

West Linn, Oregon 97068 Telephone 503.656.4211 • Fax 503.656.4106 • west Linn, Oregon 97068

DEVELOPMENT REVIEW APPLICATION	
STAPE CONTACT PROJECT NO(S).	
Darren Wyss DR-16-C	51
NON-REFUNDABLE FEE(S) 300- REFUNDABLE DEPOSIT(S) 20, 000	5 - TOTAL 20, 300 -
Type of Review (Please check all that apply):	1
Annexation (ANX)	Subdivision (SUB)
Appeal and Review (AP) *	Temporary Uses *
Conditional Use (CUP) Lot Line Adjustment (LLA) */** Design Review (DR)	Time Extension *
Easement Vacation	n) Variance (VAR) Water Resource Area Protection/Single Lot (WAP)
Extraterritorial Ext. of Utilities	Water Resource Area Protection/Wetland (WAP)
Final Plat or Plan (FP)	Willamette & Tualatin River Greenway (WRG)
Flood Management Area	Zone Change
Hillside Protection & Erosion Control	
Home Occupation, Pre-Application, Sidewalk Use, Sign Review Permit, and Ten different or additional application forms, available on the City website or at City	nporary Sign Permit applications require y Hall.
Site Location/Address:	Assessor's Map No.: 35, 1E, 02BA
1969 WILLAMETTE PALLS DRIVE	Tax Lot(s): 400
	Total Land Area: (5,000 SF?
Brief Description of Proposal:	IXED-USE BUILDING.
Contraction of theme in the	
APPPOX 25,000 CF OF OF OFTICE /FETHIC DAPHING STEVETURE 43 NEW DOE	T- BELOW GPADE
(Diesse Dript)	Phone: 903 - 657 - 0406
Address: 1980 WILLAMETTE FALLS PR #	200 Email: MAZK@ICONCONSTRUCTION
City State Zip: WEST LINN, DR 97068	PARRANOICONCONTREVORAN. INET
Owner Name (required): ICON CONSTRUCTION	Phone:
Address: (980 WILLAMETTE FAUS DEVE # 2	Email:
City State Zip: WEST LINN, OF 97968	MARK @ I LON CONSTRUCTION . NET
	PARTER CILON CONSTRUCTION . NET
Consultant Name: 5G ARCHITECTUR, LLC (please print) Address: 10940 SW BARNES RD #364	Phone: 503-201-0725
	Email: KGOPWIN@SG-ARCH. NO
City State Zip: PORTLAND, OR 97225	
1. All application fees are non-refundable (excluding deposit). Any overruns to depo	
2. The owner/applicant or their representative should be present at all public hearin 3. A denial or approval may be reversed on appeal. No permit will be in effect until	
A Three (3) complete hard convicts (single sided) of application materials must be	a submitted with this application
One (1) complete set of digital application materials must also be submitted on (CD In PDF format. FEB 1 0 2016
in targe sets of plans are required in application please submit only two sets.	
* No CD required / ** Only one hard-copy set needed	
The undersigned property owner(s) hereby authorizes the filing of this application, and authorizes	PLANNING & BUILDING
comply with all code requirements applicable to my application. Acceptance of this application	des not inter a complete submittel. All amendments
to the Community Davelonment Code and to athen used there a dented after all the state	approved shall be enforced where applicable
to the Community Development Code and to other regulations adopted after the application is	
to the Community Development Code and to other regulations adopted after the application is Approved applications and subsequent development is not vested under the provisions in place	
to the Community Development Code and to other regulations adopted after the application is Approved applications and subsequent development is not vested under the provisions in place 2/9/16	

Development Review Application (Rev. 2011.07)

Willamette Falls Mixed Use

West Linn, Oregon Design Review Class II Submittal – Chapter 58 February 2016

A. Introduction

The following Narrative, Plans and Supplemental materials will demonstrate that the proposed project is in compliance with the applicable site plan and design *review* standards set forth in the West Linn Community Development Code.

B. Narrative

Icon Development is proposing a new two-story development located at 1912 Willamette Falls Drive- east of 12" Street. The site has one temporary existing structure that will be demolished and is boarded primarily by commercial development with some residential development to the north.

The proposed mixed use development is two-story office/retail with an underground parking facility. The total building area is approximately 24,510 s.f. of leasable building area and 42 onsite parking spaces have been provided behind and under the building. Spring/Summer 2016 construction start is anticipated.

c. Conformance

58.90 STANDARDS

- A. Standards are needed to provide a clear and objective list of design elements that are needed to bring new construction and remodels into conformance with 80c1915 architecture. Buildings of the period saw relatively few deviations in design. Consequently, the Historic Review Board will require conformance with the standards. Deviations or deletions from the standards are addressed in the variance procedure of this chapter.
- *B.* The use of "neo-designs" or simply contextual designs which only attempt to capture the basic or generalized elements such as building line, massing and form, etc. is not acceptable.
- C. The following standards shall apply to new construction and remodels.
 - 1. Dimensional standards:

a. Front: zero-foot setback. Building may not be set back from the property line unless it is consistent with predominant building line.

RESPONSE: The proposed building frontage (north elevation) is located on this property line.

b. Side and Side Street: zero-foot setback. Building may not be set back from the side property line except for side passageway, accessway, or stairway unless fire codes dictate otherwise. The setback shall not exceed sixfeet. The setback should be consistent with the rhythm of adjacent structures, or at least not deleterious to it. (ORD. 1391)

RESPONSE: West (side) building elevation is setback 2'0" from the existing property line to allow for the building to have reliefs and pilasters without extending into the adjacent property.

1

c. Rear: 20-foot setback. Setbacks between 0-20 feet are permitted only if the applicant can demonstrate that he can successfully mitigate any impacts associated with the building in current and future uses as they would relate to abutting residential and other properties.

RESPONSE: South (rear) building elevation is on the property line, and fronts onto Knapp's Alley The alley provides the separation from adjacent properties to mitigate the impact of this project. Access to employee parking and the trash enclosure will occur from Knapp's Alley as well.

d. Lot coverage: Up to 100 percent of lot may be developed depending upon ability to mitigate impacts upon abutting residential and other uses. RESPONSE: The proposed lot coverage based on the street level ground floor area is 66.33%.

Site area = .0344 acres = 15,000 s.f.

 Minimum landscaping required: Structures in this area are exempt from landscaping requirements as identified in Section 55.100(A)(II)(b), Design Review. The provision of CDC Section 55.100(A)(II)(c)(I-8) shall still apply where parking lots are proposed.

RESPONSE: There is no landscaping required for this project. There will be landscaping provided at the proposed water quality facility at the west property line.

3. Building height limitations: Maximum building height shall be 35feet (as measured by this Code), and two stories. False fronts shall be considered as the peak of the building if it exceeds the gable roof ridgeline.

RESPONSE: All proposed building heights are at or below the maximum allowable by code (35'0" high)

Front (north) parapet = 32-35 feet Rear (south) parapet = 30-33 feet Side (west) parapet = 26 feet Side (east) parapet = 32-35 feet

4. External ground level or first story minimum height: 10feet to allow transoms.

RESPONSE: The ground level first story height is 14'0" A.F.F to allow for window transoms.

5. *Roof form:* Flat or pitched roofs. Pitched roof ridgeline shall run from the front of the building to the back.

RESPONSE: All proposed flat sloped roofs run from front to back of the building.

6. Building form, scale and depth: Building shall emphasize the vertical through narrow, tall windows (especially on second floor), vertical awning supports, engaged columns, and exaggerated facades creating a height-to-width ratio of 1.5:1. Building depth shall be flat, only relieved by awning and cornice projections and the indented doorway.

RESPONSE: The proposed exterior elevations emphasize many vertical elements using tall windows, cornices, and awnings. The second floor has been provided with many windows that align with the main floor below that enhance the "verticality" of each building elevation. Building reliefs have been incorporated throughout the overall design by off- setting the building footprint and providing awnings and cornice projections.

7. Spacing and rhythm: Buildings shall follow a regular rhythm. Strong vertical breaks or lines should be regularly spaced every 25 to 50 feet.

RESPONSE: Appropriate spacing and vertical breaks in the building vernacular, have been incorporated into all the building elevations. No vertical spacing exceeds 50'-0" in length (see elevation sheet).

8. Facades: No gables, hipped, orpitched roofs shall be exposed to the street at the front. The "Western false front" shall be the preferred style although variations shall be allowed.

RESPONSE: All roofs are 'flat' for the entire building, and are concealed by "Western False Front" facades (see elevations sheet).

9. Cornice: Cornices shall be broad and may include regularly spaced supporting brackets. A cornice is not required, but preferred.

RESPONSE: The cornice at the northeast corner is enhanced with supporting brackets. All other cornices are enhanced with framed panel decoration (see elevations & wall section sheets.)

10. Building materials and orientation: Wood shall be the principal building material. Horizontal wood siding in I" X 8" dimensions shall be used for siding. Brick and certain concrete configurations are permitted only by a variance under Section 58.090.

RESPONSE: The primary materials list will be wood:Siding:1x8 horizontal siding minimum (hardiplank)Cornices/trim:2x wood trim - paintedOrnamental trim:Wood - painted

The applicant requests a variance under the terms of Section 55.100 for a brick masonry base and partial elevation.

11. Awnings: All buildings shall have awnings extending out from building/ace. Awnings are preferred for micro-climate benefits. Ideally, the building will have both transom and awnings, although transoms are not required. Awnings shall be either canvas or vinyl, or similar approved material, supported by an internal metal framework or metal or wood supported by a curved metal support, either attached to the building or a simple 4" X 4" wood post extending down to the outside of the sidewalk. Awnings shall, therefore, extend beyond the front property line to the outside edge of the sidewalk, and shall possess a seven-foot clearance to the valance or any other part. The pitch of the awning shall be I 0-40 degrees. No "bubble-type" awnings are permitted. No backlit awnings are permitted. Canvas or matte finish vinyl, or similar approved • material awnings may be one color or striped and shall have afree-hangi.ng plain or crenelated valance. Canvas or matte finish vinyl, or similar approved material awnings should not be shared between two structures. Each structure should have its own awning. (ORD. 1401)

RESPONSE: Building awnings will be a combination of fabric awnings and metal canopies that extend beyond the building and above the existing sidewalk. However, due to the possibility of vehicles damaging the awnings, the applicant would petition to reducing the awnings depth to 7'-0" instead of the full sidewalk width of 8'-6". All supports will be fastened to the building by metal supports and have a minimum clearance height of 7'-0". Each building window facade will have a separate awning with a slope between 10 - 40 degrees (see elevations.)

12. Extruded roofs: As a substitute for an awning, extruded roofs have a 10-40 degree pitch and extend I-2feetfrom the building face just above the transom windows where the first and second stories meet. The roof runs along the entire building frontage. Standard roofing materials are used. Transoms are required with extruded roofs.

RESPONSE: No "extruded roofs" are being proposed. Transom windows will be provided beneath both the fabric awnings and metal canopies.

13. Doors and entryways: The entryway shall be centered in the middle of the building at grade. The buildings on street corners may position their door on the corner at an angle as depicted in the illustration. The doors may be single or double doors. The doors shall be recessed 3-5feet back from the building line. Doors shall have glazing in the upper two-thirds to half of the door. Panels should decorate the lower portions. The entryway shall have windows all the way around at the same level as the other display windows. Wood doors are preferable although alternatives with a dark matte finish may be acceptable.

RESPONSE: Recessed double entrance doors have been provided at the center of the building along with additional recessed entry doors at each end of the building (see elevation and floor plan). The door styles will be full glass light style and will meet the intent of the code.

14. Glazing: Clear glass only. No mirrored or tinted glass. No films applied to glass. Lettering on glass is permitted (see item 25(b) of this section). **RESPONSE: Clear glass is proposed for all windows.**

15. Display or pedestrian level windows: Shall extend across at least 80 percent of building front. The windows shall start 1-112 - 2-I/2feet above grade to a height of 7-8 feet, and shall be level with the top of the height of the adjacent entryway area, excluding transom. A single sheet of glass is not permitted. The window shall be broken up into numerous sections, also known as lights. From 1880 onwards, the number of lights

was generally no more than six in a pedestrian level window. The frames may be wood or vinyl clad wood, or other materials so long as a matte finish impossible.

RESPONSE: The proposed street level windows and storefronts extend across the entire front elevation and meets or exceeds the intent of the code (see elevation sheet).

16. Second floor and other windows: Double and single hung windows proportionately spaced and centered should be used. Smaller square shaped windows may be permitted (1-112' - 2' per side). A typical window should have a 3:1 height to width ratio for the glass area. There should be a minimum of two lights: "one over one" of equal size. "Two over one" or "four over one" is appropriate.

RESPONSE: The proposed upper level windows have a double-hung appearance that meets or exceeds the intent of the code (see elevation sheet).

17. Wainscoting: Wainscoting shall be consistent with primary material of the building, typically wood.

RESPONSE: The applicant would like to propose an alternate brick masonry wainscoting instead of the primary wood material used on the building (see 55.090.10). This alternative provides for a more durable building longevity and is consistent with other buildings in the district (see attached photo for example).

- 18. Shutters: Shutters are not allowed. RESPONSE: No shutters are proposed.
- 19. Balconies: No balconies are permitted except on rear of building. RESPONSE: No balconies are proposed.

20. Exterior stairs: Simple stairs are permitted on the rear or side of the building only.

RESPONSE: All exit stairs are fully enclosed within the building envelope design (see elevation sheet).

21. Roof mounted mechanical equipment: Equipment shall be screened from view on all sides by normal and consistent architectural features of the building. Section

55.100(A)(4), "Privacy and Noise, "shall apply.

RESPONSE: The mechanical rooftop units (RTUs) will be located in a structurally designed"mechanical zone" that is located at the middle of the building. This location will allow the parapets to provide adequate screening from below to hide the units (see roof plan sheet). A preliminary noise study has been provided with this application.

22. Air conditioning: No window type on avenue or street side are permitted. Window mounted air conditioners are not allowed at rear where abutting residential. RESPONSE: All air conditioning/units will be mounted on the roof (see Item 21).

23. Exterior lighting fixtures: Any lighting fixtures that can be traced to 1880-1915 period is permitted. Simple modern fixtures that are screened and/or do not attract attention are acceptable. Overlay ornate fixtures of the Victorian era are to be discouraged.

RESPONSE: All exterior light fixtures will meet the intent of the code "period fixtures 1880-1915". A cutsheet of the light fixture can be provided to the city at a later date.

24. Transoms: Transom windows are required with extruded roofs and optional with awnings. Transom windows shall cover the front of the building above, but not beyond, the main

display windows and the entryway area. Transoms should be broken up into sections every six inches to three feet in a consistent and equal pattern. Height should not exceed three feet. Transoms may or may not open. False ceilings are allowed behind the transoms.

RESPONSE: The storefront windows proposed will have a metal canopies or fabric awnings above their entire width. No upper separate transom windows are proposed, however the window style will have transom influence by the use of grids and mullions. All window sizes will meet the intent of the code (see elevations).

25. Signs:

a. Signs shall not exceed 10 percent of the square footage of the front elevation. The calculation of allowable signage is explained in Section 52.300. The sign(s) shall be proportionate to buildings and signs on adjacent buildings. The "10percent" shall be broken up into multiple signs. The sign(s) shall be mounted or painted on the second floor, on the valance of the awning, on the windows at pedestrian level, or on 4 X 4 awning posts. Signs shall not be of the internally lit "can" type or channel light type. No backlit awnings are allowed. Illumination by spotlight is permitted. Neon signs are permitted only inside the windows. No flashing signs are allowed. By temporary sign permit only, neon colored lettering or designs painted on windows or on paper or banners in the windows are allowed, but discouraged. Small signs or plaques which describe the building in a historical sense are exempt from the allowable square footage restrictions. Signs cannot project out from building face.

b. Sign typeface: Antique lettering as shown in the illustration is required. Variations are permitted where the lettering would not clash with the predominant font or style. "Gay Nineties or P. T Barnum" type styles and other exaggerated styles are discouraged. Lettering may be horizontal, vertical, or slanting up from lower left to upper right. Semi-circle designs on windows are permitted. Window lettering should be either white, black, or gold with black shading.

c. Temporary signs: Temporary sandwich board signs are permitted and shall be designed to be consistent with the aforementioned sign and typeface provision.
 RESPONSE: All signage shall meet the intent of the code. A separate sign permit will be obtained from the City prior to the installation of any tenant or building signage.

26. Planters: No planters are allowed.

RESPONSE: The proposed site/plaza plan provides for "no planters."

27. Paint colors: Body color typically included white, cream, or a light warm color of low intensity. Accents, trims, windows, etc. should be dark colored. Contrasting colors should be compatible. Existing colors shall not enjoy protected status when repainting is proposed. A palette or color wheel of acceptable 1880-1915 period colors shall be the basis for color selection. No other colors are allowed. The palette is available at the Planning Department. RESPONSE: A material and color board has been submitted with this application. The applicant was told by the city that a color palette that was referenced in the city code was not available at this time. The City will review the proposed colors/materials submitted by the applicant. The colored elevations provided indicate the proposed color locations.

28. Ornamental or advertising flags, pennants, or banners: Not permitted on buildings. **RESPONSE: No flags, pennants, or banners are being proposed.**

29. New materials: Permitted where it is demonstrated that new material visually replicates originally required material, except siding, which must be wood.

RESPONSE: The only 'new' material being proposed is the brick masonry on the north and east walls of the building. This material will help provide longevity to the building

6

for years to come due to the amount of pedestrian traffic, and is consistent with similar materials on buildings along Willamette Falls Drive.

58.100 VARIANCE PROCEDURES

In those circumstances where a design proposal cannot meet the standards, or proposes an alternative to the standard, the Historic Review Board may grant a variance in those cases where one of the following criteria is met:

1. The applicant can demonstrate by review of historical records or photographs that the alternative is correct and appropriate to architecture in the region, and especially West Linn, in 1880-1915.

2. The applicant is incorporating exceptional 1880-1915 architecture into the building which overcompensates for an omission. The emphasis is upon superior design, detail, or workmanship.

RESPONSE: A variance to the standards is requested to allow the lower portion of the north and east walls, along with a full height portion of the north wall, to be brick masonry. This alternative provides superior design and detail to the wood standard by helping to break up the elevations in a more attractive way than strictly wood and pain. It also provides a more durable base to the building which will withstand ongoing pedestrian traffic and the elements.

Willamette Falls Mixed Use

West Linn, Oregon Design Review Class II - Chapter 55 February 2016

55.010 PURPOSE AND INTENT - GENERAL

No response required.

55.020 CLASSES OF DESIGN REVIEW

No response required.

55.025 EXEMPTIONS

No response required.

55.030 ADMINISTRATION AND APPROVAL PROCESS

No response required.

55.040 EXPIRATION OR EXTENSION OF APPROVAL

No response required.

55.050 DESIGN REVIEW AMENDMENT TRIGGER

No response required.

55.060 STAGED OR PHASED DEVELOPMENT

No response required.

55.070 SUBMITTAL REQUIREMENTS

No response required.

55.085 ADDITIONAL INFORMATION REQUIRED AND WAIVER OF REQUIREMENTS

No response required.

55.090 APPROVAL STANDARDS - CLASS I DESIGN REVIEW

No response required.

55.100 APPROVAL STANDARDS - CLASS II DESIGN REVIEW

The approval authority shall make findings with respect to the following criteria when approving, approving with conditions, or denying a Class II design review application.

A. The provisions of the following chapters shall be met:

1. Chapter 34 CDC, Accessory Structures, Accessory Dwelling Units, and Accessory Uses.

RESPONSE: There are no accessory structures included as part of this proposal. The requirements of this chapter do not apply.

2. Chapter 38 CDC, Additional Yard Area Required; Exceptions to Yard Requirements; Storage in Yards; Projections into Yards.

RESPONSE: Per 38.020, no sideyard setback is required. The west wall of the building is set back 3'0" per the standard. The other sections of this chapter do not apply.

3. Chapter 40 CDC, Building Height Limitations, Exceptions.

RESPONSE: This chapter has been repealed by ordinance.

4. Chapter 42 CDC, Clear Vision Areas.

RESPONSE: The building and property line sit approximately 48 feet behind the curb at the intersection of 11th Street and Willamette Falls Drive. The requirement of the chapter are met.

5. Chapter 44 CDC, Fences.

RESPONSE: There are no fences or retaining walls planned as part of this proposal. The requirements of this chapter do not apply.

6. Chapter 46 CDC, Off-Street Parking, Loading and Reservoir Areas.

RESPONSE: Per section 46.140, no off-street parking spaces are required in the Willamette Falls Drive Commercial Design District. Spaces provided in the garage and along Knapps Alley comply with the design standards of this chapter. Bicycle parking complying with the standards of this chapter are located in the garage.

7. Chapter 48 CDC, Access, Egress and Circulation.

RESPONSE: The subject property is a legal lot of record (T3S, R1E, Sec. 2, TL4100) and has direct access to 11th Street on the east, a platted alley to the south, and fronts Willamette Falls Drive on the north. Vehicle access is proposed via the alley for street parking and a driveway cut to underground parking with access to 11th Street at a point as far removed as possible from the intersection with Willamette Falls Drive as possible. An existing 8-foot sidewalk on 11th Street and on Willamette Falls Drive provides pedestrian access. Street parking exists along Willamette Falls Drive and bicycle parking is provided on site.

8. Chapter 52 CDC, Signs.

RESPONSE: All signs will be building wall signs and will be submitted by the tenants under separate permits. All signs will meet the standards for the Willamette Falls Drive Commercial Design District per 52.210.

9. Chapter 54 CDC, Landscaping.

RESPONSE: Per 58.090, projects in the Willamette Falls Drive Commercial Design District are exempt from the requirement of chapter 54.

B. <u>Relationship to the natural and physical environment</u>.

1. The buildings and other site elements shall be designed and located so that all heritage trees, as defined in the municipal code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

2. All heritage trees, as defined in the municipal code, all trees and clusters of trees ("cluster" is defined as three or more trees with overlapping driplines; however, native oaks need not

have an overlapping dripline) that are considered significant by the City Arborist, either individually or in consultation with certified arborists or similarly qualified professionals, based on accepted arboricultural standards including consideration of their size, type, location, health, long term survivability, and/or numbers, shall be protected pursuant to the criteria of subsections (B)(2)(a) through (f) of this section. In cases where there is a difference of opinion on the significance of a tree or tree cluster, the City Arborist's findings shall prevail. It is important to acknowledge that all trees are not significant and, further, that this code section will not necessarily protect all trees deemed significant.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

a. Non-residential and residential projects on Type I and II lands shall protect all heritage trees and all significant trees and tree clusters by either the dedication of these areas or establishing tree conservation easements. Development of Type I and II lands shall require the careful layout of streets, driveways, building pads, lots, and utilities to avoid heritage trees and significant trees and tree clusters, and other natural resources pursuant to this code. The method for delineating the protected trees or tree clusters ("dripline + 10 feet") is explained in subsection (B)(2)(b) of this section. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

b. Non-residential and residential projects on non-Type I and II lands shall set aside up to 20 percent of the area to protect trees and tree clusters that are determined to be significant. plus any heritage trees. Therefore, in the event that the City Arborist determines that a significant tree cluster exists at a development site, then up to 20 percent of the non-Type I and Il lands shall be devoted to the protection of those trees, either by dedication or easement. The exact percentage is determined by establishing the driplines of the trees or tree clusters that are to be protected. In order to protect the roots which typically extend further, an additional 10-foot measurement beyond the dripline shall be added. The square footage of the area inside this "dripline plus 10 feet" measurement shall be the basis for calculating the percentage (see figure below). The City Arborist will identify which tree(s) are to be protected. Development of non-Type I and II lands shall also require the careful layout of streets, driveways, building pads, lots, and utilities to avoid significant trees, tree clusters, heritage trees, and other natural resources pursuant to this code. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply. Please note that in the event that more than 20 percent of the non-Type I and II lands comprise significant trees or tree clusters, the developer shall not be required to save the excess trees, but is encouraged to do so.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

c. Where stubouts of streets occur on abutting properties, and the extension of those streets will mean the loss of significant trees, tree clusters, or heritage trees, it is understood that tree loss may be inevitable. In these cases, the objective shall be to minimize tree loss. These provisions shall also apply in those cases where access, per construction code standards, to a lot or parcel is blocked by a row or screen of significant trees or tree clusters.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

d. For both non-residential and residential development, the layout shall achieve at least 70 percent of maximum density for the developable net area. The developable net area excludes all Type I and II lands and up to 20 percent of the remainder of the site for the purpose of protection of stands or clusters of trees as defined in subsection (B)(2) of this section.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

e. For arterial and collector street projects, including Oregon Department of Transportation street improvements, the roads and graded areas shall avoid tree clusters where possible. Significant trees, tree clusters, and heritage tree loss may occur, however, but shall be minimized.

RESPONSE: There are no heritage or otherwise significant trees existing on the site. The standards of this section do not apply.

f. If the protection of significant tree(s) or tree clusters is to occur in an area of grading that is necessary for the development of street grades, per City construction codes, which will result in an adjustment in the grade of over or under two feet, which will then threaten the health of the tree(s), the applicant will submit evidence to the Planning Director that all reasonable alternative grading plans have been considered and cannot work. The applicant will then submit a mitigation plan to the City Arborist to compensate for the removal of the tree(s) on an "inch by inch" basis (e.g., a 48-inch Douglas fir could be replaced by 12 trees, each four-inch). The mix of tree sizes and types shall be approved by the City Arborist.

3. The topography and natural drainage shall be preserved to the greatest degree possible.

RESPONSE: The site slopes at less than 5% and generally from southwest to northeast. Since this is a commercial property almost the entire site will be covered with a building no surface flow will exist after construction. The flow from the new impervious roof will be collected and detained on site and meted with a control structure to the pre-development rates and connected to the public system in the same local drainage basin.

4. The structures shall not be located in areas subject to slumping and sliding. The Comprehensive Plan Background Report's Hazard Map, or updated material as available and as deemed acceptable by the Planning Director, shall be the basis for preliminary determination.

RESPONSE: The West Linn geologic hazard maps (SLIDO) indicates no slumping or sliding in this area.

5. There shall be adequate distance between on-site buildings and on-site and off-site buildings on adjoining properties to provide for adequate light and air circulation and for fire protection.

RESPONSE: On the north, east, and south property boundaries, the proposed building faces onto public ways. On the west property boundary, a 3'-0" setback has been provided (no sideyard setback is required in the district), per section 38.020. There shall be adequate distance between on-site buildings and on-site and off-site building on adjoining properties to provide adequate light and air circulation and for fire protection

6. <u>Architecture</u>.

a. The proposed structure(s) scale shall be compatible with the existing structure(s) on site and on adjoining sites. Contextual design is required. Contextual design means respecting and

incorporating prominent architectural styles, building lines, roof forms, rhythm of windows, building scale and massing of surrounding buildings in the proposed structure. The materials and colors shall be complementary to the surrounding buildings.

RESPONSE: The architecture for this building meets the standards for the Willamette Falls Drive Commercial Design District found in chapter 58 and thus complies with the standards of this section. Please refer to the building elevations.

b. While there has been discussion in Chapter <u>24</u> CDC about transition, it is appropriate that new buildings should architecturally transition in terms of bulk and mass to work with, or fit, adjacent existing buildings. This transition can be accomplished by selecting designs that "step down" or "step up" from small to big structures and vice versa (see figure below). Transitions may also take the form of carrying building patterns and lines (e.g., parapets, windows, etc.) from the existing building to the new one.

RESPONSE: The subject property is adjacent to a single story residential style structure housing a commercial use. The adjacent buildings on the opposite side of Willamette Falls Drive are two-story commercial structures. The planned building design is similar in height, size, and style to those structures across the street, while maintaining individual window openings on the first floor that are similar in shape, sill, and head heights.

c. Contrasting architecture shall only be permitted when the design is manifestly superior to adjacent architecture in terms of creativity, design, and workmanship, and/or it is adequately separated from other buildings by distance, screening, grade variations, or is part of a development site that is large enough to set its own style of architecture.

RESPONSE: The building's architecture contrasts with the adjacent neighbors to the west, but is in accordance with the standards of chapter 58 and is consistent with other buildings in the Willamette Falls Drive Commercial Design District.

d. Human scale is a term that seeks to accommodate the users of the building and the notion that buildings should be designed around the human scale (i.e., their size and the average range of their perception). Human scale shall be accommodated in all designs by, for example, multi-light windows that are broken up into numerous panes, intimately scaled entryways, and visual breaks (exaggerated eaves, indentations, ledges, parapets, awnings, engaged columns, etc.) in the facades of buildings, both vertically and horizontally.

The human scale is enhanced by bringing the building and its main entrance up to the edge of the sidewalk. It creates a more dramatic and interesting streetscape and improves the "height and width" ratio referenced in this section.

RESPONSE: The project design achieves human scale through the use of multi-light windows, intimately scaled entryways, parapets, awnings, and the building's location at the edge of the sidewalk. The façade is divided into distinct sections that emphasize a pleasing height-to-width ratio.

e. The main front elevation of commercial and office buildings shall provide at least 60 percent windows or transparency at the pedestrian level to create more interesting streetscape and window shopping opportunities. One side elevation shall provide at least 30 percent transparency. Any additional side or rear elevation, which is visible from a collector road or greater classification, shall also have at least 30 percent transparency. Transparency on other elevations is optional. The transparency is measured in lineal fashion. For example, a

100-foot-long building elevation shall have at least 60 feet (60 percent of 100 feet) in length of windows. The window height shall be, at minimum, three feet tall. The exception to transparency would be cases where demonstrated functional constraints or topography restrict that elevation from being used. When this exemption is applied to the main front elevation, the square footage of transparency that would ordinarily be required by the above formula shall be installed on the remaining elevations at pedestrian level in addition to any transparency required by a side elevation, and vice versa. The rear of the building is not required to include transparency. The transparency must be flush with the building elevation.

RESPONSE: The front elevation is 147'0" long with 112'6" of windows, or 76.7%. The east elevation is 99'8" long, with 59'0" of window or other openings, or 59%. The remaining south and west elevations are exempt from the requirement.

f. Variations in depth and roof line are encouraged for all elevations. To vary the otherwise blank wall of most rear elevations, continuous flat elevations of over 100 feet in length should be avoided by indents or variations in the wall. The use of decorative brick, masonry, or stone insets and/or designs is encouraged. Another way to vary or soften this elevation is through terrain variations such as an undulating grass area with trees to provide vertical relief.

RESPONSE: The rear elevation is divided into five distinct segments through the use of plaster trim and varying parapet heights.

g. Consideration of the micro-climate (e.g., sensitivity to wind, sun angles, shade, etc.) shall be made for building users, pedestrians, and transit users, including features like awnings.

RESPONSE: On the north and east sides, pedestrians are protected by nearly continuous awnings and canopies. On the south side, awnings provide shade for building users. There are no openings on the west side.

h. The vision statement identified a strong commitment to developing safe and attractive pedestrian environments with broad sidewalks, canopied with trees and awnings.

RESPONSE: The existing 10'0" wide sidewalk is tree lined via the existing street trees in the median separating Willamette Falls Drive from the existing surface parking area. See the site plan. The building has awnings and canopies over the sidewalk.

i. Sidewalk cafes, kiosks, vendors, and street furniture are encouraged. However, at least a four-foot-wide pedestrian accessway must be maintained per Chapter <u>53</u> CDC, Sidewalk Use.

RESPONSE: It is not known at this time if there will be a sidewalk café'. However, the 10'0" walkway would provide plenty of room for one while maintaining at least 4'0" feet of pedestrian area.

7. <u>Transportation Planning Rule (TPR) compliance</u>. The automobile shall be shifted from a dominant role, relative to other modes of transportation, by the following means:

a. Commercial and office development shall be oriented to the street. At least one public entrance shall be located facing an arterial street; or, if the project does not front on an arterial, facing a collector street; or, if the project does not front on a collector, facing the local

street with highest traffic levels. Parking lots shall be placed behind or to the side of commercial and office development. When a large and/or multi-building development is occurring on a large undeveloped tract (three plus acres), it is acceptable to focus internally; however, at least 20 percent of the main adjacent right-of-way shall have buildings contiguous to it unless waived per subsection (B)(7)(c) of this section. These buildings shall be oriented to the adjacent street and include pedestrian-oriented transparencies on those elevations.

For individual buildings on smaller individual lots, at least 30 lineal feet or 50 percent of the building must be adjacent to the right-of-way unless waived per subsection (B)(7)(c) of this section. The elevations oriented to the right-of-way must incorporate pedestrian-oriented transparency.

RESPONSE: 100% of the building elevation fronting on streets are located at the lot line, with multiple entry points along the north (front) elevation.

b. Multi-family projects shall be required to keep the parking at the side or rear of the buildings or behind the building line of the structure as it would appear from the right-of-way inside the multi-family project. For any garage which is located behind the building line of the structure, but still facing the front of the structure, architectural features such as patios, patio walls, trellis, porch roofs, overhangs, pergolas, etc., shall be used to downplay the visual impact of the garage, and to emphasize the rest of the house and front entry.

The parking may be positioned inside small courtyard areas around which the units are built. These courtyard spaces encourage socialization, defensible space, and can provide a central location for landscaping, particularly trees, which can provide an effective canopy and softening effect on the courtyard in only a few years. Vehicular access and driveways through these courtyard areas is permitted.

RESPONSE: This project is not multi-family so this standard does not apply.

c. Commercial, office, and multi-family projects shall be built as close to the adjacent main right-of-way as practical to facilitate safe pedestrian and transit access. Reduced frontages by buildings on public rights-of-way may be allowed due to extreme topographic (e.g., slope, creek, wetlands, etc.) conditions or compelling functional limitations, not just inconveniences or design challenges.

RESPONSE: 100% of the building elevations fronting onto public rights-of-way are located on the lot lines. Please refer to the site plan.

d. Accessways, parking lots, and internal driveways shall accommodate pedestrian circulation and access by specially textured, colored, or clearly defined footpaths at least six feet wide. Paths shall be eight feet wide when abutting parking areas or travel lanes. Paths shall be separated from parking or travel lanes by either landscaping, planters, curbs, bollards, or raised surfaces. Sidewalks in front of storefronts on the arterials and main store entrances on the arterials identified in CDC <u>85.200</u>(A)(3) shall be 12 feet wide to accommodate pedestrians, sidewalk sales, sidewalk cafes, etc. Sidewalks in front of storefronts and main store entrances in commercial/OBC zone development on local streets and collectors shall be eight feet wide.

RESPONSE: The sidewalks at the north and east retail elevations are existing. 10'0" and 8'0" respectively.

e. Paths shall provide direct routes that pedestrians will use between buildings, adjacent rights-of-way, and adjacent commercial developments. They shall be clearly identified. They

shall be laid out to attract use and to discourage people from cutting through parking lots and impacting environmentally sensitive areas.

RESPONSE: The pedestrian access walkways along the north and east sides of the site are existing public walks that directly connect to adjacent properties.

f. At least one entrance to the building shall be on the main street, or as close as possible to the main street. The entrance shall be designed to identify itself as a main point of ingress/egress.

RESPONSE: There are three primary entries fronting on Willamette Falls Drive, along with one facing onto 11th Street.

g. Where transit service exists, or is expected to exist, there shall be a main entrance within a safe and reasonable distance of the transit stop. A pathway shall be provided to facilitate a direct connection.

RESPONSE: There is a bus stop at the corner of Willamette Falls Drive and 11th Street, with access to a main entry to the building on the same corner.

h. Projects shall bring at least part of the project adjacent to or near the main street right-ofway in order to enhance the height-to-width ratio along that particular street. (The "height-towidth ratio" is an architectural term that emphasizes height or vertical dimension of buildings adjacent to streets. The higher and closer the building is, and the narrower the width of the street, the more attractive and intimate the streetscape becomes.) For every one foot in street width, the adjacent building ideally should be one to two feet higher. This ratio is considered ideal in framing and defining the streetscape.

RESPONSE: The building is located on the lot line along both Willamette Falls Drive and 11th Street. At its tallest point (at the corner of Willamette Falls Drive and 11th Street), the building is 35'0" tall, which is the height limit allowed in the district.

i. These architectural standards shall apply to public facilities such as reservoirs, water towers, treatment plants, fire stations, pump stations, power transmission facilities, etc. It is recognized that many of these facilities, due to their functional requirements, cannot readily be configured to meet these architectural standards. However, attempts shall be made to make the design sympathetic to surrounding properties by landscaping, setbacks, buffers, and all reasonable architectural means.

RESPONSE: This project is a private mixed-use building. The requirements of this standard do not apply.

j. Parking spaces at trailheads shall be located so as to preserve the view of, and access to, the trailhead entrance from the roadway. The entrance apron to the trailhead shall be marked: "No Parking," and include design features to foster trail recognition.

RESPONSE: This project is not located at a trailhead. The requirements of this standard do not apply.

C. Compatibility between adjoining uses, buffering, and screening.

8

1. In addition to the compatibility requirements contained in Chapter <u>24</u> CDC, buffering shall be provided between different types of land uses; for example, buffering between single-family homes and apartment blocks. However, no buffering is required between single-family homes and duplexes or single-family attached units. The following factors shall be considered in determining the adequacy of the type and extent of the buffer:

a. The purpose of the buffer, for example to decrease noise levels, absorb air pollution, filter dust, or to provide a visual barrier.

- b. The size of the buffer required to achieve the purpose in terms of width and height.
- c. The direction(s) from which buffering is needed.
- d. The required density of the buffering.
- e. Whether the viewer is stationary or mobile.

RESPONSE: This project has public rights-of-way on three sides. The lot to the west is the same land use as the project site.

2. On-site screening from view from adjoining properties of such things as service areas, storage areas, and parking lots shall be provided and the following factors will be considered in determining the adequacy of the type and extent of the screening:

- a. What needs to be screened?
- b. The direction from which it is needed.
- c. How dense the screen needs to be.
- d. Whether the viewer is stationary or mobile.
- e. Whether the screening needs to be year-round.

RESPONSE: All trash, storage, and parking are screened or enclosed by building walls.

3. Rooftop air cooling and heating systems and other mechanical equipment shall be screened from view from adjoining properties.

RESPONSE: Rooftop HVAC units are screened by parapets on all sides that will keep the units from being visible from the street.

D. Privacy and noise.

1. Structures which include residential dwelling units shall provide private outdoor areas for each ground floor unit which is screened from view from adjoining units.

2. Residential dwelling units shall be placed on the site in areas having minimal noise exposure to the extent possible. Natural-appearing sound barriers shall be used to lessen noise impacts where noise levels exceed the noise standards contained in West Linn Municipal Code Section 5.487.

3. Structures or on-site activity areas which generate noise, lights, or glare shall be buffered from adjoining residential uses in accordance with the standards in subsection C of this section where applicable.

4. Businesses or activities that can reasonably be expected to generate noise in excess of the noise standards contained in West Linn Municipal Code Section 5.487 shall undertake and submit appropriate noise studies and mitigate as necessary to comply with the code. (See CDC 55.110(B)(11) and 55.120(M).)

If the decision-making authority reasonably believes a proposed use may generate noise exceeding the standards specified in the municipal code, then the authority may require the applicant to supply professional noise studies from time to time during the user's first year of operation to monitor compliance with City standards and permit requirements.

RESPONSE: There are no residential dwelling units planned as part of this project. The requirements of parts 1 and 2 of this standard do not apply. There are no businesses or uses proposed at the time of the submittal that are anticipated to generate noise in excess of the allowable in the requirements. Therefore, parts 3 and 4 of this standard do not apply.

E. <u>Private outdoor area</u>. This section only applies to multi-family projects.

1. In addition to the requirements of residential living, unit shall have an outdoor private area (patio, terrace, porch) of not less than 48 square feet in area;

- 2. The outdoor space shall be oriented towards the sun where possible; and
- 3. The area shall be screened or designed to provide privacy for the users of the space.

4. Where balconies are added to units, the balconies shall not be less than 48 square feet, if they are intended to be counted as private outdoor areas.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.

F. <u>Shared outdoor recreation areas</u>. This section only applies to multi-family projects and projects with 10 or more duplexes or single-family attached dwellings on lots under 4,000 square feet. In those cases, shared outdoor recreation areas are calculated on the duplexes or single-family attached dwellings only. It also applies to qualifying PUDs under the provisions of CDC <u>24.170</u>.

1. In addition to the requirements of subsection E of this section, usable outdoor recreation space shall be provided in residential developments for the shared or common use of all the residents in the following amounts:

- a. Studio up to and including two-bedroom units: 200 square feet per unit.
- b. Three or more bedroom units: 300 square feet per unit.
- 2. The required recreation space may be provided as follows:
 - a. It may be all outdoor space; or

b. It may be part outdoor space and part indoor space; for example, an outdoor tennis court and indoor recreation room; and

c. Where some or all of the required recreation area is indoor, such as an indoor recreation room, then these indoor areas must be readily accessible to all residents of the development subject to clearly posted restrictions as to hours of operation and such regulations necessary for the safety of minors.

d. In considering the requirements of this subsection F, the emphasis shall be on usable recreation space. No single area of outdoor recreational space shall encompass an area of less than 250 square feet. All common outdoor recreational space shall be clearly delineated

and readily identifiable as such. Small, marginal, and incidental lots or parcels of land are not usable recreation spaces. The location of outdoor recreation space should be integral to the overall design concept of the site and be free of hazards or constraints that would interfere with active recreation.

3. The shared space shall be readily observable to facilitate crime prevention and safety.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.

G. <u>Demarcation of public, semi-public, and private spaces</u>. The structures and site improvements shall be designed so that public areas such as streets or public gathering places, semi-public areas, and private outdoor areas are clearly defined in order to establish persons having a right to be in the space, to provide for crime prevention, and to establish maintenance responsibility. These areas may be defined by:

- 1. A deck, patio, fence, low wall, hedge, or draping vine;
- 2. A trellis or arbor;
- 3. A change in level;
- 4. A change in the texture of the path material;
- 5. Sign; or
- 6. Landscaping.

Use of gates to demarcate the boundary between a public street and a private access driveway is prohibited.

RESPONSE: This project is not multi-family use. The requirements of this standard do not apply.

H. Public transit.

1. Provisions for public transit may be required where the site abuts an existing or planned public transit route. The required facilities shall be based on the following:

- a. The location of other transit facilities in the area.
- b. The size and type of the proposed development.

c. The rough proportionality between the impacts from the development and the required facility.

2. The required facilities shall be limited to such facilities as the following:

a. A waiting shelter with a bench surrounded by a three-sided covered structure, with transparency to allow easy surveillance of approaching buses.

- b. A turnout area for loading and unloading designed per regional transit agency standards.
- c. Hard-surface paths connecting the development to the waiting and boarding areas.

d. Regional transit agency standards shall, however, prevail if they supersede these standards.

3. The transit stop shall be located as close as possible to the main entrance to the shopping center, public or office building, or multi-family project. The entrance shall not be more than 200 feet from the transit stop with a clearly identified pedestrian link.

4. All commercial business centers (over three acres) and multi-family projects (over 40 units) may be required to provide for the relocation of transit stops to the front of the site if the existing stop is within 200 to 400 yards of the site and the exaction is roughly proportional to the impact of the development. The commercial or multi-family project may be required to provide new facilities in those cases where the nearest stop is over 400 yards away. The transit stop shall be built per subsection (H)(2) of this section.

5. If a commercial business center or multi-family project is adjacent to an existing or planned public transit stop, the parking requirement may be reduced by the multiplier of 0.9, or 10 percent. If a commercial center is within 200 feet of a multi-family project, with over 80 units and pedestrian access, the parking requirement may be reduced by 10 percent or by a 0.90 multiplier.

6. Standards of CDC <u>85.200(D)</u>, Transit Facilities, shall also apply.

RESPONSE: There is an existing bus stop at the corner of Willamette Falls Drive and 11th Street, which is immediately adjacent to the main entry of the building at the northeast corner and is within 200 feet of all primary entries to the building. The stop is constructed with a bench, but without a shelter, consistent with other bus stops in the Willamette Falls Drive Commercial Design District. There is no parking requirement in the district, so parts 4 and 5 of the standard do not apply.

I. <u>Public facilities</u>. An application may only be approved if adequate public facilities will be available to provide service to the property prior to occupancy.

