
3	165		51	0	
4	201		52	0	
5	107		53	0	
6	165		54	0	
7	0		55	0	
8	0		56	0	
9	0		57	0	
10	0		58	0	
11	0		59	0	
12	0		60	0	
13	0		61	0	
14	0		62	0	
15	0		63	0	
16	0		64	0	
17	0		65	0	
18	0		66	0	
19	0		67	0	
20	0		68	0	
21	0		69	0	
22	0		70	0	
23	0		71	0	
24	0		72	0	
25	0		73	0	
26	0		74	0	
27	0		75	0	
28	0		76	0	
29	0		77	0	
30	0		78	0	
31	0		79	0	
32	0		80	0	
33	0		81	0	
34	0		82	0	
35	0		83	0	
36	0		84	0	
37	0		85	0	
38	0		86	0	
39	0		87	0	
40	0		88	0	
41	0		89	0	
42	0		90	0	
43	0		91	0	
44	0		92	0	
45	0		93	0	
46	0		94	0	
47	0		95	0	
48	0		96	0	

CONTROLLER ID

Manufacturer ID	NORTHWEST SIGNAL
Model ID	Voyage-0 v05.03.01
Protocol Revision ID	AB3418E V1

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-20$
C	$20-35$
D	$35-55$
E	$55-80$
F	>80

LEVEL OF SERVICE CRITERIA
FOR UNSIGNALIZED INTERSECTIONS

LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (Seconds)
A	<10
B	$10-15$
C	$15-25$
D	$25-35$
E	$35-50$
F	>50

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C . Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

	4			7				\dagger	p		\dagger	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{1}$	\uparrow		${ }^{1}$	\uparrow			\&			\&	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	235	35	126	326	7	15	2	187	3	5	1
Future Volume (vph)	5	235	35	126	326	7	15	2	187	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	250	37	134	347	7	16	2	199	3	5	1

Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1
Volume Total (vph)	5	287	134	354	217	9
Volume Left (vph)	5	0	134	0	16	3
Volume Right (vph)	0	37	0	7	199	1
Hadj (s)	0.58	-0.01	0.55	0.04	-0.50	0.42
Departure Headway (s)	6.3	5.7	6.1	5.5	5.3	6.7
Degree Utilization, x	0.01	0.46	0.23	0.54	0.32	0.02
Capacity (veh/h)	536	604	574	634	620	460
Control Delay (s)	8.2	12.3	9.6	13.8	10.7	9.8
Approach Delay (s)	12.2		12.6		10.7	9.8
Approach LOS	B		B		B	A

Intersection Summary			
Delay	12.1		A
Level of Service	B		
Intersection Capacity Utilization	44.6%	ICU Level of Service	
Analysis Period (min)	15		

	4	\rightarrow			\pm	\downarrow	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	\cdots	4	\uparrow		${ }^{1 /}$	「'	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	280	156	284	163	92	192	
Future Volume (vph)	280	156	284	163	92	192	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Hourly flow rate (vph)	329	184	334	192	108	226	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	329	184	526	108	226		
Volume Left (vph)	329	0	0	108	0		
Volume Right (vph)	0	0	192	0	226		
Hadj (s)	0.60	0.10	-0.13	0.62	-0.58		
Departure Headway (s)	7.0	6.5	6.0	7.9	6.7		
Degree Utilization, x	0.64	0.33	0.88	0.24	0.42		
Capacity (veh/h)	499	535	585	442	521		
Control Delay (s)	20.7	11.6	38.2	12.1	13.2		
Approach Delay (s)	17.4		38.2	12.9			
Approach LOS	C		E	B			
Intersection Summary							
Delay			24.3				
Level of Service			C				
Intersection Capacity Utilization			55.8\%		ICU Level of	Service	B
Analysis Period (min)			15				

	*	\rightarrow	\checkmark	4		4		4	\%		\dagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	T					4	「	${ }^{*}$	4	
Traffic Volume (vph)	168	0	123	0	0	0	0	328	189	273	308	0
Future Volume (vph)	168	0	123	0	0	0	0	328	189	273	308	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1731	1553					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.31	1.00	
Satd. Flow (perm)		1731	1553					1845	1568	579	1845	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	198	0	145	0	0	0	0	386	222	321	362	0
RTOR Reduction (vph)	0	0	119	0	0	0	0	0	94	0	0	0
Lane Group Flow (vph)	0	198	26	0	0	0	0	386	128	321	362	0
Confl. Peds. (\#/hr)	1					1						3
Heavy Vehicles (\%)	4\%	4\%	4\%	2\%	2\%	2\%	3\%	3\%	3\%	3\%	3\%	3\%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases		8						6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		12.2	12.2					23.8	23.8	45.0	45.0	
Effective Green, g (s)		12.2	12.2					23.8	23.8	45.0	45.0	
Actuated g/C Ratio		0.18	0.18					0.35	0.35	0.67	0.67	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		314	281					653	555	670	1235	
v/s Ratio Prot								c0.21		c0.12	0.20	
v/s Ratio Perm		0.11	0.02						0.08	0.21		
v/c Ratio		0.63	0.09					0.59	0.23	0.48	0.29	
Uniform Delay, d1		25.4	22.9					17.7	15.3	6.0	4.6	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Incremental Delay, d2		3.4	0.1					3.1	0.7	0.3	0.5	
Delay (s)		28.8	23.0					20.8	16.0	6.4	5.0	
Level of Service		C	C					C	B	A	A	
Approach Delay (s)		26.3			0.0			19.1			5.6	
Approach LOS		C			A			B			A	
Intersection Summary												
HCM 2000 Control Delay			15.0	HCM 2000 Level of Service					B			
HCM 2000 Volume to Capacity ratio			0.57									
Actuated Cycle Length (s)			67.2	Sum of lost time (s)					15.0			
Intersection Capacity Utilization			71.3\%	ICU Level of Service					C			
Analysis Period (min)			15									

c Critical Lane Group

	4			1		4	4	\dagger	7		\ddagger	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\uparrow	「	${ }^{7}$	4			中t	
Traffic Volume (vph)	0	0	0	99	0	170	149	355	0	0	497	326
Future Volume (vph)	0	0	0	99	0	170	149	355	0	0	497	326
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.99	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.94	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1787	1599	1671	1759			3287	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1787	1599	1671	1759			3287	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	111	0	191	167	399	0	0	558	366
RTOR Reduction (vph)	0	0	0	0	0	170	0	0	0	0	86	0
Lane Group Flow (vph)	0	0	0	0	111	21	167	399	0	0	838	0
Confl. Peds. (\#/hr) 3												
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	8\%	8\%	8\%	2\%	2\%	2\%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					14.0	14.0	13.2	31.9			83.8	
Effective Green, g (s)					14.0	14.0	13.2	31.9			83.8	
Actuated g/C Ratio					0.11	0.11	0.10	0.25			0.66	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					196	175	172	440			2160	
v/s Ratio Prot					c0.06	0.01	0.10	c0.23			c0.25	
v/s Ratio Perm												
v/c Ratio					0.57	0.12	0.97	0.91			0.39	
Uniform Delay, d1					53.9	51.2	57.0	46.4			10.1	
Progression Factor					1.00	1.00	1.00	1.00			0.42	
Incremental Delay, d2					2.7	0.2	59.7	23.3			0.0	
Delay (s)					56.6	51.4	116.6	69.6			4.3	
Level of Service					E	D	F	E			A	
Approach Delay (s)		0.0			53.3			83.5			4.3	
Approach LOS		A			D			F			A	
Intersection Summary												
HCM 2000 Control Delay			37.6		HCM 2000	evel of	Service		D			
HCM 2000 Volume to Capacity ratio			0.63									
Actuated Cycle Length (s)			127.5		Sum of los	ime (s)			27.5			
Intersection Capacity Utilization			51.8\%		CU Level	Service			A			
Analysis Period (min)			15									

C Critical Lane Group

	$\stackrel{ }{*}$	\rightarrow		7			4	\uparrow	1	*	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }_{1}$	$\hat{\beta}$		*	$\hat{*}$			${ }_{\text {¢ }}$			${ }_{\text {¢ }}$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	6	656	33	167	228	15	15	2	185	17	7	12
Future Volume (vph)	6	656	33	167	228	15	15	2	185	17	7	12
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	713	36	182	248	16	16	2	201	18	8	13
Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB1						
Volume Total (vph)	7	749	182	264	219	39						
Volume Left (vph)	7	0	182	0	16	18						
Volume Right (vph)	0	36	0	16	201	13						
Hadj (s)	0.53	0.00	0.55	0.01	-0.45	-0.09						
Departure Headway (s)	6.6	6.0	6.7	6.2	6.2	7.2						
Degree Utilization, x	0.01	1.00	0.34	0.45	0.38	0.08						
Capacity (veh/h)	537	749	523	572	562	460						
Control Delay (s)	8.5	59.9	11.9	12.9	12.9	10.8						
Approach Delay (s)	59.5		12.5		12.9	10.8						
Approach LOS	F		B		B	B						
Intersection Summary												
Delay			36.8									
Level of Service			E									
Intersection Capacity Utilization			68.9\%		CU Level	f Service			C			
Analysis Period (min)			15									