1. <u>Streets</u>. Sufficient right-of-way and slope easement shall be dedicated to accommodate all abutting streets to be improved to the City's Improvement Standards and Specifications. The City Engineer shall determine the appropriate level of street and traffic control improvements to be required, including any off-site street and traffic control improvements, based upon the transportation analysis submitted. The City Engineer's determination of developer obligation, the extent of road improvement and City's share, if any, of improvements and the timing of improvements shall be made based upon the City's systems development charge ordinance and capital improvement program, and the rough proportionality between the impact of the development and the street improvements.

In determining the appropriate sizing of the street in commercial, office, multi-family, and public settings, the street should be the minimum necessary to accommodate anticipated traffic load and needs and should provide substantial accommodations for pedestrians and bicyclists. Road and driveway alignment should consider and mitigate impacts on adjacent properties and in neighborhoods in terms of increased traffic loads, noise, vibrations, and glare.

The realignment or redesign of roads shall consider how the proposal meets accepted engineering standards, enhances public safety, and favorably relates to adjacent lands and land uses. Consideration should also be given to selecting an alignment or design that minimizes or avoids hazard areas and loss of significant natural features (drainageways, wetlands, heavily forested areas, etc.) unless site mitigation can clearly produce a superior landscape in terms of shape, grades, and reforestation, and is fully consistent with applicable code restrictions regarding resource areas.

Streets shall be installed per Chapter <u>85</u> CDC standards. The City Engineer has the authority to require that street widths match adjacent street widths. Sidewalks shall be installed per CDC <u>85.200(A)(3)</u> for commercial and office projects, and CDC <u>85.200(A)(16)</u> and <u>92.010(H)</u> for residential projects, and applicable provisions of this chapter. Where streets bisect or traverse water resource areas (WRAs) the street width shall be reduced to the minimum standard of 20 feet (two 10-foot travel lanes) plus four-foot-wide curb flush sidewalks or alternate configurations which are appropriate to site conditions, minimize WRA disturbance or are consistent with an adopted transportation system plan. The street design shall also be consistent with habitat friendly provisions of CDC <u>32.060(H)</u>.

Based upon the City Manager's or Manager's designee's determination, the applicant shall construct or cause to be constructed, or contribute a proportionate share of the costs, for all necessary off-site improvements identified by the transportation analysis commissioned to address CDC <u>55.125</u> that are required to mitigate impacts from the proposed development. Proportionate share of the costs shall be determined by the City Manager or Manager's designee, who shall assume that the proposed development provides improvements in rough proportion to identified impacts of the development.

RESPONSE: All streets adjacent to the project are existing public streets that will remain.

2. <u>Repealed by Ord. 1635.</u>

3. <u>Municipal water</u>. A registered civil engineer shall prepare a plan for the provision of water which demonstrates to the City Engineer's satisfaction the availability of sufficient volume, capacity, and pressure to serve the proposed development's domestic, commercial, and industrial fire flows. All plans will then be reviewed by the City Engineer.

RESPONSE: Water facilities serving the project site are existing and will remain.

4. <u>Sanitary sewers</u>. A registered civil engineer shall prepare a sewerage collection system plan which demonstrates sufficient on-site capacity to serve the proposed development. The City Engineer shall determine whether the existing City system has sufficient capacity to serve the development.

RESPONSE: Sewer facilities serving the project site are existing and will remain.

5. <u>Solid waste and recycling storage areas</u>. Appropriately sized and located solid waste and recycling storage areas shall be provided. Metro standards shall be used.

RESPONSE: An appropriately sized solid waste and recycling storage area is provided inside the southwest corner of the building and is accessed from Knapps Alley.

J. Crime prevention and safety/defensible space.

1. Windows shall be located so that areas vulnerable to crime can be surveyed by the occupants.

RESPONSE: Windows overlook the public walks and Knapps Alley. There are no windows on the west elevation due to fire ratings.

2. Interior laundry and service areas shall be located in a way that they can be observed by others.

RESPONSE: No interior laundry is planned for the project.

3. Mailboxes, recycling, and solid waste facilities shall be located in lighted areas having vehicular or pedestrian traffic.

RESPONSE: Mailboxes and trash containers will be located inside the building lobby.

4. The exterior lighting levels shall be selected and the angles shall be oriented towards areas vulnerable to crime.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district.

5. Light fixtures shall be provided in areas having heavy pedestrian or vehicular traffic and in potentially dangerous areas such as parking lots, stairs, ramps, and abrupt grade changes.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district.

6. Fixtures shall be placed at a height so that light patterns overlap at a height of seven feet which is sufficient to illuminate a person. All commercial, industrial, residential, and public facility projects undergoing design review shall use low or high pressure sodium bulbs and be able to demonstrate effective shielding so that the light is directed downwards rather than omnidirectional. Omni-directional lights of an ornamental nature may be used in general commercial districts only.

RESPONSE: Wall mounted sconces and gooseneck style lights will provide lighting consistent with the other buildings in the district.

7. Lines of sight shall be reasonably established so that the development site is visible to police and residents.

RESPONSE: The entire project is located at the property lines. Public sidewalks and Knapps Alley allow for adequate lines of sight.

8. Security fences for utilities (e.g., power transformers, pump stations, pipeline control equipment, etc.) or wireless communication facilities may be up to eight feet tall in order to protect public safety. No variances are required regardless of location.

RESPONSE: No utility fences are planned for the project.

K. Provisions for persons with disabilities.

1. The needs of a person with a disability shall be provided for. Accessible routes shall be provided between all buildings and accessible site facilities. The accessible route shall be the most practical direct route between accessible building entries, accessible site facilities, and the accessible entry to the site. An accessible route shall connect to the public right-of-way and to at least one on-site or adjacent transit stop (if the area is served by transit). All facilities shall conform to, or exceed, the Americans with Disabilities Act (ADA) standards, including those included in the Uniform Building Code.

RESPONSE: Accessible parking spaces are provided both in the surface parking area and in the garage and connect to accessible building entries which lead to a fully accessible interior. Additionally, the central entry at the lobby exits onto a public sidewalk that connects to public transit stops. All facilities will comply with ADD requirements.

L. <u>Signs</u>.

1. Based on considerations of crime prevention and the needs of emergency vehicles, a system of signs for identifying the location of each residential unit, store, or industry shall be established.

RESPONSE: Building identification signage will be provided to meet the requirements of local emergency service providers.

2. The signs, graphics, and letter styles shall be designed to be compatible with surrounding development, to contribute to a sense of project identity, or, when appropriate, to reflect a sense of the history of the area and the architectural style.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District.

3. The sign graphics and letter styles shall announce, inform, and designate particular areas or uses as simply and clearly as possible.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District.

4. The signs shall not obscure vehicle driver's sight distance.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District.

5. Signs indicating future use shall be installed on land dedicated for public facilities (e.g., parks, water reservoir, fire halls, etc.).

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District.

6. Signs and appropriate traffic control devices and markings shall be installed or painted in the driveway and parking lot areas to identify bicycle and pedestrian routes.

RESPONSE: Signs are shown for reference only. All signs shall be submitted by the tenant under a separate sign permit prior to installation. Sign styles will comply with the Willamette Falls Drive Commercial Design District.

M. <u>Utilities</u>. The developer shall make necessary arrangements with utility companies or other persons or corporations affected for the installation of underground lines and facilities. Electrical lines and other wires, including but not limited to communication, street lighting, and cable television, shall be placed

underground, as practical. The design standards of Tables 1 and 2 above, and of subsection 5.487 of the West Linn Municipal Code relative to existing high ambient noise levels shall apply to this section.

RESPONSE: All utilities to the site are existing and will remain. The secondary feeds from the main lines to the building will be the only new work.

N. <u>Wireless communication facilities (WCFs)</u>. (This section only applicable to WCFs.) WCFs as defined in Chapter <u>57</u> CDC may be required to go through Class I or Class II design review. The approval criteria for Class I design review is that the visual impact of the WCF shall be minimal to the extent allowed by Chapter <u>57</u> CDC. Stealth designs shall be sufficiently camouflaged so that they are not easily seen by passersby in the public right-of-way or from any adjoining residential unit. WCFs that are classified as Class II design review must respond to all of the approval criteria of this chapter.

RESPONSE: Not applicable – none proposed.

O. Refuse and recycling standards.

1. All commercial, industrial and multi-family developments over five units requiring Class II design review shall comply with the standards set forth in these provisions. Modifications to these provisions may be permitted if the Planning Commission determines that the changes are consistent with the purpose of these provisions and the City receives written evidence from the local franchised solid waste and recycling firm that they are in agreement with the proposed modifications.

RESPONSE: No modifications proposed for this development

2. Compactors, containers, and drop boxes shall be located on a level Portland cement concrete pad, a minimum of four inches thick, at ground elevation or other location compatible with the local franchise collection firm's equipment at the time of construction. The pad shall be designed to discharge surface water runoff to avoid ponding.

RESPONSE: A min. 4" thick concrete slab will be constructed in the trash enclosures where the containers will be placed on.

3. Recycling and solid waste service areas.

a. Recycling receptacles shall be designed and located to serve the collection requirements for the specific type of material.

b. The recycling area shall be located in close proximity to the garbage container areas and be accessible to the local franchised collection firm's equipment.

c. Recycling receptacles or shelters located outside a structure shall have lids and be covered by a roof constructed of water and insect-resistive material. The maintenance of enclosures, receptacles and shelters is the responsibility of the property owner.

d. The location of the recycling area and method of storage shall be approved by the local fire marshal.

e. Recycling and solid waste service areas shall be at ground level and/or otherwise accessible to the franchised solid waste and recycling collection firm.

f. Recycling and solid waste service areas shall be used only for purposes of storing solid waste and recyclable materials and shall not be a general storage area to store personal belongings of tenants, lessees, property management or owners of the development or premises.

16

g. Recyclable material service areas shall be maintained in a clean and safe condition.

RESPONSE: Solid waste containers will be for the storage of trash and recycling containers provided by the local waste management company. These containers will be provided in a screened enclosures with swing gates. Size of containers and frequency of pick-ups will be determined by the Building Owner and the waste management company.

4. <u>Special wastes or recyclable materials</u>.

a. Environmentally hazardous wastes defined in ORS <u>466.005</u> shall be located, prepared, stored, maintained, collected, transported, and disposed in a manner acceptable to the Oregon Department of Environmental Quality.

RESPONSE: Hazardous wastes will be handled and disposed of per state law. Cooking grease, if any, will be stored in approved containers within the restaurant.

b. Containers used to store cooking oils, grease or animal renderings for recycling or disposal shall not be located in the principal recyclable materials or solid waste storage areas. These materials shall be stored in a separate storage area designed for such purpose.

RESPONSE: Hazardous wastes will be handled and disposed of per state law. Cooking grease, if any, will be stored in approved containers within the restaurant.

5. <u>Screening and buffering</u>.

a. Enclosures shall include a curbed landscape area at least three feet in width on the sides and rear. Landscaping shall include, at a minimum, a continuous hedge maintained at a height of 36 inches.

RESPONSE: The enclosure is fully contained within the building structure. Other screening requirements of this section do not apply.

b. Placement of enclosures adjacent to residentially zoned property and along street frontages is strongly discouraged. They shall be located so as to conceal them from public view to the maximum extent possible.

RESPONSE: The enclosure is fully contained within the building structure. Other screening requirements of this section do not apply.

c. All dumpsters and other trash containers shall be completely screened on all four sides with an enclosure that is comprised of a durable material such as masonry with a finish that is architecturally compatible with the project. Chain link fencing, with or without slats, will not be allowed.

RESPONSE: The enclosure is fully contained within the building structure. Other screening requirements of this section do not apply.

6. Litter receptacles.

a. Location. Litter receptacles may not encroach upon the minimum required walkway widths.

RESPONSE: Site furnishings, such as litter receptacles, have not been selected at the time of this application. Future selections will be submitted for approval.

b. Litter receptacles may not be located within public rights-of-way except as permitted through an agreement with the City in a manner acceptable to the City Attorney or his/her designee.

RESPONSE: Site furnishings, such as litter receptacles, have not been selected at the time of this application. Future selections will be submitted for approval.

c. Number. The number and location of proposed litter receptacles shall be based on the type and size of the proposed uses. However, at a minimum, for non-residential uses, at least one external litter receptacle shall be provided for every 25 parking spaces for first 100 spaces, plus one receptacle for every additional 100 spaces. (Ord. 1547, 2007; Ord. 1604 § 52, 2011; Ord. 1613 § 12, 2013; amended during July 2014 supplement; Ord. 1623 § 6, 2014; Ord. 1635 § 26, 2014; Ord. 1636 § 37, 2014)

RESPONSE: Site furnishings, such as litter receptacles, have not been selected at the time of this application. Future selections will be submitted for approval.

55.110 SITE ANALYSIS

The site analysis shall include:

A. A vicinity map showing the location of the property in relation to adjacent properties, roads, pedestrian and bike ways, transit stops and utility access.

RESPONSE: See Civil drawings for this information.

B. A site analysis on a drawing at a suitable scale (in order of preference, one inch equals 10 feet to one inch equals 30 feet) which shows:

1. The property boundaries, dimensions, and gross area.

RESPONSE: See Civil drawings for this information.

- 2. Contour lines at the following minimum intervals:
 - a. Two-foot intervals for slopes from zero to 25 percent; and
 - b. Five- or 10-foot intervals for slopes in excess of 25 percent.

RESPONSE: See Civil drawings for this information.

3. A slope analysis which identifies portions of the site according to the slope ranges as follows:

- a. Type I (under 15 percent);
- b. Type II (between 15 to 25 percent);
- c. Type III (between 25 to 35 percent);
- d. Type IV (over 35 percent).

RESPONSE: See Civil drawings for this information.

4. The location and width of adjoining streets.

RESPONSE: See Civil drawings for this information and Existing Conditions plan (Survey).

5. The drainage patterns and drainage courses on the site and on adjacent lands.

RESPONSE: See Civil drawings for this information.

- 6. Potential natural hazard areas including:
 - a. Floodplain areas pursuant to the site's applicable FEMA Flood Map panel;
 - b. Water resource areas as defined by Chapter <u>32</u> CDC;
 - c. Landslide areas designated by the Natural Hazard Mitigation Plan, Map 16; and

d. Landslide vulnerable analysis areas, designated by the Natural Hazard Mitigation Plan, Map 17.

RESPONSE: See Civil drawings for this information.

- 7. Resource areas including:
 - a. Wetlands;
 - b. Riparian corridors;
 - c. Streams, including intermittent and ephemeral streams;
 - d. Habitat conservation areas; and
 - e. Large rock outcroppings.

RESPONSE: See Civil drawings for this information.

8. Potential historic landmarks and registered archaeological sites. The existence of such sites on the property shall be verified from records maintained by the Community Development Department and other recognized sources.

RESPONSE: None exist on the site. Further documentation will be provided to the City if requested.

9. Identification information including the name and address of the owner, developer, project designer, lineal scale and north arrow.

RESPONSE: See Civil & Architectural drawings for this information.

10. Identify Type I and II lands in map form. Provide a table which identifies square footage of Type I and II lands also as percentage of total site square footage. (Ord. 1408, 1998; Ord. 1425, 1998; Ord. 1442, 1999; Ord. 1463, 2000; Ord. 1526, 2005; Ord. 1544, 2007; Ord. 1565, 2008; Ord. 1590 § 1, 2009; Ord. 1613 § 13, 2013; Ord. 1621 § 25, 2014; Ord. 1635 § 27, 2014; Ord. 1636 § 38, 2014)

55.120 SITE PLAN

The site plan shall be at the same scale as the site analysis (CDC 55.110) and shall show:

A. The applicant's entire property and the surrounding property to a distance sufficient to determine the relationship between the applicant's property and proposed development and adjacent property and development.

RESPONSE: See provided site plan.

B. Boundary lines and dimensions for the perimeter of the property and the dimensions for all proposed lot or parcel lines.

RESPONSE: See provided site plan.

C. Streams and stream corridors.

RESPONSE: See provided site plan.

D. Identification information, including the name and address of the owner, developer, project designer, lineal scale and north arrow.

RESPONSE: See provided site plan.

E. The location, dimensions, and names of all existing and proposed streets, public pathways, easements on adjacent properties and on the site, and all associated rights-of-way.

RESPONSE: See provided site plan.

- F. The location, dimensions and setback distances of all:
 - 1. Existing and proposed structures, improvements, and utility facilities on site; and
 - 2. Existing structures and driveways on adjoining properties.

RESPONSE: See provided site plan.

- G. The location and dimensions of:
 - 1. The entrances and exits to the site;
 - 2. The parking and circulation areas;
 - 3. Areas for waste disposal, recycling, loading, and delivery;

4. Pedestrian and bicycle routes, including designated routes, through parking lots and to adjacent rights-of-way;

- 5. On-site outdoor recreation spaces and common areas;
- 6. All utilities, including stormwater detention and treatment; and
- 7. Sign locations.

RESPONSE: See provided site plan.

H. The location of areas to be landscaped. (Ord. 1442, 1999; Ord. 1613 § 14, 2013; Ord. 1622 § 28, 2014; Ord. 1636 § 39, 2014)

RESPONSE: See provided site plan.

55.125 TRANSPORTATION ANALYSIS

Certain development proposals required that a Traffic Impact Analysis (TIA) be provided which may result in modifications to the site plan or conditions of approval to address or minimize any adverse impacts created by the proposal. The purpose, applicability and standards of this analysis are found in CDC <u>85.170(B)(2)</u>. (Ord. 1584, 2008)

RESPONSE: A Traffic Impact Analysis has been prepared by Lancaster Engineering on February 9th 2016 and included in this application.

55.130 GRADING PLAN

The grading and drainage plan shall be at a scale sufficient to evaluate all aspects of the proposal and shall include the following:

A. The location and extent to which grading will take place indicating general contour lines, slope ratios, slope stabilization proposals, and location and height of retaining walls, if proposed.

RESPONSE: The civil site drawings show the existing contours. The proposed building will match the existing grades along the frontages and on the property line to the west. Finish grades are shown on the civil and architectural plans to demonstrate how the building fits with the existing grades

B. A registered civil engineer shall prepare a plan and statement that shall be supported by factual data that clearly shows that there will be no adverse impacts from increased intensity of runoff off site, or the plan and statement shall identify all off-site impacts and measures to mitigate those impacts. The plan and statement shall, at a minimum, determine the off-site impacts from a 10-year storm.

RESPONSE: A preliminary storm report has been prepared to demonstrate how the impervious roof area will be collected into a detention tanks with orifices that release storm water at the pre-development rates for the 2 through 25 year events. The storm water from this site will be connected to the public system with a 8-inch line at a point where the public system has a larger 12-inch line with a capacity approximately 35 times the 25-year flow from this development.

C. Storm detention and treatment plans may be required.

RESPONSE: A storm detention tank is proposed as shown on the site utility plan which will detain the developed flows and discharge at the pre-developed rates for storm events of 2-though 25 years. Because the building covers almost this entire site no infiltration or water quality swales or rain gardens are possible. A storm water pollution control manhole will provide treatment. Roof water generally does not contain harmful pollutants and in most cases is exempt from DEQ regulations for water quality.

D. Identification, information, including the name and address of the owner, developer, project designer, and the project engineer. (Ord. 1463, 2000; Ord. 1613 § 15, 2013; Ord. 1622 § 28, 2014)

RESPONSE: The civil plans provide a listing of the owner/developer, architect, engineer and surveyor with names and contact information.

55.140 ARCHITECTURAL DRAWINGS

This section does not apply to single-family residential subdivisions or partitions, or up to two duplexes or single-family attached dwellings.

Architectural drawings shall be submitted showing:

A. Building elevations and sections tied to curb elevation;

RESPONSE: See provided plans.

B. Building materials: color and type; and

RESPONSE: See provided plans.

C. The name of the architect or designer. (Ord. 1408, 1998; Ord. 1613 § 16, 2013)

RESPONSE: See provided plans.

55.150 LANDSCAPE PLAN

This section does not apply to detached single-family residential subdivisions or partitions, or up to two duplexes or single-family attached dwellings.

- A. The landscape plan shall be prepared and shall show the following:
 - 1. Preliminary underground irrigation system, if proposed;
 - 2. The location and height of fences and other buffering of screening materials, if proposed;
 - 3. The location of terraces, decks, patios, shelters, and play areas, if proposed;
 - 4. The location, size, and species of the existing and proposed plant materials, if proposed; and
 - 5. Building and pavement outlines.

RESPONSE: Due to the allowable site coverage of 100% the proposed development will only be providing concrete raised planters along the front entrances of the major Tenants. Any plantings would adhere to the list of City approved species.

- B. The landscape plan shall be accompanied by:
- 1. The erosion controls that will be used, if necessary;
- 2. Planting list; and

3. Supplemental information as required by the Planning Director or City Arborist. (Ord. 1408, 1998; Ord. 1613 § 17, 2013)

RESPONSE: No erosion control measures required for this development. A planting list will be provided to the City Arborist prior to any installation.

55.170 EXCEPTIONS TO UNDERLYING ZONE, YARD, PARKING, SIGN PROVISIONS, AND LANDSCAPING PROVISIONS

A. The Planning Director may grant an exception to the dimensional building setback or yard requirements in the applicable zone based on findings that the approval will satisfy the following criteria:

1. A minor exception that is not greater than 20 percent of the required setback.

2. A more efficient use of the site.

3. The preservation of natural features that have been incorporated into the overall design of the project.

4. No adverse affect to adjoining properties in terms of light, air circulation, noise levels, privacy, and fire hazard.

5. Safe vehicular and pedestrian access to the site and safe on-site vehicular and pedestrian circulation.

RESPONSE: No exceptions are being requested as part of this application.

B. The Planning Director may grant an exception to the off-street parking dimensional and minimum number of space requirements in the applicable zone so long as the following criteria are met:

1. The minor exception is not greater than 10 percent of the required parking;

2. The application is for a use designed for a specific purpose which is intended to be permanent in nature (for example, a nursing home) and which has a low demand for off-street parking; or

3. There is an opportunity for sharing parking and there is written evidence that the property owners are willing to enter into a legal agreement; or

4. Public transportation is available to the site reducing the standards and will not adversely affect adjoining uses, and there is a community interest in the preservation of particular natural feature(s) of the site which make it in the public interest to grant an exception to parking standards.

RESPONSE: No exceptions are being requested as part of this application.

C. The Planning Director may grant an exception to the sign dimensional requirements in the applicable zone when the following criteria are met:

1. The minor exception is not greater than 10 percent of the required applicable dimensional standard for signs;

2. The exception is necessary for adequate identification of the use on the property; and

3. The sign will be compatible with the overall site plan, the structural improvements, and with the structures and uses on adjoining properties.

RESPONSE: No exceptions are being requested as part of this application.

D. The Planning Director may grant an exception to the landscaping requirements in the applicable zone based on findings that the following criteria will be met:

- 1. A minor exception that is not greater than 10 percent of the required landscaped area.
- 2. A more efficient use of the site.

3. The preservation of natural features that have been incorporated into the overall design of the project.

4. No adverse effect to adjoining property.

RESPONSE: No exceptions are being requested as part of this application.

55.180 MAINTENANCE

All on-site improvements shall be the ongoing responsibility of the property owner or occupant.

RESPONSE: The applicant acknowledges this responsibility.

55.190 SHARED OPEN SPACE

Where the open space is designated on the plan as common open space, the following shall apply:

A. The open space area shall be shown on the final plan and recorded with the Planning Director.

RESPONSE: There is no shared open space planned as part of this application.

B. The open space shall be conveyed in accordance with one of the following methods:

1. By dedication to the City as publicly owned and maintained as open space. Open space proposed for dedication to the City must be acceptable to it with regard to the size, shape, location, improvement, and budgetary and maintenance limitations.

RESPONSE: There is no shared open space planned as part of this application.

2. By leasing or conveying title (including beneficial ownership) to a corporation, home association, or other legal entity with the City retaining the development rights to the property. The terms of such lease or other instrument of conveyance must include provisions suitable to the City Attorney for guaranteeing the following:

- a. The continued use of such land for intended purposes.
- b. Continuity of property maintenance.
- c. When appropriate, the availability of funds required for such maintenance.
- d. Adequate insurance protection.
- e. Recovery for loss sustained by casualty and condemnation, or otherwise.

RESPONSE: There is no shared open space planned as part of this application.

3. By any method that achieves the objectives set forth in subsection (B)(2) of this section.

RESPONSE: There is no shared open space planned as part of this application.

55.195 ANNEXATION AND STREET LIGHTS

As a condition of approval for design review for any project that is being annexed to the City, the developer and/or homeowners association shall pay for all expenses related to street light energy and maintenance costs until annexed into the City. The approval for any property annexed must state: "This approval is contingent on voter approval of annexation of the subject property." This means that no permit, final plat, or certificate of occupancy may be issued or approved until annexation is complete. (Ord. 1442, 1999; Ord. 1604 § 53, 2011).

RESPONSE: The subject property is located within the city limits. The requirements of this section do not apply.

End of Chapter Responses

Willamette Neighborhood NA Minutes of November 11, 2015

7pm West Linn Police Station

The meeting was called to order by president, Gail Holmes, at 7pm. Minutes from last month's meeting were summarized and approved.

Treasury has a balance of \$4,299.35 with obligations of appx \$800for a wooden Willamette sign, \$150 for Halloween treats and \$200 for Main Street seasonal banners.

Transportation: Midge Pierce reported on the considerations of the TSP plan. The Planning Commission will address this subject Wednesday November 18 and Midge urges WNA to attend.

Traffic calming devices for Willamette Falls Drive are:

- 1. curb extensions
- 2. pavement textures and striped crosswalks
- 3. stop signs at 14th at bus stop(will affect Dollar Street also)

Signage considerations:

"No parking" on roadway at Field's Bridge Park

Final decisions are yet to occur. WNA urged to attend and testify.

Main Street: Jody Carson mentioned a new manager, Noelle Brooks, who will work 10 to 15 hours a week and work with local merchants. With a manager in place, Main Street will then be eligible to apply for grants.

The Holiday Parade on Willamette Falls Drive will occur December 5th followed by Santa at the Fire Station.

Red decorative seasonal banners will soon appear on posts along WF Drive.

Plans are developing for median strip improvements, flower bed revitalizing and reshaping plus future "period" light standards.

Willamette entrance signs: WNA has chosen the south end of 10th Street in the median strip plus the east end of Field's Bridge as appropriate locations. A third sign would be nice at Johnson Road and Blankenship. Suggestions will be forwarded to Parks and Rec who will install signs.

Annual WNA Report: Gail will organize a report including accomplishments and goals.

A tri-fold flyer about the WNA would be a priority. In addition, a goal will be to support the Main Street Design Committee's efforts to improve WF Drive.

Historic Review Board: Jody Carson described a sculpture planned for the entrance to the river path along the Willamette. It will include original grinding stones and an interpretation of paper shredding and manufacture. Donations encouraged. **iCon Construction:** Scot Sutton and Kevin Godwin of SGR Architects presented plans for an office building at 11th and WF Drive. The building will be 25,000sf with underground parking plus alley parking totally 42 slots. Office and retail space is planned with a possible boutique hotel on the second floor.

Members of the WNA were very pleased with design and offered suggestions.

Dogs in Mary Young Park: David Baker described a petition circulating which requests Mary Young Park be open in entirety for off leash dogs at certain hours. The Parks Advisory Board unanimously voted down this petition of 500 persons. An existing off leash area near the parking area could be fenced.

The WNA voted to support the decision of the Parks Advisory Board and urged a negative vote among the City Council for the following reasons:

- 1. safety to humans and other dogs
- 2. detriment to vegetation and wildlife in this natural area
- 3. liability should someone be hurt
- 4. potential unsanitary effect on play fields
- 5. a poor president for other city parks

The WNA will meet December 9th at the police station if room is available. Meeting adjourned 8:30pm

Elizabeth Rocchia

Code Analysis February 2016

Willamette Falls Drive Mixed Use 1969 Willamette Falls Drive, West Linn, OR

Planner: Peter Spir Development Engineer: Khoi Le

GENERAL

A two story mixed use building at the corner of Willamette Falls Drive and 11th Street, West Linn, OR. Possible uses include retail, restaurant, office, or hotel.

Codes:

2014 Oregon Structural Specialty Code 2014 Oregon Mechanical Specialty Code 2014 Oregon Plumbing Specialty Code 2014 Oregon Energy Efficiency Specialty Code cover

Zoning:

Jurisdiction: City of West Linn Code: Community Development Code Zone: GC (General Commercial - CDC Chapter 19) Zone Overlays: Willamette Commercial Historic Overlay Zone

Utilities:

Water/Sewer: West Linn Public Works - 503 656-6081 (Operations) Trash: West Linn Refuse - 503-557-3900 Electric: Portland General Electric - 800-542-8818 Gas: NW Natural - 800-422-4012

ZONING ANALYSIS

Legal Description:

Lots 1,2, & 3, Block 10, City of West Linn, Clackamas County, Oregon

Tax Lot Number: 31E02BA04100

10940 SW Barnes Rd #364 Portland, OR 97225 503.201.0725 00749168

> Restrictions/Easements: None known

Code Analysis Willamette Falls Mixed Use February 2016

Adjacent Zones:

MU (North & East), R-5 medium density residential (South), GC (West)

Permitted Uses (19.030, anticipated uses):

Business uses, restaurant, retail, hotel, professional/medical services.

Dimensional Requirements (19.070):

Minimum Front Lot Line Width: 35' Average Minimum Front Lot Line Width: 50' Average Minimum Lot Depth: 90' Building Height (CDC): 2 stories/35' Building Height (OSSC): Ground Level Minimum Height: 10' Setbacks: Front - 0' min./0' max., Side - 0'/0', Rear 20'/20' Lot Coverage: 100% max.

Site Landscaping:

None required.

Parking lot landscaping:

5% + perimeter at surface parking

Site Access (information based on City's 2005 review of the project):

Knapps Alley may be used for parking access and may be backed into from parking stalls, but 20' width of alley must be paved for entire length of site. On-site parking that is accessed from Knapps Alley can only be used by employees of the building and not by visitors. Even high volume employee use may not be allowed.

On-site parking access from 11th Street may be allowed, but curb cut must be 35' away from the corner.

46.140 PARKING

Exemptions:

To facilitate the design requirements of Chapter <u>58</u> CDC, properties in the Willamette Falls Drive Commercial District/Overlay Zone, located between 10th and 16th Streets, shall be exempt from the requirements for off-street parking as identified in this chapter. *Any off-street parking spaces provided shall be designed and installed per the dimensional standards of this code.*

Standards:

Standard Stall: 9' x 18' Compact Stall: 8' x 16' ADA Stalls: (1) Van Accessible 9' x 18' space with 8' x 18' access aisle required. Drive Aisle: 23' drive aisle required for 90° head-in parking (City has previously agreed that the 20' alley may be used in lieu of the required 23' aisle. Parallel (on-street): 9' x 23'

On-Street parking:

Existing on Willamette Falls Drive and 11th Avenue.

Bicycle parking (varies by occupancy):

Retail: 1/3000 s.f., 50% covered Office, Medical: 2 + 0.5/1000 s.f., 10% covered Restaurant: 1/1000 s.f., 25% covered Hotel (residential): 1/unit, 50% covered

Off-street loading required:

Retail: first stall required when area > 10,000s.f. Restaurant: first stall required when area > 5,000s.f. Office: first stall required when area > 10,000s.f. Hotel: first stall required when area > 10,000s.f.

Off-street loading area:

Size: 14' x 20'

52.000 SIGNS

Sign Permit:

A separate sign permit is required.

Sign Exemptions:

Signs placed inside windows are exempt from the chapter provisions. Parking lot signs up to three square feet in area with a maximum height no greater than five feet above grade and directed to the interior of a parking lot and not to a right-of-way shall not require a sign permit.

Sign Variances:

Sign height and area variances shall be a Class II variance procedure, reviewed pursuant to the provisions of subsection C of this section and Chapter $\underline{75}$ CDC. All other sign variances shall be Class I variance procedures, and shall be reviewed pursuant to the provisions of subsection C of this section and CDC $\underline{75.050}$.

Signs in the Willamette Falls Drive Commercial District:

Signs shall not exceed 10 percent of the square footage of the front elevation. The sign(s) shall be proportionate to buildings and signs on adjacent buildings. The "10 percent" shall be broken up into multiple signs. The sign(s) shall be mounted or painted on the second floor, on the valance of the awning, on the windows at pedestrian level, or on four-by-four awning posts.

Signs shall not be of the internally lit can type or channel light type. No backlit awnings are allowed. Illumination by spotlight is permitted. Neon signs are permitted only inside the windows. No flashing signs are allowed. Small signs or plaques which describe the building in a historical sense are exempt from the allowable square footage restrictions.

Sign fonts: Antique lettering is required. Variations are permitted where the lettering would not clash with the predominant font or style. "Gay Nineties" or "P.T. Barnum" type styles, and other exaggerated styles are discouraged. Lettering may be horizontal, vertical, or slanting up from lower left to upper right. Semi-circle designs on windows are permitted. Window lettering should be white, black, or gold with black shading.

Signs Quantity:

Maximum of 3 on-wall signs.

58.090 WILLAMETTE FALLS DRIVE COMMERCIAL DISTRICT DESIGN STANDARDS

Building form, scale and depth:

Emphasize the vertical through narrow, tall windows (especially on second floor), vertical awning supports, engaged columns, and exaggerated facades creating a height-to-width ratio of 1.5:1. Building depth shall be flat, only relieved by awning and cornice projections and the indented doorway.

Spacing and rhythm:

Provide strong vertical breaks or lines should be regularly spaced every 25 to 50 feet.

Facades:

No gables, hipped, or pitched roofs shall be exposed to the street at the front. The "Western false front" shall be the preferred style although variations shall be allowed.

Cornice:

Broad and may include regularly spaced supporting brackets. A cornice is not required, but preferred.

Building materials:

1 x 8 horizontal wood siding. Brick and certain concrete configurations are permitted only by a variance under CDC 58.090.

Awnings:

All buildings shall have awnings extending out from building face. Transoms are preferred but not required. Awnings shall be either canvas or vinyl, with internal metal framework, curved metal supports, or a 4×4 wood post at the outside of the sidewalk. Minimum clearance of 7', 10 to 40 degree angle slope.

Extruded roofs:

Extruded roofs may be substituted for awnings, must have a 10- to 40-degree pitch and extend one to two feet from the building face just above the transom windows where the first and second stories meet. The roof runs along the entire building frontage. Standard roofing materials are used. Transoms are required with extruded roofs.

Doors and entryways:

The entryway shall be centered in the middle of the building at grade. The buildings on street corners may position their entries on the corner at an angle. Doors may be single or double,

and shall be recessed three to five feet back from the building line. Doors shall have glazing in the upper two-thirds to half of the door, with panels below. The entryway shall have windows on all sides at the same level as the other display windows. Wood doors are preferred.

Glazing:

Clear glass only. Lettering on glass is permitted.

Display or pedestrian level windows:

Shall extend across at least 80 percent of building front. The windows shall start one and onehalf to two and one-half feet above grade to a height of seven to eight feet, and shall be level with the top of the height of the adjacent entryway area, excluding transom. The window shall be broken up into numerous lights. From 1880 onwards, the number of lights was generally no more than six in a pedestrian-level window. The frames may be wood or vinylclad wood, or other materials so long as a matte finish is possible.

Second floor and other windows:

Double- and single-hung windows proportionately spaced and centered. Smaller square shaped windows may be permitted (one and one-half feet to two feet per side). A typical window should have a 3:1 height to width ratio for the glass area. There should be a minimum of two lights: "one over one" of equal size. "Two over one" or "four over one" is appropriate.

Wainscoting:

Where provided, wainscoting shall be consistent with primary material of the building, typically wood.

Shutters:

Shutters are not allowed.

Balconies:

No balconies are permitted except on rear of building.

Exterior stairs:

Exposed exterior stairs are permitted on the rear or side of the building only.

Roof mounted mechanical equipment:

Equipment shall be screened from view on all sides by normal and consistent architectural features of the building. CDC 55.100(D), Privacy and noise restrictions apply.

Exterior lighting fixtures:

Any lighting fixtures that can be traced to 1880 – 1915 period are permitted. Simple modern fixtures that are screened and/or do not attract attention are acceptable. Overly ornate fixtures of the Victorian era are not acceptable.

Transoms:

Transom windows are required with extruded roofs and optional with awnings. Transom windows shall cover the front of the building above the main display windows and the entryway area. Transoms should be broken up into sections every six inches to three feet in a

consistent and equal pattern. Height should not exceed three feet. Transoms may or may not open. False (drop) ceilings are allowed behind the transoms.

Planters:

No planters are allowed.

Paint colors:

Typical body colors include white, cream, or a light, warm color of low intensity. Accents, trims, windows, etc., should be dark-colored. Contrasting colors should be compatible. Existing colors shall not enjoy protected status when repainting is proposed. A palette or color wheel of acceptable 1880 – 1915 period colors, available at the Community Development Department, shall be the basis for color selection. No other colors are allowed. The palette is.

Flags, pennants, or banners: Ornamental or advertising flags, pennants, or banners are not permitted.

BUILDING CODE ANALYSIS

Note that many aspects of the Building Code analysis cannot be determined until building plans are more definitive. The following analysis describes the limits in the Code for the various occupancies anticipated.

Possible Occupancy Groups:

A-2: Restaurant B: Business M: Retail R-1: Hotel S-2: Parking Garage

Construction Type:

Projected Construction Type - Ground & Second Floors: V-B <u>Sprinklered</u> (frame construction). Projected Construction Type - Garage: Type 1 or 2 (concrete or masonry construction).

Allowable Areas by Occupancy Group

(includes increases for sprinkler and separations)*:

A-2: Restaurant -	$6000 + [6000 \times 2 \text{ (sprinkler)}] + [6000 \times .17 \text{ (separation)}] = 19,020$
s.f.	
B: Business -	$9000 + [9000 \times 2 \text{ (sprinkler)}] + [9000 \times .17 \text{ (separation)}] = 28,530$
s.f.	
M: Retail -	$9000 + [9000 \times 2 \text{ (sprinkler)}] + [9000 \times .17 \text{ (separation)}] = 28,530$
s.f.	
R-1: Hotel -	$7000 + [7000 \times 2 \text{ (sprinkler)}] + [7000 \times .17 \text{ (separation)}] = 22,190 \text{ s.f.}$
S-2: Garage - 13,500	$0 + [13,500 \times 2 \text{ (sprinkler)}] + [13,500 \times .17 \text{ (separation)}] = 42,795 \text{ s.f.}$
•	Ratios' limitation: the combined areas of each occupancy divided by the
	result in a ratio of less than 1.0.

Allowable Building Height Above Grade:

By Construction Type: 40'

By Zone: 35' (The height limitation in the zone governs)

Occupancy Separations (vertical and horizontal):

A-2: Restaurant / B: Business, M: Retail, or R-1: Hotel = 1-hour R-1: Hotel / B: Business, M: Retail, or A-2: Restaurant = 1-hour S-2: Garage / B: Business & M: Retail = 1-hour S-2: Garage / R-1: Hotel = none

Fire Resistive Requirements:

Primary Structural Frame: None Bearing & non-bearing walls (exterior, north/east/south): None Bearing & non-bearing walls (exterior, west): 2 hour at ground floor retail / 1 hour at 2nd floor Bearing & non-bearing walls (interior): None Floor & Roof construction: None Shaft Enclosures (Stairs & Elevator): 1-hour **Parapets:** Per OSSC Section 705.11

Openings in Rated Walls (based upon separation from property line):

0' to less than 3': Not permitted 3' to less than 5': 15% of wall area per story 5' to less than 10': 25% of wall area per story 10' to less than 15': 45% of wall area per story 15' to less than 20': 75% of wall area per story 20'+: Unlimited

Exiting:

Elevator: Required

Stairs: Two Stairs will be required. At least one stair must be enclosed on the upper floors, with both enclosed at the garage level.

All required exits must meet accessibility standards per Chapters 10 & 11.

Sincerely, SG Architecture, LLC

WILLAMETTE FALLS DRIVE MIXED-USE BUILDING TRAFFIC IMPACT STUDY

WEST LINN, OREGON

1983 DREGC **EXPIRES**

DATE: February 9, 2016

PREPARED FOR: Mark Handris

PREPARED BY: William Farley, PE

321 SW 4th Ave., Suite 400 | Portland, OR 97204 | 503.248.0313 | Jancasterengineering.com

TABLE OF CONTENTS

Executive Summary	. 3
Project Description	. 4
Trip Generation & Distribution	11
Safety Analysis	15
Operational Analysis	18
Conclusions	26
Appendix	27

EXECUTIVE SUMMARY

- 1. A two-story mixed-use commercial building has been proposed for the lot located at 1969 Willamette Falls Drive in West Linn, Oregon. The new building will consist of 10,511 square feet of ground-floor retail and 14,560 square feet of second floor office space or a second floor 19-room hotel.
- 2. The proposed mixed-use building, assuming that the second floor is used for office space, is projected to generate up to 33 trips during the morning peak hour and up to 61 trips during the evening peak hour. If the second floor of the building is used for a 19-room hotel, the trip generation would be reduced to 20 trips during the morning peak hour and 50 trips during the evening peak hour.
- 3. A detailed examination of the crash history at the study intersections shows no significant safety concerns and no trends that are indicative of design deficiencies. No safety mitigations are recommended.
- 4. Warrant 1, Eight-Hour Vehicular Volume, was found to be met for the intersection of Willamette Falls Drive at 10th Street under existing conditions. However, since plans impacting the intersection are being evaluated by the City of West Linn regarding the 10th Street corridor and considering the fact that the signal is warranted under existing conditions, the installation of a traffic signal is not recommended as mitigation for the proposed development.
- 5. Left-turn lane warrants were found to be met for the intersection of Willamette Falls Drive at 11th Street under existing conditions. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.
- 6. The intersection of Willamette Falls Drive at 10th Street is projected to operate at LOS E following completion of the proposed development.
- 7. The intersections of 10th Street at 8th Avenue/8th Court and Willamette Falls Drive at 12th Street are currently operating above the City's performance standard of LOS D. Since the proposed development does not add any trips to the critical movements at these intersections, no mitigation is recommended in conjunction with the proposed development.
- 8. The intersections of 10th Street at Blankenship Road/Salamo Road, 10th Street at the Interstate 205 southbound ramps, and 10th Street at the Interstate 205 northbound ramps are projected to continue operating within the Oregon Department of Transportations required performance standards either with or without the addition of site trips from the proposed development.

PROJECT DESCRIPTION

INTRODUCTION

This Transportation Impact Study (TIS) addresses the development of a proposed mixed-use commercial building located at 1969 Willamette Falls Drive in West Linn, Oregon. The two-story development will comprise 10,511 square feet of ground-floor retail space and either 14,560 square feet of second-floor office or a 19-room hotel.

This report looks at the traffic impacts of the proposed development on the transportation system in the vicinity of the site and addresses concerns raised by the City of West Linn, Clackamas County, and the Oregon Department of Transportation. The purpose of this report is to provide an analysis that addresses the impacts on adjacent streets as well as the operation of nearby study intersections to ensure safe and efficient performance.

All supporting data and calculations are included in the appendix to this report.

PROJECT LOCATION

The subject property is located on the southwest corner of the intersection of Willamette Falls Drive at 11th Street in West Linn, Oregon. The proposed mixed-use development will take access to the transportation network via a driveway ramp to an underground parking garage on 11th Street, as well as additional access and parking from Knapp's Alley. The building frontage will face Williamette Falls Drive where there is additional head-in on-street parking.

To identify impacts resulting from the proposed development, the following intersections were selected for full analysis during the weekday AM and PM peak hours:

- Willamette Falls Drive at 12th Street
- Willamette Falls Drive at 11th Street
- Willamette Falls Drive at 10th Street
- 10th Street at 8th Avenue/8th Court
- 10th Street at Interstate 205 Eastbound ramp access
- 10th Street at Interstate 205 westbound ramp access
- 10th Street at Blankenship Road/Salamo Road

VICINITY STREETS

Willamette Falls Drive is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial. It is generally a two-lane roadway with one standard lane in each direction and has a posted speed of 20 mph in the site vicinity within the central business district. East of the central business district, Willamette Falls Drive is classified as a principal arterial and the speed limit is increased to 40 mph. The roadway has on-street parking on both sides of the street as well as head-in parking

served by frontage streets separated by raised medians. There are curb and sidewalks on both sides of the roadway, as well as frequent pedestrian bulb-outs located on the corners of most cross streets.

12th Street is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial south of Willamette Falls Drive and a Local Road to the north. It is a two-lane facility with no posted speed limit. There are curbs, sidewalks, and on-street parking areas along both sides of the roadway.

11th Street is under the jurisdiction of the City of West Linn and is classified as a Local Road. It is a two-lane facility with a statutory residential speed limit of 25 mph. Intermittent curbs and sidewalks are provided along both sides of the street. On-street parking is permitted in areas with sufficient width where vehicles can park without impeding the flow of through traffic.

10th Street is classified by the City of West Linn as a Minor Arterial. The road cross-section varies between three and four lanes for two-way traffic and does not have a posted speed limit. There are curbs along both sides of the street and continuous sidewalks along the west side. On-street parking is not available.

8th Avenue and 8th Court are under the jurisdiction of the City of West Linn and are classified as Local Roads. Both are two-lane facilities with one standard lane in each direction and each has a statutory residential speed limit of 25 mph. Curbs and sidewalks are provided intermittently on both sides of the streets. On-street parking is permitted in areas with sufficient width as to not impede the flow of through traffic.

Interstate 205 is under the jurisdiction of the Oregon Department of Transportation. It is generally a four-lane divided freeway with a posted speed of 65 mph to the west of 10^{th} Street and 55 mph to the east.

Salamo Road is under the jurisdiction of the City of West Linn and is classified as a Minor Arterial. It is generally a two-lane roadway with a posted speed of 40 mph west of 10th Street. No curbs or sidewalks are provided near the intersection with 10th Street. On-street parking is not permitted on either side of the roadway.

West of 10th Street, Salamo Road becomes Blankship Road. Blankenship Road is under the jurisdiction of the City of West Linn and is classified as a Collector west of Tannler Drive. It generally is a three-lane roadway, including a center two-way left-turn lane, and has a posted speed limit of 25 mph. Curbs and sidewalks are provided continuously along the southern side of the street and intermittently along the northern side. On-street parking is not permitted on either side of the roadway.

STUDY INTERSECTIONS

The intersection of Willamette Falls Drive at 12th Street if a four-legged intersection under all-way stop control. The eastbound and westbound approaches on Willamette Falls Drive each have a dedi-

cated left-turn lane and a shared through/right-turn lane. The northbound and southbound approaches have a single, shared lane for all turning movements.

The intersection of Willamette Falls Drive at 11th Street is a four-legged intersection with stop control for the northbound approach on 11th Street and for the southbound approach from a frontage street. Each approach at the intersection has a single, shared lane for all turning movements. Access to a frontage street with additional on-street parking is available on the north side of the intersection.

The intersection of Willamette Falls Drive at 10th Street is a three-legged intersection operating under all-way stop control. The eastbound approach on Willamette Falls Drive has a dedicated left-turn lane and a through lane while the westbound approach has a single, shared lane for all turning movements. The southbound approach has dedicated lanes for left and right turns.

The intersection of 10th Street at 8th Avenue/8th Court is a four-legged intersection operating under two-way stop control for the eastbound and westbound approaches. The northbound approach on 10th Street has a single, shared lane for all turning movements and a left-turn restriction weekdays from 4PM to 6PM. The southbound approach has a dedicated left-turn lane and a shared through/right-turn lane. The eastbound approach on 8th Avenue has a dedicated left-turn lane and a shared through/right-turn lane while the westbound approach on 8th Court has a dedicated right-turn lane and a shared through/left-turn lane.

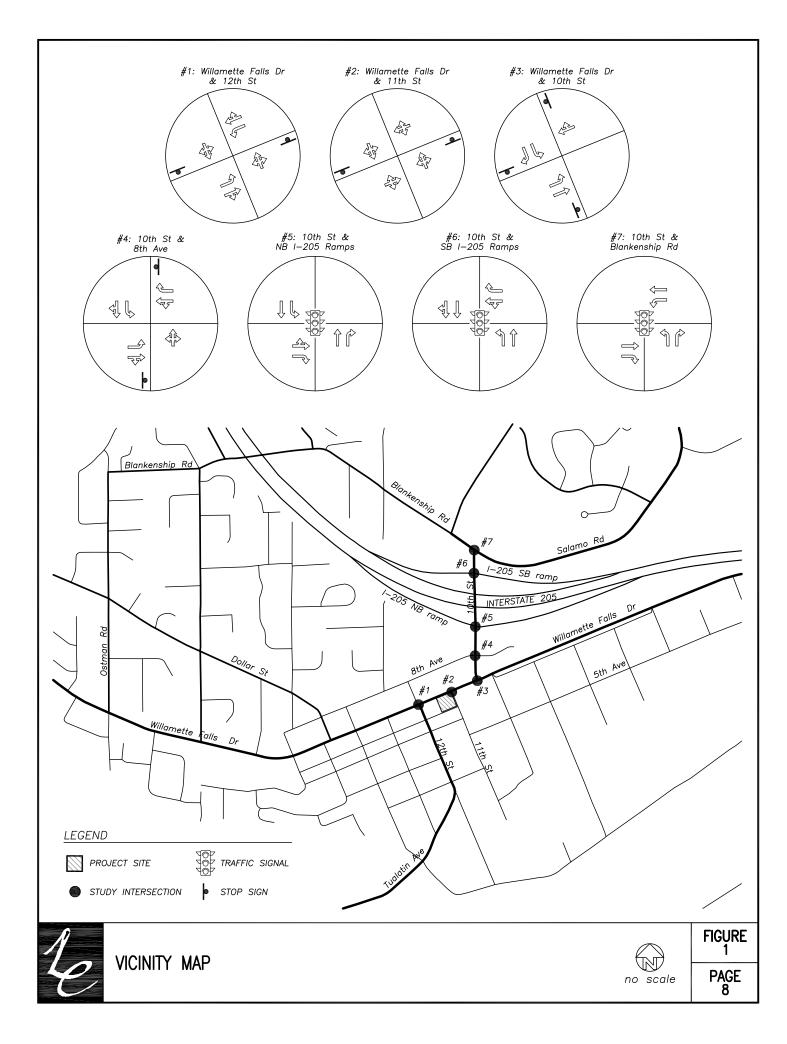
The intersection of 10th Street at the Interstate 205 northbound ramps is a four-legged, signalized intersection. The northbound approach on 10th Street has a dedicated right-turn lane and a through lane while the southbound approach has a dedicated left-turn lane served with flashing-yellow-arrow phasing and a through lane. The eastbound approach from northbound Interstate 205 has a shared through/left-turn lane and a dedicated right-turn lane.

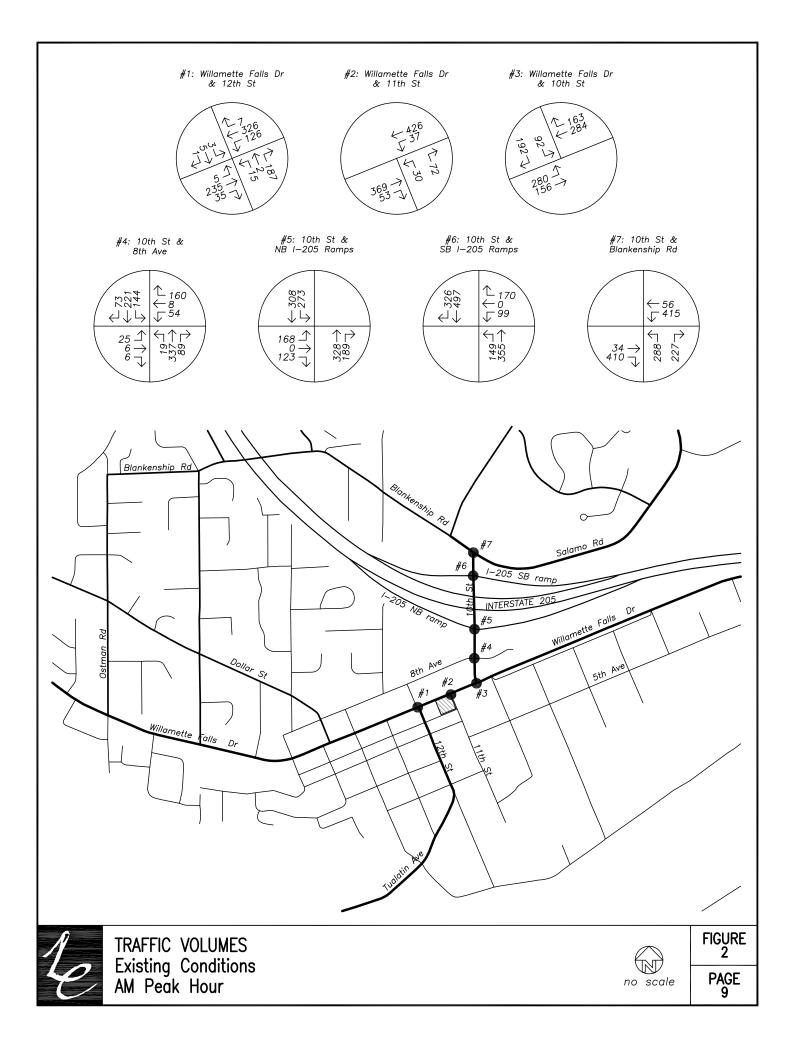
The intersection of 10th Street at the Interstate 205 southbound ramps is a four-legged, signalized intersection. The northbound approach on 10th Street has a dedicated left-turn lane served by flashing-yellow-arrow phasing and a through lane while the southbound approach has a through lane and a shared through/right-turn lane. The westbound approach from southbound Interstate 205 has a shared through/left-turn lane and a dedicated right-turn lane.

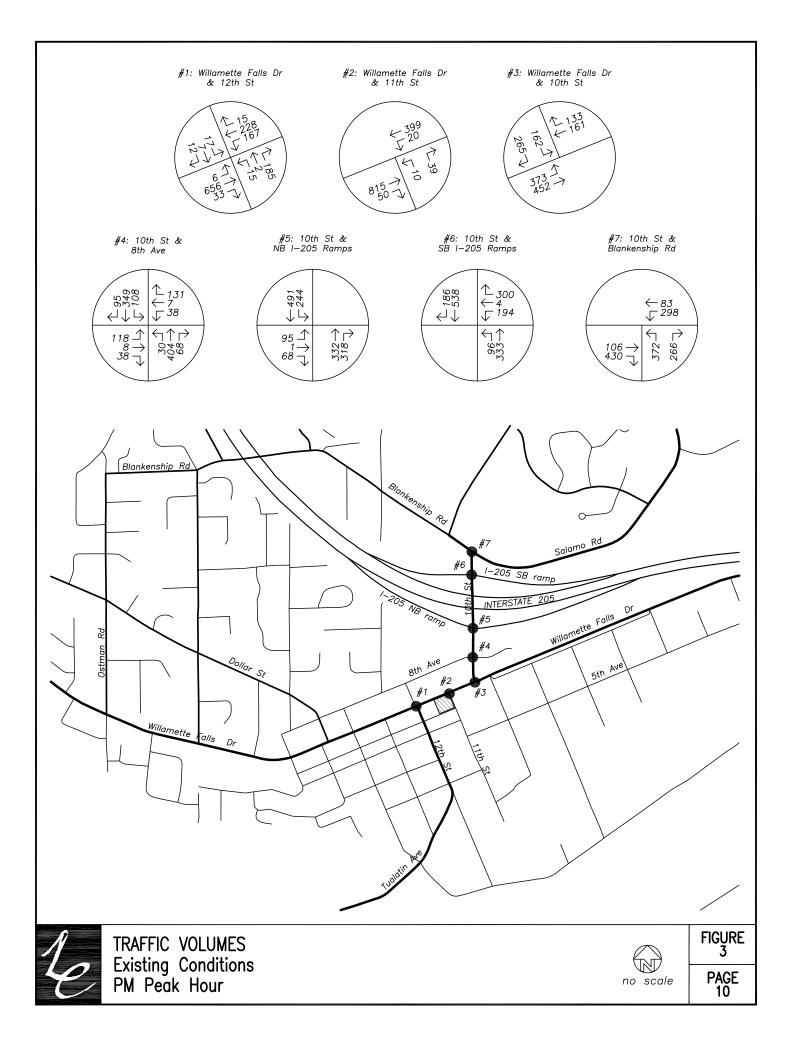
The intersection of 10th Street at Blankenship Road/Salamo Road is a three-legged intersection controlled by a traffic signal. The northbound approach on 10th Street has a dedicated left and a channelized right-turn lane. The westbound approach on Salamo Road has a dedicated left-turn lane and a through lane. The eastbound approach on Blankenship Road has a through lane and a channelized right-turn lane. It should be noted that a single controller operates this intersection and the intersection of 10th Street at the Interstate 205 southbound ramps.

A vicinity map showing the project site and the study area intersections is shown in Figure 1 on page eight.

PUBLIC TRANSIT


TriMet Bus *Line 154-Willamette/Clackamas Heights* provides bus service along Willamette Falls Drive, 10th Street, and Blankenship Road on its route from Oregon City. The bus provides weekday service from 6 AM to 7 PM with headways of approximately 60 minutes. The bus route has no weekend service.


TRAFFIC COUNTS


Traffic counts were conducted for the study intersections along 10th Street on April 14th, 2015, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM to capture the weekday peak periods. Traffic counts were conducted for the intersections of Willamette Falls Drive at 11th Street and Willamette Falls Drive at 12th Street on July 21st, 2015, for the same periods. Data was used for the system-wide peaks of 7:20 AM to 8:20 AM for the morning and from 4:15 PM to 5:15 PM for the evening.

Since the counts along Willamette Falls Drive were collected at different periods, one of which was when a nearby school was not in session, adjustments were made to the traffic counts at 11th Street and 12th Street. Traffic volumes observed at the intersections of Willamette Falls Drive at 11th Street and Willamette Falls Drive at 12th Street were increased to balance with the traffic counts collected at Willamette Falls Drive at 10th Street.

Figure 2 on page nine shows the existing traffic volumes at each of the study intersections for the AM peak hour and Figure 3 on page ten shows the existing traffic volumes for the PM peak hour.

TRIP GENERATION & DISTRIBUTION

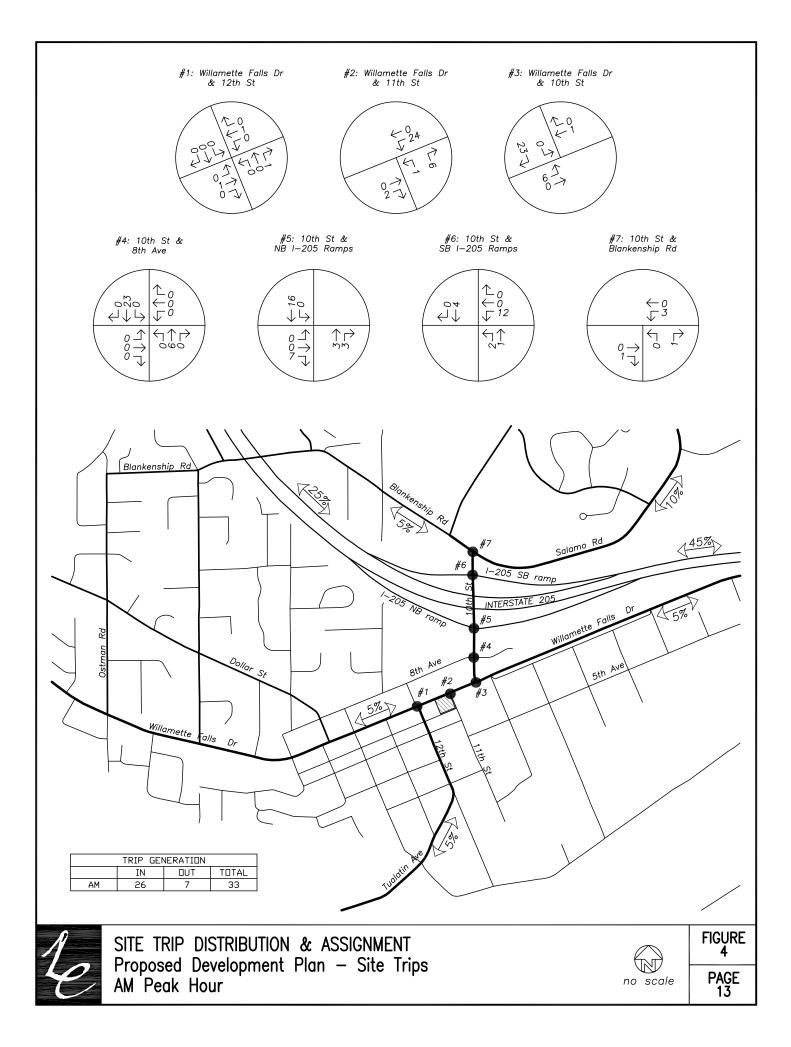
TRIP GENERATION

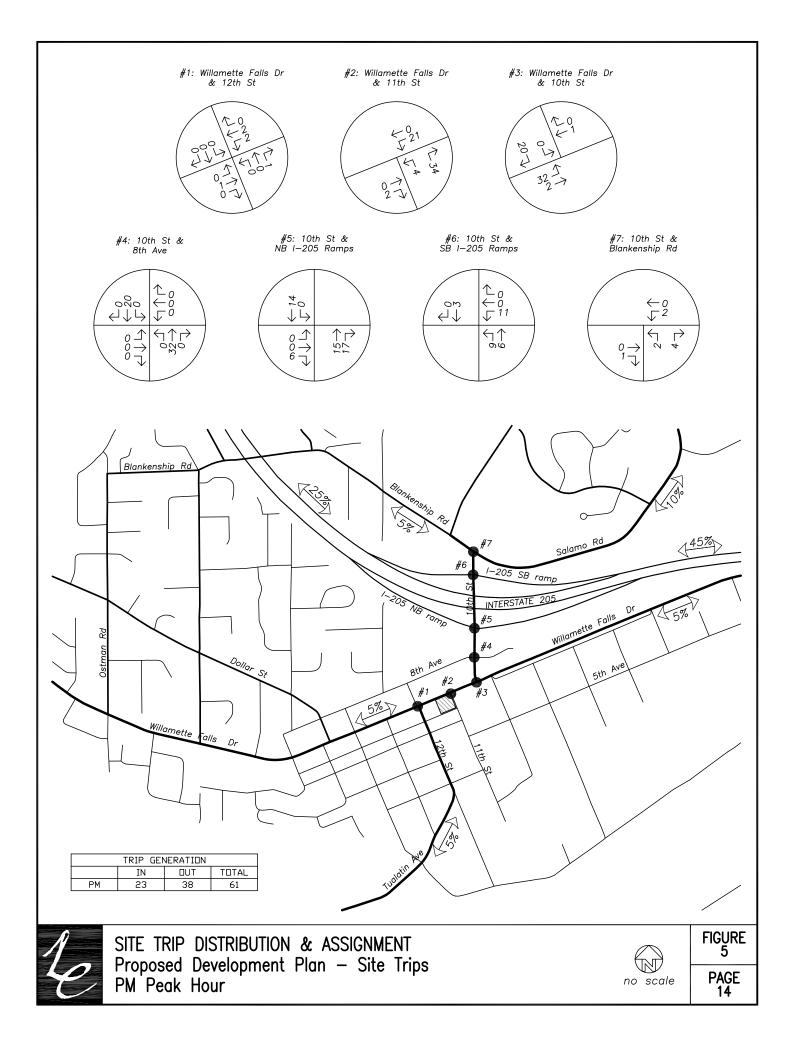
The ground floor of the proposed mixed-use commercial building will consist of 10,511 square-feet of retail space. The second floor is proposed as either 14,560 square-feet of office space or a 19-room hotel. To ensure a conservative analysis, it was assumed that the second floor would be occupied by office space, since this use results in the highest traffic volumes of the potential uses.

To estimate the number of trips that will be generated by the proposed mixed-use building, trip rates from *TRIP GENERATION MANUAL*, Ninth Edition, published by the Institute of Transportation Engineers (ITE), were used. Land use code #820, *Shopping Center*, and land use code #710, *General Office*, were used to calculate the total trip generation of the proposed development.

The trip generation calculations show that the proposed mixed-use building will generate up to 33 trips during the morning peak hour with 26 entering the site and 7 exiting. During the evening peak hour, the development will generate up to 61 trips with 23 entering and 38 exiting the site. Up to a total of 608 daily trips will be generated by the project.

The following table offers a summary of the trip generation. Detailed ITE trip generation calculations are included in the appendix to this report.


TRIP GENERATION SUMMARY									
		Morning Peak Hour			Evening Peak Hour			Weekday	
	Size	In	Out	Total	In	Out	Total	Total	
Retail	10.511 ksf	6	4	10	19	20	39	448	
Office	14.560 ksf	20	3	23	4	18	22	160	
Total	25.071 ksf	26	7	33	23	38	61	608	


It should be noted that the above trip generation calculations do not account for any reductions due to internalization or pass-by trips.

TRIP DISTRIBUTION

It is projected that majority of the trips generated by the proposed mixed-use building will arrive and depart using Interstate 205. Based on the observed traffic trends, it is projected that approximately 45 percent of the trips will travel to and from the east on Interstate 205 while 25 percent will travel to and from the west. Approximately 10 percent of the trips to and from the site will use Salamo Road and 5 percent will each use Blankenship Road to the north, Willamette Falls Drive to the east or west, or Tualatin Avenue to the south.

The trip distribution and assignment for the mixed-use commercial building is shown in Figure 4 on page 13 for the AM peak hour and Figure 5 on page 14 for the PM peak hour.

SAFETY ANALYSIS

CRASH DATA ANALYSIS

Using data obtained from the Oregon Department of Transportation's Crash Analysis and Reporting Unit, a review was performed for the most recent available five years of crash data (January 2010 to December 2014) for each of the study intersections. A crash rate was calculated under the common assumption that traffic counted during the PM peak period represents 10 percent of the average daily traffic (ADT) at the intersection. Crash rates greater than 1.0 crashes per million entering vehicles (CMEV) are generally indicative of a need for further investigation and possible mitigation.

The intersection of Willamette Falls Drive at 12th Street had a total of four reported crashes during the analysis period. Of the reported crashes, two were rear-end collisions, one was an angle collision involving a bicyclist, and one occurred during a turning movement. Two of the crashes resulted in property damage only (*PDO*) while the remaining two resulted in possible injuries or complaints of pain (*Injury-C*). The calculated crash rate for the intersection was 0.16 CMEV.

The crash involving a bicyclist occurred when a westbound vehicle failed to give right-of-way to a bicyclist who was making a left-turn through the intersection. The crash resulted in the bicyclist sustaining possible injuries.

The intersection of Willamette Falls Drive at 11^{th} Street had one reported crash during the analysis period. The crash was a rear-end collision that resulted in non-incapacitating injuries (*Injury-B*). The crash rate for the intersection was calculated to be 0.04 CMEV.

The intersection of Willamette Falls Drive at 10th Street had five crashes reported during the fiveyear analysis period. Three were rear-end collisions while the remaining two involved vehicles making a turning movement. All five crashes resulted in only property damage. The intersection's crash rate was calculated at 0.18 CMEV.

The intersection of 10th Street at 8th Avenue/8th Court had 13 crashes reported during the analysis period. Seven of the crashes reported involved turning vehicles, five were angle-type collisions, and one crash was with a fixed object. Nine of these crashes resulted in property damage only while four resulted in possible injuries or complaints of pain. The crash rate was calculated to be 0.31 CMEV.

The intersection of 10th Street at the Interstate 205 northbound ramps had 13 crashes reported during the five-year period. Of the reported crashes, eight were rear-end collisions, three occurred during a turning movement, one was a sideswipe collision while overtaking, and one involved a vehicle backing up in traffic. Eight of the crashes resulted in only property damage while three resulted in possible injuries, one in a non-incapacitating injury, and one in an incapacitating injury (*Injury-A*). The crash rate for the intersection was calculated to be 0.46 CMEV.

The incapacitating injury that occurred at the intersection of 10^{th} Street at Interstate 205 northbound ramps was a result from a rear-end collision between two vehicles traveling eastbound exiting from the Interstate. The driver at fault was following too closely and collided with the stopped vehicle.

The intersection of 10th Street at the Interstate 205 southbound ramps had 13 reported crashes during the analysis period. These crashes included eleven rear-end collisions, one turning crash, and one with a fixed object. Eight crashes resulted in property damage only while four resulted in possible injuries or complaints of pain and one resulted in a non-incapacitating injury. The crash rate for the intersection was calculated to be 0.43 CMEV.

The intersection of 10th Street at Blankenship Road/Salamo Road had nine crashes reported during the analysis period. These crashes included four rear-end collisions, two sideswipe-meeting collisions, one non-collision, one involving a fixed object, and one pedestrian collision. Four of the crashes resulted in property damage only, four resulted in possible injuries or complaints of pain, and one crash resulted in a non-incapacitating injury. The intersection's crash rate was calculated to be 0.32 CMEV.

The crash involving a pedestrian at the intersection of 10th Street at Blankenship Road/Salamo Road occurred between an pedestrian walking on the shoulder and a westbound vehicle and resulted in the pedestrian suffering a possible injury or complaining of pain.

Based on the detailed review of the crash history, no significant patterns or contributing design concerns were identified at the study intersections.

WARRANT ANALYSIS

Left-turn lane warrants and traffic signal warrants were examined for the applicable study intersections.

Warrant 1, Eight-Hour Vehicular Volume, was examined for the intersection of Willamette Falls Drive at 10^{th} Street and was found to be met under existing conditions. However, since the City of West Linn is considering other treatments to the 10^{th} Street corridor that could divert traffic or change the operation of the intersection, installation of a traffic signal is not recommended at this time.

Traffic signal warrants were also examined for the intersections of 10th Street at 8th Avenue/8th Court and Willamette Falls Drive at 12th Street. Due to low volumes on the minor street approaches, traffic signal warrants are not projected to be met under year 2017 traffic conditions, regardless of trips resulting from the proposed mixed-use building.

Left-turn lane warrants were examined for the intersection of Willamette Falls Drive at 11th Street. A left-turn refuge is primarily a safety consideration for the major street, removing left-turning vehicles from the through traffic stream. The left-turn lane warrants examined for facilities under the

jurisdiction of West Linn used the methodology outlined in the NCHRP Report #457, published by the Transportation Research Board. These turn-lane warrants are evaluated based on the number of left-turning vehicles, the number of advancing and opposing vehicles, and the roadway travel speed.

Due to the significant amount of traffic along Willamette Falls Drive, left-turn lane warrants were found to be met during the PM peak period under existing conditions for a westbound left-turn lane. The warrant is projected to continue to be met as traffic increases from growth as well as the proposed development.

Although the left-turn lane warrant is met for the intersection, the crash history and operational analysis of Willamette Falls Drive at 11th Street indicates that the intersection is operating safely and efficiently under the existing configuration. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.

OPERATIONAL ANALYSIS

BACKGROUND TRAFFIC

To provide analysis of the traffic impact resulting from the construction of the proposed mixed-use commercial building, an estimate of future traffic volumes is required. In order to calculate the future traffic volumes, a compounded growth rate of two percent per year for an assumed build-out condition of two years was applied to the measured existing traffic volumes to approximate year 2017 background conditions.

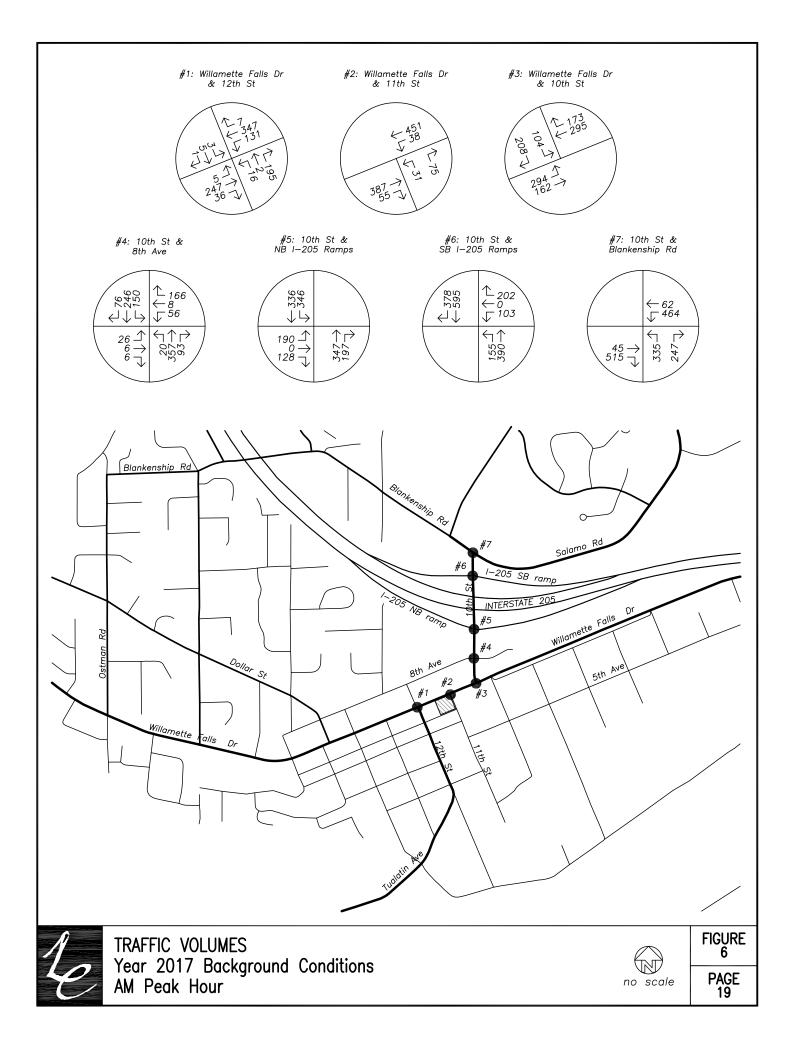
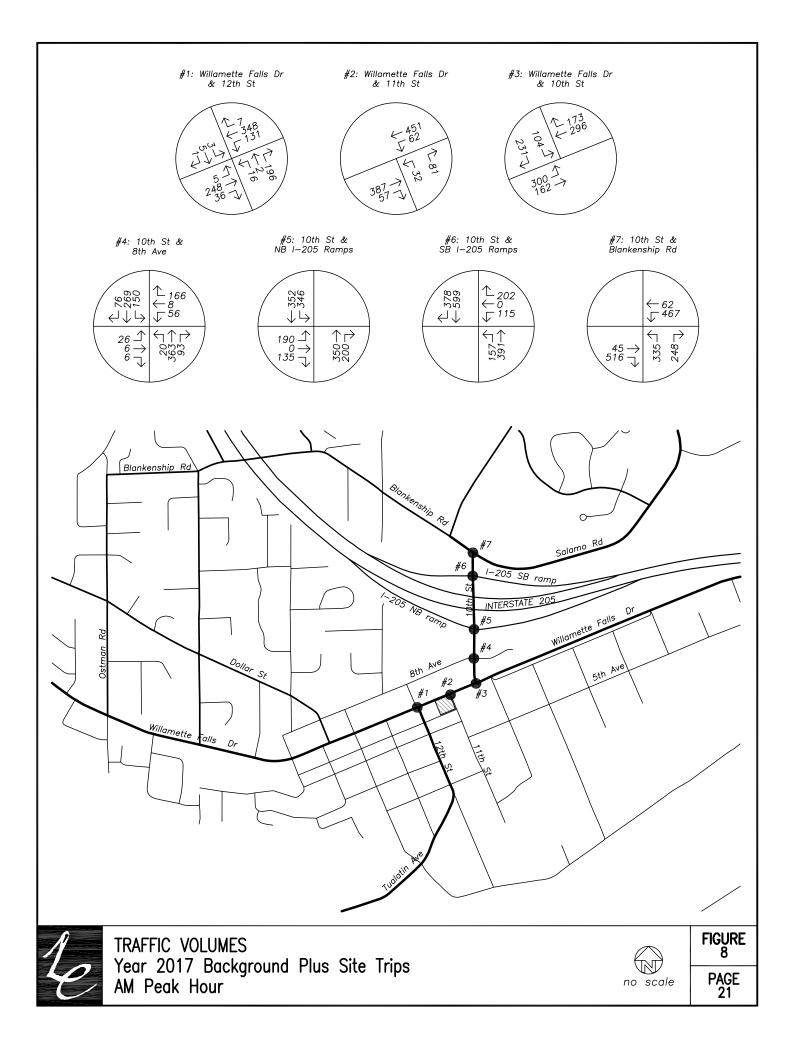

In addition to the projected growth, in-process trips associated with the Tannler Mixed-Use Project, located northwest of the intersection of Blankenship Road at Tannler Drive, as well as trips associated with a 61 single-family dwellings that are part of other projects located north of Interstate 205, were incorporated into the year 2017 background traffic volumes.


Figure 6 on page 19 and Figure 7 on page 20 show the projected year 2017 background volumes during the AM and PM peak hours, respectively.


BACKGROUND TRAFFIC

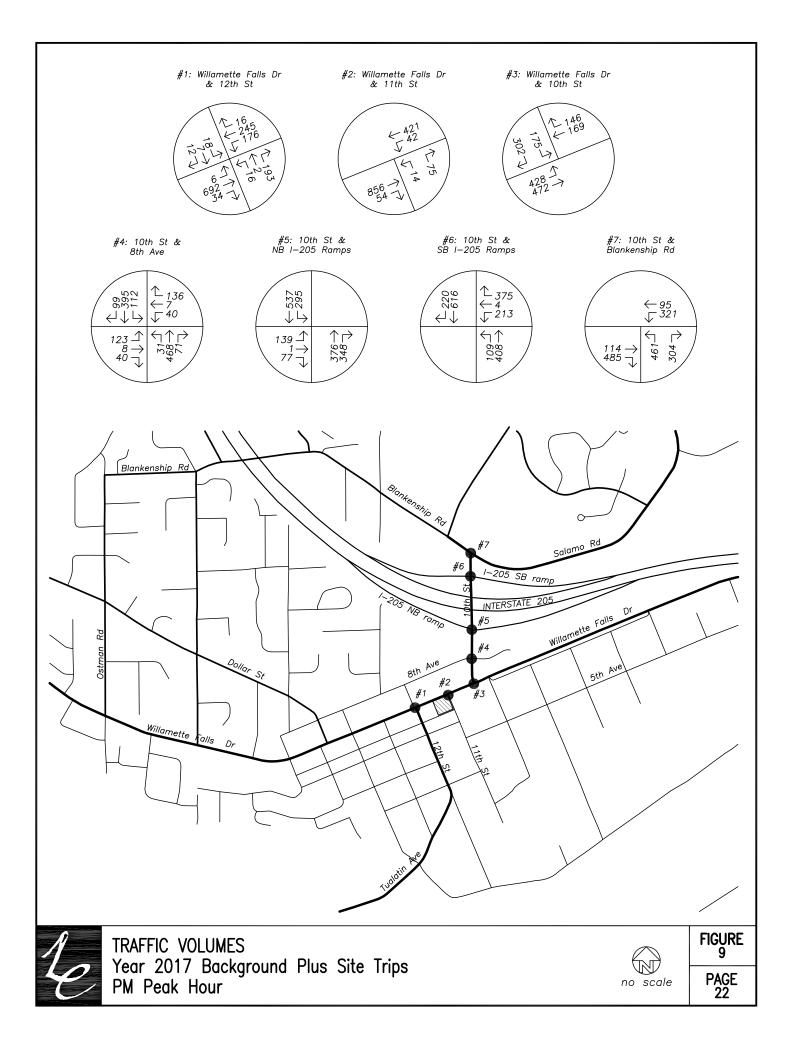

Peak hour trips calculated to be generated from the proposed development of 10,511 square feet of ground-floor retail and 14,560 square-feet of second-floor office, as described earlier within the Trip Generation section, were added to the projected year 2017 background traffic volumes to obtain the expected 2017 background plus site trips.

Figure 8 on page 21 and Figure 9 on page 22 show the projected year 2017 peak hour background traffic volumes with the addition of site trips from the proposed development.

CAPACITY ANALYSIS

To determine traffic impacts resulting from the proposed development of the mixed-use commercial building, an operational analysis was conducted for each of the study-area intersections. The analysis was conducted according to the signalized and unsignalized intersection methodologies provided in the *HIGHWAY CAPACITY MANUAL*, published by the Transportation Research Board. The analysis periods include morning and evening peak hours for existing conditions, year 2017 background conditions, and year 2017 background plus trips generated by the proposed mixed-use building.

The intersections of 10^{th} Street at the Interstate 205 northbound and southbound ramps, in addition to the intersection of 10^{th} Street at Blankenship Road/Salamo Road which runs on the same controller as the southbound ramps, are under the jurisdiction of the Oregon Department of Transportation (ODOT). The applicable minimum operation standards for ODOT facilities are established under the Oregon Highway Plan and are based on the volume-to-capacity (v/c) ratio. The v/c ratio compares the actual traffic demand to the potential capacity to determine the portion that is utilized by traffic. ODOT's v/c operating standard for the Interstate 205 interchange ramps and the intersection of 10^{th} Street at Blankenship Road/Salamo Road is 0.85.

Since the intersection of 10th Street at the Interstate 205 southbound ramp operates on the same traffic signal controller with 10th Street at Blankenship Road/Salamo Road, analysis was conducted using signal timing information obtained from ODOT staff. The signal timing details for the intersection are provided in the appendix.

The City of West Linn's Comprehensive Plan requires intersections to operate at level of service (LOS) D or better. Levels of service can range from A, which indicates very little or no delay, to F, which indicates a high degree of congestion and delay.

The intersection of Willamette Falls Drive at 12th Street is currently operating at LOS E during the evening peak hour. Under year 2017 traffic conditions, the intersection is projected to continue operating at LOS E, regardless of additional trips from the proposed development. Since the traffic impact to the intersection from the proposed development is negligible, no mitigations are recommended.

The intersection of Willamette Falls Drive at 11th Street is projected to operate at LOS D or better under all analysis scenarios, with or without additional trips from the proposed development.

The intersection of Willamette Falls Drive at 10th Street is currently operating at LOS D with significant delays being experienced by the eastbound left-turning vehicles during the evening peak hour. Under year 2017 traffic conditions, the intersection is projected to continue operating at LOS D with approximately 29 percent longer delays for the same approach. With the addition of up to 32 trips from the proposed development to the eastbound left-turn approach, the intersection is projected to operate at LOS E. The intersection of 10th Street at 8th Avenue/8th Court is presently operating at LOS F during the evening peak hour due to significant delays to the minor street approaches. The intersection is projected to continue operating at LOS F under year 2017 conditions, regardless of additional trips from the proposed development.

Since traffic signal warrants are not met due to low traffic volumes associated with the minor street approaches, the city is currently evaluating possible mitigations for the intersection including extending 8th Court to Willamette Falls Drive and limiting the intersection to right turns only. Since the proposed development does not contribute trips to the minor street approaches, no mitigations associated with the mixed-use building are recommended.

The intersections of 10th Street at the Interstate 205 northbound and southbound ramps and the intersection of 10th Street at Blankenship Road/Salamo Road are projected to operate within ODOT's performance standard, regardless of trips associated with the proposed development.

The results of the capacity analysis for the weekday AM and PM peak hours, along with the levels of service, delay, and v/c ratios are shown in the table on the following page. Detailed calculations, as well as tables showing the relationships between delay and level of service are included in the appendix to this report.

CAPACITY ANALYSIS SUMMARY								
	Mor	ning Peak H	Iour	Evening Peak Hour				
_	LOS	Delay (s)	v/c	LOS	Delay (s)	v/c		
Willamette Falls Dr at 12th St								
2015 Existing	В	12	-	Е	37	-		
2017 Background	В	13	-	E	37	-		
2017 Background + Site	В	13	-	Е	37	-		
Willamette Falls Dr at 11th St								
2015 Existing	С	16	0.27	С	22	0.55		
2017 Background	С	17	0.28	С	23	0.57		
2017 Background + Site	С	18	0.30	D	27	0.58		
Willamette Falls Dr at 10th St								
2015 Existing	С	24	-	D	26	-		
2017 Background	D	30	-	D	32	-		
2017 Background + Site	D	32	-	E	37	-		
10th St at 8th Ave/8th Ct								
2015 Existing	F	62	0.45	F	>120	>1.0		
2017 Background	F	81	0.52	F	>120	>1.0		
2017 Background + Site	F	89	0.56	F	>120	>1.0		
10th St at I-205 NB Ramps								
2015 Existing	В	15	0.57	В	10	0.50		
2017 Background	В	17	0.66	В	13	0.57		
2017 Background + Site	В	17	0.66	В	13	0.58		
10th St at I-205 SB Ramps								
2015 Existing	D	38	0.63	С	34	0.66		
2017 Background	D	42	0.71	D	41	0.75		
2017 Background + Site	D	43	0.73	D	43	0.77		
10th St at Blankenship/Salamo								
2015 Existing	С	34	0.68	С	26	0.63		
2017 Background	D	46	0.82	С	29	0.72		
2017 Background + Site	D	47	0.83	C	29	0.72		

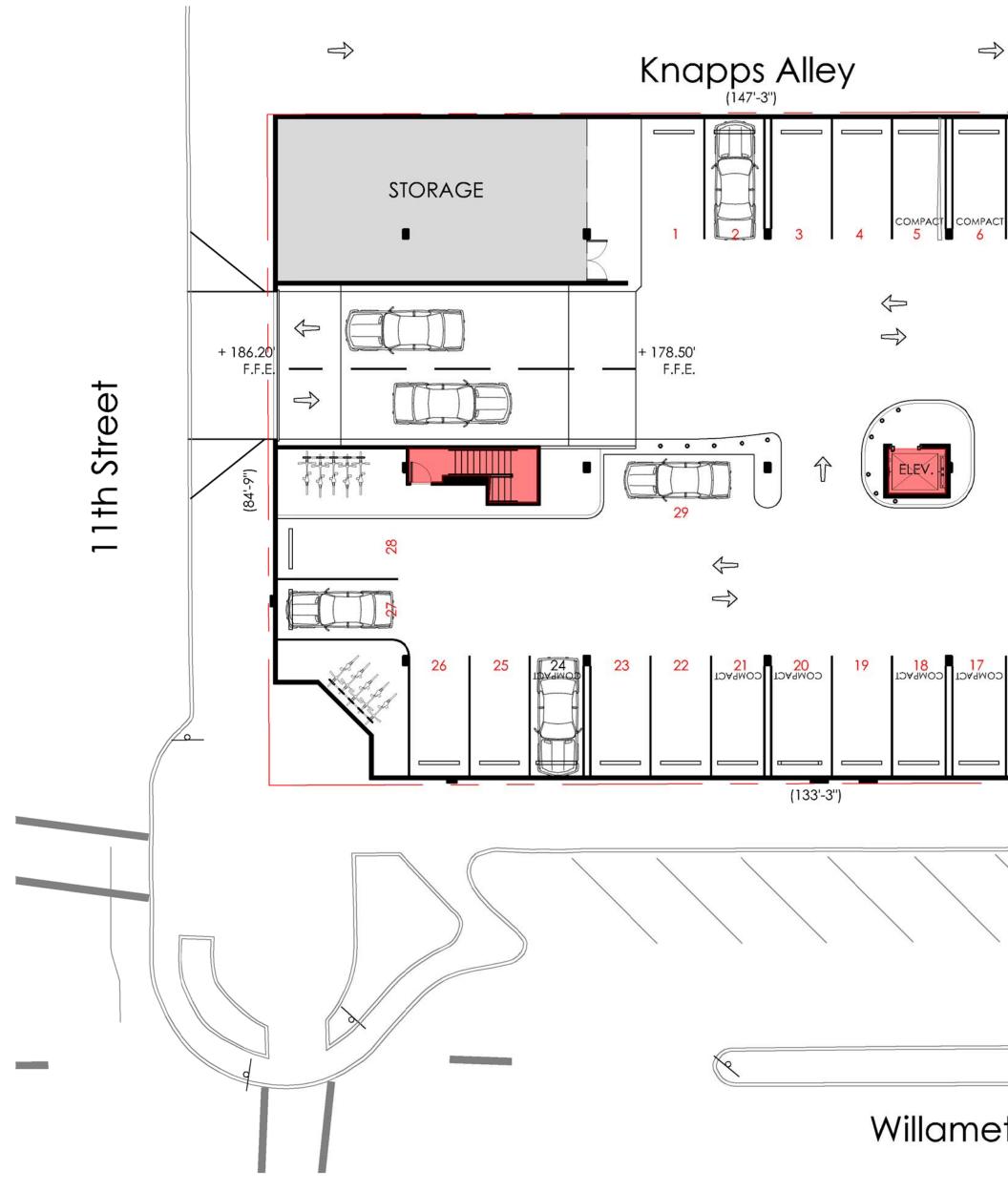
CONCLUSIONS

The proposed mixed-use building consisting of 10,511 square feet of ground-floor retail and either 14,560 square feet of office space or a 19-room hotel is projected to have acceptable impacts to the surrounding transportation system.