	4	\rightarrow	4		\%	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{7}$	4	\hat{p}		${ }^{*}$	「'	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	373	452	161	133	162	265	
Future Volume (vph)	373	452	161	133	162	265	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	397	481	171	141	172	282	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	397	481	312	172	282		
Volume Left (vph)	397	0	0	172	0		
Volume Right (vph)	0	0	141	0	282		
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65		
Departure Headway (s)	7.1	6.6	6.5	8.0	6.7		
Degree Utilization, x	0.78	0.88	0.57	0.38	0.53		
Capacity (veh/h)	500	540	532	439	518		
Control Delay (s)	30.1	39.5	17.6	14.6	15.8		
Approach Delay (s)	35.2		17.6	15.3			
Approach LOS	E		C	C			
Intersection Summary							
Delay			26.4				
Level of Service			D				
Intersection Capacity Utilization			56.7\%		CU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

	$\stackrel{ }{*}$	\rightarrow	,	1	\leftarrow	4	4	\uparrow	7	*	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个		*	$\hat{\beta}$			¢			¢	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	247	36	131	347	7	16	2	195	3	5	1
Future Volume (vph)	5	247	36	131	347	7	16	2	195	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	263	38	139	369	7	17	2	207	3	5	1

Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1
Volume Total (vph)	5	301	139	376	226	9
Volume Leff (vph)	5	0	139	0	17	3
Volume Right (vph)	0	38	0	7	207	1
Hadj (s)	0.58	0.00	0.55	0.04	-0.50	0.42
Departure Headway (s)	6.4	5.8	6.1	5.6	5.4	6.8
Degree Utilization, x	0.01	0.49	0.24	0.59	0.34	0.02
Capacity (veh/h)	528	595	568	627	610	445
Control Delay (s)	8.3	13.0	9.8	15.0	11.1	9.9
Approach Delay (s)	13.0		13.6		11.1	9.9
Approach LOS	B		B		B	A

Intersection Summary			
Delay	12.9		
Level of Service	B	ICU Level of Service	A
Intersection Capacity Utilization	46.1%		
Analysis Period (min)	15		

	4	\rightarrow	\cdots		\pm	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{7}$	4	\hat{p}		${ }^{*}$	「'	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	294	162	295	173	104	208	
Future Volume (vph)	294	162	295	173	104	208	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Hourly flow rate (vph)	346	191	347	204	122	245	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	346	191	551	122	245		
Volume Left (vph)	346	0	0	122	0		
Volume Right (vph)	0	0	204	0	245		
Hadj (s)	0.60	0.10	-0.14	0.62	-0.58		
Departure Headway (s)	7.3	6.7	6.2	8.1	6.8		
Degree Utilization, x	0.70	0.36	0.95	0.27	0.46		
Capacity (veh/h)	486	520	551	440	518		
Control Delay (s)	24.1	12.3	50.5	12.8	14.4		
Approach Delay (s)	19.9		50.5	13.9			
Approach LOS	C		F	B			
Intersection Summary							
Delay			30.0				
Level of Service			D				
Intersection Capacity Utilization			58.4\%		CU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

	4			7		4	4	\dagger	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\uparrow	「'	${ }^{*}$	4			中 ${ }^{\text {F }}$	
Traffic Volume (vph)	0	0	0	103	0	202	155	390	0	0	595	378
Future Volume (vph)	0	0	0	103	0	202	155	390	0	0	595	378
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.99	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.94	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1787	1599	1671	1759			3292	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1787	1599	1671	1759			3292	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	116	0	227	174	438	0	0	669	425
RTOR Reduction (vph)	0	0	0	0	0	202	0	0	0	0	79	0
Lane Group Flow (vph)	0	0	0	0	116	25	174	438	0	0	1015	0
Confl. Peds. (\#/hr) 3												
Heavy Vehicles (\%)	2\%	2\%	2\%	1\%	1\%	1\%	8\%	8\%	8\%	2\%	2\%	2\%
Turn Type				Split7	NA	Prot	Prot	NA			NA	
Protected Phases					7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					14.0	14.0	13.3	32.5			84.6	
Effective Green, g (s)					14.0	14.0	13.3	32.5			84.6	
Actuated g/C Ratio					0.11	0.11	0.10	0.25			0.66	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					194	174	173	445			2169	
v/s Ratio Prot					c0.06	0.02	0.10	c0.25			c0.31	
v/s Ratio Perm												
v/c Ratio					0.60	0.14	1.01	0.98			0.47	
Uniform Delay, d1					54.5	51.8	57.6	47.7			10.8	
Progression Factor					1.00	1.00	1.00	1.00			0.69	
Incremental Delay, d2					3.8	0.2	69.9	38.5			0.0	
Delay (s)					58.3	52.0	127.5	86.2			7.5	
Level of Service					E	D	F	F			A	
Approach Delay (s) 0.0					54.1			98.0			7.5	
Approach LOS		A		D				F		A		
Intersection Summary												
HCM 2000 Control Delay			42.3		HCM 2000	evel of	ervice		D			
HCM 2000 Volume to Capacity ratio			0.71									
Actuated Cycle Length (s)			128.4		Sum of los	ime (s)			27.5			
Intersection Capacity Utilization			56.7\%		CU Level	Service			B			
Analysis Period (min)			15									