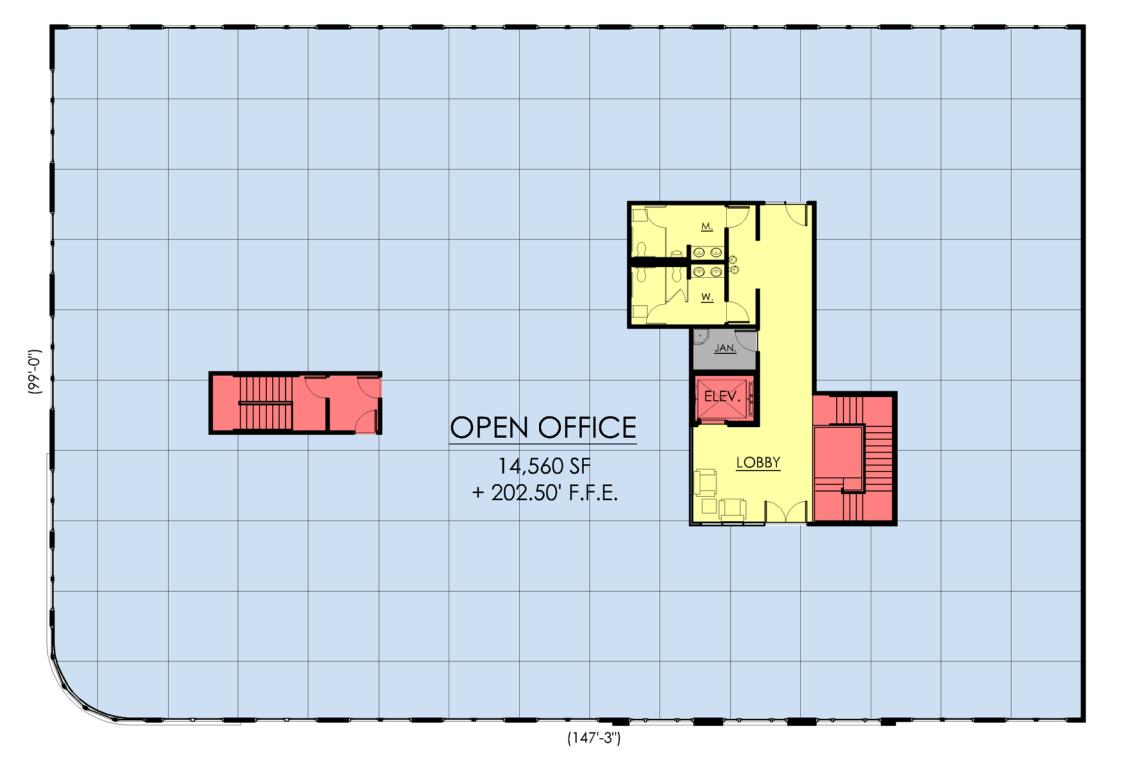
The intersections of 10th Street at Blankenship Road/Salamo Road, 10th Street at the Interstate 205 southbound ramps, and 10th Street at the Interstate 205 northbound ramps are projected to continue operating within the Oregon Department of Transportations required performance standards either with or without the addition of site trips from the proposed development.

The intersections of 10th Street at 8th Avenue/8th Court and Willamette Falls Drive at 12th Street are currently operating above the City's performance standard of LOS D. Since the proposed development does not add any trips to the critical movements at these intersections, no mitigation is recommended in conjunction with the proposed development.

The intersection of Willamette Falls Drive at 10th Street is projected to operate at LOS E following completion of the proposed development.


Left-turn lane warrants were found to be met for the intersection of Willamette Falls Drive at 11th Street under existing conditions. Installation of a westbound left-turn lane can be considered; however, since the intersection is operating safely and is projected to continue operating within the City's standards, the installation of a left-turn refuge does not appear to be necessary for safety or operations.

Warrant 1, Eight-Hour Vehicular Volume, was found to be met for the intersection of Willamette Falls Drive at 10th Street under existing conditions. However, since plans impacting the intersection are being evaluated by the City of West Linn that involve the 10th Street corridor and considering the fact that the signal is warranted under existing conditions, the installation of a traffic signal is not recommended as mitigation for the proposed development.


A detailed examination of the crash history at the study intersections shows no significant safety concerns and no trends that are indicative of design deficiencies. No safety mitigations are recommended.

APPENDIX

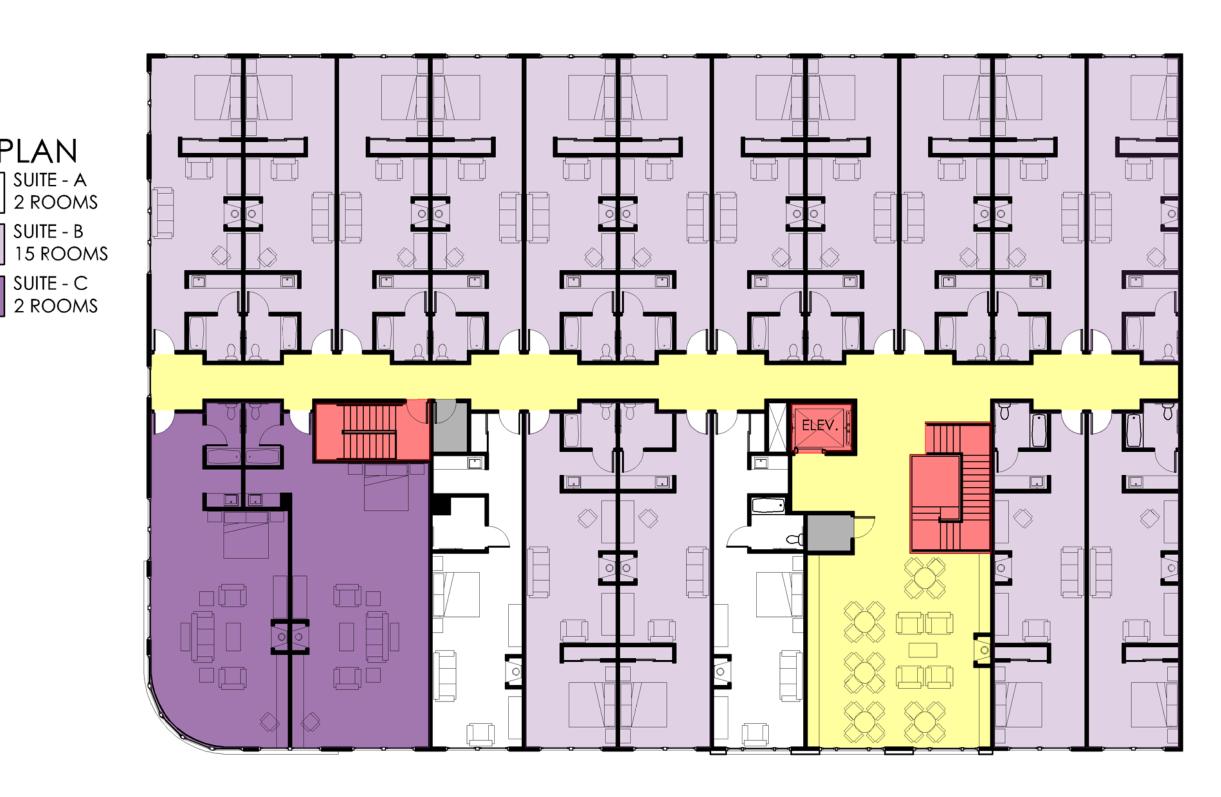
GARAGE LEVEL PLAN (parking)

Project Location

10940 SW Barnes Road #364 Portland, Oregon 97225 www.sg-arch.net

Willamette Falls Mixed -Use

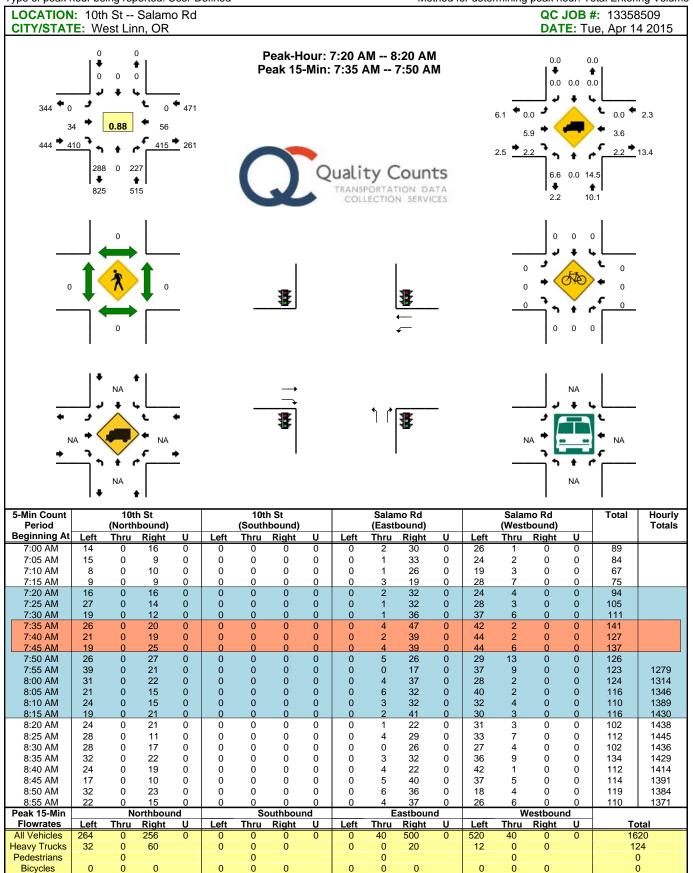
Willamette Falls Drive & 11th ST. West Linn, OR


WILLAMETTE NEIGHBORHOOD ASSOCIATION MEETING NOVEMBER 2015

UPPER PLAN (offices) 14,560 SF

KEY PLAN

Project Location

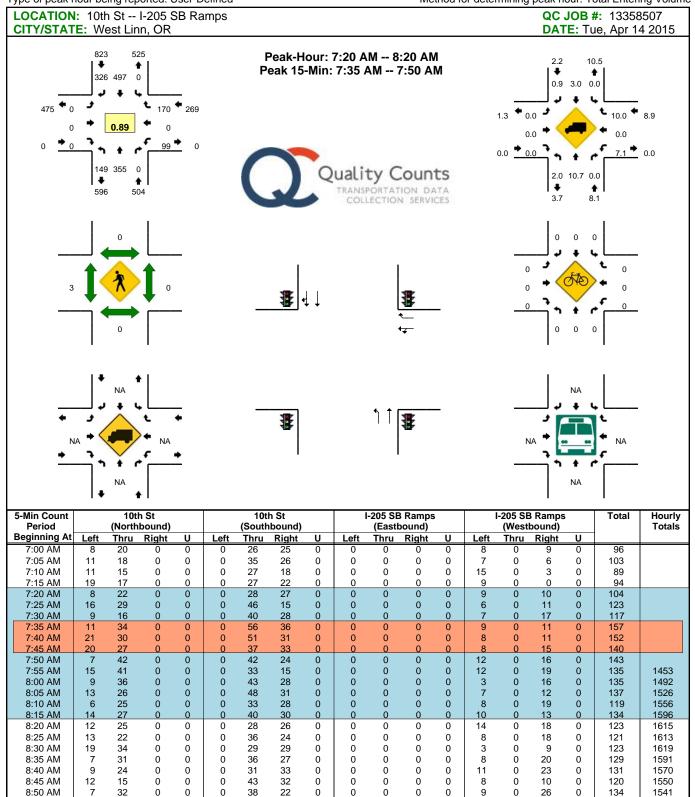

10940 SW Barnes Road #364 Portland, Oregon 97225 www.sg-arch.net

Willamette Falls Mixed -Use

Willamette Falls Drive & 11th ST. West Linn, OR

WILLAMETTE NEIGHBORHOOD ASSOCIATION MEETING NOVEMBER 2015

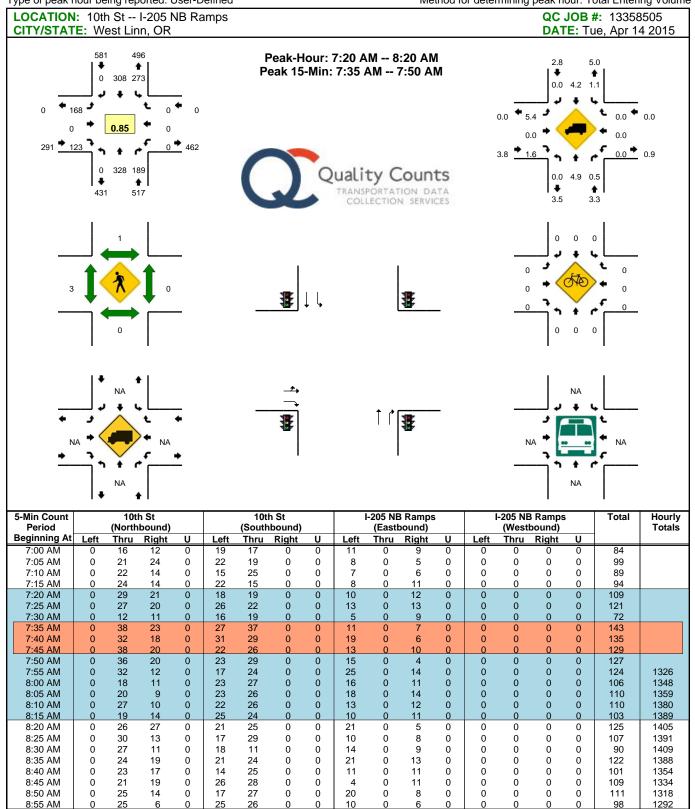
UPPER PLAN (hotel) 14,560 SF



Report generated on 4/29/2015 12:03 PM

Railroad Stopped Buses Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212


Type of peak hour being reported: User-Defined

8:50 AM 8:55 AM Northbound Peak 15-Min Southbound Eastbound Westbound Flowrates Thru Right Left Thru Right Left Right Left <u>Thru</u> Right Left Thru Total All Vehicles Heavy Trucks Pedestrians **Bicycles** Railroad Stopped Bus Comments:

Report generated on 4/29/2015 12:03 PM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

Left

0

0

0

Thru

0

0

0

0

Eastbound

Right

92

0

0

Westbound

0

0

0

Total

1628

68

0

0

Right

Report generated on 4/29/2015 12:02 PM

Left

0

0

0

Thru

432

32

0

0

Peak 15-Min

Flowrates

All Vehicles

Heavy Trucks

Pedestrians

Bicycles

Railroad Stopped Buses Comments: Northbound

0

0

Left

0

0

320

<u>Thru</u>

368

20

0

0

Right

244

Southbound

Right

0

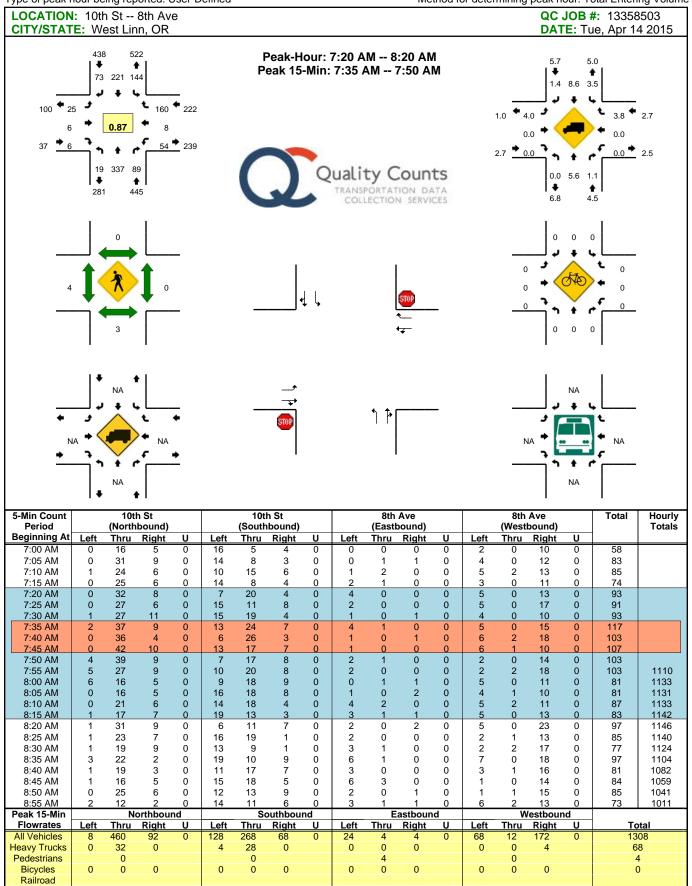
0

0

Left

172

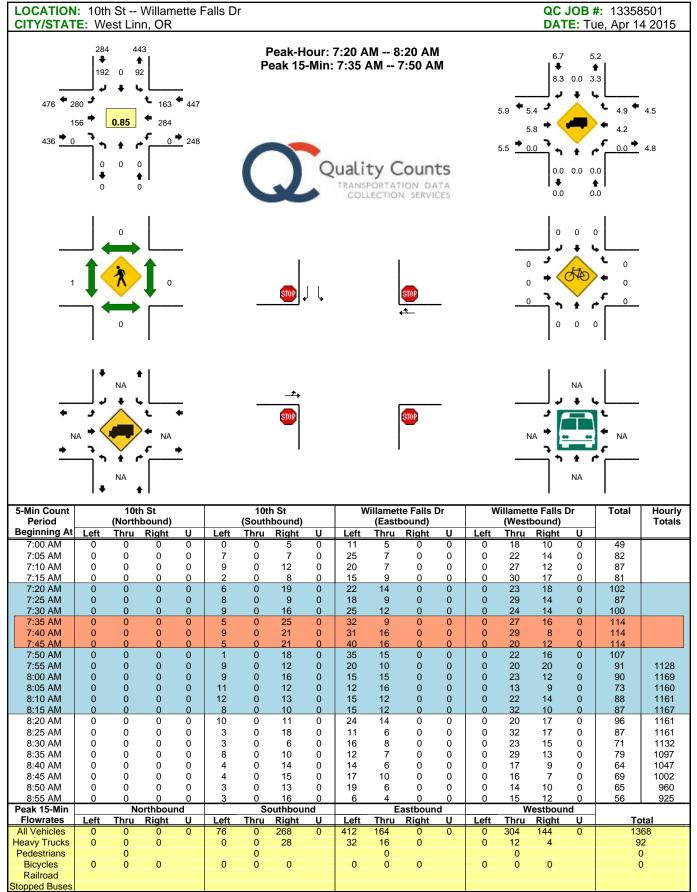
16


0

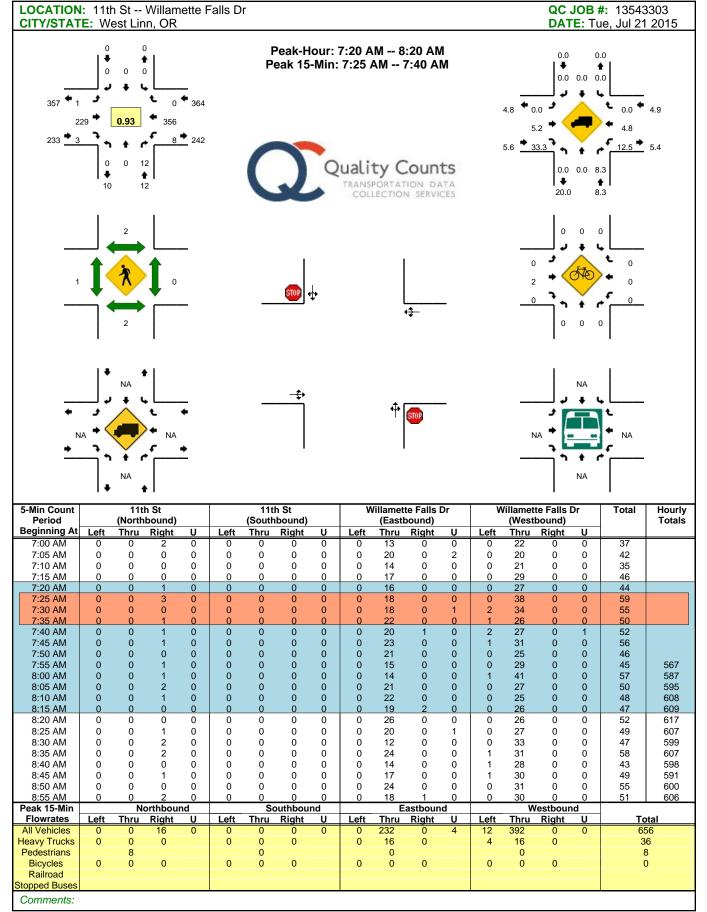
<u>Thru</u>

0

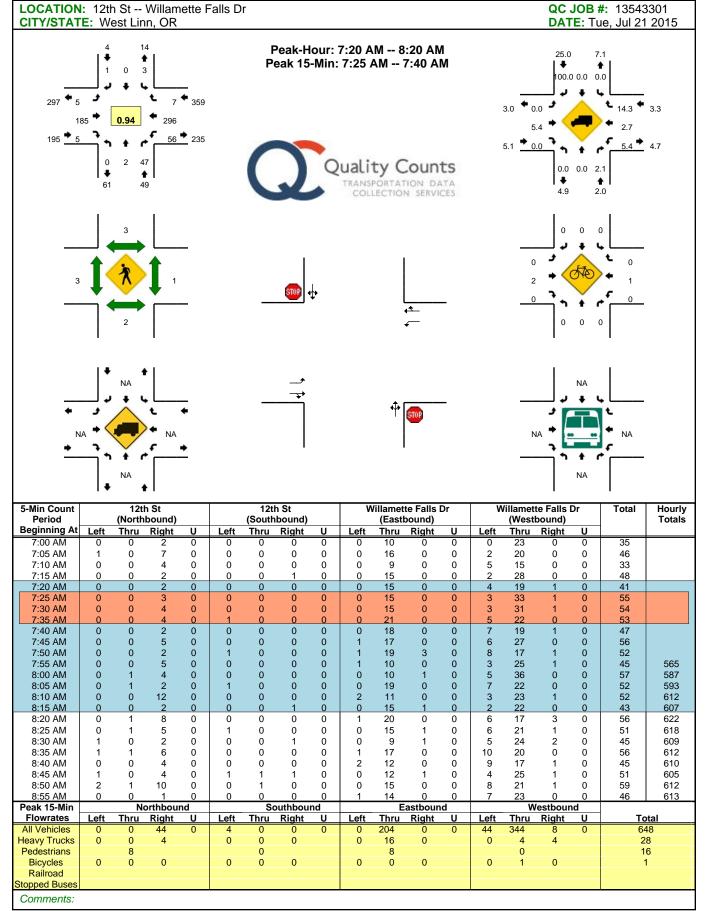
0


0

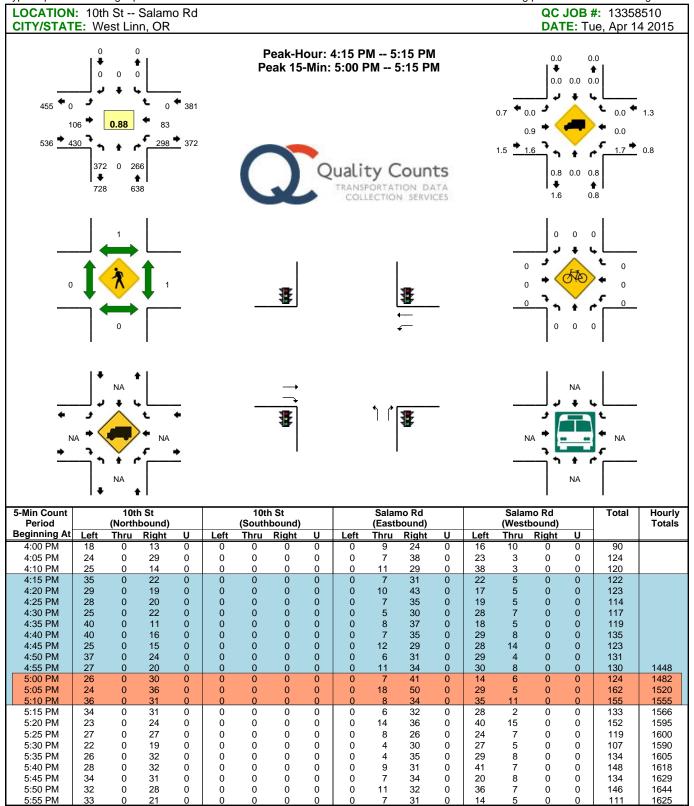
Comments:


Report generated on 4/29/2015 12:02 PM

Stopped Bus



Comments:


Report generated on 4/29/2015 12:02 PM

Report generated on 7/28/2015 3:07 PM

Report generated on 7/28/2015 3:07 PM

Report generated on 4/29/2015 12:04 PM

Northbound

4

0

Right

388

Thru

0

0

0

0

Left

0

0

344

Southbound

0

0

0

0

Left

0

0

0

Thru

0

0

0

132

Right

<u>Thru</u>

0

0

0

0

Left

0

0

0

Peak 15-Min

Flowrates

All Vehicles

Heavy Trucks

Pedestrians

Bicycles

Railroad Stopped Buses Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

Thru

88

0

0

0

Left

0

0

312

Eastbound

Right

4

0

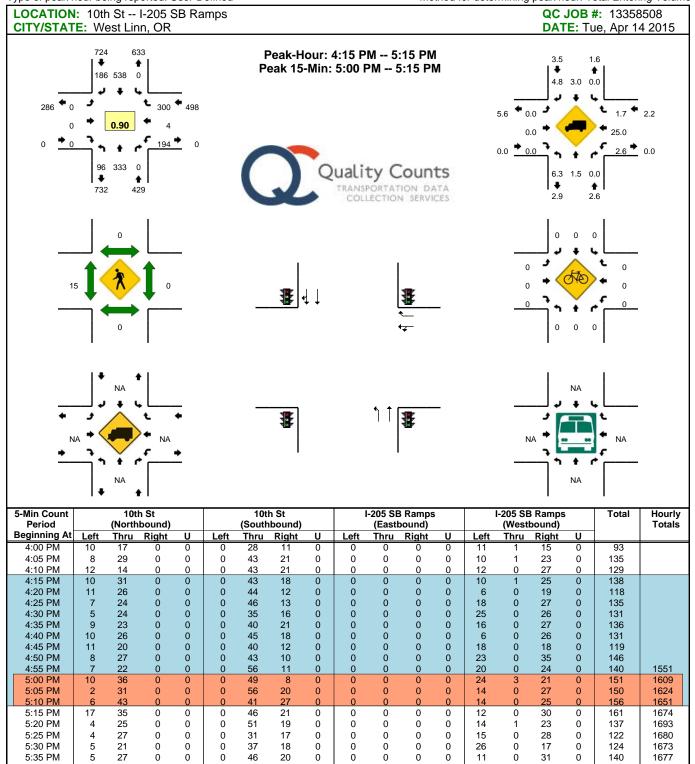
500

Westbound

0

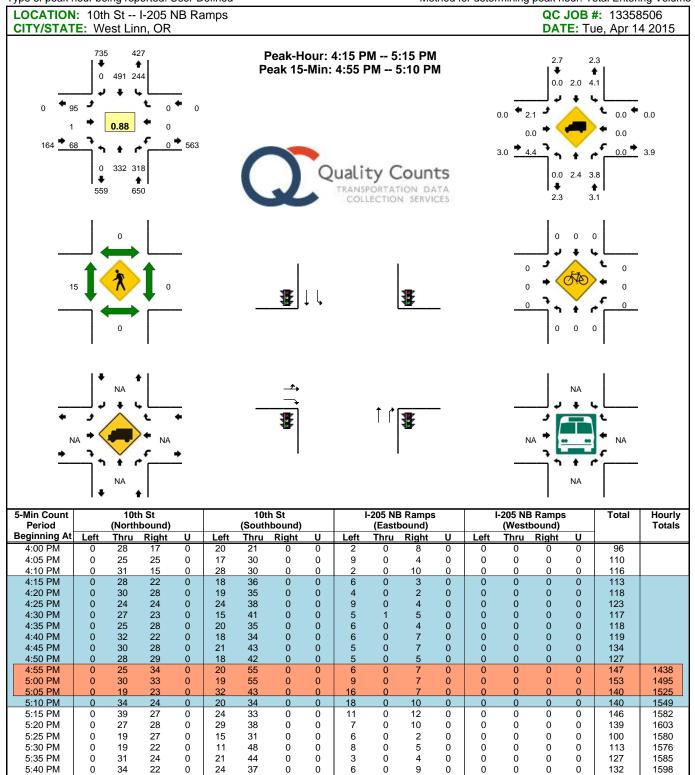
0

Right


Total

1764

8


0

0

5:40 PM 5:45 PM 5:50 PM 5:55 PM Northbound Peak 15-Min Southbound Eastbound Westbound Flowrates Left <u>Thru</u> Right Left Th<u>ru</u> Right Left <u>Thru</u> Right Left Thru Right Total All Vehicles Heavy Trucks Pedestrians **Bicycles** Railroad Stopped Bus Comments:

Report generated on 4/29/2015 12:04 PM

Left

Thru

Northbound

Right

Left

Thru

Southbound

Right

Left

<u>Thru</u>

Eastbound

Right

Left

Thru

Westbound

Right

Total

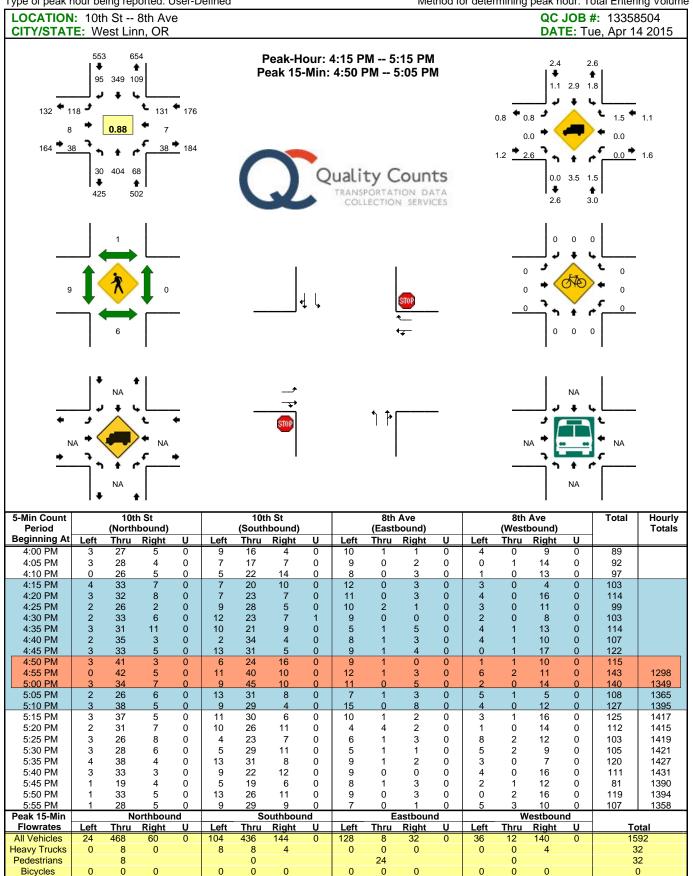
5:45 PM

5:50 PM

5:55 PM

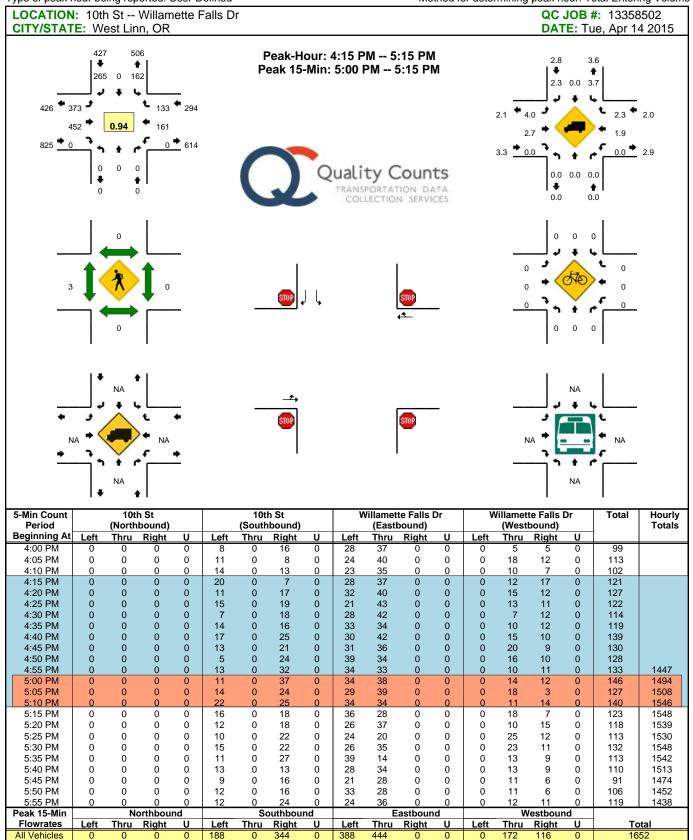
Peak 15-Min

Flowrates


All Vehicles

Heavy Trucks

Pedestrians

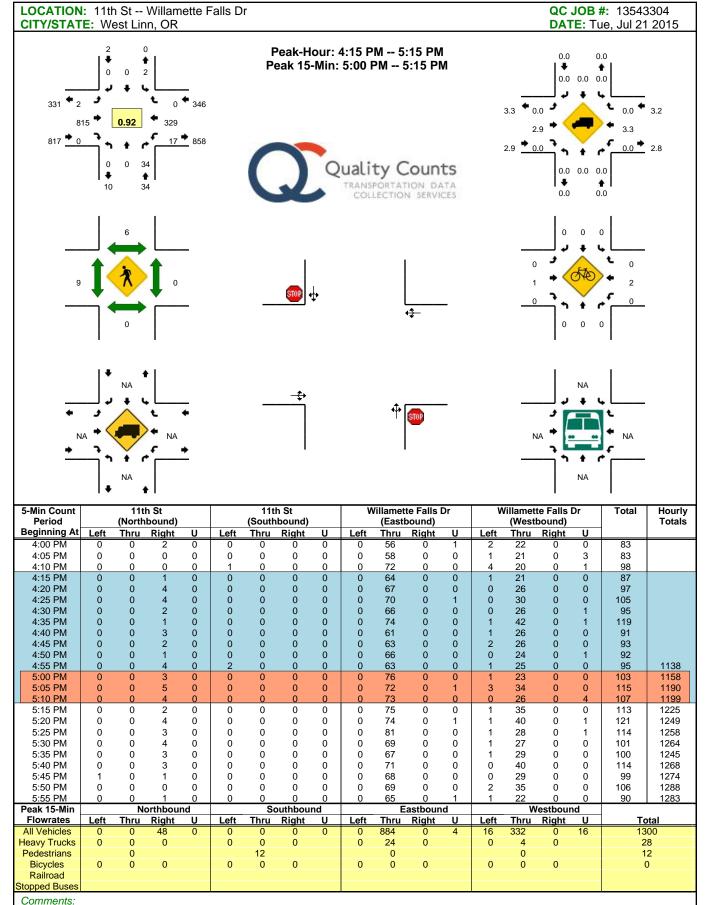

Bicycles

Railroad Stopped Buses Comments:

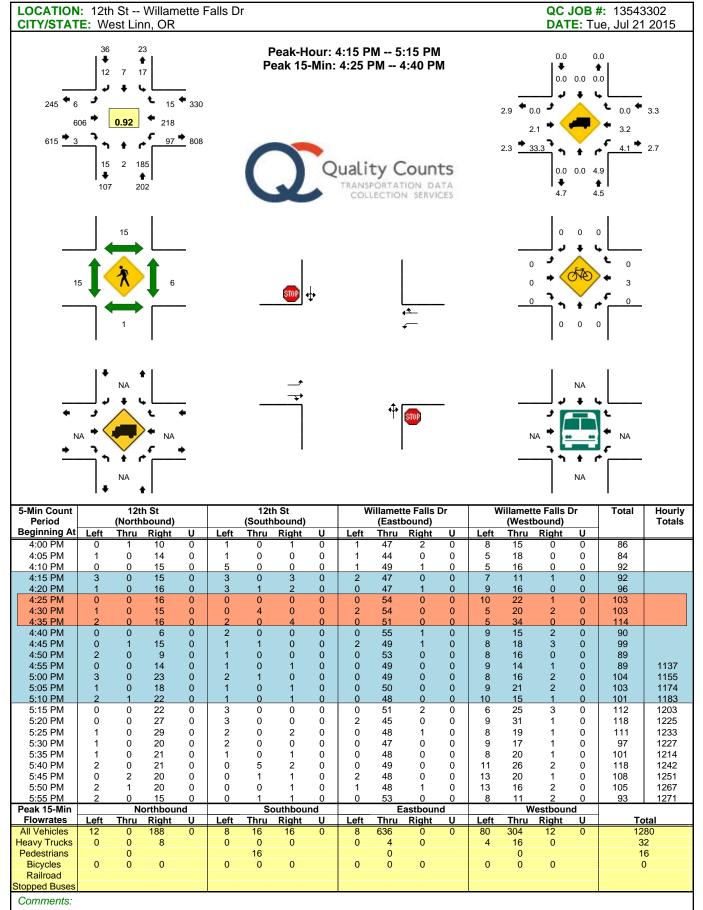
Report generated on 4/29/2015 12:04 PM

Railroad Stopped Bus Comments:

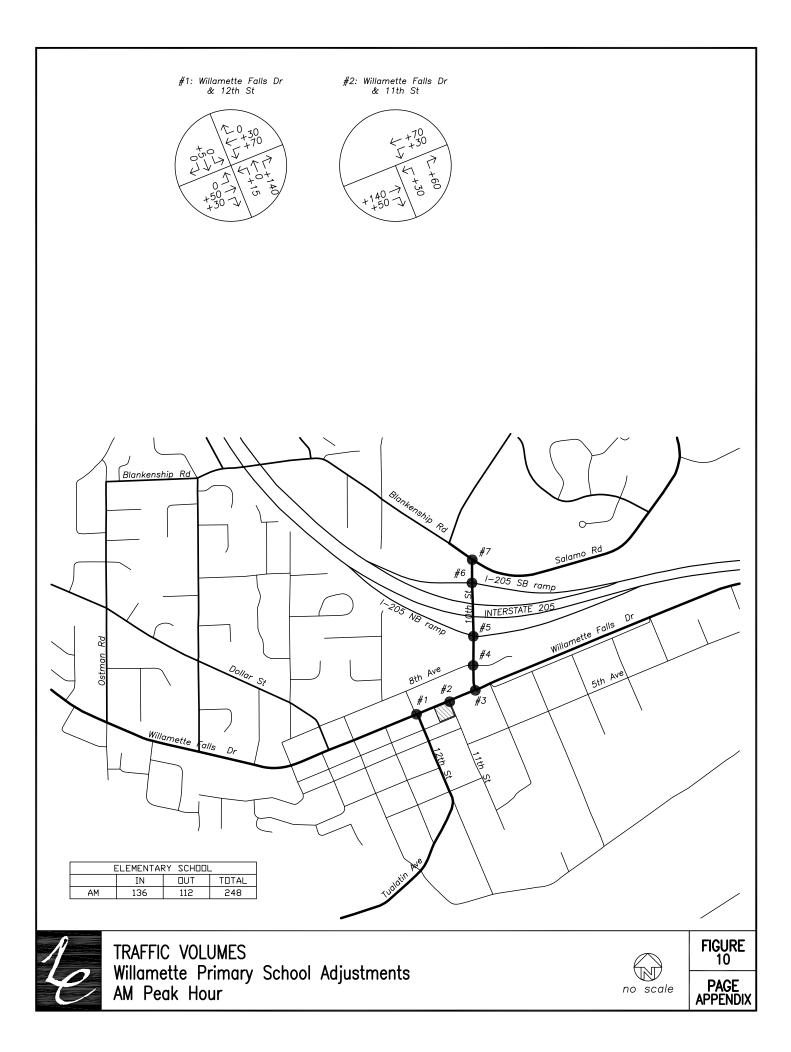
Report generated on 4/29/2015 12:04 PM

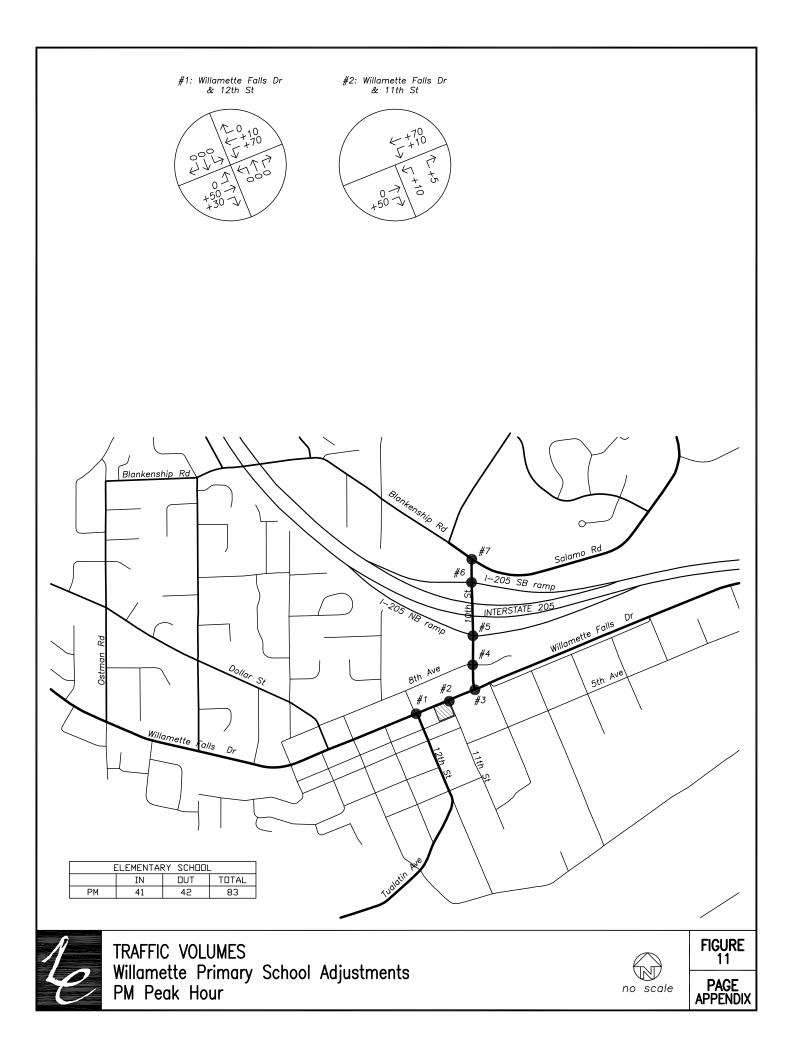

Heavy Trucks

Pedestrians


Bicycles

Railroad Stopped Buses Comments:


SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212



Report generated on 7/28/2015 3:08 PM

Report generated on 7/28/2015 3:08 PM

4

TRIP GENERATION CALCULATIONS

Land Use: Shopping Center Land Use Code: 820 Variable: 1,000 Sq Ft Gross Leasable Area Variable Value: 10.51

AM PEAK HOUR

PM PEAK HOUR

Trip Rate: 3.71

Trip Rate: 0.96

	Enter	Exit	Total
Directional Distribution	62%	38%	
Trip Ends	6	4	10

	Enter	Exit	Total
Directional Distribution	48%	52%	
Trip Ends	19	20	39

WEEKDAY

Trip Rate: 42.7

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	224	224	448

SATURDAY

Trip Rate: 49.97

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	263	263	526

Source: TRIP GENERATION, Ninth Edition

4

TRIP GENERATION CALCULATIONS

Land Use: General Office Building Land Use Code: 710 Variable: 1000 Sq Ft Gross Floor Area Variable Value: 14.6

AM PEAK HOUR

Trip Rate: 1.56

	Enter	Exit	Total
Directional Distribution	88%	12%	
Trip Ends	20	3	23

PM PEAK HOUR

Trip Rate: 1.49

	Enter	Exit	Total
Directional Distribution	17%	83%	
Trip Ends	4	18	22

WEEKDAY

Trip Rate: 11.03

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	80	80	160

SATURDAY

Trip Rate: 2.46

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	18	18	36

Source: TRIP GENERATION, Ninth Edition

4

TRIP GENERATION CALCULATIONS

Land Use: Hotel Land Use Code: 310 Variable: Rooms Variable Value: 19

AM PEAK HOUR

Trip Rate: 0.53

	Enter	Exit	Total
Directional Distribution	59%	41%	
Trip Ends	6	4	10

PM PEAK HOUR

Trip Rate: 0.6

	Enter	Exit	Total
Directional Distribution	51%	49%	
Trip Ends	6	5	11

WEEKDAY

Trip Rate: 8.17

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	78	78	156

SATURDAY

Trip Rate: 8.19

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	78	78	156

Source: TRIP GENERATION, Ninth Edition

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

WILLAMETTE FALLS DR and 12TH ST, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2012														
REAR-END	0	0	1	1	0	0	0	0	0	1	0	0	0	0
YEAR 2012 TOTAL	0	0	1	1	0	0	0	0	0	1	0	0	0	0
YEAR: 2011														
REAR-END	0	1	0	1	0	1	0	0	1	0	1	0	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2011 TOTAL	0	1	1	2	0	1	0	1	1	1	1	1	0	0
YEAR: 2010														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2010 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
FINAL TOTAL	0	2	2	4	0	2	0	2	1	3	1	2	0	0

CDS38 02/04/: CITY 01	2016	N, CLACKAMAS	COUNTY			WILLAMET	TRANS	PORTATION	DATA S URBA ST, Cit	ECTION - CR N NON-SYSTE y of West L	- TRANSPORTATION ASH ANAYLYSIS AN M CRASH LISTING inn, Clackamas C	D REPORTING	UNIT	2/31/20	14		
	SD PRS		OI NGC	CITY STREET	RD CHAR	INT-TYPE			WTHR	Total crash CRASH	SPCL USE	MOVE			А	G	
SER#	EAUC ELGH		CLASS DIST	FIRST STREET	DIRECT	(MEDIAN) LEGS	INT-REL TRAF-	OFFRD RNDBT	SURF	COLL	TRLR QTY OWNER	MOVE FROM	PRTC	INJ		E LIC	CNG
INVEST	DCSL		FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY		X RES	
03816 CITY	N N N	10/19/2010 TU 3P		WILLAMETTE FALLS DR 12TH ST	INTER NE 06	CROSS 0	N STOP SIGN	N N N	CLR DRY DAY	BIKE ANGL INJ	01 NONE 0 PRVTE PSNGR CAR	TURN-L SE-SW	01 DRVR	NONE	38	F OR-	
												- STRGHT SW NE	01 BIKE	INJC	43	м	
03006 NONE	N N N	08/18/2011 TH 10A	16 0	WILLAMETTE FALLS DR 12TH ST	INTER CN 04	CROSS 0	N STOP SIGN	N N N	CLR DRY DAY	ANGL-OTH TURN PDO	01 NONE 0 PRVTE PSNGR CAR	STRGHT SW-NE	01 DRVR	NONE	60		-Y <25
											02 NONE 0 PRVTE PSNGR CAR	TURN-L SE-SW	01 DRVR	NONE	00	F UNI UNI	
03447 NONE	N N N	09/06/2012 TH 5P	16 83	WILLAMETTE FALLS DR 12TH ST	STRGHT SW 08	(NONE)	N UNKNOWN	N N N	CLR UNK DAY	S-1STOP REAR PDO	01 NONE 0 PRVTE PSNGR CAR	STRGHT SW-NE	01 DRVR	NONE	38		-Y <25
											02 NONE 0 PRVTE PSNGR CAR	STOP SW-NE	01 DRVR	NONE	56		-Y
01108 CITY	ΝΥΝΝ	N 04/01/2011 FR 10P	16 150	WILLAMETTE FALLS DR 12TH ST	GRADE NE 07	(NONE) (02)	N NONE	N N N	RAIN WET DLIT	PRKD MV REAR INJ	01 NONE 0 PRVTE PSNGR CAR 02 NONE 0	STRGHT SW-NE PRKD-P	01 DRVR	INJC	43		-Y <25
											PRVTE PSNGR CAR	SW-NE					
											03 NONE 0 PRVTE PSNGR CAR	PRKD-P SW-NE					

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

PED				
LOC	ERROR	ACT	EVENT	CAUSE
				02
		015		00
	027	000		02
I XWLK	000	035		00
				02
		000		00
	000	000		00
		015		0.0
	0.00	015		00
	028	000		02
				07
	026	000 000		00 07
	020	000		07
		011		00
	000	000		00
			013	10
		000		00
	080	000		10
		008	013	00

008

00

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

WILLAMETTE FALLS DR and 11TH ST, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2013														
REAR-END	0	1	0	1	0	1	0	0	0	1	0	0	0	0
YEAR 2013 TOTAL	0	1	0	1	0	1	0	0	0	1	0	0	0	0
FINAL TOTAL	0	1	0	1	0	1	0	0	0	1	0	0	0	0

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

WILLAMETTE FALLS DR and 11TH ST, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 1

	S D																		
	PRSW				INT-TYPE					SPCL USE									
	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S					
SER#	E L G H R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G E	LICNS	PED			
INVEST	D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	E X	RES	LOC	ERROR	ACT EVENT	CAUSE
03417	Y N N N N 06/13/2013	16	WILLAMETTE FALLS DR	STRGHT		Ν	N	UNK	PRKD MV	01 NONE 0	STRGHT								01,32
CITY	TH	86	11TH ST	SW	(NONE)	UNKNOWN	N	UNK	REAR	PRVTE	NE-SW							000	00
	8A			07			Ν	DAY	INJ	PSNGR CAR		01 DRVR	INJB	43 M	OR-Y		047,080	000	01,32
					(02)										OR<25				
										02 NONE 0	PRKD-P								
										PRVTE	NE-SW							008	00
										PSNGR CAR									

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

02/04/2016

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WILLAMETTE FALLS DR, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2014														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2014 TOTAL	0	0	2	2	0	0	0	2	0	1	1	2	0	0
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2011 TOTAL	0	0	2	2	0	0	0	2	0	2	0	2	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
	-	-	_	_	-	-	-	_	-	_	-	_	-	-
FINAL TOTAL	0	0	5	5	0	0	0	5	0	4	1	5	0	0

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and WILLAMETTE FALLS DR, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 5

	S D																				
	P R S	W				INT-TYPE					SPCL USE										
	EAUC	O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A	S					
SER#	ELGH	R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G	E	LICN	S PED			
INVEST	DCSL	K_TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRI	Y E	X	RES	LOC	ERROR	ACT EVENT	CAUSE
04581	N N N	11/30/2011	16	WILLAMETTE FALLS DR	INTER	3-LEG	Ν	N	CLR	S-1STOP	01 NONE 0	STRGHT									07
NONE		WE	0	10TH ST	SW		STOP SIGN	Ν	DRY	REAR	PRVTE	SW-NE								000	00
		4P			06	0		Ν	DAY	PDO	PSNGR CAR 02 NONE 0	STOP	01 DRVR	NONE	2 00	М	UNK UNK		026	000	07
											PRVTE	STOP SW-NE								011	00
											PSNGR CAR	SW HE	01 DRVR	NONE	: 46	м	OR-Y		000	000	00
													or bron		. 10		OR<2				
00394	N N N	01/30/2014	16	WILLAMETTE FALLS DR	INTER	CROSS	N	Ν	CLR	S-1STOP	01 NONE 0	STRGHT									07
NONE		ТН	0	10TH ST	W		STOP SIGN	N	DRY	REAR	PRVTE	SW-NE								000	00
		бA			06	0		N	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	: 00	М	OR-Y		026	000	07
											00 NONE 0	GEOD					UNK				
											02 NONE 0	STOP								012	00
											PRVTE PSNGR CAR	SW-NE	01 DRVR	NONE	· 21	F	OR-Y		000	000	00
											PSNGK CAR		UI DRVR	NONE		Г	OR-1 OR<2		000	000	00
02189	N N N	06/28/2010	16	WILLAMETTE FALLS DR	INTER	3-leg	N	N	CLR	S-1TURN	01 NONE 0	STRGHT								004	07
NONE		MO	0	10TH ST	CN		STOP SIGN	Ν	DRY	REAR	PRVTE	NE-SW								000	00
		12P			02	0		Ν	DAY	PDO	PSNGR CAR		01 DRVR	NONE	38	F	OR-Y OR<2		026	000	07
											02 NONE 0	STOP					UR Z				
											PRVTE	NE-N								013 004	00
											PSNGR CAR		01 DRVR	NONE	65	F	OR-Y OR<2		000	000	00
											02 NONE 0	STOP									
											PRVTE	NE-N								013 004	00
											PSNGR CAR		02 PSNG	NO<5	5 04	М			000	000	00
02637	N N N	07/23/2011	16	WILLAMETTE FALLS DR	INTER	3-leg	N	N	CLR	ANGL-OTH	01 NONE 0	TURN-R									02
NONE		SA	0	10TH ST	CN		STOP SIGN	N	DRY	TURN	PRVTE	N -SW								015	00
		7P			01	0		N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00	М	OR-Y		028	000	02
																	OR<2	5			
											02 NONE 0	STRGHT									
											PRVTE	NE-SW								000	00
											PSNGR CAR		01 DRVR	NONE	18	F	OR-Y OR<2!		000	000	00
01104	NNNN	N 03/19/2014	16	WILLAMETTE FALLS DR	INTER	3-leg	N	N	CLD	ANGL-OTH	01 NONE 0	TURN-R									02
CITY		WE	0	10TH ST	CN		STOP SIGN	Ν	DRY	TURN	PRVTE	N -SW								015	00
		10A			01	0		Ν	DAY	PDO	PSNGR CAR		01 DRVR	NONE	66	М	OR-Y OR<2		028	000	02
											02 NONE 0	STRGHT									
											PRVTE	NE-SW								000	00
											PSNGR CAR		01 DRVR	NONE	50	F	OR-Y		000	000	00
																	OR<2	5			

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and 8TH AVE, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2014														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR 2014 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2013														
FIXED / OTHER OBJECT	0	0	1	1	0	0	0	0	1	0	1	0	0	1
YEAR 2013 TOTAL	0	0	1	1	0	0	0	0	1	0	1	0	0	1
YEAR: 2012														
ANGLE	0	0	1	1	0	0	0	0	1	0	1	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	0	1	1	0	0
YEAR 2012 TOTAL	0	0	2	2	0	0	0	1	1	0	2	2	0	0
VEND. 2010														
YEAR: 2010 ANGLE	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
FINAL TOTAL	0	0	5	5	0	0	0	2	3	1	4	4	0	1

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and 8TH AVE, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 5

	PRSW				INT-TYPE					SPCL USE									
	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S	3				
SER#	ELGHRDAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G E	LICN	IS PED			
INVEST	D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	E X	RES	LOC	ERROR	ACT EVENT	CAUSE
00143	N N N 01/12/201	2 17	8TH AVE	INTER	CROSS	N	N	CLR	ANGL-OTH	01 NONE 0	TURN-L								08
NONE	TH		10TH ST	N		STOP SIGN	N	DRY	TURN	PRVTE	W -N							015	00
	7P			05	0		N	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	80 M	OR-Y	7	007	000	08
															OR<2	25			
										02 NONE 0	STRGHT								
										PRVTE	S -N							000	00
										PSNGR CAR		01 DRVR	NONE	20 M	OR-Y	7	000	000	00
															OR<2	25			
04522	N N N N N 11/29/201	0 17	8TH AVE	INTER	CROSS	N	Ν	RAIN	ANGL-OTH	01 NONE	STRGHT								02
CITY	МО		10TH ST	CN		STOP SIGN	N	WET	ANGL	PRVTE	W -E							015	00
	5P			04	0		N	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	60 F	OR-Y	7	028	000	02
															OR<2	25			
										02 NONE	STRGHT								
										PRVTE	S -N							000	00
										PSNGR CAR		01 DRVR	NONE	43 F	OR-Y	7	000	000	00
															OR<2	25			
04173	N N N N N 11/06/201	2 17	8TH AVE	INTER	CROSS	Ν	Ν	CLD	ANGL-OTH	01 NONE 0	STRGHT								02
CITY	TU	0	10TH ST	CN		STOP SIGN	N	WET	ANGL	PRVTE	W -E							015	00
	8A			03	0		N	DAWN	PDO	PSNGR CAR		01 DRVR	NONE	25 M	OR-Y		028	000	02
															OR<2	25			
										02 NONE 0	STRGHT								
										PRVTE	N -S							015	00
										PSNGR CAR		01 DRVR	NONE	42 F	OR-Y	7	000	000	00
															OR<2	25			
02513	N N N N N 07/01/201	4 17	8TH AVE	INTER	CROSS	Ν	Ν	CLR	ANGL-OTH	01 NONE 0	STRGHT								02
CITY	TU	0	10TH ST	CN		STOP SIGN	N	DRY	ANGL	PRVTE	E -W							015	00
	1P			01	0		N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	68 M	OR-Y	7	028	000	02
															OR<2	25			
											0 m n 0 1 m								
										02 NONE 0	STRGHT								
										02 NONE 0 PRVTE	N -S							000	00
												01 DRVR	NONE	61 M	OR-Y	7	000	000 000	0 0 0 0
										PRVTE		01 DRVR	NONE	61 M	OR-Y OR<2		000		
04978	YYNNN12/22/201	3 19	8TH AVE	STRGHT		N	Y	CLD	FIX OBJ	PRVTE PSNGR CAR	N -S	01 DRVR	NONE	61 M			000	000	00
	Y Y N N N 12/22/201 SU		8TH AVE 10TH ST	STRGHT SE	(NONE)	N	Y	CLD WET	FIX OBJ FIX	PRVTE PSNGR CAR	N -S	01 DRVR	NONE	61 M			000	000	00
04978 CITY	Y Y N N N 12/22/201 SU 2A	3 19 325	8TH AVE 10TH ST	STRGHT SE 07	(NONE)	N NONE	Y N Y	CLD WET DARK	FIX OBJ FIX PDO	PRVTE PSNGR CAR	N -S	01 DRVR			OR<2	25	000	000 042,088 000 042,088	00

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

S D

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and 8TH CT, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2014														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR 2014 TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR: 2013														
ANGLE	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	2	0	2	0	3	0	2	0	1	1	2	0	0
YEAR 2013 TOTAL	0	2	1	3	0	3	0	3	0	2	1	3	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR 2012 TOTAL	0	0	1	1	0	0	0	0	1	0	1	1	0	0
YEAR: 2011														
ANGLE	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2011 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2010														
TURNING MOVEMENTS	0	0	2	2	0	0	0	1	1	1	1	2	0	0
YEAR 2010 TOTAL	0	0	2	2	0	0	0	1	1	1	1	2	0	0
FINAL TOTAL	0	4	4	8	0	5	0	6	2	4	4	8	0	0

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and 8TH CT, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 8

	PRS	W					INT-TYPE					SPCL USE								
	EAUC		CLASS	3	CITY STREET	RD CHAR	(MEDIAN)		OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S				
SER#	ELGH		DIST		FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT		COLL	OWNER.	FROM	PRTC	TNJ		LICNS PED			
	DCSL		FROM		SECOND STREET	LOCTN	(#LANES)	CONTL		LIGHT	SVRTY	V# TYPE	TO	P# TYPE				ERROR	ACT EVENT	CAUSE
02649	N N N	07/29/2010		19	8TH CT	INTER	CROSS	N	N	CLR	ANGL-OTH	01 NONE 0	TURN-L	<u></u>			<u>RES HOC</u>	ERROR	ACI EVENI	02
NONE	IN IN IN	0772972010 TH	1	19	10TH ST	CN	CROSS	STOP SIGN	N	DRY	TURN	PRVTE	NE-SE						000	00
NONE		4P			10111 01	03	0	bior bion	N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 F	UNK	028	000	02
																	OR<25			
												02 NONE 0	STRGHT							
												PRVTE	NW-SE						000	00
												PSNGR CAR		01 DRVR	NONE	38 M	OR-Y	000	000	00
																	OR<25			
03642	N N N	10/09/2010	1	17	8TH CT	INTER	CROSS	Ν	Ν	CLD	ANGL-OTH	01 NONE 0	STRGHT							02
CITY		SA			10TH ST	CN		TRF SIGNAL	Ν	WET	TURN	PRVTE	S -N						000	00
		9P				04	0		Ν	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	46 M		000	000	00
																	OR<25			
												02 NONE 0	TURN-L						015	
												PRVTE	E -S		NONE	20 1		0.00	015	00
												PSNGR CAR		01 DRVR	NONE	20 F	OR-Y OR>25	028	000	02
00005				1.0	0.577 0.5		ab c c c			<i>a</i>		01 270	0====				01(20			
03280	NNNN	N 09/06/2011	. <u>1</u>	19	8TH CT	INTER	CROSS	N GWOD GIGN	N	CLR	ANGL-OTH	01 NONE 0	STRGHT						013	02
CITY		TU 3P			10TH ST	CN 04	0	STOP SIGN	N N	DRY DAY	ANGL INJ	PRVTE PSNGR CAR	NW-SE	01 DRVR	NONE	78 M	OR-Y	028	015 000	00 02
		JP				04	0		IN	DAI	TINO	PSNGK CAR		UI DRVR	NONE	70 M	OR-1 OR<25	028	000	02
												02 NONE 0	STRGHT				010425			
												PRVTE	SW-NE						000 013	00
												PSNGR CAR		01 DRVR	NONE	19 M	OR-Y	000	000	00
																	OR<25			
												03 NONE 0	STOP							
												PRVTE	SE-NW						011 013	00
												PSNGR CAR		01 DRVR	INJC	30 M	OR-Y	000	000	00
																	OR<25			
												04 NONE 0	STOP							
												PRVTE	SE-NW		NONE	40 M		000	022	00
												PSNGR CAR		01 DRVR	NONE	43 M	OR-1 OR>25	000	000	00
		11/05/0010			0												01/25			
	N N N	11/07/2012		17	8TH CT	INTER	CROSS	N GMOD GIGN	N	UNK		01 NONE 0	TURN-L						000	02
NONE		WE 6P	0		10TH ST	CN 03	0	STOP SIGN	N N	WET	TURN PDO	PRVTE PSNGR CAR	E -S	01 DRVR	NONE	16 5	OP-V	028	000 000	00 02
		OP				03	0		IN	DUSK	PDO	PSNGR CAR		UI DRVR	NONE	IO F	OR<25	028	000	02
												02 NONE 0	STRGHT				01(125			
												PRVTE	N -S						000	00
												PSNGR CAR		01 DRVR	NONE	00 M	OR-Y	000	000	00
																	OR<25			
01337	NNNN	N 04/19/2013	1	19	8TH CT	INTER	CROSS	N	N	CLR	ANGL-OTH	01 NONE 0	STRGHT							02
CITY		FR	0		10TH ST	CN		STOP SIGN	N	DRY	ANGL	PRVTE	E -W						015	00
		4P				01	0		N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	62 F	OR-Y	028	000	02
																	OR<25			
												02 NONE 0	STRGHT							
												PRVTE	N -S						000	00
												PSNGR CAR		01 DRVR	NONE	19 M		000	000	00
																	OR<25			
01621	N N N	05/10/2013		17	8TH CT	INTER	CROSS	Ν	Ν	CLR		01 NONE 0	TURN-L							02
NONE			0		10TH ST	CN		TRF SIGNAL	N	DRY	TURN	PRVTE	E -S						015	00
		11A				01	0		Ν	DAY	INJ	PSNGR CAR		01 DRVR	INJC	65 M	OR-Y	028	000	02

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

S D

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and 8TH CT, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 8

S D																		
PRSW				INT-TYPE					SPCL USE									
E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A	S				
E L G H R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G	Е	LICNS PED			
D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRT	Y E			ERROR	ACT EVENT	CAUSE
									0.2 NONE 0	TIDNIT					OR<25			
																	000	00
										N E	01 DRVR	NONE	58	М	OR-Y	000		00
N N N N N 12/05/2013	17	8TH CT	INTER	CROSS	N	N	CLR	0-1TURN	01 NONE 0	STRGHT								02,08
TH	0	10TH ST	CN		TRF SIGNAL	Ν	DRY	TURN	PRVTE	S -N							000	00
7₽			04	0		Ν	DLIT	INJ	PSNGR CAR		01 DRVR	INJC	46	М	OR-Y	000	000	00
															OR<25			
										N -E								00
									PSNGR CAR		01 DRVR	INJC	17			028,004	000	02,08
															OR<25			
N N N N N 01/14/2014	17	8TH CT	INTER	CROSS	N	N	CLR	ANGL-OTH	01 NONE 0	TURN-L								02
TU	0	10TH ST	CN		STOP SIGN	N	DRY	TURN	PRVTE	W -N							000	00
7₽			04	0		Ν	DLIT	INJ	PSNGR CAR		01 DRVR	INJC	34			028	000	02
															OR<25			
										S -N								00
									PSNGR CAR		01 DRVR	NONE	20	М	OR-Y	000	000	00
	P R S W E A U C O DATE E L G H R DAY D C S L K TIME N N N N 12/05/2013 TH 7P N N N N N N N N 12/05/2013 TH 7P TH 7P	P R S W E A U C O DATE CLASS E L G H R DATE CLASS D C S L R DAY DIST D C S L K TIME FROM N N N N 12/05/2013 17 TH 0 7P 0 14 N N N N 0.1/14/2014 17 TU TU 0 14 14	P R S W E A U C O DATE CLASS CITY STREET E L G H R DAY DIST FIRST STREET D C S L K TIME FROM SECOND STREET N N N N N 12/05/2013 17 8TH CT TH 0 10TH ST 7P 7P 10TH ST N N N N N 01/14/2014 17 8TH CT TU 0 10TH ST	P R Š Ŵ E A U C O DATE CLASS CITY STREET RD CHAR E L G H R DAY DIST FIRST STREET DIRECT D C S L K TIME FROM SECOND STREET LOCTN N N N N N 12/05/2013 17 8TH CT INTER TH 0 10TH ST CN N N N N N 01/14/2014 17 8TH CT INTER TU 0 10TH ST CN	P R S W INT-TYPE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) E L G H R DAY DIST FIRST STREET DIRECT LEGS D C S L K TIME FROM SECOND STREET LOCTN (#LANES) N N N N 12/05/2013 17 8TH CT INTER CROSS TH 0 10TH ST CN 04 0	P R S W INT-TYPE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) INT-REL E L G H R DAY DIST FIRST STREET DIRECT LeGS TRAF- D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL N N N N N 12/05/2013 17 8TH CT INTER CROSS N TH 0 10TH ST CN Additional of the standard of	P R S W INT-TYPE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFRD E L G H R DAY DIST FIRST STREET DIRECT LEGS TRAF- RNDBT D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY N N N N 12/05/2013 17 8TH CT INTER CROSS N N N TH 0 10TH ST CN 04 0 N N N N N 0 10TH ST CN STOP SIGN N N N N N 01/14/2014 17 8TH CT INTER CROSS N N	P R S W INT-TYPE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFRD WTHR E L G H R DAY DIST FIRST STREET DIRECT LEGS TRAF- RNDBT SURF D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT N N N N 12/05/2013 17 8TH CT INTER CROSS N N N CLR TH 0 10TH ST CN O4 0 N DRY N N N N 01/14/2014 17 8TH CT INTER CROSS N N DRY N N N N 01/14/2014 17 8TH CT INTER CROSS N N DIT TU 0 10TH ST CN N N DIT	P R S W INT-TYPE E A U C 0 DATE CLASS CITY STREET RD (MEDIAN) INT-REL OFFRD WTR CRASH B L G H R DAY DIST FIRST STREET DIRECT LEGS TRAF- RNDBT SUFF COLL D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY N N N N 12/05/2013 A 17 8TH CT INTER CROSS N N CLAS O O O O O DIST TURN 7P 0 10TH ST CN CROSS N N DILT INJ N N N 01/14/2014 17 8TH CT INTER CROSS N N DLT TURN N N N 01/14 17 8TH CT INTER CROSS N N N <td>P R S W INT-TYPE INT-TYPE SPCL USE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFRD WTR CRASH TRLR QTY D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# TYPE D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# TYPE N N N N N 12/05/2013 17 8TH CT INTER CROSS N N N DIT 01 NONE 0 PRVTE 7P 01 10TH ST CROSS N N N DIST 1NTER CROSS N N DIST 1NTER CROSS N DIST DINE 0 PRVTE PSNR CAR N N N 10/14/2014 17 8TH CT INTER CROSS N N DIST DINE 0 PRVTE PSNR CAR N N N 0/11/14/2014 17 8TH CT</td> <td>P R S W INT-TYPE INT-TYPE SPCL USE SPCL USE MOVE PROM CIASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFD WHR CRASH TRLR QTY MOVE PROM D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVT QUE V# TYPE TO V V V FROM SECOND STREET LOCTN (#LANES) CONTL DRVW LIGHT VRVTY V# TYPE TO V V V FROM SECOND STREET LOCTN (#LANES) CONTL DRVW LIGHT VRVTY V# TYPE TO V V V V V VF TYPE TO O STREHT TO VE STREHT STREHT TO TO TO O STREHT STREHT O O N N DIS DIS TO NONE 0</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>P R S W SPCL USE SPCL USE<</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>P R S N SPC USE <th< td=""><td>P R S N SUC S</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>P R S M SPC S</td></th<></td>	P R S W INT-TYPE INT-TYPE SPCL USE E A U C O DATE CLASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFRD WTR CRASH TRLR QTY D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# TYPE D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVWY LIGHT SVRTY V# TYPE N N N N N 12/05/2013 17 8TH CT INTER CROSS N N N DIT 01 NONE 0 PRVTE 7P 01 10TH ST CROSS N N N DIST 1NTER CROSS N N DIST 1NTER CROSS N DIST DINE 0 PRVTE PSNR CAR N N N 10/14/2014 17 8TH CT INTER CROSS N N DIST DINE 0 PRVTE PSNR CAR N N N 0/11/14/2014 17 8TH CT	P R S W INT-TYPE INT-TYPE SPCL USE SPCL USE MOVE PROM CIASS CITY STREET RD CHAR (MEDIAN) INT-REL OFFD WHR CRASH TRLR QTY MOVE PROM D C S L K TIME FROM SECOND STREET LOCTN (#LANES) CONTL DRVT QUE V# TYPE TO V V V FROM SECOND STREET LOCTN (#LANES) CONTL DRVW LIGHT VRVTY V# TYPE TO V V V FROM SECOND STREET LOCTN (#LANES) CONTL DRVW LIGHT VRVTY V# TYPE TO V V V V V VF TYPE TO O STREHT TO VE STREHT STREHT TO TO TO O STREHT STREHT O O N N DIS DIS TO NONE 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P R S W SPCL USE SPCL USE<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P R S N SPC USE SPC USE <th< td=""><td>P R S N SUC S</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>P R S M SPC S</td></th<>	P R S N SUC S	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P R S M SPC S

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

CITY OF WEST LINN, CLACKAMAS COUNTY

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and EB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE YEAR: 2014 REAR-END TURNING MOVEMENTS	FATAL CRASHES 0 0	NON- FATAL CRASHES 1 0	PROPERTY DAMAGE ONLY 1 1	TOTAL CRASHES 2 1	PEOPLE KILLED 0	PEOPLE INJURED 4	TRUCKS 0 0	DRY SURF 2 0	WET SURF 0 1	DAY 2 0	DARK 0 1	INTER- SECTION 0 1	INTER- SECTION RELATED 0 0	OFF- ROAD 0 0
YEAR 2014 TOTAL	0	1	2	3	0	4	0	2	1	2	1	1	0	0
YEAR: 2013 REAR-END TURNING MOVEMENTS YEAR 2013 TOTAL	0 0 0	0 0 0	1 1 2	1 1 2	0 0 0	0 0 0	0 0 0	1 0 1	0 1 1	0 0 0	1 1 2	0 1 1	1 0 1	0 0 0
YEAR: 2012 REAR-END YEAR 2012 TOTAL	0 0	0 0	1 1	1 1	0 0	0 0	0 0	0 0	1 1	0 0	1 1	0 0	0 0	0 0
YEAR: 2010 REAR-END YEAR 2010 TOTAL	0 0	0 0	1 1	1 1	0 0	0 0	0 0	1 1	0 0	0 0	1 1	1 1	0 0	0 0
FINAL TOTAL	0	1	6	7	0	4	0	4	3	2	5	3	1	0

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and EB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 7

	S D																	
	PRSW				INT-TYPE		OFFDD	MILLED		SPCL USE	MOLTE							
- 4	E A U C O DATE	CLASS	CITY STREET	RD CHAR		INT-REL	OFFRD		CRASH COLL	TRLR QTY	MOVE	סיייניני	TNT	AS				
ER#	E L G H R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT			OWNER	FROM		INJ		E LICNS			CAUSE
	DCSLKTIME	FROM 10	SECOND STREET	LOCTN	(#LANES)	CONTL		LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	<u> </u>	RES	LOC ERROR	ACT EVENT	
4320 ONE	N N N 11/11/2010 TH) 19	10TH ST EB ENFR 10TH	INTER S	CROSS	N TRF SIGNAL	N N	CLR DRY	S-1STOP REAR	01 NONE 0 PRVTE	STRGHT S -N						000	27 00
	8P		EB ENFR 10111	06	0	IRF SIGNAL	N	DLIT	PDO	PSNGR CAR	5 -N	01 DRVR	NONE	46 F	OR-Y	016	000	27
					-										OR<25			
										02 NONE 0	STOP							
										PRVTE	S -N						011	00
										PSNGR CAR		01 DRVR	NONE	91 M		000	000	00
															OR<25			
	N N N 01/10/2013	8 11		INTER	CROSS	Ν	Ν	RAIN	O-1TURN	01 NONE 0	STRGHT							04
ONE	TH		EB ENFR 10TH	CN		TRF SIGNAL	Ν	WET	TURN	PRVTE	S -N						000	00
	8P			03	0		N	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	45 F		000	000	00
										02 NONE 0	TUDN_T				OR<25			
										02 NONE 0 PRVTE	TURN-L N -E						000	00
										PSNGR CAR	IN E	01 DRVR	NONE	00 M	OR-Y	020,004		04
															OR<25	· · · , · · ·		
4702	N N N N N 11/20/2014	17	10TH ST	INTER	CROSS	N	N	RAIN	0-1TURN	01 NONE 0	STRGHT							02,08
CITY	ТН		EB ENFR 10TH	CN		TRF SIGNAL	N	WET	TURN	PRVTE	S -N						000	00
	7A			04	0		N	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	58 F	OR-Y	000	000	00
															OR<25			
										02 NONE 0	TURN-L							
										PRVTE	N -E						000	00
										PSNGR CAR		01 DRVR	NONE	46 F	EXP OR<25	028,004	000	02,08
															UR<25			
	N N N N N 06/25/2014	17	10TH ST	STRGHT	()	N	N	CLR	S-1STOP	01 NONE 0	STRGHT							07
ITY	WE		EB ENFR 10TH	N 03	(NONE)	UNKNOWN	N	DRY DAY	REAR INJ	PRVTE PSNGR CAR	S -N		TNTD	20 17	OD V	043,026	000 5 000	00 07
	1P			03	(02)		Ν	DAY	TNO	PSNGR CAR		01 DRVR	INDB	30 F	OR-Y OR<25	043,020	S 000	07
					(02)					02 NONE 0	STOP				01(<25			
										PRVTE	S -N						011	00
										PSNGR CAR		01 DRVR	INJC	16 F	OR-Y	000	000	00
															OR<25			
										02 NONE 0	STOP							
										PRVTE	S -N						011	00
										PSNGR CAR		02 PSNG	INJC	00 F		000	000	00
										02 NONE 0	STOP							
										PRVTE	SIOP S-N						011	00
										PSNGR CAR		03 PSNG	INJC	11 F		000	000	00
)3248	N N N N N 08/21/2014	17	10TH ST	STRGHT		N	N	CLR	S-1STOP	01 NONE 0	STRGHT							29
ITY	TH		EB ENFR 10TH	N	(NONE)	UNKNOWN	N	DRY	REAR	PRVTE	S -N						000	00
	1P			03			N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	27 F	OR-Y	026	000	29
					(02)										OR<25			
										02 NONE 0	STOP						0.7.7	
										PRVTE	S -N	01 ====		0.5 -	05 5	000	011	00
										PSNGR CAR		01 DRVR	NONE	86 F	OR-Y OR<25	000	000	00
40.2 :			10777						0.1	01					UK<25			
	Y N N N N 12/19/2012	2 17		STRGHT		N	N	RAIN	S-1STOP	01 NONE 0	STRGHT						000	01,07,32
ITY	WE 4P		EB ENFR 10TH	S 03	(NONE)	TRF SIGNAL	N N	WET DUSK	REAR PDO	PRVTE PSNGR CAR	S -N	01 DRVR	NONE	4.9 M	OP. V	047 004	000 5,052 000	00 01,07,32
	42			0.5			TN	DOPL	PDO	PONGR CAR		UT DRVR	NOINE	-10 M	UK-I	047,020	,052 000	01,01,32

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

10TH ST and EB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014 Total crash records: 7

	S D																		
	PRSW				INT-TYPE					SPCL USE									
	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A	S				
SER#	ELGHRDAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G	E LI	CNS PED			
INVEST	D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	Е	X RE	S LOC	ERROR	ACT EVENT	CAUSE
					(02)										OF	2>25			
										02 NONE 0	STOP								
										PRVTE	S -N							011	00
										PSNGR CAR		01 DRVR	NONE	50	F OF	R−Y	000	000	00
															OF	25			
04284	N N N N N 11/05/2013	17	10TH ST	STRGHT		Y	N	CLD	S-1STOP	01 NONE 0	STRGHT								07
CITY	TU		EB ENFR 10TH	S	(NONE)	TRF SIGNAL	N	DRY	REAR	PRVTE	S -N							000	00
	5P			03			N	DUSK	PDO	PSNGR CAR		01 DRVR	NONE	43	M UN	IK	026	000	07
					(02)										U	IK			
										02 NONE 0	STOP								
										PRVTE	S -N							011	00
										PSNGR CAR		01 DRVR	NONE	66	F OF	R−Y	000	000	00
															OF	25			

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and EB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

COLLISION TYPE YEAR: 2014 REAR-END SIDESWIPE - OVERTAKING	FATAL CRASHES 0	NON- FATAL CRASHES 1 0	PROPERTY DAMAGE ONLY 0 1	TOTAL CRASHES 1 1	PEOPLE KILLED	PEOPLE INJURED 1 0	TRUCKS 0 0	DRY SURF 0 1	WET SURF 1 0	DAY 1 1	DARK 0 0	INTER- SECTION 1 0	0 0	OFF- ROAD
TURNING MOVEMENTS YEAR 2014 TOTAL	0 0	1 2	0 1	1 3	0 0	1 2	0 0	0 1	1 2	0 2	1 1	1 2	0 0	0 0
YEAR: 2013	Ţ	_	_	-	-	_	Ţ	_	_	_	-	_	·	·
REAR-END	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR 2013 TOTAL	0	1	0	1	0	1	0	1	0	0	1	1	0	0
YEAR: 2012														
BACKING	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2012 TOTAL	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2011														
REAR-END	0	1	0	1	0	1	0	1	0	1	0	0	0	0
YEAR 2011 TOTAL	0	1	0	1	0	1	0	1	0	1	0	0	0	0
FINAL TOTAL	0	4	2	6	0	4	0	4	2	4	2	3	0	0

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and EB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 6

	5 D																		
	P R S	W				INT-TYPE					SPCL USE								
	EAUC	O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S	3			
SER#	ELGH	R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G I	E LICNS PED			
INVEST	DCSL	K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	E 2	<u>RES LOC</u>	ERROR	ACT EVENT	CAUSE
04461	N N N	11/05/2014	11	10TH ST	INTER	CROSS	N	Ν	UNK	S-1STOP	01 NONE 0	STRGHT							29
NONE		WE		EB EXTO 10TH	NW		TRF SIGNAL	Ν	WET	REAR	PRVTE	W -E						000	00
		11A			06	0		Ν	DAY	INJ	PSNGR CAR		01 DRVR	NONE	62 M	OR-Y	026	000	29
																OR<25			
											02 NONE 0	STOP							
											PRVTE	W -E						011	00
											PSNGR CAR		01 DRVR	INJC	30 F		000	000	00
											02 NONE 0	STOP				OR<25			
											PRVTE	W -E						011	00
											PSNGR CAR	W E	02 PSNG	NO<5	02 M		000	000	00
													02 1000	110 13	02 11		000	000	00
04883	N N N	12/17/2013	11	10TH ST	INTER	CROSS	N	N	CLR	S-1STOP	01 NONE 0	STRGHT							07
NONE	_, _, _,	TU		EB EXTO 10TH	CN	011000	TRF SIGNAL	N	DRY	REAR	PRVTE	W -E						000	00
		6P			03	0		N	DLIT	INJ	PSNGR CAR		01 DRVR	NONE	46 F	OR-Y	026	000	07
																OR<25			
											02 NONE 0	STOP							
											PRVTE	W -E						013	00
											PSNGR CAR		01 DRVR	INJA	41 F	OR-Y	000	000	00
																OR<25			
01764	ΝΝΝΝ	N 05/08/2014	17	10TH ST	INTER	CROSS	N	Ν	RAIN	0-1TURN	01 NONE 0	TURN-L							02
CITY		TH		EB EXTO 10TH	CN		TRF SIGNAL	Ν	WET	TURN	UNKN	N -SE						000	00
		9P			04	0		N	DLIT	INJ	PSNGR CAR		01 DRVR	NONE	00 Ur	nk UNK	028	000	02
																UNK			
											02 NONE 0	STRGHT							
											PRVTE	S -N						000	00
											PSNGR CAR		01 DRVR	INJC	16 F		000	000	00
																OR<25			
03344	N N N	09/10/2011	17	10TH ST	STRGHT		N	Ν	CLR	S-1STOP	01 NONE 0	STRGHT							07
NONE		SA		EB EXTO 10TH	N	(NONE)	UNKNOWN	Ν	DRY	REAR	PRVTE	N -S						000	00
		4P			03			Ν	DAY	INJ	PSNGR CAR		01 DRVR	NONE	24 F		026	000	07
						(02)										OR<25			
											02 NONE 0	STOP							
											PRVTE	N -S						011	00
											PSNGR CAR		01 DRVR	INJC	48 F		000	000	00
																OR<25			
	ΝΝΝΝ	N 06/22/2014	17		STRGHT		N	Ν	CLR	S-STRGHT		STRGHT							13
CITY		SU		EB EXTO 10TH	N	(NONE)	L-TURN REF	N	DRY	SS-0	UNKN	S -N						000	00
		5P			05	(03)		Ν	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 M	UNK UNK	045	000	13
						(03)					02 NONE 0	STRGHT				UNK			
											DZ NONE 0 PRVTE	SIRGHI S -N						000	00
											PSNGR CAR	b R	01 DRVR	NONE	54 M	OR-Y	000	000	00
											_ brieft of ht		210410			OR<25			20
91693	N N N	03/24/2012	11	EB EXTO 10TH	STRGHT		N	N	CLR	0-1STOP	01 NONE 0	BACK							10
NONE	TA TA TA	53/24/2012 SA	11	10TH ST	NW	(NONE)	TRF SIGNAL	N	DRY	BACK	UNKN	E -W						000	00
NONE		11A		10111 51	03	(NONE)	IRF DIGNAL	N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 M	OR-Y	011	000	10
						(01)							JI DRVR	1.011	00 11	UNK			
						. ,					02 NONE 0	STOP							
											PRVTE	E -W						011	00
											PSNGR CAR		01 DRVR	NONE	52 M	OR-Y	000	000	00

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

S D

CDS380	OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION
02/04/2016	TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT
	URBAN NON-SYSTEM CRASH LISTING
CITY OF WEST LINN, CLACKAMAS COUNTY	10TH ST and EB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014
	Total crash records: 6
S D	
P R S W	INT-TYPE SPCL USE
	ע גער אוגראיא איז א א

	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			А	S
SER#	ELGHRDAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G	E LICNS
INVEST	D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V#_TYPE	ТО	P# TYPE	SVRTY	Е	X RES
															OR<25

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

NS PED LOC ERROR ACT EVENT <u>CAUSE</u>

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2012														
TURNING MOVEMENTS	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2012 TOTAL	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR: 2010														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	0	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	1	0	0	1	0	0	0
FINAL TOTAL	0	1	2	3	0	1	0	3	0	2	1	1	0	0

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirements, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

Page: 1

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and WB ENFR 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 3

	5 D																				
	PRSW					INT-TYPE					SPCL USE										
	E A U C O DATE	CI	LASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			i	A S					
ER#	ELGHRDAY	D	IST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	(G E	LICNS	PED			
NVEST	DCSLKTIME	FI	ROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVR	ry i	E X	RES	LOC	ERROR	ACT EVENT	CAUSE
)3497	N N N N N 09/20/	2012	17	10TH ST	INTER	CROSS	N	N	CLR	S-OTHER	01 NONE 0	TURN-R									27,08
CITY	TH			WB ENFR 10TH	CN		TRF SIGNAL	N	DRY	TURN	PRVTE	N -W								000	00
	7 _P				01	0		Ν	DAY	INJ	PSNGR CAR		01 DRVR	NON	c 42	2 F	OTH-Y OR<25		016,006	038	27,08
											01 NONE 0	TURN-R									
											PRVTE	N -W								000	00
											PSNGR CAR		02 PSNG	INJ	C 65	5 F			000	000	00
											02 NONE 0	TURN-R									
											PRVTE	N -W								000	00
											PSNGR CAR		01 DRVR	NON	52	2 F	OR-Y OR<25		000	000	00
1073	NNN 03/30/	2013	17	10TH ST	STRGHT		N	N	CLR	S-1STOP	01 NONE 0	STRGHT									07
ITY	SA			WB ENFR 10TH	S	(NONE)	TRF SIGNAL	N	DRY	REAR	PRVTE	S -N								000	00
	3P				03			N	DAY	PDO	PSNGR CAR		01 DRVR	NON	E 34	4 M	OTH-Y		026	000	07
						(03)											N-RES				
											02 NONE 0	STOP									
											PRVTE	S -N								011	00
											PSNGR CAR		01 DRVR	NON	5 19	9 F	OR-Y		000	000	00
																	OR>25				
4921	N N N 12/22/	2010	17	10TH ST	BRIDGE		N	N	CLR	S-1STOP	01 NONE	STRGHT									07
ONE	WE			WB ENFR 10TH	S	(NONE)	UNKNOWN	N	DRY	REAR	PRVTE	S -N								000	00
	6P				03			Ν	DLIT	PDO	PSNGR CAR		01 DRVR	NON	E 40	M C	OR-Y		026	000	07
						(04)											OR<25				
											02 NONE	STOP									
											PRVTE	S -N								011	00
											PSNGR CAR		01 DRVR	NON	E 0(D M	OR-Y OR<25		000	000	00