C Critical Lane Group

	4	\rightarrow	\cdots		\%	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{7}$	4	\hat{p}		${ }^{*}$	「'	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	396	470	168	146	175	282	
Future Volume (vph)	396	470	168	146	175	282	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	421	500	179	155	186	300	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	421	500	334	186	300		
Volume Left (vph)	421	0	0	186	0		
Volume Right (vph)	0	0	155	0	300		
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65		
Departure Headway (s)	7.3	6.8	6.6	8.1	6.9		
Degree Utilization, x	0.85	0.94	0.62	0.42	0.57		
Capacity (veh/h)	481	523	526	441	509		
Control Delay (s)	38.1	50.3	19.7	15.5	17.4		
Approach Delay (s)	44.8		19.7	16.7			
Approach LOS	E		C	C			
Intersection Summary							
Delay			32.1				
Level of Service			D				
Intersection Capacity Utilization			59.7\%		CU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

C Critical Lane Group

	\rightarrow	\checkmark	7		4	p	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4	「	*	4	*	「	
Traffic Volume (vph)	114	484	319	95	459	300	
Future Volume (vph)	114	484	319	95	459	300	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	1.00	1.00	0.85	
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	1881	1599	1787	1881	1787	1599	
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	1881	1599	1787	1881	1787	1599	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
Adj. Flow (vph)	130	550	362	108	522	341	
RTOR Reduction (vph)	0	117	0	0	0	23	
Lane Group Flow (vph)	130	433	363	108	522	318	
Confl. Peds. (\#/hr)		1					
Heavy Vehicles (\%)	1\%	1\%	1\%	1\%	1\%	1\%	
Turn Type	NA	custom	Prot	NA	Prot	custom	
Protected Phases	4	457	3	8	567	3567	
Permitted Phases		4				567	
Actuated Green, G (s)	16.0	78.5	25.5	46.5	67.8	98.8	
Effective Green, g (s)	16.0	78.5	25.5	46.5	67.8	98.8	
Actuated g/C Ratio	0.13	0.62	0.20	0.37	0.54	0.79	
Clearance Time (s)	5.5		5.5	6.0			
Vehicle Extension (s)	2.3		2.3	2.3			
Lane Grp Cap (vph)	239	997	362	695	963	1255	
v/s Ratio Prot	c0.07	0.27	c0.20	0.06	c0.29	0.20	
v/s Ratio Perm							
v/c Ratio	0.54	0.43	1.00	0.16	0.54	0.25	
Uniform Delay, d1	51.5	12.2	50.1	26.5	18.9	3.6	
Progression Factor	1.00	1.00	1.00	1.00	0.35	0.16	
Incremental Delay, d2	8.6	0.7	48.0	0.5	0.6	0.1	
Delay (s)	60.1	12.9	98.1	27.0	7.2	0.7	
Level of Service	E	B	F	C	A	A	
Approach Delay (s)	21.9			81.8	4.6		
Approach LOS	C			F	A		
Intersection Summary							
HCM 2000 Control Delay			28.5		HCM 2000	Level of Service	C
HCM 2000 Volume to Capacity ratio			0.72				
Actuated Cycle Length (s)			125.8		Sum of lost	time (s)	27.5
Intersection Capacity Utilization			59.4\%		ICU Level of Service		B
Analysis Period (min)			15				

c Critical Lane Group

	4	\rightarrow	,	1	\leftarrow	4	4	\uparrow	7	*	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	个		*	$\hat{\beta}$			¢			¢	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	248	36	131	348	7	16	2	196	3	5	1
Future Volume (vph)	5	248	36	131	348	7	16	2	196	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	264	38	139	370	7	17	2	209	3	5	1

Direction, Lane \#	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1
Volume Total (vph)	5	302	139	377	228	9
Volume Leff (vph)	5	0	139	0	17	3
Volume Right (vph)	0	38	0	7	209	1
Hadj (s)	0.58	0.00	0.55	0.04	-0.50	0.42
Departure Headway (s)	6.4	5.8	6.1	5.6	5.4	6.8
Degree Utilization, x	0.01	0.49	0.24	0.59	0.34	0.02
Capacity (veh/h)	528	594	567	626	610	443
Control Delay (s)	8.3	13.1	9.8	15.1	11.1	10.0
Approach Delay (s)	13.0		13.7		11.1	10.0
Approach LOS	B		B		B	A

Intersection Summary			
Delay	12.9		
Level of Service	B	ICU Level of Service	A
Intersection Capacity Utilization	46.2%		
Analysis Period (min)	15		

	4	\rightarrow	\cdots		\pm	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{7}$	4	\hat{p}		${ }^{*}$	「'	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	300	162	296	173	104	231	
Future Volume (vph)	300	162	296	173	104	231	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Hourly flow rate (vph)	353	191	348	204	122	272	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	353	191	552	122	272		
Volume Left (vph)	353	0	0	122	0		
Volume Right (vph)	0	0	204	0	272		
Hadj (s)	0.60	0.10	-0.14	0.62	-0.58		
Departure Headway (s)	7.4	6.9	6.3	8.1	6.9		
Degree Utilization, x	0.72	0.36	0.97	0.27	0.52		
Capacity (veh/h)	485	511	552	439	518		
Control Delay (s)	26.3	12.6	55.1	12.9	15.9		
Approach Delay (s)	21.4		55.1	15.0			
Approach LOS	C		F	B			
Intersection Summary							
Delay			32.2				
Level of Service			D				
Intersection Capacity Utilization			58.8\%		CU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6: 10th St \& I-205 SB Ramp

C Critical Lane Group

	4	\rightarrow	\checkmark		*	\pm	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	${ }^{4}$	4	\uparrow		${ }^{1}$	「	
Sign Control		Stop	Stop		Stop		
Traffic Volume (vph)	428	472	169	146	175	302	
Future Volume (vph)	428	472	169	146	175	302	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	
Hourly flow rate (vph)	455	502	180	155	186	321	
Direction, Lane \#	EB 1	EB 2	WB 1	SB 1	SB 2		
Volume Total (vph)	455	502	335	186	321		
Volume Left (vph)	455	0	0	186	0		
Volume Right (vph)	0	0	155	0	321		
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65		
Departure Headway (s)	7.4	6.9	6.7	8.1	6.9		
Degree Utilization, x	0.93	0.96	0.62	0.42	0.62		
Capacity (veh/h)	455	502	535	439	508		
Control Delay (s)	51.3	53.9	20.2	15.7	19.2		
Approach Delay (s)	52.6		20.2	17.9			
Approach LOS	F		C	C			
Intersection Summary							
Delay			36.8				
Level of Service			E				
Intersection Capacity Utilization			61.6\%		CU Level	Service	B
Analysis Period (min)			15				

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis
6: 10th St \& I-205 SB Ramp

C Critical Lane Group

C Critical Lane Group

Willamette Falls Commercial Willamette Falls Drive \& $11^{\text {th }}$ Street West Linn, Oregon

DRAINAGE REPORT
January 2016

Prepared By:
Bruce D. Goldson, PE
Theta, Ilc

PO Box 1345, Lake Oswego, Oregon 97035
\# 2015-107B

INDEX

Narrative	pg
Summary	pg
Regulatory	pg
Design Parameters	pg
Hydrographic Results	pg
Summary	pg
Appendix	pg

NARRATIVE ASSUMPTIONS

Existing Conditions:

The subject property three old tax lots (3 S 1E 02BA TL 4100) with two existing buildings bordered on three sides with public roads and containing 0.34 Acres. The property slopes to the northwesterly direction at approximately 3%. There is sanitary, storm and water service to the property.