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

CITY OF WEST LINN, CLACKAMAS COUNTY

S D

CDS150

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and WB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2014	CIADINED	CICADINED	ONDI	CIGADIIED	KIDDD	INCORED	indend	DOM	Doni	DAI	Driidt	DECITOR	RUDAIUD	Kon
REAR-END	0	1	2	3	0	1	0	2	1	3	0	2	0	0
YEAR 2014 TOTAL	0	1	2	3	0	1	0	2	1	3	0	2	0	0
YEAR: 2013	0	0	-	-	0	0	0	1	0	0	-	0	-	0
REAR-END	0	0	1	1	0	0	0	1	0	0	1	0	1	0
YEAR 2013 TOTAL	0	0	1	1	0	0	0	1	0	0	1	0	1	0
YEAR: 2012														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	1	0	0	0	1
REAR-END	0	2	1	3	0	2	0	2	0	3	0	1	0	0
YEAR 2012 TOTAL	0	3	1	4	0	3	0	2	1	4	0	1	0	1
YEAR: 2011														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR 2011 TOTAL	0	0	1	1	0	0	0	1	0	1	0	0	0	0
YEAR: 2010	0	0	1	1	0	0	0	0	0	1	0	1	0	0
REAR-END	0	0	1	1	0	0	0	0	0	1	0	1	0	0
YEAR 2010 TOTAL	0	0	1	1	0	0	0	0	0	1	0	1	0	0
FINAL TOTAL	0	4	6	10	0	4	0	6	2	9	1	4	1	1

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirements, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

OREGON.. DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and WB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 10

	S D																		
	P R S	W				INT-TYPE					SPCL USE								
	EAUC	O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S				
SER#	ELGH	R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G E	LICNS PED			
INVEST	DCSL	K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	то	P# TYPE	SVRTY	Е Х	RES LOC	ERROR	ACT EVENT	CAUSE
	N N N	06/12/2010	17	10TH ST	INTER	CROSS	N	N	CLR	S-1STOP	01 NONE 0	STRGHT							07
NONE		SA 507 127 2010	± /	WB EXTO 10TH	SE	CICODD	TRF SIGNAL	N	UNK	REAR	PRVTE	SE-NW						000	00
		3P			06	0	In Dionin	N	DAY	PDO	PSNGR CAR	52 1	01 DRVR	NONE	00 M	UNK	026	000	07
																OR<25			
											02 NONE 0	STOP							
											PRVTE	SE-NW						011	00
											PSNGR CAR		01 DRVR	NONE	58 F	OR-Y	000	000	00
																OR<25			
03946	N N N	10/06/2014	11	10TH ST	INTER	CROSS	N	N	CLR	S-1STOP	01 NONE 0	STRGHT						013	22
NONE		MO	11	WB EXTO 10TH	SE	CROBB	TRF SIGNAL	N	DRY	REAR	PRVTE	SE-NW						000	22
NONE		8A		WD EXIC ICIII	06	0	INF SIGNAL	N	DAY	INJ	PSNGR CAR	SE-IW	01 DRVR	NONE	28 M	OR-Y	017	000	00
		011			00	0		14	DIII	1110	i bivoit critt		of Ditvit	NONE	20 11	OR<25	017	000	00
											02 NONE 0	STOP				011 20			
											PRVTE	SE-NW						011 013	00
											PSNGR CAR	~	01 DRVR	INJC	33 F	OR-Y	000	000	00
											r bridit dint		01 2000	1110 0	55 1	OR<25	000		00
											03 NONE 0	STOP							
											UNKN	SE-NW						022	00
											UNKNOWN		01 DRVR	NONE	00 Un	k UNK	000	000	00
																UNK			
03096	N N N	08/21/2012	17	10TH ST	INTER	CROSS	N	N	CLR	S-1STOP	01 NONE 0	STRGHT						013	07
NONE		TU	17	WB EXTO 10TH	S	CROBB	TRF SIGNAL	N	DRY	REAR	PRVTE	S -N						000	00
NONE		2P		WB EXIC IOIII	06	0	INF SIGNAL	N	DAY	PDO	PSNGR CAR	5 -N	01 DRVR	NONE	20 м	OP-V	026	000	07
		25			00	0		IN	DAI	FDO	F SNGK CAR		OI DRVR	NONE	20 14	OR<25	020	000	07
											02 NONE 0	STOP				01(125			
											PRVTE	S -N						011 013	00
											PSNGR CAR	5 1	01 DRVR	NONE	40 F	OR-Y	000	000	00
											I BNOR CAR		OI DRVR	NONE	10 1	OR<25	000	000	00
											03 NONE 0	STOP				01(12)			
											PRVTE	S -N						022	00
											PSNGR CAR		01 DRVR	NONE	67 M	OR-Y	000	000	00
											r bridit dint		01 2000	110112	0, 11	OR<25	000		00
04110	NT NT NT	00/00/0014	1 7	10,000	тышыр	apoaa	N	NT	DATM	g 1950	0.1 NONE 0	ampaim							20
	N N N	09/20/2014	17	10TH ST	INTER	CROSS	N	N	RAIN	S-1STOP	01 NONE 0	STRGHT						000	29
NONE		SA 1P		WB EXTO 10TH	S 06	0	TRF SIGNAL	N	WET	REAR	PRVTE	S -N	01 DRVR	NONE	24 17	OD V	026	000 000	00 29
		ΤΡ			06	U		Ν	DAY	PDO	PSNGR CAR		UI DRVR	NONE	24 F		026	000	29
											02 NONE 0	STOP				OR>25			
											PRVTE	S -N						011	00
											UNKNOWN	5 -N	01 DRVR	NONE	00 м	TINK	000	000	00
											UNKINOWIN		UI DRVR	NONE	00 14	OR<25	000	000	00
																01(125			
	ΝΝΥ	09/04/2013	17		STRGHT	· ·	Υ	N	CLD	S-1STOP	01 NONE 0	STRGHT							07
CITY		WE		WB EXTO 10TH	N	(NONE)	TRF SIGNAL	N	DRY	REAR	PRVTE	S -N						000	00
		8P			03	(Ν	DLIT	PDO	PSNGR CAR		01 DRVR	NONE	37 M		026	000	07
						(03)					0.0	070-				N-RES			
											02 NONE 1	STOP						011	0.0
											PRVTE	S -N	01		F0 ···	07 V		011	00
											PSNGR CAR		01 DRVR	NONE	53 M		000	000	00
																OR<25			
	N N N	04/29/2012	11		STRGHT		N	Ν	CLR	S-1STOP	01 NONE 0	STRGHT							07
NONE		SU		10TH ST	E	(NONE)	UNKNOWN	Ν	UNK	REAR	PRVTE	E -W						000	00
		12P			03			Ν	DAY	INJ	PSNGR CAR		01 DRVR	NONE	42 M	OR-Y	026	000	07

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

S D

OREGON.. DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

10TH ST and WB EXTO 10TH, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 10

	5 D																		
	PRSW				INT-TYPE	-				SPCL USE									
	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A	S				
SER#	ELGHRDAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G	E LICI	IS PED			
INVEST	DCSLKTIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	ТО	P# TYPE	SVRTY	Е	X RES	LOC	ERROR	ACT EVENT	CAUSE
					(01)										OR<	25			-
										02 NONE 0	STOP								
										PRVTE	E -W							011	00
										PSNGR CAR		01 DRVR	INJC	63 F			000	000	00
															OR<	25			
02210	N N N 06/21/201	1 19	WB EXTO 10TH	STRGHT		N	N	CLR	S-1STOP	01 NONE 0	STRGHT								07
NONE	TU		10TH ST	SE	(NONE)	UNKNOWN	N	DRY	REAR	PRVTE	SE-NW							000	00
	12P			03			N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	00 F			026	000	07
					(01)										OR<	25			
										02 NONE 0	STOP								
										PRVTE	SE-NW							011	00
										PSNGR CAR		01 DRVR	NONE	62 F			000	000	00
															OR<	25			
03922	N N N N N 10/20/201	2 11	WB EXTO 10TH	STRGHT		N	Y	CLD	FIX OBJ	01 NONE 0	STRGHT							029,079,01	0 25
CITY	SA		10TH ST	SE	(NONE)	UNKNOWN	N	WET	FIX	PRVTE	E -W							000 029,079,01	0 25
	10A			01			N	DAY	INJ	PSNGR CAR		01 DRVR	INJB	25 M	OR-	ζ.	000	017	00
					(01)										OR<	25			
02637	Y N N N N 07/10/201	4 11	WB EXTO 10TH	STRGHT		N	N	CLR	S-1STOP	01 NONE 0	STRGHT								27,07,01
CITY	TH		10TH ST	SE	(NONE)	NONE	N	DRY	REAR	PRVTE	SE-NW							000	00
	6P			03			N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	16 F	OR-	ζ.	016,043,026	038	27,07,01
					(01)										OR<	25			
										02 NONE 0	STOP								
										PRVTE	SE-NW							011	00
										PSNGR CAR		01 DRVR	NONE	66 M			000	000	00
															OR<	25			
02894	N N N N N 08/06/201	2 17	10TH ST	STRGHT		N	N	CLR	S-1STOP	01 POLCE 0	STRGHT								27,07
CITY	MO		WB EXTO 10TH	S	(NONE)	TRF SIGNAL	N	DRY	REAR	PUBLC	S -N							000	00
	12P			03			N	DAY	INJ	PSNGR CAR		01 DRVR	NONE	49 M	OR-	ζ.	016,026	038	27,07
					(02)										OR<	25			
										02 NONE 0	STOP								
										PRVTE	S -N							011	00
										PSNGR CAR		01 DRVR	INJC	53 M			000	000	00
															OR<	25			

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

S D

CDS150

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and BLANKENSHIP RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

		NON-	PROPERTY										INTER-	
COLLISION TYPE	FATAL CRASHES	FATAL CRASHES	DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTER- SECTION	SECTION RELATED	OFF- ROAD
YEAR: 2014														
FIXED / OTHER OBJECT	0	1	0	1	0	1	0	0	1	1	0	0	1	1
REAR-END	0	1	0	1	0	1	0	1	0	1	0	1	0	0
YEAR 2014 TOTAL	0	2	0	2	0	2	0	1	1	2	0	1	1	1
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	1	0	0	1	1	0	0
YEAR 2013 TOTAL	0	0	1	1	0	0	0	1	0	0	1	1	0	0
		-							-		_			_
FINAL TOTAL	0	2	1	3	0	2	0	2	1	2	1	2	1	1

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirements, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

Page: 1

CDS380)		OREGON. DEFERTMENT OF TRANSFORTATION DEVEloPMENT DIVISION														
02/04/2	016							TRANSPO	RTATION	DATA SE	CTION - CRA	SH A	NAYLY	SIS AND	REPORTING U	NIT	
										URBAN	NON-SYSTEM	CRA	SH LIS	STING			
CITY OF	WEST	LINN	, CLACKAMAS C	COUNTY			10TH S	T and BLANKENS	SHIP RD,	City o	E West Linn,	Cla	ackama	s Count	y, 01/01/201	0 to 12/	31/2014
										Г	otal crash :	reco	ords: 3	3			
	S	D															
		RS	W				INT-TYPE						SPCL (JSE			
	ΕA	υC	O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH		TRLR ()TY	MOVE		
SER#	ΕL	GН	R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL		OWNER		FROM	PRTC	INJ
INVEST	DC	SL	K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V#	TYPE		TO	P# TYPE	SVRTY
05072	N N	N	12/29/2013	17	BLANKENSHIP RD	INTER	3-leg	N	N	CLR	S-1STOP	01	NONE	0	STRGHT		
NONE			SU	0	10TH ST	SW		TRF SIGNAL	N	DRY	REAR		PRVTE		NW-SE		
			5P			09	2		N	DUSK	PDO		PSNGR	CAR		01 DRVR	NONE

Ν

Y

TRF SIGNAL

TRF SIGNAL

Ν

Ν

Ν

Y

Ν

Ν

CLR

DRY

DAY

CLD

WET

DAY

S-1STOP

FIX OBJ

FIX

INJ

REAR

INJ

Disclaimer: The information contained in this report is compiled from individual driver and police crash report is compiled from individual driver and police crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

02537

00880

CITY

NONE

N N N

07/02/2014

WE

5P

Y N N N N 03/02/2014

SU

1P

17

17

100

0

BLANKENSHIP RD

BLANKENSHIP RD

10TH ST

10TH ST

INTER

STRGHT

NW

07

NW

06

3-leg

(NONE)

(02)

0

CITY OF

02 NONE 0

PRVTE

PRVTE

PRVTE

01 NONE 0

PRVTE

01 NONE

02 NONE

PSNGR CAR

PSNGR CAR

PSNGR CAR

PSNGR CAR

0

0

STOP

NW-SE

STRGHT

NW-SE

STOP

NW-SE

STRGHT

SE-NW

Page	:	1
------	---	---

Ε	LICNS	PED				
Х	RES	LOC	ERROR	ACT	EVENT	CAUSE
						07
				000		00
М	UNK		026	000		07
	OR<25					
				011		00
М	OR-Y		000	000		00
	OR>25					
						29
				000		00
М	OTH-Y		026	000		29
	N-RES					
				011		00
F	OR-Y		000	000		00
	OR<25					
					079	08,01
				000	079	00
М	OR-Y		001,047	000		08,01

А S

G

00 M

01 DRVR NONE 28 M

01 DRVR NONE 40 M

01 DRVR INJC 54 F

01 DRVR INJB 65 M OR-Y

E X RES

OR<25

CDS150

02/04/2016

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

10TH ST and SALAMO RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

	FATAL	NON- FATAL	PROPERTY DAMAGE	TOTAL	PEOPLE	PEOPLE		DRY	WET			INTER-	INTER- SECTION	off-
COLLISION TYPE	CRASHES	CRASHES	ONLY	CRASHES	KILLED	INJURED	TRUCKS	SURF	SURF	DAY	DARK	SECTION	RELATED	ROAD
YEAR: 2014														
MISCELLANEOUS	0	1	0	1	0	1	0	1	0	1	0	0	0	0
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
SIDESWIPE - MEETING	0	1	0	1	0	2	0	1	0	1	0	0	0	0
YEAR 2014 TOTAL	0	2	1	3	0	3	0	3	0	3	0	1	0	0
YEAR: 2013														
REAR-END	0	0	1	1	0	0	0	0	1	1	0	0	0	0
SIDESWIPE - MEETING	0	0	1	1	0	0	1	1	0	1	0	0	0	0
YEAR 2013 TOTAL	0	0	2	2	0	0	1	1	1	2	0	0	0	0
YEAR: 2011														
PEDESTRIAN	0	1	0	1	0	1	0	0	1	0	1	0	0	0
YEAR 2011 TOTAL	0	1	0	1	0	1	0	0	1	0	1	0	0	0
FINAL TOTAL	0	3	3	6	0	4	1	4	2	5	1	1	0	0

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirements, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

OREGON.. DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

10TH ST and SALAMO RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014

Total crash records: 6

	5 D																			
	PRS	W				INT-TYPE					SPCL USE									
	EAUC	O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A S	5				
SER#	ELGH	R DAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G I	E LICNS	PED			
INVEST	DCSL	K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	EZ	K RES	LOC	ERROR	ACT EVENT	CAUSE
01823	N N N	05/12/2014	17	SALAMO RD	INTER	3-leg	N	N	CLR	S-1STOP	01 NONE 0	STRGHT								07
NONE		MO	0	10TH ST	S	5 220	TRF SIGNAL	N	DRY	REAR	PRVTE	S -N							000	00
1.01.12		3P	0	10111 01	06	2	In Dionin	N	DAY	PDO	PSNGR CAR	5 11	01 DRVR	NONE	34 M	UNK		026	000	07
																OR<25				
											02 NONE 0	STOP								
											PRVTE	S -N							011	00
											PSNGR CAR	~	01 DRVR	NONE	62 M	OR-Y		000	000	00
											r brieft of it		or pron	110112	02	OR<25		000		00
01412	NT 37 NT NT	N 04/12/2014	1 🗆		ampaum		N	NT			0.1 NONE 0	ampairm								1.0
	IN Y IN IN	N 04/12/2014		SALAMO RD	STRGHT		N	N	CLR		01 NONE 0	STRGHT							000	10
CITY		SA	516	10TH ST	E	(NONE)	NONE	N	DRY	SS-M	PRVTE	W -E		TNTO	40 1			000	000	00
		5P			08	(02)		Ν	DAY	INJ	PSNGR CAR		01 DRVR	INJC	49 F			080	000	10
						(02)					0.0 NONE 0	ampairm				OR<25				
											02 NONE 0	STRGHT							000	0.0
											PRVTE	E -W	01 5575	11170	<u> </u>	00011 11		000	000	00
											PSNGR CAR		01 DRVR	INJC	29 F			000	000	00
											0.2 NONTE 0					N-RES				
											03 NONE 0	STRGHT							000	0.0
											PRVTE	E -W	01 5575		10.10	~~			000	00
											PSNGR CAR		01 DRVR	NONE	42 M			000	000	00
																OR<25				
04404	N N N	11/19/2011	17	SALAMO RD	STRGHT		N	N	CLD	PED	01 NONE 0	STRGHT								18
NONE		SA	919	10TH ST	E	(NONE)	UNKNOWN	N	WET	PED	PRVTE	E -W							000	00
		5P			08			N	DARK	INJ	PSNGR CAR		01 DRVR	NONE	46 M	OR-Y		000	000	00
						(02)										OR<25				
												-								
												STRGHT	01 PED	INJC	17 F		SHLDR	062	042	18
												WE								
02248	ΥΝΝΝ	N 06/25/2013	17	SALAMO RD	STRGHT		N	N	RAIN	S-1STOP	01 NONE 0	STRGHT								07,01
CITY		TU	500	10TH ST	SE	(NONE)	TRF SIGNAL	N	WET	REAR	PRVTE	SE-NW							000	00
		3P			08			N	DAY	PDO	PSNGR CAR		01 DRVR	NONE	24 F	NONE		026,047	000	07,01
						(02)										OR<25				
											02 NONE 0	STOP								
											PRVTE	SE-NW							011	00
											PSNGR CAR		01 DRVR	NONE	33 F	OR-Y		000	000	00
																OR<25				
01264	V NI NI NI	N 04/22/2013	17	CALAMO DD	GRADE		N	N			0.1 NONE 0	CTDCIT								22 01
CITY	T IN IN IN	MO	17 500	SALAMO RD		(NONE)	N NONE	N N	CLR DRY	O-STRGHT SS-M		STRGHT SE-NW							000	32,01 00
CTII		MO 2P	500	10TH ST	SE 07		NOINE				PRVTE	SE-INM	0.1	NONTR	16 14	OP V				
		22			07	(02)		Ν	DAY	PDO	TRUCK		01 DRVR	INOINE	то М	OR-Y OR<25		052,047,085	000	32,01
						(04)					02 NONE 0	STRGHT				UK-23				
											02 NONE 0 PRVTE	W -E							000	00
											PRVTE PSNGR CAR	M -F	01	NTONTE	E0 14	0D V		000		
											PSNGR CAR		01 DRVR	NONE	SU M			000	000	00
												ampairm				OR<25				
											03 NONE 0	STRGHT							000	0.0
											PRVTE	W -E	01		0 F -	0F		000	000	00
											PSNGR CAR		01 DRVR	NONE	37 F			000	000	00
																OR<25				
											03 NONE 0	STRGHT								
											PRVTE	W -E							000	00
											PSNGR CAR		02 PSNG	NO<5	04 M			000	000	00

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CITY OF WEST LINN, CLACKAMAS COUNTY

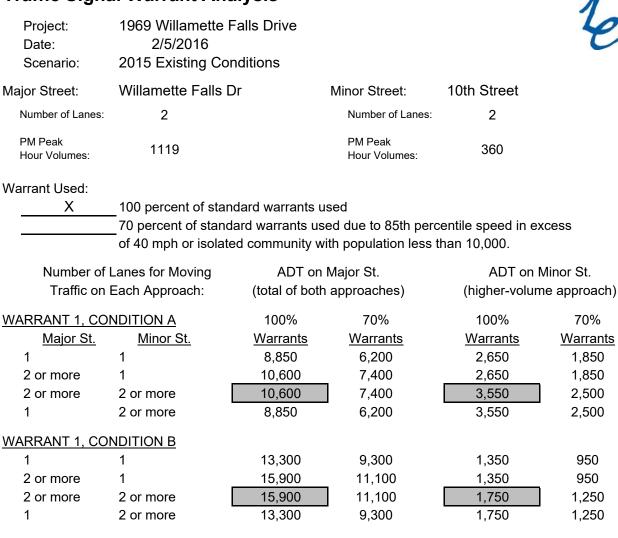
S D

OREGON.. DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANAYLYSIS AND REPORTING UNIT

URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY


10TH ST and SALAMO RD, City of West Linn, Clackamas County, 01/01/2010 to 12/31/2014 Total crash records: 6

	S D																		
	PRSW				INT-TYPE					SPCL USE									
	E A U C O DATE	CLASS	CITY STREET	RD CHAR	(MEDIAN)	INT-REL	OFFRD	WTHR	CRASH	TRLR QTY	MOVE			A	S				
SER#	ELGHRDAY	DIST	FIRST STREET	DIRECT	LEGS	TRAF-	RNDBT	SURF	COLL	OWNER	FROM	PRTC	INJ	G :	E LICNS	PED			
INVEST	D C S L K TIME	FROM	SECOND STREET	LOCTN	(#LANES)	CONTL	DRVWY	LIGHT	SVRTY	V# TYPE	TO	P# TYPE	SVRTY	E	X RES	LOC	ERROR	ACT EVENT	CAUSE
										03 NONE 0	STRGHT								
										PRVTE	W -E							000	00
										PSNGR CAR		03 PSNG	NO<5	04 M			000	000	00
02903	Y N N N N 07/30/2014	17	SALAMO RD	GRADE		N	N	CLR	NON-COLL	01 NONE 0	STRGHT								01
CITY	WE	678	10TH ST	SE	(NONE)	NONE	N	DRY	OTH	PRVTE	NW-SE							000	00
	8P			07			N	DAY	INJ	MTRCYCLE		01 DRVR	INJC	28 M	OR-Y		047	017	01
					(02)										OR<25				

Disclaimer: The information contained in this report is compiled from individual driver and police crash reports submitted to the Oregon Department of Transportation as required in ORS 811.720. The Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit is committed to providing the highest quality crash data to customers. However, because submittal of crash report forms is the responsibility of the individual driver, the Crash Analysis and Reporting Unit can not guarantee that all qualifying crashes are represented nor can assurances be made that all details pertaining to a single crash are accurate. Note: Legislative changes to DMV's vehicle crash reporting requirement, effective 01/01/2004, may result in fewer property damage only crashes being eligible for inclusion in the Statewide Crash Data File.

CDS380 02/04/2016

Traffic Signal Warrant Analysis

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

	Approach Volumes	Minimum Volumes	Is Signal Warrant Met?
Warrant 1			
Condition A: Minimum Vehicular Volum	ne		
Major Street	11,190	10,600	
Minor Street*	3,600	3,550	Yes
Condition B: Interruption of Continuous	s Traffic		
Major Street	11,190	15,900	
Minor Street*	3,600	1,750	No
Combination Warrant			
Major Street	11,190	12,720	
Minor Street*	3,600	2,840	No

* Minor street right-turning traffic volumes reduced by 25%

Traffic Signal Warrant Analysis

Project: Date: Scenario:	1969 Willamette I 2/4/2016 2017 Background		nditions		<i>le</i>
Major Street:	10th Street		Minor Street:	8th Street/8th 0	Court
Number of Lanes:	2		Number of Lanes:	2	
PM Peak Hour Volumes:	1176		PM Peak Hour Volumes:	131	
Warrant Used:					
X	100 percent of stan	dard warrants u	ised		
			ed due to 85th perce	•	ess
	of 40 mph or isolate	ed community w	ith population less th	nan 10,000.	
Number of I	Lanes for Moving	ADT on	n Major St.	ADT on M	/linor St.
Traffic on	Each Approach:	(total of bot	h approaches)	(higher-volum	e approach)
WARRANT 1, COM		100%	70%	100%	70%
<u>Major St.</u>	Minor St.	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>	<u>Warrants</u>
1	1	8,850	6,200	2,650	1,850
2 or more	1	10,600	7,400	2,650	1,850
2 or more	2 or more	10,600	7,400	3,550	2,500
1	2 or more	8,850	6,200	3,550	2,500
WARRANT 1, COM	NDITION B				
1	1	13,300	9,300	1,350	950
2 or more	1	15,900	11,100	1,350	950
2 or more	2 or more	15,900	11,100	1,750	1,250
1	2 or more	13,300	9,300	1,750	1,250

Note: ADT volumes assume 8th highest hour is 5.6% of the daily volume

	Approach Volumes	Minimum Volumes	ls Signal Warrant Met?
Warrant 1			
Condition A: Minimum Vehicular Volum	e		
Major Street	11,760	10,600	
Minor Street*	1,310	3,550	No
Condition B: Interruption of Continuous	Traffic		
Major Street	11,760	15,900	
Minor Street*	1,310	1,750	No
Combination Warrant			
Major Street	11,760	12,720	
Minor Street*	1,310	2,840	Νο

* Minor street right-turning traffic volumes reduced by 25%

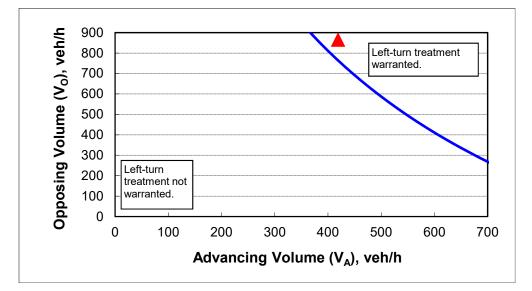
Traffic Signal Warrant Analysis

Traffic Signa	al Warrant Anal	ysis			Л						
Project: Date:	1969 Willamette Falls Drive 2/5/2016										
Scenario:	2017 Background F	Plus Site Cor	nditions								
Major Street:	Willamette Falls Dr	ive	Minor Street:	12th Street							
Number of Lanes:	2		Number of Lanes:	1							
PM Peak Hour Volumes:	1169		PM Peak Hour Volumes:	162							
Warrant Used: X 100 percent of standard warrants used 70 percent of standard warrants used due to 85th percentile speed in excess of 40 mph or isolated community with population less than 10,000.											
	Lanes for Moving Each Approach:		Major St. n approaches)	ADT on Minor St. (higher-volume approach)							
WARRANT 1, COI <u>Major St.</u> 1 2 or more 2 or more 1	NDITION A <u>Minor St.</u> 1 1 2 or more 2 or more	100% <u>Warrants</u> 8,850 10,600 10,600 8,850	70% <u>Warrants</u> 6,200 7,400 7,400 6,200	100% <u>Warrants</u> 2,650 2,650 3,550 3,550	70% <u>Warrants</u> 1,850 1,850 2,500 2,500						
WARRANT 1, COI											
1 2 or more 2 or more 1	1 1 2 or more 2 or more	13,300 15,900 15,900 13,300 Note: ADT v	9,300 11,100 11,100 9,300 olumes assume 8th highe	1,350 1,350 1,750 1,750 est hour is 5.6% of the	950 950 1,250 1,250 daily volume						
Warrant 1 Condition A: Minin	num Vehicular Volume	Approach Volumes	Minimum Volumes	ls Signal Warrant Met?							
Major Street Minor Street*		11,690 1,620	10,600 2,650	Νο							
Condition B: Interr	uption of Continuous T	Fraffic									

Approach Volumes	Minimum Volumes	ls Signal Warrant Met
e		
11,690	10,600	
1,620	2,650	No
Traffic		
11,690	15,900	
1,620	1,350	No
11,690	12,720	
1,620	2,120	No
	Volumes ne 11,690 1,620 : <i>Traffic</i> 11,690 1,620 11,690	Volumes Volumes 11,690 10,600 1,620 2,650 <i>Traffic</i> 11,690 15,900 1,620 1,350 11,690 12,720

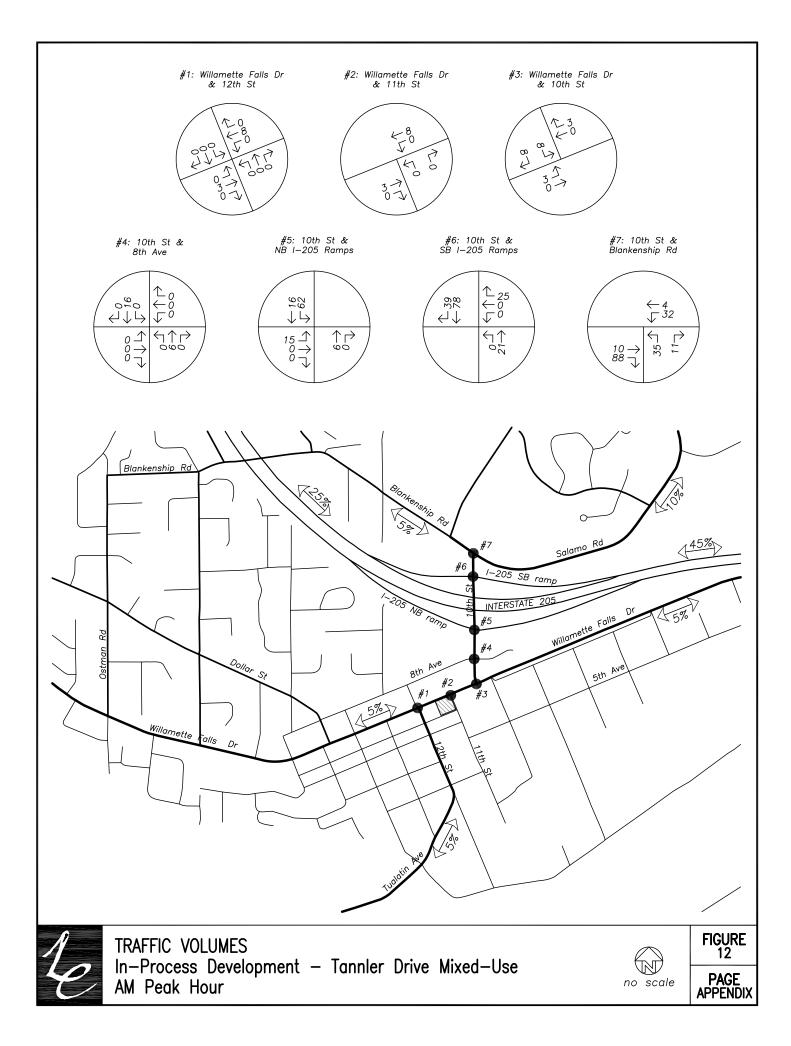
* Minor street right-turning traffic volumes reduced by 25%

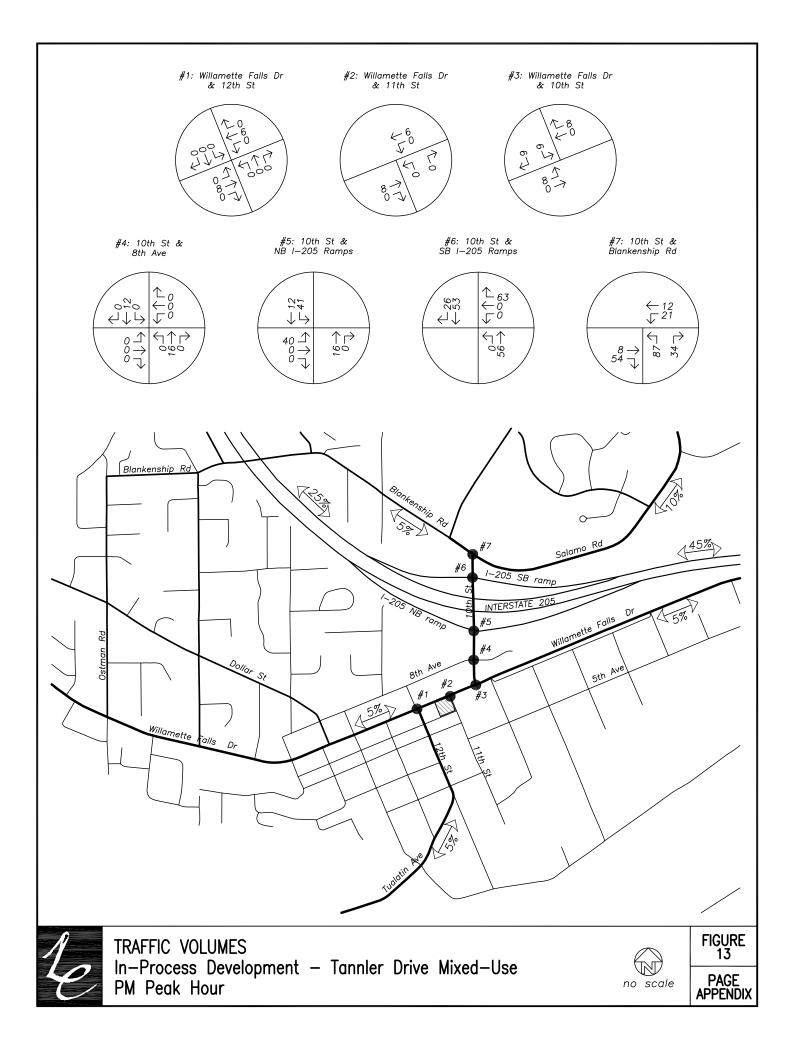
Left-Turn Lane Warrant Analysis


Project:1969 Willamette Falls DriveIntersection:Willamette Falls Drive at 11th StreetDate:2/4/2016Scenario:2015 Existing Conditions - PM Peak Hour

2-lane roadway (English)

Variable	Value
85 th percentile speed, mph:	25
Percent of left-turns in advancing volume (V _A), %:	5%
Advancing volume (V _A), veh/h:	419
Opposing volume (V _O), veh/h:	865


OUTPUT


Variable	Value					
Limiting advancing volume (V _A), veh/h:	379					
Guidance for determining the need for a major-road left-turn bay:						
Left-turn treatment warranted.						

CALIBRATION CONSTANTS

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

 Intersection Name: I-205 SB @ 10th / Salamo / Blankenship

 Controller
 122319.2
 Channel: Drop: 0

 System:
 TransCore TransSuite TCS

 Controller Type:
 Voyage

 Revision Version

 TransCore Unified Controller Manager 10.3.1

1		
-		
1		
1		

Zero Tables

Non-Zero Tables

DetectorPlans DetectorFailMonitor PedOverlaps ADVANCE WARNING DYNAMIC FYLTA ServicePlans1 4 ServicePlans5 8 MaxPlans CoordinationPlans CoordinationPlansCont PlatoonProgression ForceOffPercents DayProgram 41 80 DayProgram 81 120 DayProgram 121 160 DayProgram 161 200 ExceptionDays PreemptionSequence 5 8 PriorityReturnAndSpecialIntervals LightRailTrain IEEE1570 TransitPriorityAOFP GroupTiming TruckPriority IO Options CommandBox 1 96 CommandBox 97 192 CommandBox 193 256

ControllerFunctionTiming Phase Timing Dual Entry OtherControllerFunctions DetectorData SystemDetector Vehicle Overlaps FYLTA CoordinationModes CircuitMapping DynamicPhaseLength DayProgram 1 40 WeekProgram YearDays TimeClockReferences CircuitOverrides 1 100 CircuitOverrides 101 199 PreemptionSequence 1 4 SequenceTiming TransitPriority 170 Inputs 170 Outputs CONTROLLER ID

Controller Function and Timing

	Security, Sequence and Timing (Next/2/1, Next/2/2/3/A, Next/2/2/5)											
Securi	ty Code	0	0 = disabled, o	0 = disabled, or 1000-9999 First All Red 8.0 0.0 to 25.5 seconds								
Se	equence	7	0 = sequential,	= sequential, 1 = quad left turn, 2-6 = special A-E, 7 = lead lag								
Power u	ıp Flash	0.0	0.0 - 25.5 seconds									
	Initializ	ation (Next/2	2/2/5)		Lea	ad Lag (Next/2/2	2/3/A)					
Ring 1	Ring 2	In	terval	Phases 1 - 2	Phases	3-4 P	hases 5 - 6	Phases 7 - 8				
1	0		0	2	2		2	2				

0 = no reversal, 1 = reversal, 2 = by coord plan or clock

(Next/	2/2/	3)			Phase Fun			ctions			(Ne	xt/2/2/1)									
Phase Used	1	2	3	4	5	6	7	8					Yell	ow Locł	(-	-	-	-	-	-	-	-
Restricted Phases	-	-	-	-	-	-	-	-					Mi	n Recal	-	2	-	-	5	-	-	-
Exclusive Phases	-	-	-	-	-	-	7	-					Ma	x Recal	I –	-	-	-	-	-	-	-
													Pe	d Recal	I -	-	-	-	-	-	-	-
													R	led Lock	< -	-	-	-	-	-	-	-
									Max Ou	it Reca	all Inhibi	t 1	2	3	4	5	6	7	8			
													So	ft Recal	I -	-	-	-	-	-	-	-
												F	ree W	alk Res	t –	-	-	-	-	-	-	-
												С	onditio	onal Peo	1 -	-	-	-	-	-	-	-
										Disab	le In	nhibit Ma	ax Teri	minatior	n –	-	-	-	-	-	-	-
												Ca	II To N	Ion-Act	1 -	-	-	-	-	-	-	-
												Ca	III To N	Ion-Act	2 -	-	-	-	-	-	-	-

	Phase Times (Next/2/2/2)								
Phase	1	2	3	4	5	6	7	8	
Movement									
Minimum Green	4	6	4	6	10	2	6	6	0 - 255 sec.
Passage	2.3	2.3	2.3	2.3	5.2	0.5	2.3	2.3	0.0 - 25.5 sec.
Yellow	4.0	4.0	4.0	4.0	4.0	4.0	4.0	5.0	0.0 - 25.5 sec.
Red Clearance	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.0	0.0 - 25.5 sec. or 0 - 255 sec.
Max 1	21	37	30	16	40	6	25	32	0 - 255 sec.
Max 2	21	37	30	16	40	6	25	32	0 - 255 sec.
Walk	0	5	5	5	5	0	5	0	0 - 255 sec.
Ped Clear	0	11	10	23	12	0	13	0	0 - 255 sec.
Seconds Per Actuation	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0 - 25.5 sec.
Time Before Reduction	8	8	8	8	10	0	8	8	0 - 255 sec.
Time to Reduce	3	3	3	3	20	0	3	3	0 - 255 sec.
Minimum Gap	0.5	0.5	0.5	0.5	3.2	0.5	0.5	0.5	0.0 - 25.5 sec.
Max Variable Initial	4	6	4	6	13	2	6	6	0 - 255 sec.
Max Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 sec.
Auto Max	0	0	0	0	0	0	0	0	0 - 255 sec.
Advanced walk	0	0	0	0	0	0	0	0	0 - 255 sec.

Phase Times (Next/2/2/9/5)									
Inhibit Min Yellow X = On									
Red Decimal Off									X = On

Phase 1 - 8

0 = Red, 1 = Yel, 2 = Grn

Dual Entry (Next/2/2/9/3)

Mode	1	0 = off, 1 = on, 2 = Not Used, 3 = by coord plan, 4 = by time clock circuit 61
------	---	--

Dual Entry Ph>	1	2	3	4	5	6	7	8	
Phase	0	0	0	8	0	0	0	4	0 = none, 1-8 = phase 1-8

	Cond Service (N	ext/2/2/9/3/A)	5 Sec Head Logic (Next/2/2/9/4)										
	Mode	CS Max Time	Х	Omits Y		Anti-Trap		Yellow Blanking I					
Phase 1	0	7	X:Y		Trap Pro	tected Phase	Next Phase	Phase					
Phase 3	0	0	6:1	0	1	0	< (5)	1	0				
Phase 5	0	0	8:3	0	3	0	< (7)	3	0				
Phase 7	0	0	2:5	0	5	0	< (1)	5	0				
		. on by TOD circuit 57,	4:7	0	7	0	< (3)	7	0				
	= C.S. and C.R. (h by TOD circuit {		0 = off, 2 = no s	1 = side call, ide call	X = On								

Other Controller Functions (Next/2/2/9/1, Next/2/2/9/5)

Inhibit Simultaneous Gap Out	1 - 3 4 5 - 7 8	
Last Car Passage	2	0 = recall phase, 1 = last car passage, 2 = NOT recall - Not last car passage
Red Revert (+2seconds)	0.0	0 - 25.5 sec.
Auto Ped Clear	On	X = On
FDW thru Yellow	Off	X = On
Red Rest Delay	0.0	0 - 25.5 sec.
Change Sequence	Off	X = On (After a download without a power on - off cycle)
Advanced Flash Rate	60 FPM	0 = Disabled (60 FPM), 1 = 120 FPM
Ped Push Button Time	null	0 = Disable, 0 - 5 Seconds

Phase ->	1	2	3	4	5	6	7	8	
Red Clear Extension Detector	0	0	0	0	0	0	0	0	0 = none 1 - 32 = detector 1 - 32
Red Clear Extension Red Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 - 25.5 sec.