Developed Conditions:

A proposed multi-story commercial building is proposed to cover the entire property. With complete lot coverage with impervious area on-site infiltration is not possible. On-site detention and water quality facilities are propose. The storm discharge will be to the existing public storm system in the adjacent street

Summary of storm water flow

	$2-Y E A R$	$5-Y E A R$	$10-Y E A R$	$25-Y E A R$
PRE-DEVELOP	0.11 CFS	0.15 CFS	0.19 CFS	0.23 CFS
POST-DEVELOP	0.22 CFS	0.26 CFS	0.30 CFS	0.35 CFS

REGULATORY DESIGN CRITERIA
The storm water quantity management requirements of the City of West Linn.

References

1. King County Department of Public Works, Surface Water Management Division, Hydrographic

Programs, Version 4.21B

Water Quality Facility

Design Parameters

The design storm is a 24 hour standard SCS Type 1A

- 2 -year............................ 2.5 inches
- 5 -year........................... 3.0 inches
- 10-year......................... 3.4 inches
- 25-year......................... 3.9 inches
- 100-year........................ 4.5 inches

SOIL TYPES

Willamette Silt Loam - type C soil

Time of Concentration

$$
\mathrm{T}=(0.42)\left[(\mathrm{nL})^{8} /\left(\mathrm{p}_{2}\right)^{.5}\left(\mathrm{~s}_{0}\right)^{4}\right.
$$

Pre-development: $\mathrm{T}=(0.42)[(0.01)(45)]^{8} /(2.5)^{.5}(.04)^{4}=0.50 \mathrm{~min}$ $\mathrm{T}=(0.42)[(0.15)(78)]^{.8} /(2.5)^{.5}(.03)^{4}=7.73 \mathrm{~min}$

$$
\mathrm{T}_{\text {total }}=8.23 \mathrm{~min}(\text { Pre })
$$

Assume 5-minutes developedk

HYDROGRAPH RESULTS

KING COUNTY DEPARTMENT OF PUBLIC WORKS
Surface Water Management Division
HYDROGRAPH PROGRAMS
Version 4.21B

1 - INFO ON THIS PROGRAM
2 - SBUHYD

3 - MODIFIELD SBUHYD
4 - ROUTE

5 -ROUTE2
6 - ADDHYD

```
7-BASEFLOW
8-PLOTHYD
9- DTATA
10-REFAC
11 - RETURN TO DOS
```


ENTER OPTION:

2

SBUN/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH
STORM OPTIONS:

1 - S.C.S. TYPE-1A

2-7-DAY DESIGN STORM
3 - STORM DATA FILE

SPECIFY STORM OPTION:

1

S.C.S. TYPE - 1A RAINFALL DISTRIBUTION

ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)
2,24,2.6

XXXXXXXXXXXX	2-YEAR	24-HOUR STORM	xxxx	2.50 "TOTAL PRECIP	Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/

ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1
$0.30,86,0.04,98,8.23$
DATA PRINT OUT:

AREA(ACRES)	PERVIOUS	IMPERVIOUS	TC(MINUTES)
	A	CN	A
	CN		
.3	86	.0	98
PEAK-Q(CFS)	T-PEAK(HRS)	VOL(CU-FT)	8.2
.11	7.83	1683	

```
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF2pre
SPECIFY: C - CONTINUE, N - NEWSTORM, P -PRINT, S - STOP
C
ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. }
0.0,86,034,98,5
DATA PRINT OUT:
AREA(ACRES)
PERVIOUS
IMPERVIOUS
A CN A CN
    .3 .0 86 .3 98
PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
    . }2
    7.67
    2802
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF2post
SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP
n
STORM OPTIONS:
1-S.C.S. TYPE-1A
2-7-DAY DESIGN STORM
3-STORM DATA FILE
SPECIFY STORM OPTION:
1
ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)
5,24,3.0
```