			C	Detector D	Data				
Detector	Description	Yellow Lock	Detector Inhibit	Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnect Mode
1				1	1	0	0	2.0	0
2				1	1	0	0	0.0	0
3				3	3	0	0	2.0	0
4				3	3	0	0	0.0	0
5				5	5	0	0	0.0	0
6				5	5	0	0	0.0	0
7				7	7	0	0	2.0	0
8				7	7	0	0	0.0	0
9				2	2	0	0	0.0	0
10				2	2	3	0	2.0	0
11				2	2	3	0	0.0	0
12				2	2	3	0	0.0	0
13				2	2	0	0	0.0	0
14				4	4	0	0	2.0	0
15				4	4	0	0	0.0	0
16				4	4	0	0	0.0	0
17				4	4	0	0	0.0	0
18				4	4	0	0	0.0	0
19				7	7	0	0	2.0	0
20				7	7	0	0	2.0	0
21				5	5	0	0	2.0	0
22				5	5	0	0	0.0	0
23				5	5	0	0	0.0	0
24				8	8	0	0	2.0	0
25				8	8	0	0	0.0	0
26				8	8	0	0	0.0	0
27				8	8	0	0	0.0	0
28				8	8	0	0	0.0	0
29				5	5	4	3	0.0	0
30				7	7	0	0	0.0	0
31				0	0	0	0	0.0	0
32				0	0	0	0	0.0	0

	Detector Data													
Detector	Description	Yellow Lock	Detector Inhibit	Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnec Mode					
33		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
34		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
35		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
36		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
37		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
38		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
39		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
40		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
41		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
42		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
43		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
44		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
45		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
46		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
47		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
48		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
49		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
50		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
51		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
52		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
53		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
54		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
55		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
56		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
57		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
58		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
59		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
60		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
61		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
62		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
63		N/A	N/A	0	0	N/A	N/A	N/A	N/A					
64		N/A	N/A	0	0	N/A	N/A	N/A	N/A					

yenow lock, detector inhibit, - X = On; call, extend, phase - 0 = none 1 - 8 = p stretch / disconnect time - 0.0 - 25.5 sec.; delay or disconnect Mode - 0 -12

			De	etect	or Pl	ans	(Nex	t/2/2	/4/5)	
	Loop Number									
	Plan Detectors	0	0	0	0	0	0	0	0	0 - 32, 0 = none, 1 - 32 = detectors 1- 32
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 1	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 2	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
ĺ	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 3	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14

Detector Fail (Next/2/2/4/3)												
Detector	Fail Sa	mple Peri	iod (all de	etectors)	0	0 - 255 ו	minutes					
C	ynamic	Phase Le	ength Fai	l Period	0	0 - 255 เ	minutes					
Video Fail Inputs	1	2	3	4	5	6	7	8				
Phase Recalled	0	0	0	0	0	0	0	0	0 = none, 1 - 8 = phase 1 - 8			
System Detectors	1	2	3	4	5	6	7	8	0 none 1 22 detector 1 22			
Local Detector	1	5	9	10	19	20	29	30	0 = none, 1 - 32 = detector 1 - 32			
		1	1	I	Elach (Next/2/2/	5)	1	1			

		Flash (No	ext/2/2/5)									
	Flash Entry Flash Exit											
Ring 1	Ring 2	Interval	Ring 1	Ring 2	Interval							
0	0	red	1	0	0							
0 = none, j	phase 1 - 8	0 = red, 1 = yel, 2 = grn	0 = none, p	ohase 1 - 8	0 = red, 1 = yel, 2 = grn							

	Soft Flash (Next/2/2/5/A)													
Dhaaa	Phase 1 2 3 4 5 6 7 8													
Phase	3													
Overlan	Α	В	С	D	E	F	G	Н	I	J	К	L		
Overlap	3	4	3	4	3	4	3	4	3	4	3	4		
	0 = dark, 1=flash yel WIG, 2 = flash yel WAG, 3 = flash red WIG, 4 = flash red WAG													

Internal Logic	1	2	3	4	5	6	7	8	9	10	11	12	0 = normal, 1 = dark,
Output	0	0	0	0	0	0	0	0	0	0	0	0	2 = flash WIG

	Overlaps (Next/2/2/8/1)														
Vehicle	Phase or			Pł	nase or	Moveme	ent			Extension	Clear	ance	A - D 0 = no overlap		
Overlaps	Movement	1	2	3	4	5	6	7	8	Green	Yellow	Red	1 = overlap		
A		0	0	0	0	1	1	1	0	0.0	0.0	0.0	2 = 60 FPM 3 = Not ped overlap		
В		0	1	1	1	0	0	0	0	0.0	0.0	0.0	4 = Comp Phase		
С		0	0	1	0	1	1	1	0	0.0	0.0	0.0	5 = Prevent Ext 6 = Not Vehicle		
D		0	0	0	1	1	0	1	0	0.0	0.0	0.0] - E-L		
E		0	0	0	0	0	0	1	0	0.0	0.0	0.0	0 = no Overlap		
F		0	0	0	0	0	0	0	0	0.0	0.0	0.0	1 = Overlap		
G		0	0	0	0	0	0	0	0	0.0	0.0	0.0]		
Н		0	0	0	0	0	0	0	0	0.0	0.0	0.0	Green, Yellow, Red 0.0 - 25.5 sec		
I		0	0	0	0	0	0	0	0	0.0	0.0	0.0			
J		0	0	0	0	0	0	0	0	0.0	0.0	0.0]		
K		0	0	0	0	0	0	0	0	0.0	0.0	0.0]		
L		0	0	0	0	0	0	0	0	0.0	0.0	0.0			

(Next/2/2/8/6/8)

	Not Ped-Ped Overlaps								
Overlap	ABCDEFGH								
A									
В									
С									
D									

Ped C	Overlaps
-------	----------

ps (Next/2/2/8/5)

Ped Overlap	Phase	Recall	Walk	Ped Clear	
A			0	0	
В			0	0	
С			0	0	
D			0		Walk, Ped Clear 0 - 255 seconds
E			0	0	
F			0	0	
G			0	0	
Н			0	0	

		Adv	/ance	Warı	ning (Next/	2/2/8/	3)						
	E F G H I J K L													
Enable	0	0	0	0	0	0	0	0	0 = Disable, 1 = Enable					
1st Conditional Overlaps	0	0	0	0	0	0	0	0	0 = None, 1 = OL E, 2 = OL F, 3 = OL G, 4 =					
2nd Conditional Overlaps	0	0	0	0	0	0	0	0	OL H, 5 = OL I, 6 = OL J, 7 = OL K, 8 = OL L					
Advance Deactivation Delay	0	0	0	0	0	0	0	0	0 - 99 sec					

Phase Pairs ->	1 - 2	3 - 4	5 - 6	7 - 8	
Enable	0	0	0	0	0 = off, 3 = 3 outputs, 4 = 4 outputs, 5 = 5 outputs
Even Omits Odd	0	0	0	0	0/1/2
Detector Switch Odd / Even	1	1	1	1	X = on, odd phase must be omitted
Red Transition	2.0	2.0	2.0	2.0	0.0 or 2.0 - 25.5 sec.
Red Extension	0.0	0.0	0.0	0.0	0.0 - 25.5 sec.
Return to GLTA	0	0	0	0	0 = off, 1 = max out, 2= yellow lock
Gap Dependent FYLTA Detector Input	0	0	0	0	0 = Disabled, 1 - 64 = Local Detector 1 - 64
Minimum Delay	0	0	0	0	0 - 255 seconds
Detector Gap Time	0.0	0.0	0.0	0.0	0 - 25.5 seconds.
Maximum Delay	0	0	0	0	0 - 255 seconds
Not Ped	0	0	0	0	
		•	•		
	Dy	namic Fla	ashing Ye	ellow Lef	ft Turn Arrow
Phase Pairs	1 - 2	3 - 4	5 - 6	7 - 8	

Phase Pairs	1 - 2	3 - 4	5-6	7 - 8	
[Plan A] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled
Detector Gap Time	0.0	0.0	0.0	0.0	0.0 - 25.5
FYLTA Max Delay	0	0	0	0	0 - 255
FYLTA Min Delay	0	0	0	0	0 - 255
Not Ped Mode	0	0	0	0	0 - 4

[Plan B] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled	
Detector Gap Time	0.0	0.0 0.0 0.0 0.0 - 25.5				
FYLTA Max Delay	0	0	0	0	0 - 255	
FYLTA Min Delay	0	0	0	0	0 - 255	
Not Ped Mode	0	0	0	0	0 - 4	

[Plan C] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled		
Detector Gap Time	0.0	0.0 - 25.5					
FYLTA Max Delay	0	0	0	0 0 - 255			
FYLTA Min Delay	0	0	0	0	0 - 255		
Not Ped Mode	0	0	0	0	0 - 4		

[Plan D] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled	
Detector Gap Time	ime 0.0 0.0 0.0 0.0 0.0 0.0 - 25.5					
FYLTA Max Delay	0	0 0 0 0 - 255				
FYLTA Min Delay	0	0	0	0	0 - 255	
Not Ped Mode	0	0	0	0	0 - 4	

	CoordinationData Coordination Modes (Next/2/3/1)										
Flash Mode	33	0=off, 1=on, 33=time clock, 34=comm, 35=hardwire									
Coordination Plan Mode	34	0=free, 1-32 = coord plan 1-32, 33=time clock, 34=comm, 35=hardwire									
Offset Seeking Mode	2	0=add only, 1=dwell, 2=fastway									
Late Ped	0	0 = off, 1 = on									
Coord Walk Rest	0	0 = off, 1 = on, 2 = by tod circuit 160, 3 = end of walk, 4 = coord ped during perms									
Zero Mode(TS2 only)	0	0=start of main street, 1=end of main street, 2=by TOD circuit 144, 3 = first green									
	1)	Next/2/3/4/1)									
Repeated Ped Service	2	0=off, 1=on (no coord ped), 2=on (beginning green coord ped), 3=on (coord ped always)									
Omit Phase During Repeated Phase		= service allowed ; # = service prevented									

			Coordin	ation Plan	s (Next/2/3/	2)		
Coord Plan	Coordinati	ion Phases	_ Cycle Length	Offset Time	Min Cycle Len Dwell Time	Permissive	Service Plan	Max Plan
FIAII	Ring 1	Ring 2			Dweir Time		FIAII	
1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0
	0	- 8		0 - 2	55 sec		0	- 8

			Circu	iit Mappii	ng (Next/2	2/3/3)					
		Time Clock Circuit									
Circuit Map	Coord Plan	1	2	3	4	5	6	7	8		
1	34	0	0	0	0	0	0	0	0		
2	34	0	0	0	0	0	0	0	0		
3	34	0	0	0	0	0	0	0	0		
4	34	0	0	0	0	0	0	0	0		
5	34	0	0	0	0	0	0	0	0		
6	34	0	0	0	0	0	0	0	0		
7	34	0	0	0	0	0	0	0	0		
8	34	0	0	0	0	0	0	0	0		
9	34	0	0	0	0	0	0	0	0		
10	34	0	0	0	0	0	0	0	0		
11	34	0	0	0	0	0	0	0	0		
12	34	0	0	0	0	0	0	0	0		
13	34	0	0	0	0	0	0	0	0		
14	34	0	0	0	0	0	0	0	0		
15	34	0	0	0	0	0	0	0	0		
16	34	0	0	0	0	0	0	0	0		
17	34	0	0	0	0	0	0	0	0		
18	34	0	0	0	0	0	0	0	0		
19	34	0	0	0	0	0	0	0	0		
20	34	0	0	0	0	0	0	0	0		

coord plan - 0 = free, 1 - 32 = coord plan 1 - 32, 33 = any, 34 none selected time clock circuits - 0 = not used, or circuits 6 - 199

Dynamic Phase Lengths (Next/2/3/4/4)

Р	hase ->	1	2	3	4	5	6	7	8		
Back I	Back Detector		31	0	29	5	32	0	30	0 = none, 1-32 = detector 1-32	
Lan	e Factor	1.0	1.9	0.0	1.3	1.0	1.9	0.0	1.5	0 = none, 0.5 - 5.0	
Check Out I	Detector	0	0	0	0	0	0	0	0	0 = none, 1-32 = detector 1-32	
	Set A	5	5	0	5	5	5	0	5		
Coord Delta	Set B	0	0	0	5	5	0	0	5		
Force Off	Set C	0	0	0	0	0	0	0	0		
-	Set D	0	0	0	0	0	0	0	0		
	Set A	0	0	0	0	0	0	0	0	0 - 255 sec	
Free Delte May	Set B	0	0	0	0	0	0	0	0		
Free Delta Max	Set C	0	0	0	0	0	0	0	0]	
-	Set D	0	0	0	0	0	0	0	0	1	

	Auto Permissive Min Green (Next/2/3/4/3)											
Phase ->	1	2	3	4	5	6	7	8				
Auto Perm Min Green	0	0	0	0	0	0	0	0	0 - 255 sec.			

			Day	Program		
	Day Prog	Time	Coord Plan or Circuit	Coord Plan # or Circuit #	Circuit Abbrev	State On/Of
1	1	16:00	Circuit	13	MX2	Х
2	1	18:30	Circuit	13	MX2	
3	0	00:00	Circuit	0	None / Coord Plan	
4	0	00:00	Circuit	0	None / Coord Plan	
5	0	00:00	Circuit	0	None / Coord Plan	
6	0	00:00	Circuit	0	None / Coord Plan	
7	0	00:00	Circuit	0	None / Coord Plan	
8	0	00:00	Circuit	0	None / Coord Plan	
9	0	00:00	Circuit	0	None / Coord Plan	
10	0	00:00	Circuit	0	None / Coord Plan	
11	0	00:00	Circuit	0	None / Coord Plan	
12	0	00:00	Circuit	0	None / Coord Plan	
13	0	00:00	Circuit	0	None / Coord Plan	
14	0	00:00	Circuit	0	None / Coord Plan	
15	0	00:00			None / Coord Plan	
16	0	00:00	Circuit	0	None / Coord Plan None / Coord Plan	
17	0	00:00	Circuit	0	·	
18	-	00:00	Circuit	0		
19 20	0	00:00	Circuit	0	None / Coord Plan None / Coord Plan	
20	0	00:00	Circuit	0	None / Coord Plan	
21	0	00:00	Circuit	0	None / Coord Plan	
22	0	00:00	Circuit	0	None / Coord Plan	
23	0	00:00	Circuit	0	None / Coord Plan	
25	0	00:00	Circuit	0	None / Coord Plan	
26	0	00:00	Circuit	0	None / Coord Plan	
27	0	00:00	Circuit	0	None / Coord Plan	
28	0	00:00	Circuit	0	None / Coord Plan	
29	0	00:00	Circuit	0	None / Coord Plan	
30	0	00:00	Circuit	0	None / Coord Plan	
31	0	00:00	Circuit	0	None / Coord Plan	
32	0	00:00	Circuit	0	None / Coord Plan	
33	0	00:00	Circuit	0	None / Coord Plan	
34	0	00:00	Circuit	0	None / Coord Plan	
35	0	00:00	Circuit	0	None / Coord Plan	
36	0	00:00	Circuit	0	None / Coord Plan	
37	0	00:00	Circuit	0	None / Coord Plan	
38	0	00:00	Circuit	0	None / Coord Plan	
39	0	00:00	Circuit	0	None / Coord Plan	
40	0	00:00	Circuit	0	None / Coord Plan	
	1 - 15	hh:mm	X = On = Coord Plan	coord plan 0 - 32 or circuit 1-199		X = 0

	W	EEK	PROGI	RAM (Ne	ext/2/4/2	2)]		YEAR PROGR	RAM (Ne	xt/2/4/3)
1		Mon	Tue	Wed	Thu	Fri 1	Sat 2		From Date	To Date	Week Program	
2	1	1	1	1	1	1	1	1	12/28/2014	01/02/2016	1	
3	1	1	1	1	1	1	1	-	00/00/0000	00/00/0000	0	
5	1	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0	
6	1	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0	
7	1	1	1	1	1	1	1	-	00/00/0000	00/00/0000	0	
9	1	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0	
10	1	1	1	1	1	1	1]	00/00/0000	00/00/0000	0	
				- 15 = day p] 1	00/00/0000	00/00/0000	0	
	EX	CEP	TION D	DAYS (N	ext/2/4/	6)			00/00/0000	00/00/0000	0	
	Week of		onth	Day of	Day	of	Day Prog		00/00/0000	00/00/0000	0	
	Month			Month	We	ek '	Day Flog		00/00/0000	00/00/0000	0	
1	0		0	0			0	1	00/00/0000	00/00/0000	0	
2	0		0	0			0	1	00/00/0000	00/00/0000	0	
3	0		0	0			0	1	00/00/0000	00/00/0000	0	
4	0		0	0			0		00/00/0000	00/00/0000	0	
5	0		0	0			0		00/00/0000	00/00/0000	0	
6	0		0	0			0		00/00/0000	00/00/0000	0	New Veere Drug Date
7	0		0	0			0		00/00/0000	00/00/0000	0	New Years Day - Date - January 1st
8	0		0	0			0		00/00/0000	00/00/0000	0	Martin Luther King Day - DOW WOM - 3rd Monday of January
9	0		0	0			0		00/00/0000	00/00/0000	0	
10	0		0	0			0		00/00/0000	00/00/0000	0	President's Day - DOW WOM - 3rd Monday February
11	0		0	0			0		00/00/0000	00/00/0000	0	
12	0		0	0			0		00/00/0000	00/00/0000	0	Memorial Day - DOW WOM - Last Monday May
13	0		0	0			0		00/00/0000	00/00/0000	0	Four of July - Date - July 4th
14	0		0	0			0		00/00/0000	00/00/0000	0	
15	0		0	0			0		00/00/0000	00/00/0000	0	Labor Day - DOW WOM - 1st Monday September
16	0		0	0			0		00/00/0000	00/00/0000	0	Columbus Day - DOW WOM -
17	0	_	0	0			0		00/00/0000	00/00/0000	0	2nd Monday October
18	0		0	0			0		00/00/0000	00/00/0000	0	Vetern's Day - Date - November
19	0	_	0	0			0	ļ	00/00/0000	00/00/0000	0	11th
20	0	_	0	0			0	-	00/00/0000	00/00/0000	0	Thankgiving - DOW WOM -
21	0	_	0	0			0	-	00/00/0000	00/00/0000	0	4th Thursday November
22	0	_	0	0			0		00/00/0000	00/00/0000	0	Christmas - Date - December 25th
23	0	_	0	0			0		00/00/0000	00/00/0000	0	
24	0	_	0	0			0	-	00/00/0000	00/00/0000	0	
25	0	_	0	0	_		0	-	00/00/0000	00/00/0000	0	
26	0		0	0	_		0	{	00/00/0000	00/00/0000	0	
27	0	_	0	0			0		00/00/0000	00/00/0000	0	
28 29	0		0	0			0	{	00/00/0000	00/00/0000	0	
30	0		0	0	_		0	{	00/00/0000	00/00/0000	0	
31	0		0	0			0	1	00/00/0000	00/00/0000	0	
32	0		0	0	-		0	1	00/00/0000	00/00/0000	0	
33	0		0	0			0	1	00/00/0000	00/00/0000	0	
34	0		0	0			0	1	00/00/0000	00/00/0000	0	
35	0	-	0	0			0	1	00/00/0000	00/00/0000	0	-
	0 - 5	0	- 12	1 - 31	1 -	7	0 - 15	1	00/00/0000	00/00/0000	0	-
	ļ	!	ļ				0 10	1]	00/00/0000	00/00/0000	0	
-				rences	•	,		{	00/00/0000	00/00/0000	0	
	reference l		0		= timed,		event	{	00/00/0000	00/00/0000	0	
-	Reference		00:		0:00 - 23:	:59			00/00/0000	00/00/0000	0	
Dayligh	nt Saving E		00.		$\frac{1}{2} = On$	50		-	00/00/0000	00/00/0000	0	
	Reset	Ime	00:	00 0	0:00 - 23:	:59]	L	ı	!	1
	Ti	me Z	one Of	fset (Ne	xt/2/4/8	3)						
	Time	Zone	N	ot Loade	ed		0					
1												

CIRCUIT OVERRIDES 1 - 100 (Next/2/4/4)

1 - Coord Line 1	CL1 2 = TOD
2 - Coord Line 2	CL2 2 = TOD
3 - Coord Line 4	CL4 2 = TOD
4 - Coord Line 8	CL8 2 = TOD
5 - Coord Line 16	C16 2 = TOD
6 - Coordinated Operation	CRD 2 = TOD
7 - Soft Flash	SFL 2 = TOD
3 - Enable System Relays	ESR 2 = TOD
9 - Call to Non Actuated Ring 1	CN1 2 = TOD
10 -Call to Non Actuated Ring 2	CN2 2 = TOD
11 - Walk Rest Modifier	WRM 2 = TOD
12 - Min Recall	MIN 2 = TOD
13 - Max 2 Both Rings	MX2 2 = TOD
14 - Coord Inhibit Max Ring 1	IM1 2 = TOD
15 - Coord Inhibit Max Ring 2	IM2 1 = On
16 - Call to Free	CTF 2 = TOD
17 - TOD Output 1	TO1 2 = TOD
18 - TOD Output 2	TO2 2 = TOD
19 - TOD Output 3	TO3 2 = TOD
20 - TOD Output 4	TO4 2 = TOD
21 - TOD Output 5	TO5 2 = TOD
22 - TOD Output 6	TO6 2 = TOD
23 - TOD Output 7	TO7 2 = TOD
24 - TOD Output 8	TO8 2 = TOD
25 - Vehicle Call Phase 1	VC1 2 = TOD
26 - Vehicle Call Phase 2	VC2 2 = TOD
27 - Vehicle Call Phase 3	VC3 2 = TOD
28 - Vehicle Call Phase 4	VC4 2 = TOD
29 - Vehicle Call Phase 5	VC5 2 = TOD
30 - Vehicle Call Phase 6	VC6 2 = TOD
31 - Vehicle Call Phase 7	VC7 2 = TOD
32 - Vehicle Call Phase 8	VC8 2 = TOD
33 - Ped Call Phase 1	PC1 2 = TOD
34 - Ped Call Phase 2	PC2 2 = TOD
35 - Ped Call Phase 3	PC3 2 = TOD
36 - Ped Call Phase 4	PC4 2 = TOD
37 - Ped Call Phase 5	PC5 2 = TOD
38 - Ped Call Phase 6	PC6 = TOD
39 - Ped Call Phase 7	PC7 2 = TOD
40 - Ped Call Phase 8	PC8 2 = TOD
41 - Phase Omit 1	VO1 2 = TOD
42 - Phase Omit 2	VO2 2 = TOD
43 - Phase Omit 3	VO3 2 = TOD
44 - Phase Omit 4	VO4 2 = TOD
45 - Phase Omit 5	VO5 2 = TOD
46 - Phase Omit 6	VO6 2 = TOD
46 - Phase Omit 6 47 - Phase Omit 7	V08 2 = 10D V07 2 = TOD
48 - Phase Omit 8	VO7 2 = 10D VO8 2 = TOD
49 - Ped Omit 1	PO1 2 = TOD

6 1 - 100 (Next/2/4/4)		
51 - Ped Omit 3	PO3	2 = TOD
52 - Ped Omit 4	PO4	2 = TOD
53 - Ped Omit 5	PO5	2 = TOD
54 - Ped Omit 6	PO6	2 = TOD
55 - Ped Omit 7	PO7	2 = TOD
56 - Ped Omit 8	PO8	2 = TOD
57 - Conditonal Service	CVS	2 = TOD
58 - Inhibit Simultaneous Gap Out	ISG	1 = On
59 - Inhibit Hardwire	HWI	2 = TOD
60 - Ped Override Mode	POM	1 = On
61 - Dual Entry	DLE	1 = On
62 - Exclusive Ped	EPD	2 = TOD
63 - Call to Time Clock Mode	СТС	2 = TOD
64 - Dual Enhanced Ped	DEP	2 = TOD
65 - Service Plan 1	SP1	2 = TOD
66 - Service Plan 2	SP2	2 = TOD
67 - Service Plan 3	SP3	2 = TOD
68 - Service Plan 4	SP4	2 = TOD
69 - Service Plan 5	SP5	2 = TOD
70 - Service Plan 6	SP6	2 = TOD
71 - Service Plan 7	SP7	2 = TOD
72 - Service Plan 8	SP8	2 = TOD
73 - Max Plan 1	MP1	2 = TOD
74 - Max Plan 2	MP2	2 = TOD
75 - Max Plan 3	MP3	2 = TOD
76 - Max Plan 4	MP4	2 = TOD
77 - Max Plan 5	MP5	2 = TOD
78 - Max Plan 6	MP6	2 = TOD
79 - Max Plan 7	MP7	2 = TOD
80 - Max Plan 8	MP8	2 = TOD
81 - Transit Priority Max Group 1	TG1	2 = TOD
82 - Transit Priority Max Group 2	TG2	2 = TOD
83 - Transit Priority Max Group 3	TG3	2 = TOD
84 - Transit Priority Max Group 4	TG4	2 = TOD
85 - Transit Priority Max Group 5	TG5	2 = TOD
86 - Transit Priority Max Group 6	TG6	2 = TOD
87 - Transit Priority Max Group 7	TG7	2 = TOD
88 - Transit Priority Max Group 8	TG8	2 = TOD
89 - Inhibit Gap Reducing 1	GR1	2 = TOD
90 - Inhibit Gap Reducing 2	GR2	2 = TOD
91 - Inhibit Gap Reducing 3	GR3	2 = TOD
92 - Inhibit Gap Reducing 4	GR4	2 = TOD
93 - Inhibit Gap Reducing 5	GR5	2 = TOD
94 - Inhibit Gap Reducing 6	GR6	2 = TOD
95 - Inhibit Gap Reducing 7	GR7	2 = TOD
96 - Inhibit Gap Reducing 8	GR8	2 = TOD
97 - Lag 1	LG1	2 = TOD
98 - Lag 3	LG3	2 = TOD
99 - Lag 5	LG5	2 = TOD
100 - Lag 7	LG8	2 = TOD

CIRCUIT OVERRIDES 101 - 199 (Next/2/4/4)

	_				
101 - Inhibit Overlap A	OLA	2	=	TOD	
102 - Inhibit Overlap B	OLB	2	=	TOD	
103 - Inhibit Overlap C	OLC	2	=	TOD	
104 - Inhibit Overlap D	OLD	2	=	TOD	
105 - Enable Schedule A Phone 1	AT1	2	=	TOD	
106 - Enable Schedule A Phone 2	AT2	2	=	TOD	
107 - Enable Schedule B Phone 1	BT1	2	=	TOD	
108 - Enable Schedule B Phone 2	BT2	2	=	TOD	
109 - Enable Schedule C Phone 1	CT1	2	=	TOD	
110 - Enable Schedule C Phone 2	CT2	2	=	TOD	
111 - Enable Volume to Call Phone 1	VT1	2	=	TOD	
112 - Enable Volume to Call Phone 1	VT2	2	=	TOD	
113 - Enable Volume Logging	EVL	1	=	On	
114 - Enable MOE Logging	EML	1	=	On	
115 - Detector Low Threshold Inhibit	DLI	2	=	TOD	
116 - Detector Continue Presence Inhibit	DPI	2	=	TOD	
117 - Inhibit Detector Based On Progrmming	IND	2	=	TOD	
118 - Inhibit Detector Delay	IDD	2	=	TOD	
119 - Inhibit Conditional Ped	ICP	2	=	TOD	
120 - Inhibit Transit Priority	ITP	2	=	TOD	
121 - Red Rest Ring 1	RR1	2	=	TOD	
122 - Red Rest Ring 2	RR2	2	=	TOD	
123 - Omit Red Clear Ring 1	OR1	2	=	TOD	
124 - Omit Red Clear Ring 2	OR2	2	=	TOD	
125 - Ped Recycle Ring 1	PR1	2	=	TOD	
126 - Ped Recycle Ring 2	PR2	2	=	TOD	
127 - Enable MOE Log to Call Phone 1	MT1	2	=	TOD	
128 - Enable MOE Log to Call Phone 2	MT2	2	=	TOD	
129 - Transit Inhibit Short Time 1	IS1	2	=	TOD	
130 - Transit Inhibit Short Time 2	IS2	2	=	TOD	
131 - Transit Inhibit Short Time 3	IS3	2	=	TOD	
132 - Transit Inhibit Short Time 4	IS4	2	=	TOD	
133 - Transit Inhibit Short Time 5	IS5	2	=	TOD	
134 - Transit Inhibit Short Time 6	IS6	2	=	TOD	
135 - Transit Inhibit Short Time 7	IS7	2	=	TOD	
136 - Transit Inhibit Short Time 8	IS8	2	=	TOD	
137 - Enable Transit Priority Logging	ETL	2	=	TOD	
138 - Disable Flashing Yellow Arrow 1	DF1	2	=	TOD	
139 - Disable Flashing Yellow Arrow 3	DF3	2	=	TOD	
140 - Disable Flashing Yellow Arrow 5	DF5	2	=	TOD	
141 - Disable Flashing Yellow Arrow 7	DF7	2	=	TOD	
142 - Disable Auto Max	DAM	2	=	TOD	
143 - Disable Repeated Phase Service	DRS	2	=	TOD	
144 - End of Main Street	EMS	2	=	TOD	
145 - Coord Hold 1	HD1	2	=	TOD	
146 - Coord Hold 2	HD2	2	=	TOD	
147 - Coord Hold 3	HD3	2	=	TOD	
148 - Coord Hold 4	HD4	2	=	TOD	
	1				
149 - Coord Hold 5	HD5	2	=	TOD	

101 - 199 (Next/2/4/4)				
151 - Coord Hold 7	HD7	2	=	TOD
152 - Coord Hold 8	HD8	2	=	TOD
153 - PE Priority Return B	PRB	2	=	TOD
154 - PE Priority Return C	PRC	2	=	TOD
155 - PE Priority Return D	PRD	2	=	TOD
156 - PE Priority Return E	PRE	2	=	TOD
157 - Platoon Inbound	PPI	2	=	TOD
158 - Platoon Outbound	PPO	2	=	TOD
159 - Platoon Spl 2	PS2	2	=	TOD
160 - Coord Walk Rest	CWR	2	=	TOD
161 - Dynamic Phase Length Short Inhibit 1	SL1	2	=	TOD
162 - Dynamic Phase Length Short Inhibit 2	SL2	2	=	TOD
163 - Dynamic Phase Length Short Inhibit 3	SL3	2	=	TOD
164 - Dynamic Phase Length Short Inhibit 4	SL4	2	=	TOD
165 - Dynamic Phase Length Short Inhibit 5	SL5	2	=	TOD
166 - Dynamic Phase Length Short Inhibit 6	SL6	2	=	TOD
167 - Dynamic Phase Length Short Inhibit 7	SL7	2	=	TOD
168 - Dynamic Phase Length Short Inhibit 8	SL8	2	=	TOD
169 - Coord Late Left Turn 1	CT1	2	=	TOD
170 - Coord Late Left Turn 3	СТЗ	2	=	TOD
171 - Coord Late Left Turn 5	CT5	2	=	TOD
172 - Coord Late Left Turn 7	CT7	2	=	TOD
173 - Dynamic Phase Length Enable A	DPA	2	=	TOD
174 - Dynamic Phase Length Enable B	DPB	2	=	TOD
175 - Dynamic Phase Length Enable C	DPC	2	=	TOD
176 - Dynamic Phase Length Enable D	DPD	2	=	TOD
177 - Proactive Plan Select Average	PSA	2	=	TOD
178 - Proactive Plan Select Inbound	PSI	2	=	TOD
179 - Proactive Plan Select Outbound	PSO	2	=	TOD
180 - Split Variant Inbound	SVI	2	=	TOD
181 - Split Variant Outbound	SVO	2	=	TOD
182 - Disable Coord Walk Rest Ring 1	WR1	2	=	TOD
183 - Disable Coord Walk Rest Ring 2	WR2	2	=	TOD
184 - Proactive Plan Select New Look	NLK	2	=	TOD
185 - Disable Red Clearance Extension	DRX	2	=	TOD
186 - Detector Plan Line 1	DL1	2	=	TOD
187 - Detector Plan Line 2	DL2	2	=	TOD
188 - Disable LRT 1 Vertical Flashing Bar	DV1	2	=	TOD
189 - Disable LRT 2 Vertical Flashing Bar	DV2	2	=	TOD
190 - Disable LRT 3 Vertical Flashing Bar	DV3	2	=	TOD
191 - Disable LRT 4 Vertical Flashing Bar	DV4	2	=	TOD
192 - Datakey Enable	DKE	1	=	On
193 - Dynamic Phase Reversal Enable 1	DR1	2	=	TOD
194 - Dynamic Phase Reversal Enable 3	DR3	2	=	TOD
195 - Dynamic Phase Reversal Enable 5	DR5	2	=	TOD
196 - Dynamic Phase Reversal Enable 7	DR7	2	=	TOD
197 - Enable Coordination Log	ECL	1	=	On
198 - Disable Gap For FYLTA	DGF	2	=	TOD
199 - Coordination Auto Walk	CAW	2	=	TOD

			PREEM	PTION	SEQUE	ENCE 1 - 4 (Ne	xt/2/5)	
Seq	Interval	Instruction	Phases Serviced	Interval Time	Hold On Input	Output On	Output Mode	Instructions -
	1	197	4	0	On ·		0	0 = service phases defined in phases location
	2	98		0	Off ·		0	1-9 = use special intervals 1-9
	3	0		0	Off ·		0	10 = preempt sequence allows fylta
	4	0		0	Off ·		0	11 = preempt interval disables fylta
1	5	0		0	Off ·		0	15 = alternate trap protection
I	6	0		0	Off ·		0	90 = go to all red 91 = turn cvm off
	7	0		0	Off ·		0	92 = turn cvm on
	8	0		0	Off ·		0	93 = enable ped service and phases defined in phases
	9	0		0	Off ·		0	location
	10	0		0	Off ·		0	94 = disable ped service 96 = enable coordination
	1	197	3 8	0	On ·		0	 w/peds 97 = enable coordination
	2	98		0	Off ·		0	w/o peds
	3	0		0	Off ·		0	98 = return with no calls 99 = return with ped calls and
	4	0		0			0	phases defined in phases
	5	0		0	++		0	location 100 = jump to step defined in
2	6	0		0	Off ·		0	 time location and input has to be active for jump
	7	0		0	Off ·		0	101 = use time as resetable
	8	0		0	Off ·		0	gap timer and service phases defined in phases
	9	0		0	Off ·		0	location
	10	0		0	Off ·		0	196 = coordination sync w/peds
		0					0	197 = coordination sync
	1	197	7 -	0	On ·		0	w/o peds 200 = Irt phase service
	2	98		0	Off ·		0	w/o peds 201 = Irt phase service
	3	0		0	Off ·		0	w/peds
	4	0		0	Off ·		0	202 = priority return- queue/delay
3	5	0		0	Off ·		0	216 = Irt coordination sync
Ũ	6	0		0	Off ·		0	w/peds 217 = Irt coordination sync
	7	0		0	Off ·		0	w/o peds
	8	0		0	Off ·		0	Phases Serviced -
	9	0		0	Off ·		0	phases 1 - 8
	10	0		0	Off ·		0	Interval Time - 0 - 255 sec or
	1	197	- 2 5	0	On ·		0	interval 1 - 10
	2	98		0	Off ·		0	Hold on Input - X = on
	3	0		0	Off ·		0	Outputs On - output 1 - 8
	4	0		0	Off ·		0	Output Modes -
	5	0		0	Off ·		0	0 = all steady on
4	6	0		0	Off ·		0	 1 = all flash together 2 = odd flashes WIG,
	7	0		0	Off ·		0	even flashes WAG
	8	0		0	Off ·		0	3 = 1 - 4 steady on, 5 - 8 all flash together
	9	0		0	Off ·		0	
	10	0		0	++		0	

		S		СЕ ТІМІ	NG (Ne	xt/2/5/0)						
	Sequence	1	2	3	4	5	6	7	8			
	Input Memory											
	Input Priority	6	6	6	6	0	0	0	0	0 = lowest, - 8 = highest		
	Min Green	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0 - 25.5 sec		
	Walk	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0 would time the		
	Ped Clear	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	normal function time		
Entry	Overlap Yellow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 sec		
(Transition)	Overlap Red	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 Sec		
Parameters	Delay to Preempt	0	0	0	0	0	0	0	0			
	Delay Ped Omit	0	0	0	0	0	0	0	0	0 - 255 sec		
	Delay Phase Omit	0	0	0	0	0	0	0	0			
	Min Reservice	0	0	0	0	0	0	0	0	0 - 255 min		
	Overlap Inhibits									X = on		
	Exit to Coord Plan Offset by X	0	0	0	0	0	0	0	0	0 - 20		
	Exit Coord Plan Time	0	0	0	0	0	0	0	0	0 - 60 min		
[Exit to Max Plan	0	0	0	0	0	0	0	0	0 - 8		
Exit Parameters	Exit Free Time	0	0	0	0	0	0	0	0			
	Override Time	0	0	0	0	0	0	0	0	0 - 60 min		
	Fail Time	0	0	0	0	0	0	0	0			
	Exit Mode Time	0	0	0	0	0	0	0	0			

	F	RIOF		ETUR		ID SP	ECIAI		RVA	LS (Ne	ext/2/	5/0/6,	Next/2	2/5/9)	
Phase	e / Overlap	1	2	3	4	5	6	7	8	Α	В	С	D		
	Enable	Off	0 = di	sabled	; 1 = e	nablec	d; 2 = e	nabled	d and s	kip pre	empt	bhase	on exit		
	A (max)	0	0	0 0 0 0 0 0 0											
Drievity	B (max)	0	0	0	0	0	0	0	0						
Priority Return	C (max)	0	0	0	0	0	0	0	0	0 - 1	00% of	curre	ntly use	ed max	
Return	D (max)	0	0	0	0	0	0	0	0						
	E (max)	0	0	0	0	0	0	0	0						
	Ped Clear	0	0	0	0	0	0	0	0	0 - 1	00% of	curre	ntly use	ed ped clearance	
Queue Dela	y Recovery	0	0	0	0	0	0	0	0	0 - 2	55 sec				
	1	0	0	0	0	0	0	0	0	0	0	0	0	0 = Dark	
	2	0	0	0	0	0	0	0	0	0	0	0	0	1 = green don't walk 2 = green walk	
	3	0	0	0	0	0	0	0	0	0	0	0	0	3 = green flashing don't walk	
Special	4	0	0	0	0	0	0	0	0	0	0	0	0	4 = yellow	
Special Intervals	5	0	0	0	0	0	0	0	0	0	0	0	0	5 = red 6 = flashing yellow WIG	
	6	0	0	0	0	0	0	0	0	0	0	0	0	7 = flashing yellow WAG	
	7	0	0	0	0	0	0	0	0	0	0	0	0	8 = flashing red WIG 9 = flashing red WAG	
	8	0	0	0	0	0	0	0	0	0	0	0	0	9 = mashing red wAG 10 = walk only	
	9	0	0	0	0	0	0	0	0	0	0	0	0	11=flashing don't walk only	

	LIGHT RAIL TRAIN (Next/2/5/0/7)												
Light Rail Train	Light Rail Train 1 2 3 4												
Associated Preempt	0	0	0	0	0 = none, preempt 1 - 8								
Time to Green	0	0	0	0	0.055.000								
Horizontal Bar Flash Time	0.0	0.0	0.0	0.0	0 - 255 sec								
Vertical Bar Flash Time	0.0	0.0	0.0	0.0	0.0 - 25.5 sec								
Min Duration	0	0	0	0	0 - 255 sec								

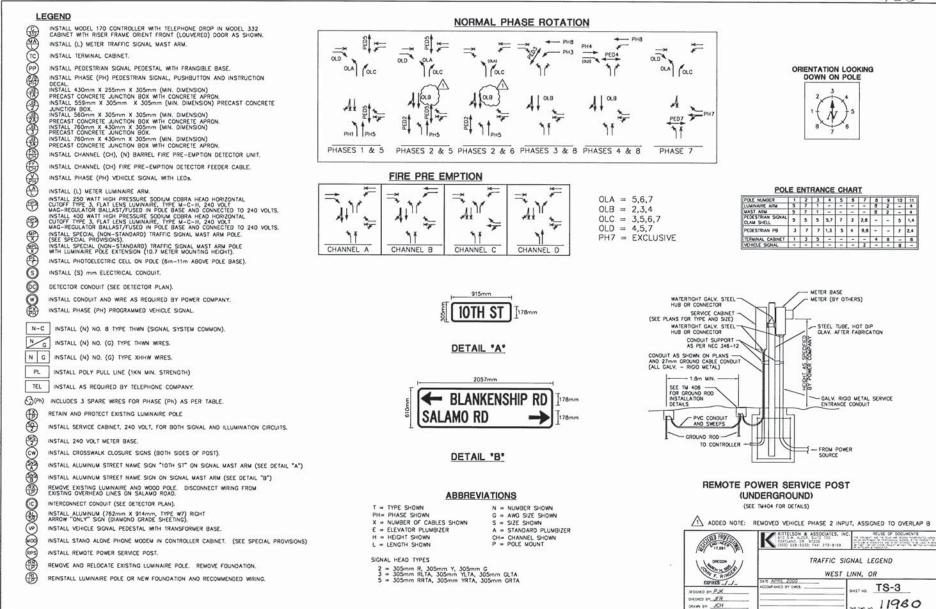
Miscellaneous Data

			TF			RITY	Next/2	/7)			
		1	2	3	4	5	6	7	8		
	Phases	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	Phases 1 - 8 (max of 2 compatible phases)	
PE Enable (6.25Hz TP call on PE)		X	X	X	Х	X	X	X	Х	X = 6.25 Hz signal will activate TP	
Priority		0	0	0	0	0	0	0	0	0 - 8, 8 = highest	
	Memory									X = on	
	Delay Time	0	0	0	0	0	0	0	0	0 - 255 sec	
/inimum Reservice Ti	me (per input)	0	0	0	0	0	0	0	0	0 - 255 min	
Override Time		0	0	0	0	0	0	0	0	0 - 255 sec	
	Bus Extend	0	0	0	0	0	0	0	0	0 - 255 min	
linimum Reservice Ti	me (all inputs)	0	0 - 255	min							
Free O	peration Mode	0	0 = use	shortest	of max	1 or 2, 1	- 8 = use	e max tim	e of gro	up 1 - 8, 9 = use time of day circuit	
	TRANS		ORITY	ALTE	RNATE	FOR	CE OFF		IS (Ne	xt/2/7/6)	
Curre	ent Coord Plan	1	2	3	4	5	6	7	8		
Alternate TP I	Force Off Plan	0	0	0	0	0	0	0	0	0 = none	
Curre	ent Coord Plan	9	10	11	12	13	14	15	16	17 - 32 = coord plan 17 - 32	
		-	0	0	0	0	0	0	0		
Alternate TP Force Off Plan				_						<u> </u>	
						· ·	xt/2/7/5	ŕ	-		
	Phase>		2	3	4	5	6	7	8		
Group 1	Max Times	0	0	0	0	0	0	0	0	-	
	Walk Times	-	0	0	0	0	0	0	0		
Group 2	Max Times	0	0	0	0	0	0	0	0	0 - 255 sec 0 would time the normal function time	
	Walk Times	0	0	0	0	0	0	0	0		
Group 3	Max Times		0	0	0	0	0	0	0		
-	Walk Times	0	0	0	0	0	0	0	0		
Group 4	Max Times	0	0	0	0	0	0	0	0		
	Walk Times		0	0	0	0	0	0	0		
Group 5	Max Times	0	0	0	0	0	0	0	0		
	Walk Times		0	0	0	0	0	0	0	-	
Group 6	Max Times	-	0	0	0	0	0	0	0	-	
	Walk Times Max Times	0	0	0	0	0	0	0	0	-	
Group 7	Walk Times		0	0	0	0	0	0	0	-	
	Max Times	-	0	0	0	0	0	0	0	-	
Group 8	Walk Times		0	0	0	0	0	0	0		
		0							0		
		.					ext/2/7	(9)			
	Priority>	1	2	3		4					
Associated Transit Priority		0	0	0			0 = non	e 1 - 8 =	transit	priority 1 - 8	
Leading Detector		0	0	0		0	0 = non	e, 1 - 32	2 = dete	ctor 1 - 32	
Trailling Detector		0	0	0		0					
Stop Bar Distance		0	0	0			0 - 999 feet				
I		0.0	0.0	0.							
Minimum Speed		0	0	0			0 - 100				
	um Length	0	0	0			0 - 255	reet			
Downhill Grade (%)		0	0	0		0	0 - 20%				
Uphill Grade (%)		0	0	0		0	· -				
Undersiz	ed Vehicle						X = Ena	bled			

	170 INPUTS (Next/2/8/1)				
C1-39	101 - Veh Detector 9		22 - Ped Detector 2		
C1-40	113 - Veh Detector 19		25 - Ped Detector 5		
C1-41	106 - Veh Detector 14	C1-69	24 - Ped Detector 4		
C1-42	118 - Veh Detector 24	C1-70	23 - Ped Detector 3		
C1-43	102 - Veh Detector 10	C1-71	151 - Preempt In 1		
C1-44	114 - Veh Detector 20	C1-72	152 - Preempt In 2		
C1-45	107 - Veh Detector 15	C1-73	153 - Preempt In 3		
C1-46	161 - Veh Detector 25	C1-74	154 - Preempt In 4		
C1-47	105 - Veh Detector 13	C1-75	165 - Veh Detector 29		
C1-48	117 - Veh Detector 23	C1-76	104 - Veh Detector 12		
C1-49	27 - Ped Detector 7	C1-77	116 - Veh Detector 22		
C1-50	164 - Veh Detector 28	C1-78	111 - Veh Detector 17		
C1-51	199 - LRT Ped Inhibit	C1-79	163 - Veh Detector 27		
C1-52	155 - Preempt In 5	C1-80	82 - Interval Advance		
C1-53	85 - Manual Control Enable	C1-81	137 - Conflict Monitor Status/Flash		
C1-54	166 - Veh Detector 30	C1-82	62 - Stop Timing Ring 1		
C1-55	15 - Veh Detector 5	C11-15	254 - Pin Not Used		
C1-56	11 - Veh Detector 1	C11-16	254 - Pin Not Used		
C1-57	17 - Veh Detector 7	C11-17	254 - Pin Not Used		
C1-58	13 - Veh Detector 3	C11-18	254 - Pin Not Used		
C1-59	16 - Veh Detector 6	C11-19	254 - Pin Not Used		
C1-60	12 - Veh Detector 2	C11-20	254 - Pin Not Used		
C1-61	18 - Veh Detector 8	C11-21	254 - Pin Not Used		
C1-62	14 - Veh Detector 4	C11-22	254 - Pin Not Used		
C11-10	254 - Pin Not Used	C11-23	254 - Pin Not Used		
C11-11	254 - Pin Not Used	C11-24	254 - Pin Not Used		
C11-12	254 - Pin Not Used	C11-25	254 - Pin Not Used		
C11-13	254 - Pin Not Used	C11-26	254 - Pin Not Used		
C1-63	103 - Veh Detector 11	C11-27	254 - Pin Not Used		
C1-64	115 - Veh Detector 21	C11-28	254 - Pin Not Used		
C1-65	108 - Veh Detector 16	C11-29	254 - Pin Not Used		
C1-66	162 - Veh Detector 26	C11-30	254 - Pin Not Used		

Connector Type	C1/C11	Change I/O	0 = Disabled		
0 = C1/C11; 1 = MS-A/B/C/D; 2 = TS2 Port 1; 3 = ITS Cabinet		X = On (After a download without a power on - off cycle)			

	170 OUTPUTS (Next/2/8/2)				
C1-2	44 - Don't Walk, Ph 4		131 - TOD Output 1		
C1-2	64 - Walk, Ph 4		132 - TOD Output 2		
C1-3	14 - Red, Ph 4		133 - TOD Output 3		
C1-4	24 - Yellow, Ph 4		134 - TOD Output 4		
C1-6	34 - Green, Ph 4		53 - Ped Clear, Ph 3		
C1-0	13 - Red, Ph 3		51 - Ped Clear, Ph 1		
C1-8	23 - Yellow, Ph 3		187 - Soft Flash		
C1-9	33 - Green, Ph 3		147 - Watchdog		
C1-10	42 - Don't Walk, Ph 2	C1-83	43 - Don't Walk, Ph 3		
C1-11	62 - Walk, Ph 2	C1-84	· · · · · · · · · · · · · · · · · · ·		
C1-12	12 - Red, Ph 2	C1-85			
C1-13	22 - Yellow, Ph 2	C1-86	115 - Overlap D, Yellow		
C1-15	32 - Green, Ph 2	C1-87	114 - Overlap D, Green		
C1-16	11 - Red, Ph 1	C1-88	113 - Overlap C, Red		
C1-17	21 - Yellow, Ph 1	C1-89	112 - Overlap C, Yellow		
C1-18	31 - Green, Ph 1	C1-90	111 - Overlap C, Green		
C1-19	43 - Don't Walk, Ph 3	C1-91	47 - Don't Walk, Ph 7		
C1-20	63 - Walk, Ph 3	C1-93	61 - Walk, Ph 1		
C1-21	18 - Red, Ph 8	C1-94	106 - Overlap B, Red		
C1-22	28 - Yellow, Ph 8	C1-95	105 - Overlap B, Yellow		
C1-23	38 - Green, Ph 8	C1-96	104 - Overlap B, Green		
C1-24	17 - Red, Ph 7	C1-97	103 - Overlap A, Red		
C1-25	27 - Yellow, Ph 7	C1-98	102 - Overlap A, Yellow		
C1-26	37 - Green, Ph 7	C1-99	101 - Overlap A, Green		
C1-27	45 - Don't Walk, Ph 5	C11-1	254 - Pin Not Used		
C1-28	65 - Walk, Ph 5	C11-2	254 - Pin Not Used		
C1-29	16 - Red, Ph 6	C11-3	254 - Pin Not Used		
C1-30	26 - Yellow, Ph 6	C11-4	254 - Pin Not Used		
C1-31	36 - Green, Ph 6	C11-5	254 - Pin Not Used		
C1-32	15 - Red, Ph 5		254 - Pin Not Used		
C1-33	25 - Yellow, Ph 5		254 - Pin Not Used		
C1-34	35 - Green, Ph 5	C11-8	254 - Pin Not Used		


CONTROLLER ID

Manufacturer ID	NORTHWEST SIGNAL
Model ID	Voyage-0 v05.03.01
Protocol Revision ID	AB3418E V1

NS DWG: NO.