ENTER: A(PERV),CN(PERV),A(IMPERV), CN(IMPERV),TC FOR BASIN NO. 1					
0.30,86,0.04,98,8.23					
DATA PRINT OUT:					
AREA(ACRES)	PERVIOUS		IMPERVIOUS		TC(MINUTES)
	A	CN	A	CN	
. 3	. 3	86	. 0	98	8.2
PEAK-Q(CFS)	T-PEAK(HRS)		VOL(CU-FT)		
. 15	7.83		2211		
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:					
C:WF5pre					
SPECIFY: C-CONTINUE, N - NEWSTORM, P-PRINT, S - STOP					
c					
0.0,86,0.34,98,5					
DATA PRINT OUT:					
AREA(ACRES)	PERVIOUS		IMPERVIOUS		TC(MINUTES)
	A	CN	A	CN	
. 3	. 0	86	. 3	98	5.0
PEAK-Q(CFS)		HRS)		-FT)	
. 26					
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:					
C:WF5post					
SPECIFY: C-CONTINUE, N - NEWSTORM, P - PRINT, S - STOP					
n					
STORM OPTIONS:					
1 - S.C.S. TYPE-1A					
2-7-DAY DESIGN STORM					

```
3-STORM DATA FILE
SPECIFY STORM OPTION:
1
ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)
10,24,3.4
Xxxxxxxxxxxxxxxxxxxxxxxx S.C.S.TYPE-1A DISTRIBUTION xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
XXXXXXXXXXXX 10-YEAR 24-HOUR STORM xxxx 3.40" TOTAL PRECIP Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1
0.30,86,04,98,8.23
DATA PRINT OUT:
AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES)
\begin{tabular}{llllll}
.3 & 86 & .0 & 98 & 8.2
\end{tabular}
PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
.19 7.83 2648
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF1Opre
SPECIFY: C - CONTINUE, N - NEWSTORM, P - DATA PRINT OUT:
C
ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1
0.0,86,0.34,98,5
AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES)
A CN A CN
    .3 .0 86 .3 98 5.0
PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
    30
    7.67
    3 9 0 8
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
```

```
C:WF1Opost
SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP
n
STORM OPTIONS:
1-S.C.S. TYPE-1A
2-7-DAY DESIGN STORM
3-STORM DATA FILE
SPECIFY STORM OPTION:
1
ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)
25,24,3.9Xxxxxxxxxxxxxxxxxxxxxxxx S.C.S.TYPE-1A DISTRIBUTION \(x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x\)
XXXXXXXXXXXXX 25-YEAR 24-HOUR STORM xxxx 3.90" TOTAL PRECIP Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1
0.30,86,04,98,8.23
DATA PRINT OUT:
AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES)
.3 -
PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT)
    23 7.83 3205
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF25pre
SPECIFY: C - CONTINUE, N - NEWSTORM, P - DATA PRINT OUT:
C
ENTER: A(PERV),CN(PERV),A(IMPERV),CN(IMPERV),TC FOR BASIN NO. 1
0.0,86,0.34,98,5
```

AREA(ACRES)	PERVIOUS		IMPERVIOUS		TC(MINUTES)
	A	CN	A	CN	
. 3	. 0	86	. 3	98	5.0
PEAK-Q(CFS)	T-PEAK(HRS)		VOL(CU-FT)		
. 35	7.67		4523		

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF25post
j
DETENTION SIZING
ENTER OPTION
10
R/D FACILITY DESIGN ROUTINE
SPEFICY TYPE OF R/D FACILTY
1 - POND 4 - INFILTRATION POND
2 - TANK 5-INFILTRATION TANK
3 -VAULT 6 -GRAVEL TRENCH/BED
2
ENTER: POND SIDE SLOPE (HORIZ. COMPOENT)
3
ENTER: TANK DIAMETER (ft). EFFECTIVE STORAGE DEPTH (ft)
4,4
ENTER: [d:][[atj]filename[.ext] OF PRIMARY DESIGN INFLOW HYDROGRAPH:
C:WF25POST
PRELIMINARY DESIGN INFLOW PEAK $=.35$ CFS
ENTER PRIMARY DESIGN RELEASE RATE(cfs)
0.23

ENTER NUMBER OF INFLOW HYDROGRAPHS TO BE TESTED FOR PERFORMANCE (5 MAXIMUM) 3

ENTER [d:][path]filename[.ext] OF HYDROGRAPH 1:

C:WF10POST

ENTER TARGET RELEASE RATE (cfs)
0.19

ENTER [d:][path]filename[.ext] OF HYDROGRAPH 2:
C:WF5POST

ENTER TARGET RELEASE RATE (cfs)
0.15
0. ENTER [d:][path]filename[.ext] OF HYDROGRAPH 3:

C:WF2POST

ENTER TARGET RELEASE RATE (cfs)
0.11

ENTER: NUMBER OF ORIFICES, RISER-HEAD (ft), RISER-DIAMETER(in)
3.4.10

RISER OVERFLOW DEPTH FOR PRIMARY PEAK INFLOW=0.12 FT

SPECIFY ITERATION DISPLAY: Y-YES, N - NO

N
SPECIFY: R - REVIEW/REVISE INPUT, C - CONTINUE

C

INITIAL STORAGE VALUE FOR ITERATION PURPOSES: 1170 CU-FT

BOTTOM ORIFICE: ENTER Q-MAX(cfs)
0.10

DIA. $=1.36$ INCHES
MIDDLE ORIFICE: ENTER Q-MAX(cfs), HEIGHT(ft)
0.0 .07

```
DIA. = 1.35 INCHES
TOP ORIFICE: ENTER HEIGHT(ft)
3.4
DIA. = 1.69 INCHES
PERFORMANCE: INFLOW TARGET-OUTFLOW ACTUAL-OUTFLOW PK-STAGE STORAGE
DESIGN HYD: . 35 . \(23 \quad 33.99 \quad 547\)
\begin{tabular}{llllll} 
TEST HYD 1: 30 & .19 & 390
\end{tabular}
\begin{tabular}{llllll} 
TEST HYD 2: & .26 & .15 & .13 & 330
\end{tabular}
\begin{tabular}{llllll} 
TEST HYD 3: 22 & .11 & .41 & 340
\end{tabular}
```

SPECIFY: D-DOCUMENT, R-REVISE, A - ADJUST ORIF, E-ENLARGE, S-STOP

PRELIMINARY DESIGN:

A detention tank $48^{\prime \prime}$ in diameter and 44 feet long will provide the necessary volume, with three orifices will meet the outflow of the 2,510 , and 25 year predeveloped flow rates per the city code.

Appendix

Table 4.1 24-Hour Rainfall Depths

Recurrence Interval (year)	Annual Chance of Occurrence (\%)	Rainfall Depth (inches)
2	50	2.5
5	20	3.0
10	10	3.4
25	4	3.9
50	2	4.3
100	1	4.5
500	0.2	5.3

fable 4-3 MODHFD CIRVE NUMBRRS

SCS Western Washington Runoff Curve Numbers

Runoff curve numbers for selected agricultural, suburban, and urban land use for Type 1A rainfall distribution, 24-hour storm duration. (Published by SCS in 1982)

${ }^{1}$ For a more detailed description of agricultural land use curve numbers, refer to National Engineering Handbook, Sec. 4, Hydrology, Chapter 9, August 1972.
${ }^{2}$ Modified by KCFW, 1995.
${ }^{3}$ Assumes roof and driveway runoff is directed into street/storm system.
${ }^{4}$ The remaining pervious areas (lawn) are considered to be in good condition for these curve numbers.

EX

$\frac{\text { GARAGE LEVEL }}{\text { SCAEF: } 1 "}=20^{\circ}$

		OTE	1	REvSION			Icon Construction \& Development, LLC 1980 Willamette Falls Drive, Suite 200 West Linn, Oregon 97068 PH: (503) 657-0406	Tax Lot 4100 T.3S., R.1E., Section 2 West Linn, Oregon	3/4
Steme	Janay, 2016								

SITE ANALYSIS

cole

$\frac{\text { Rester }}{\text { Rovesessmers }}$

 and sitinucreme

CODE REVIEW
 20 : \mathbf{H} NIMMEE
$\frac{\text { ExTING }}{\text { ELEVAOR: }}$:Eaure STARS: TWO STARS WIL BE REGUREDD. AT LEAST ONE STAR MUST BE ENCLOSED ON THE UPPER

DIRECTORY
OWNER

SURVEYING

BUILDING DATA IST FLOOR LEVEL (STREET LEVEL)
2ND LEVEL RLOOR

total parking provide (on-Site)

NNDERGROUND
STREET LVVEL COVERED

STREET LEVEL COVERED	13 SPACES
OTAL PARKING PROVIDED	42 SPACES

SHEET INDEX ARCHITECTURAL
A.O COVERSHEET, CODE PLANS

EX EXISTING CONDITION PLAN (SURVEY)
A2.0 BASEMENT PARKING LEVEL PLAN
A2.1 GROUND floor plan (STREET LeVEL)
A2.2a SECOND FLOOR PLAN - OFFICE LAYOUT
A2.2b SECOND FLOOR PLAN - hotel Layout
A3.1 ExTERIOR ELEVATIONs (COLOR

VICINITY MAP

SGA
\qquad

WILLAMETTE FALLS MIXED-USE BUILDING

CLASS II \& HISTORIC DESIGN REVIEW
UBMITAL DRAWINGS

BASEMENT PARKING LEVEL PLAN
$\square \square \square^{\circ}$ I

A2.2a
SECOND LEVEL PLAN - HOTEL $\prod_{8} \square$ \qquad

SGA

CLASS II \& HISTORIC

SUBMITTAL DRAWINGS
ProJECT NMMER: $\quad 15 \cdot 104$

[^0]: the responsibility of the individual driver, the Crash Analysis and Reporting Unit can
 damage only crashes being eligible for inclusion in the Statewide Crash Data File.