DRAWN BY JCH

Intersection Nam	e: I-205 NB @ 10th	l		
Controller	122323.2	Channel: -	Drop: 0	
System:	TransCore Trans	Suite TCS		
Controller Type:	Voyage			
	Revision -	Version -		
TransCore Unifie	ed Controller Manag	ger 10.3.1		

Zero Tables

Non-Zero Tables

Dual Entry DetectorPlans DetectorFailMonitor Vehicle Overlaps PedOverlaps ADVANCE WARNING DYNAMIC FYLTA ServicePlans1 4 ServicePlans5 8 MaxPlans CoordinationPlansCont PlatoonProgression ForceOffPercents DayProgram 1 40 DayProgram 41 80 DayProgram 81 120 DayProgram 121 160 DayProgram 161 200 ExceptionDays PreemptionSequence 5 8 PriorityReturnAndSpecialIntervals LightRailTrain IEEE1570 TransitPriorityAOFP GroupTiming TruckPriority IO Options CommandBox 97 192 CommandBox 193 256

ControllerFunctionTiming Phase Timing OtherControllerFunctions DetectorData SystemDetector FYLTA CoordinationModes CoordinationPlans CircuitMapping DynamicPhaseLength WeekProgram YearDays TimeClockReferences CircuitOverrides 1 100 CircuitOverrides 101 199 PreemptionSequence 1 4 SequenceTiming TransitPriority 170 Inputs 170 Outputs CommandBox 1 96 CONTROLLER ID

Controller Function and Timing

			Security, Sec	quence and Timing (Ne	ext/2/1, Next/	/2/2/3/A, Next/2	/2/5)				
Securi	ty Code	0	0 = disabled, o	r 1000-9999		First All Re	ed 8.0	0.0 to 25.5 seconds			
Sequence 7 0 = sequential, 1 = quad left turn, 2-6 = special A-E, 7 = lead lag											
Power up Flash 0.0 - 25.5 seconds											
	Initializ	ation (Next/2	2/2/5)		Lea	ad Lag (Next/2/2	2/3/A)				
Ring 1 Ring 2 Interval				Phases 1 - 2	Phases	3-4 P	hases 5 - 6	Phases 7 - 8			
0 5 0			2	2		2	2				

0 = Red, 1 = Yel, 2 = Grn 0 = no reversal, 1 = reversal, 2 = by coord plan or clock

(Next/	2/2/	3)					Ph	ase	e Fui	nctions		(Next/2/2/1)								
Phase Used	-	2	-	-	5	6	-	8				Yellow Lock	-	-	-	-	-	-	-	-
Restricted Phases	-	-	-	-	-	-	-	-				Min Recall	-	2	-	-	-	6	-	-
Exclusive Phases	-	-	-	-	-	-	-	-				Max Recall	-	-	-	-	-	-	-	-
												Ped Recall	-	-	-	-	-	-	-	-
												Red Lock	-	-	-	-	-	-	-	-
											Max Out	Recall Inhibit	1	2	3	4	5	6	7	8
												Soft Recall	-	-	-	-	-	-	-	-
											Fre	ee Walk Rest	-	-	-	-	-	-	-	-
											Co	nditional Ped	-	-	-	-	-	-	-	-
										Disabl	e Inhibit Max	Termination	-	-	-	-	-	-	-	-
											Call	To Non-Act 1	-	-	-	-	-	-	-	-
											Call	To Non-Act 2	-	-	-	-	-	-	-	-

			F	Phase Ti	imes (N	ext/2/2/2	2)		
Phase	1	2	3	4	5	6	7	8	
Movement									
Minimum Green	0	10	0	0	4	10	0	6	0 - 255 sec.
Passage	0.0	6.9	0.0	0.0	2.3	6.9	0.0	2.3	0.0 - 25.5 sec.
Yellow	0.0	4.0	0.0	0.0	4.0	4.0	0.0	4.0	0.0 - 25.5 sec.
Red Clearance	0.0	1.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0 - 25.5 sec. or 0 - 255 sec.
Max 1	0	30	0	0	25	30	0	20	0 - 255 sec.
Max 2	0	30	0	0	25	30	0	20	0 - 255 sec.
Walk	0	7	0	0	0	7	0	0	0 - 255 sec.
Ped Clear	0	14	0	0	0	10	0	0	0 - 255 sec.
Seconds Per Actuation	0.0	1.2	0.0	0.0	0.0	1.2	0.0	0.0	0.0 - 25.5 sec.
Time Before Reduction	0	10	0	0	8	10	0	8	0 - 255 sec.
Time to Reduce	0	10	0	0	3	10	0	3	0 - 255 sec.
Minimum Gap	0.0	4.9	0.0	0.0	0.5	4.9	0.0	0.5	0.0 - 25.5 sec.
Max Variable Initial	0	15	0	0	4	15	0	6	0 - 255 sec.
Max Extend	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 sec.
Auto Max	0	0	0	0	0	0	0	0	0 - 255 sec.
Advanced walk	0	0	0	0	0	0	0	0	0 - 255 sec.

Phase Times (Next/2/2/9/5)												
Inhibit Min Yellow									X = On			
Red Decimal Off									X = On			

Phase 1 - 8

Dual Entry (Next/2/2/9/3)

	Mode	0	0 = off, 1 = on, 2 = Not Used, 3 = by coord plan, 4 = by time clock circuit 61
--	------	---	--

Dual Entry Ph>	1	2	3	4	5	6	7	8	
Phase	0	0	0	0	0	0	0	0	0 = none, 1-8 = phase 1-8

	Cond Service (N	ext/2/2/9/3/A)	5 Sec Head Logic (Next/2/2/9/4)									
	Mode	CS Max Time	Х	Omits Y		Anti-Trap		Yellow	Blanking L1			
Phase 1	0	0	X:Y		Trap Pro	tected Phase	Next Phase	Phase				
Phase 3	0	0	6:1	0	1	0	< (5)	1	0			
Phase 5	0	0	8:3	0	3	0	< (7)	3	0			
Phase 7	0	0	2:5	0	5	0	< (1)	5	0			
		. on by TOD circuit 57,	4:7	0	7	0	< (3)	7	0			
	= C.S. and C.R. n by TOD circuit {	0 = off, 2 = no s	1 = side call, ide call		•	X = On	1					

Other Controller Functions (Next/2/2/9/1, Next/2/2/9/5)

Inhibit Simultaneous Gap Out	1 - 3 4 5 - 7 8	
Last Car Passage	2	0 = recall phase, 1 = last car passage, 2 = NOT recall - Not last car passage
Red Revert (+2seconds)	0.0	0 - 25.5 sec.
Auto Ped Clear	On	X = On
FDW thru Yellow	Off	X = On
Red Rest Delay	0.0	0 - 25.5 sec.
Change Sequence	Off	X = On (After a download without a power on - off cycle)
Advanced Flash Rate	60 FPM	0 = Disabled (60 FPM), 1 = 120 FPM
Ped Push Button Time	null	0 = Disable, 0 - 5 Seconds

Phase ->	1	2	3	4	5	6	7	8	
Red Clear Extension Detector	0	0	0	0	0	0	0	0	0 = none 1 - 32 = detector 1 - 32
Red Clear Extension Red Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 - 25.5 sec.

			D	Detector D	ata				
Detector	Description	Yellow Lock	Detector Inhibit	Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnect Mode
1				1	1	0	0	0.0	0
2				1	1	0	0	0.0	0
3				3	3	0	0	0.0	0
4				3	3	0	0	0.0	0
5				5	5	0	0	0.0	0
6				5	5	0	0	0.0	0
7				7	7	0	0	0.0	0
8				7	7	0	0	0.0	0
9				2	2	0	0	0.0	0
10				2	2	0	0	0.0	0
11				2	2	0	0	0.0	0
12				2	2	0	0	5.0	0
13				2	2	0	0	0.0	0
14				8	8	0	0	2.0	0
15				8	8	0	0	2.0	0
16				4	4	0	0	0.0	0
17				4	4	0	0	0.0	0
18				4	4	0	0	0.0	0
19				6	6	0	0	0.0	0
20				6	6	0	0	0.0	0
21				6	6	0	0	0.0	0
22				6	6	0	0	0.0	0
23				6	6	0	0	0.0	0
24				8	8	0	0	0.0	0
25				8	8	0	0	2.0	0
26				8	8	0	0	0.0	0
27				8	8	0	0	0.0	0
28				8	8	0	0	0.0	0
29				0	0	0	0	0.0	0
30				0	0	0	0	0.0	0
31				0	0	0	0	0.0	0
32				0	0	0	0	0.0	0

			D	Detector D	ata				
Detector	Description	Yellow Lock	Detector Inhibit	Call Phase	Extend Phase	Switch Phase	Delay Time	Stretch / Disconnect Time	Delay or Disconnec Mode
33		N/A	N/A	0	0	N/A	N/A	N/A	N/A
34		N/A	N/A	0	0	N/A	N/A	N/A	N/A
35		N/A	N/A	0	0	N/A	N/A	N/A	N/A
36		N/A	N/A	0	0	N/A	N/A	N/A	N/A
37		N/A	N/A	0	0	N/A	N/A	N/A	N/A
38		N/A	N/A	0	0	N/A	N/A	N/A	N/A
39		N/A	N/A	0	0	N/A	N/A	N/A	N/A
40		N/A	N/A	0	0	N/A	N/A	N/A	N/A
41		N/A	N/A	0	0	N/A	N/A	N/A	N/A
42		N/A	N/A	0	0	N/A	N/A	N/A	N/A
43		N/A	N/A	0	0	N/A	N/A	N/A	N/A
44		N/A	N/A	0	0	N/A	N/A	N/A	N/A
45		N/A	N/A	0	0	N/A	N/A	N/A	N/A
46		N/A	N/A	0	0	N/A	N/A	N/A	N/A
47		N/A	N/A	0	0	N/A	N/A	N/A	N/A
48		N/A	N/A	0	0	N/A	N/A	N/A	N/A
49		N/A	N/A	0	0	N/A	N/A	N/A	N/A
50		N/A	N/A	0	0	N/A	N/A	N/A	N/A
51		N/A	N/A	0	0	N/A	N/A	N/A	N/A
52		N/A	N/A	0	0	N/A	N/A	N/A	N/A
53		N/A	N/A	0	0	N/A	N/A	N/A	N/A
54		N/A	N/A	0	0	N/A	N/A	N/A	N/A
55		N/A	N/A	0	0	N/A	N/A	N/A	N/A
56		N/A	N/A	0	0	N/A	N/A	N/A	N/A
57		N/A	N/A	0	0	N/A	N/A	N/A	N/A
58		N/A	N/A	0	0	N/A	N/A	N/A	N/A
59		N/A	N/A	0	0	N/A	N/A	N/A	N/A
60		N/A	N/A	0	0	N/A	N/A	N/A	N/A
61		N/A	N/A	0	0	N/A	N/A	N/A	N/A
62		N/A	N/A	0	0	N/A	N/A	N/A	N/A
63		N/A	N/A	0	0	N/A	N/A	N/A	N/A
64		N/A	N/A	0	0	N/A	N/A	N/A	N/A

yellow lock, detector inhibit, - X = On; call, extend, phase - 0 = none 1 - 8 = pstretch / disconnect time - 0.0 - 25.5 sec.; delay or disconnect Mode - 0 -12

			De	etect	or Pl	ans	(Nex	t/2/2	/4/5)	
	Loop Number									
	Plan Detectors	0	0	0	0	0	0	0	0	0 - 32, 0 = none, 1 - 32 = detectors 1- 32
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 1	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 2	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
ĺ	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14
	Call Phase	0	0	0	0	0	0	0	0	
	Extended Phase	0	0	0	0	0	0	0	0	0 - 8, 0 = none, 1 - 8 = phase 1 - 8
Detector	Switch Phase	0	0	0	0	0	0	0	0	
Plan 3	Delay Time	0	0	0	0	0	0	0	0	0 - 255 seconds
	Stretch / Disconnect Time	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 seconds
	Delay / Disconnect Mode	0	0	0	0	0	0	0	0	0 - 14

Detector Fail (Next/2/2/4/3)													
Detector	Fail Sa	mple Per	iod (all de	etectors)	0	0 - 255 ו	minutes						
D	ynamic	Phase Le	ength Fai	l Period	0	0 - 255 minutes							
Video Fail Inputs	1	2	3	4	5	6	7	8					
Phase Recalled	0	0	0	0	0	0	0	0	0 = none, 1 - 8 = phase 1 - 8				
System Detectors	1	2	3	4	5	6	7	8	0 none 1 22 detector 1 22				
Local Detector	5	9	14	15	19	20	0	0	-0 = none, 1 - 32 = detector 1 - 32				
Elash (Next/2/2/5)													

	Flash (Next/2/2/5)												
	Flash Entry		Flash Exit										
Ring 1	Ring 2	Interval	Ring 1	Ring 2	Interval								
0	0	red	0 5 0										
0 = none,	phase 1 - 8	0 = red, 1 = yel, 2 = grn	0 = none, p	ohase 1 - 8	0 = red, 1 = yel, 2 = grn								

	Soft Flash (Next/2/2/5/A)														
Dhaaa	1	2	3	4	5	6	7	8							
Phase	3	4	3	4	3	4	3	4							
0 -	Α	В	С	D	E	F	G	Н	I	J	К	L			
Overlap	3	4	3	4	3	4	3	4	3	4	3	4			
	0 = dark,	/AG			,										

Internal Logic	1	2	3	4	5	6	7	8	9	10	11	12	0 = normal, 1 = dark,
Output	0	0	0	0	0	0	0	0	0	0	0	0	2 = flash WIG

FI	ashing `	Yellow Le	eft Turn /	Arrow (F	YLTA) (Next/2/2/8/6)
Phase Pairs ->	1 - 2	3 - 4	5 - 6	7 - 8	
Enable	0	0	4	0	0 = off, 3 = 3 outputs, 4 = 4 outputs, 5 = 5 outputs
Even Omits Odd	0	0	0	0	0/1/2
Detector Switch Odd / Even	1	1	1	1	X = on, odd phase must be omitted
Red Transition	2.0	2.0	3.0	2.0	0.0 or 2.0 - 25.5 sec.
Red Extension	0.0	0.0	3.0	0.0	0.0 - 25.5 sec.
Return to GLTA	0	0	0	0	0 = off, 1 = max out, 2= yellow lock
Gap Dependent FYLTA					
Detector Input	0	0	0	0	0 = Disabled, 1 - 64 = Local Detector 1 - 64
Minimum Delay	0	0	0	0	0 - 255 seconds
Detector Gap Time	0.0	0.0	0.0	0.0	0 - 25.5 seconds.
Maximum Delay	0	0	0	0	0 - 255 seconds
Not Ped	0	0	4	0	
		namic Ela	shing V		ft Turn Arrow
Dhasa Daira		1		1	
Phase Pairs	1 - 2	3 - 4	5 - 6	7 - 8	Detectors 4, 04,0, dischard
[Plan A] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled
Detector Gap Time	0.0	0.0	0.0	0.0	0.0 - 25.5

					,
Detector Gap Time	0.0	0.0	0.0	0.0	0.0 - 25.5
FYLTA Max Delay	0	0	0	0	0 - 255
FYLTA Min Delay	0	0	0	0	0 - 255
Not Ped Mode	0	0	0	0	0 - 4
	•	•	•	•	•

[Plan B] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled
Detector Gap Time	0.0	0.0	0.0	0.0	0.0 - 25.5
FYLTA Max Delay	0	0	0	0	0 - 255
FYLTA Min Delay	0	0	0	0	0 - 255
Not Ped Mode	0	0	0	0	0 - 4

[Plan C] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled
Detector Gap Time	0.0	0.0 0.0 0.0 0.0 - 25.5		0.0 - 25.5	
FYLTA Max Delay	0	0	0	0	0 - 255
FYLTA Min Delay	0	0	0	0	0 - 255
Not Ped Mode	0	0	0	0	0 - 4

[Plan D] Detector Input	0	0	0	0	Detectors 1 - 64; 0 = disabled
Detector Gap Time	0.0	0.0	0.0	0.0	0.0 - 25.5
FYLTA Max Delay	0	0	0	0	0 - 255
FYLTA Min Delay	0	0	0	0	0 - 255
Not Ped Mode	0	0	0	0	0 - 4

	CoordinationData											
	Coordination Modes (Next/2/3/1)											
Flash Mode	33	0=off, 1=on, 33=time clock, 34=comm, 35=hardwire										
Coordination Plan Mode	34	0=free, 1-32 = coord plan 1-32, 33=time clock, 34=comm, 35=hardwire										
Offset Seeking Mode	2	0=add only, 1=dwell, 2=fastway										
Late Ped	0	0 = off, 1 = on										
Coord Walk Rest	0	0 = off, 1 = on, 2 = by tod circuit 160, 3 = end of walk, 4 = coord ped during perms										
Zero Mode(TS2 only)	0	0=start of main street, 1=end of main street, 2=by TOD circuit 144, 3 = first green										
	1)	Next/2/3/4/1)										
Repeated Ped Service	0	0=off, 1=on (no coord ped), 2=on (beginning green coord ped), 3=on (coord ped always)										
Omit Phase During Repeated Phase		= service allowed ; # = service prevented										

	Coordination Plans (Next/2/3/2)													
Coord Plan	Coordinati	ion Phases	_ Cycle Length	Offset Time	Min Cycle Len Dwell Time	Permissive	Service Plan	Max Plan						
Fidii	Ring 1	Ring 2			Dweir Time		FIAII							
1	0	6	0	0	0	0	0	0						
2	0	0	0	0	0	0	0	0						
3	0	0	0	0	0	0	0	0						
4	0	0	0	0	0	0	0	0						
5	0	0	0	0	0	0	0	0						
6	0	0	0	0	0	0	0	0						
7	0	0	0	0	0	0	0	0						
8	0	0	0	0	0	0	0	0						
9	0	0	0	0	0	0	0	0						
10	0	0	0	0	0	0	0	0						
11	0	0	0	0	0	0	0	0						
12	0	0	0	0	0	0	0	0						
13	0	0	0	0	0	0	0	0						
14	0	0	0	0	0	0	0	0						
15	0	0	0	0	0	0	0	0						
16	0	0	0	0	0	0	0	0						
17	0	0	0	0	0	0	0	0						
18	0	0	0	0	0	0	0	0						
19	0	0	0	0	0	0	0	0						
20	0	0	0	0	0	0	0	0						
21	0	0	0	0	0	0	0	0						
22	0	0	0	0	0	0	0	0						
23	0	0	0	0	0	0	0	0						
24	0	0	0	0	0	0	0	0						
25	0	0	0	0	0	0	0	0						
26	0	0	0	0	0	0	0	0						
27	0	0	0	0	0	0	0	0						
28	0	0	0	0	0	0	0	0						
29	0	0	0	0	0	0	0	0						
30	0	0	0	0	0	0	0	0						
31	0	0	0	0	0	0	0	0						
32	0	0	0	0	0	0	0	0						
	0	- 8		0 - 25	55 sec		0	- 8						

			Circu	iit Mappii	ng (Next/2	2/3/3)							
					Time Clock Circuit								
Circuit Map	Coord Plan	1	2	3	4	5	6	7	8				
1	34	0	0	0	0	0	0	0	0				
2	34	0	0	0	0	0	0	0	0				
3	34	0	0	0	0	0	0	0	0				
4	34	0	0	0	0	0	0	0	0				
5	34	0	0	0	0	0	0	0	0				
6	34	0	0	0	0	0	0	0	0				
7	34	0	0	0	0	0	0	0	0				
8	34	0	0	0	0	0	0	0	0				
9	34	0	0	0	0	0	0	0	0				
10	34	0	0	0	0	0	0	0	0				
11	34	0	0	0	0	0	0	0	0				
12	34	0	0	0	0	0	0	0	0				
13	34	0	0	0	0	0	0	0	0				
14	34	0	0	0	0	0	0	0	0				
15	34	0	0	0	0	0	0	0	0				
16	34	0	0	0	0	0	0	0	0				
17	34	0	0	0	0	0	0	0	0				
18	34	0	0	0	0	0	0	0	0				
19	34	0	0	0	0	0	0	0	0				
20	34	0	0	0	0	0	0	0	0				

coord plan - 0 = free, 1 - 32 = coord plan 1 - 32, 33 = any, 34 none selected time clock circuits - 0 = not used, or circuits 6 - 199

Dynamic Phase Lengths (Next/2/3/4/4)

P	hase ->	1	2	3	4	5	6	7	8	
Back I	Detector	0	9	0	0	5	19	0	29	0 = none, 1-32 = detector 1-32
Lan	e Factor	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 = none, 0.5 - 5.0
Check Out I	Detector	0	0	0	0	0	20	0	0	0 = none, 1-32 = detector 1-32
	Set A	0	0	0	0	0	0	0	0	
Coord Delta	Set B	0	0	0	0	0	0	0	0	
Force Off	Set C	0	0	0	0	0	0	0	0	
	Set D	0	0	0	0	0	0	0	0	
	Set A	0	0	0	0	0	0	0	0	0 - 255 sec
	Set B	0	0	0	0	0	0	0	0	
Free Delta Max	Set C	0	0	0	0	0	0	0	0]
	Set D	0	0	0	0	0	0	0	0	

		Auto P	ermiss	sive M	in Gre	en (Ne	xt/2/3/	4/3)	
Phase ->	1	2	3	4	5	6	7	8	
Auto Perm Min Green	0	0	0	0	0	0	0	0	0 - 255 sec.

	N	EEK	PROG	RAM (Ne	ext/2/4/2	2)				YEAR PROGR	RAM (Ne	xt/2/4/3)
1	Sun 2	Mon	Tue	Wed	Thu	Fri 1	Sat 2		From Date	To Date	Week Program	-
2	1	1	1	1	1	1	1		12/29/2013	01/03/2015	1	
3	1	1	1	1	1	1	1	-	00/00/0000	00/00/0000	0	
4 5	1	1	1	1	1	1	1		00/00/0000	00/00/0000	0	
6	1	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0	
7	1	1	1	1	1	1	1	-	00/00/0000	00/00/0000	0	
9	1	1	1	1	1	1	1	1	00/00/0000	00/00/0000	0	
10	1	1	1	1	1	1	1		00/00/0000	00/00/0000	0	
				- 15 = day p				1	00/00/0000	00/00/0000	0	
	E	XCEP	TION D	AYS (N	ext/2/4/	6)			00/00/0000	00/00/0000	0	
	Week of	f NA	onth	Day of	Day	of	Day Prog		00/00/0000	00/00/0000	0	
	Month			Month	We	ek	Jay Flog		00/00/0000	00/00/0000	0	
1	0		0	0			0	1	00/00/0000	00/00/0000	0	
2	0		0	0			0	1	00/00/0000	00/00/0000	0	
3	0		0	0			0	1	00/00/0000	00/00/0000	0	
4	0		0	0			0]	00/00/0000	00/00/0000	0	
5	0		0	0			0		00/00/0000	00/00/0000	0	
6	0		0	0			0		00/00/0000	00/00/0000	0	
7	0		0	0			0		00/00/0000	00/00/0000	0	New Years Day - Date - January 1st
8	0		0	0			0		00/00/0000	00/00/0000	0	Martin Luther King Day - DOW WOM - 3rd Monday of January
9	0		0	0			0		00/00/0000	00/00/0000	0	
10	0		0	0			0		00/00/0000	00/00/0000	0	President's Day - DOW WOM - 3rd Monday February
11	0		0	0			0		00/00/0000	00/00/0000	0	
12	0		0	0			0		00/00/0000	00/00/0000	0	Memorial Day - DOW WOM - Last Monday May
13	0		0	0			0		00/00/0000	00/00/0000	0	Four of July - Date - July 4th
14	0		0	0			0		00/00/0000	00/00/0000	0	
15	0		0	0			0		00/00/0000	00/00/0000	0	Labor Day - DOW WOM - 1st Monday September
16	0		0	0			0		00/00/0000	00/00/0000	0	
17	0		0	0			0		00/00/0000	00/00/0000	0	Columbus Day - DOW WOM - 2nd Monday October
18	0		0	0			0		00/00/0000	00/00/0000	0	Vetern's Day - Date - November
19	0		0	0			0		00/00/0000	00/00/0000	0	11th
20	0		0	0			0		00/00/0000	00/00/0000	0	Thankgiving - DOW WOM -
21	0		0	0			0		00/00/0000	00/00/0000	0	4th Thursday November
22	0		0	0			0		00/00/0000	00/00/0000	0	Christmas - Date - December 25th
23	0		0	0			0		00/00/0000	00/00/0000	0	
24	0		0	0			0		00/00/0000	00/00/0000	0	
25	0		0	0			0		00/00/0000	00/00/0000	0	
26	0		0	0			0		00/00/0000	00/00/0000	0	
27	0		0	0	_		0		00/00/0000	00/00/0000	0	
28	0		0	0			0	-	00/00/0000	00/00/0000	0	
29	0		0	0			0		00/00/0000	00/00/0000	0	
30	0		0	0			0		00/00/0000	00/00/0000	0	
31	0		0	0			0		00/00/0000	00/00/0000	0	
32	0		0	0			0	-	00/00/0000	00/00/0000	0	
33	0		0	0	_		0	-	00/00/0000	00/00/0000	0	
34 35	0		0	0			0	-	00/00/0000	00/00/0000	0	
	0-5		- 12	1 - 31	1 -	7	0 - 15		00/00/0000	00/00/0000	0	
			1			ļ	0-10	1	00/00/0000	00/00/0000	0	
				rences	•	,			00/00/0000	00/00/0000	0	
-	reference		0		= timed,		event		00/00/0000	00/00/0000	0	
	Reference		00:		0:00 - 23:	:59			00/00/0000	00/00/0000	0	
Dayligh	nt Saving E		Or		= On				00/00/0000	00/00/0000	0	
	Rese	t Time	00:	00 0	0:00 - 23:	:59			. ,	. ,		
	Т	ime Z	one Of	fset (Ne	xt/2/4/8	3)						
		e Zone		ot Loade		Ī	0	1				
				T 04600. A				1				

-43200 - 43200: EST -18000; CST -21600; MST -25200; PST -28800

CIRCUIT OVERRIDES 1 - 100 (Next/2/4/4)

1 - Coord Line 1	CL1 2 = TOD
2 - Coord Line 2	CL2 2 = TOD
3 - Coord Line 4	CL4 2 = TOD
4 - Coord Line 8	CL8 2 = TOD
5 - Coord Line 16	C16 2 = TOD
6 - Coordinated Operation	CRD 2 = TOD
7 - Soft Flash	SFL 2 = TOD
3 - Enable System Relays	ESR 2 = TOD
9 - Call to Non Actuated Ring 1	CN1 2 = TOD
10 -Call to Non Actuated Ring 2	CN2 2 = TOD
11 - Walk Rest Modifier	WRM 2 = TOD
12 - Min Recall	MIN 2 = TOD
13 - Max 2 Both Rings	MX2 2 = TOD
14 - Coord Inhibit Max Ring 1	IM1 2 = TOD
15 - Coord Inhibit Max Ring 2	IM2 1 = On
16 - Call to Free	CTF 2 = TOD
17 - TOD Output 1	TO1 2 = TOD
18 - TOD Output 2	TO2 2 = TOD
19 - TOD Output 3	TO3 2 = TOD
20 - TOD Output 4	TO4 2 = TOD
21 - TOD Output 5	TO5 $2 = TOD$
22 - TOD Output 6	TO6 2 = TOD
23 - TOD Output 7	TO7 2 = TOD
24 - TOD Output 8	TO8 2 = TOD
25 - Vehicle Call Phase 1	VC1 2 = TOD
26 - Vehicle Call Phase 2	VC2 2 = TOD
27 - Vehicle Call Phase 3	VC3 2 = TOD
28 - Vehicle Call Phase 4	VC4 2 = TOD
29 - Vehicle Call Phase 5	VC4 2 = TOD
30 - Vehicle Call Phase 6	$\frac{VC3}{VC6} = TOD$
31 - Vehicle Call Phase 7	VC7 2 = TOD
32 - Vehicle Call Phase 8	VC8 2 = TOD
32 - Venicie Call Phase 8 33 - Ped Call Phase 1	PC1 2 = TOD
33 - Ped Call Phase 2	PC1 2 = 10D PC2 2 = T0D
	1 02
35 - Ped Call Phase 3	
36 - Ped Call Phase 4	
37 - Ped Call Phase 5	
38 - Ped Call Phase 6	
39 - Ped Call Phase 7	
40 - Ped Call Phase 8	$\begin{array}{c c} PC8 & 2 &= & TOD \\ \hline \end{array}$
41 - Phase Omit 1	VO1 2 = TOD
42 - Phase Omit 2	VO2 2 = TOD
43 - Phase Omit 3	VO3 2 = TOD
44 - Phase Omit 4	VO4 2 = TOD
45 - Phase Omit 5	VO5 2 = TOD
46 - Phase Omit 6	VO6 2 = TOD
47 - Phase Omit 7	V07 2 = TOD
48 - Phase Omit 8	VO8 2 = TOD
49 - Ped Omit 1	PO1 2 = TOD
50 - Ped Omit 2	PO2 2 = TOD

S 1 - 100 (Next/2/4/4)				
51 - Ped Omit 3	PO3	2	=	TOD
52 - Ped Omit 4	PO4	2	=	TOD
53 - Ped Omit 5	PO5	2	=	TOD
54 - Ped Omit 6	PO6	2	=	TOD
55 - Ped Omit 7	PO7	2	=	TOD
56 - Ped Omit 8	PO8	2	=	TOD
57 - Conditonal Service	CVS	2	=	TOD
58 - Inhibit Simultaneous Gap Out	ISG	1	=	On
59 - Inhibit Hardwire	HWI	2	=	TOD
60 - Ped Override Mode	POM	1	=	On
61 - Dual Entry	DLE	1	=	On
62 - Exclusive Ped	EPD	2	=	TOD
63 - Call to Time Clock Mode	СТС	2	=	TOD
64 - Dual Enhanced Ped	DEP	2	=	TOD
65 - Service Plan 1	SP1	2	=	TOD
66 - Service Plan 2	SP2	2	=	TOD
67 - Service Plan 3	SP3	2	=	TOD
68 - Service Plan 4	SP4	2	=	TOD
69 - Service Plan 5	SP5	2	=	TOD
70 - Service Plan 6	SP6	2	=	TOD
71 - Service Plan 7	SP7	2	=	TOD
72 - Service Plan 8	SP8	2	=	TOD
73 - Max Plan 1	MP1	2	=	TOD
74 - Max Plan 2	MP2	2	=	TOD
75 - Max Plan 3	MP3	2	=	TOD
76 - Max Plan 4	MP4	2	=	TOD
77 - Max Plan 5	MP5	2	=	TOD
78 - Max Plan 6	MP6	2	=	TOD
79 - Max Plan 7	MP7	2	=	TOD
80 - Max Plan 8	MP8	2	=	TOD
81 - Transit Priority Max Group 1	TG1	2	=	TOD
82 - Transit Priority Max Group 2	TG2	2	=	TOD
83 - Transit Priority Max Group 3	TG3	2	=	TOD
84 - Transit Priority Max Group 4	TG4	2	=	TOD
85 - Transit Priority Max Group 5	TG5	2	=	TOD
86 - Transit Priority Max Group 6	TG6	2	=	TOD
87 - Transit Priority Max Group 7	TG7	2	=	TOD
88 - Transit Priority Max Group 8	TG8	2	=	TOD
89 - Inhibit Gap Reducing 1	GR1	2	=	TOD
90 - Inhibit Gap Reducing 2	GR2	2	=	TOD
91 - Inhibit Gap Reducing 3	GR3	2	=	TOD
92 - Inhibit Gap Reducing 4	GR4	2	=	TOD
93 - Inhibit Gap Reducing 5	GR5	2	=	TOD
94 - Inhibit Gap Reducing 6	GR6	2	=	TOD
95 - Inhibit Gap Reducing 7	GR7	2	=	TOD
96 - Inhibit Gap Reducing 8	GR8	2	=	TOD
97 - Lag 1	LG1	2	=	TOD
98 - Lag 3	LG3	2	=	TOD
99 - Lag 5	LG5	2	=	TOD
100 - Lag 7	LG8	2	=	TOD

CIRCUIT OVERRIDES 101 - 199 (Next/2/4/4)

••••••				
101 - Inhibit Overlap A	OLA	2	=	TOD
102 - Inhibit Overlap B	OLB	2	=	TOD
103 - Inhibit Overlap C	OLC	2	=	TOD
104 - Inhibit Overlap D	OLD	2	=	TOD
105 - Enable Schedule A Phone 1	AT1	2	=	TOD
106 - Enable Schedule A Phone 2	AT2	2	=	TOD
107 - Enable Schedule B Phone 1	BT1	2	=	TOD
108 - Enable Schedule B Phone 2	BT2	2	=	TOD
109 - Enable Schedule C Phone 1	CT1	2	=	TOD
110 - Enable Schedule C Phone 2	CT2	2	=	TOD
111 - Enable Volume to Call Phone 1	VT1	2	=	TOD
112 - Enable Volume to Call Phone 1	VT2	2	=	TOD
113 - Enable Volume Logging	EVL	1	=	On
114 - Enable MOE Logging	EML	1	=	On
115 - Detector Low Threshold Inhibit	DLI	2	=	TOD
116 - Detector Continue Presence Inhibit	DPI	2	=	TOD
117 - Inhibit Detector Based On Programing	IND	2	=	TOD
118 - Inhibit Detector Delay	IDD	2	=	TOD
119 - Inhibit Conditional Ped	ICP	2	=	TOD
120 - Inhibit Transit Priority	ITP	2	=	TOD
121 - Red Rest Ring 1	RR1	2	=	TOD
122 - Red Rest Ring 2	RR2	2	=	TOD
123 - Omit Red Clear Ring 1	OR1	2	=	TOD
124 - Omit Red Clear Ring 2	OR2	2	=	TOD
125 - Ped Recycle Ring 1	PR1	2	=	TOD
126 - Ped Recycle Ring 2	PR2	2	_	TOD
127 - Enable MOE Log to Call Phone 1	MT1	2	=	TOD
128 - Enable MOE Log to Call Phone 2	MT2	2	_	TOD
129 - Transit Inhibit Short Time 1	IS1	2	_	TOD
130 - Transit Inhibit Short Time 2	IS1	2	_	TOD
131 - Transit Inhibit Short Time 3	IS2	2	_	TOD
		2	_	TOD
132 - Transit Inhibit Short Time 4	IS4	2	_	TOD
133 - Transit Inhibit Short Time 5	IS5			TOD
134 - Transit Inhibit Short Time 6	IS6	2	=	
135 - Transit Inhibit Short Time 7	IS7	2	=	TOD
136 - Transit Inhibit Short Time 8	IS8		=	TOD
137 - Enable Transit Priority Logging	ETL	2	=	TOD
138 - Disable Flashing Yellow Arrow 1	DF1	2	=	TOD
139 - Disable Flashing Yellow Arrow 3	DF3	2	=	TOD
140 - Disable Flashing Yellow Arrow 5	DF5	2	=	TOD
141 - Disable Flashing Yellow Arrow 7	DF7	2	=	TOD
142 - Disable Auto Max	DAM	2	=	TOD
143 - Disable Repeated Phase Service	DRS	2	=	TOD
144 - End of Main Street	EMS	2	=	TOD
145 - Coord Hold 1	HD1	2	=	TOD
146 - Coord Hold 2	HD2	2	=	TOD
147 - Coord Hold 3	HD3	2	=	TOD
148 - Coord Hold 4	HD4	2	=	TOD
149 - Coord Hold 5	HD5	2	=	TOD
150 - Coord Hold 6	HD6	2	=	TOD

152 - Coord Hold 8153 - PE Priority Return B154 - PE Priority Return C155 - PE Priority Return D156 - PE Priority Return E157 - Platoon Inbound158 - Platoon Outbound	HD7 HD8 PRB PRC PRD PRE	2 2 2 2 2	= =	TOD TOD TOD
 153 - PE Priority Return B 154 - PE Priority Return C 155 - PE Priority Return D 156 - PE Priority Return E 157 - Platoon Inbound 158 - Platoon Outbound 	PRB PRC PRD PRE	2	=	
154 - PE Priority Return C 155 - PE Priority Return D 156 - PE Priority Return E 157 - Platoon Inbound 158 - Platoon Outbound	PRC PRD PRE	2		TOD
155 - PE Priority Return D 156 - PE Priority Return E 157 - Platoon Inbound 158 - Platoon Outbound	PRD PRE			
156 - PE Priority Return E 157 - Platoon Inbound 158 - Platoon Outbound	PRE	2	=	TOD
156 - PE Priority Return E 157 - Platoon Inbound 158 - Platoon Outbound			=	TOD
157 - Platoon Inbound 158 - Platoon Outbound		2	=	TOD
158 - Platoon Outbound	PPI	2	=	TOD
	PPO	2	=	TOD
159 - Platoon Spl 2	PS2	2	=	TOD
	CWR	2	=	TOD
161 - Dynamic Phase Length Short Inhibit 1	SL1	2	=	TOD
162 - Dynamic Phase Length Short Inhibit 2	SL2	2	=	TOD
163 - Dynamic Phase Length Short Inhibit 3	SL3	2	=	TOD
164 - Dynamic Phase Length Short Inhibit 4	SL4	2	=	TOD
165 - Dynamic Phase Length Short Inhibit 5	SL5	2	_	TOD
166 - Dynamic Phase Length Short Inhibit 6	SL5	2	=	TOD
167 - Dynamic Phase Length Short Inhibit 7	SL0 SL7	2	=	TOD
168 - Dynamic Phase Length Short Inhibit 7	SL7 SL8	2	_	TOD
, ,		2		TOD
169 - Coord Late Left Turn 1	CT1	2	=	TOD
170 - Coord Late Left Turn 3	CT3	2	_	TOD
171 - Coord Late Left Turn 5	CT5	_	=	-
172 - Coord Late Left Turn 7	CT7	2	=	TOD
	DPA	2	=	TOD
, , ,	DPB	2	=	TOD
, , ,	DPC	2	=	TOD
- ,	DPD	2	=	TOD
3	PSA	2	=	TOD
178 - Proactive Plan Select Inbound	PSI	2	=	TOD
	PSO	2	=	TOD
180 - Split Variant Inbound	SVI	2	=	TOD
1	SVO	2	=	TOD
<u> </u>	WR1	2	=	TOD
	WR2	2	=	TOD
184 - Proactive Plan Select New Look	NLK	2	=	TOD
185 - Disable Red Clearance Extension	DRX	2	=	TOD
186 - Detector Plan Line 1	DL1	2	=	TOD
187 - Detector Plan Line 2	DL2	2	=	TOD
188 - Disable LRT 1 Vertical Flashing Bar	DV1	2	=	TOD
189 - Disable LRT 2 Vertical Flashing Bar	DV2	2	=	TOD
190 - Disable LRT 3 Vertical Flashing Bar	DV3	2	=	TOD
191 - Disable LRT 4 Vertical Flashing Bar	DV4	2	=	TOD
192 - Datakey Enable	DKE	1	=	On
193 - Dynamic Phase Reversal Enable 1	DR1	2	=	TOD
194 - Dynamic Phase Reversal Enable 3	DR3	2	=	TOD
195 - Dynamic Phase Reversal Enable 5	DR5	2	=	TOD
196 - Dynamic Phase Reversal Enable 7	DR7	2	=	TOD
197 - Enable Coordination Log	ECL	1	=	On
198 - Disable Gap For FYLTA	DGF	2	=	TOD
199 - Coordination Auto Walk	CAW	2	=	TOD

			PREEM	PTION	SEQUE	ENCE 1 - 4 (Ne	xt/2/5)	
Seq	Interval	Instruction	Phases Serviced	Interval Time	Hold On Input	Output On	Output Mode	Instructions -
	1	197	- 2 5	0	On ·		0	0 = service phases defined in phases location
	2	98		0	Off ·		0	1-9 = use special intervals 1-9
	3	0		0	Off ·		0	10 = preempt sequence allows fylta
	4	0		0	Off ·		0	11 = preempt interval disables fylta
1	5	0		0	Off ·		0	15 = alternate trap protection
'	6	0		0	Off ·		0	90 = go to all red 91 = turn cvm off
	7	0		0	Off ·		0	92 = turn cvm on
	8	0		0	Off ·		0	93 = enable ped service and phases defined in phases
	9	0		0	Off ·		0	location
	10	0		0	Off ·		0	94 = disable ped service 96 = enable coordination
	1	0		0	Off ·		0	w/peds 97 = enable coordination
	2	0		0	Off ·		0	w/o peds
	3	0		0	Off ·		0	98 = return with no calls 99 = return with ped calls and
	4	0		0			0	phases defined in phases
	5	0		0	++		0	location 100 = jump to step defined in
2	6	0		0	Off ·		0	time location and input has
	7	0		0	Off ·		0	to be active for jump 101 = use time as resetable
	8	0		0	Off ·		0	gap timer and service ghases defined in phases
	0 9	0		0	Off ·		0	location
	10	0		0	Off ·		0	196 = coordination sync w/peds
	10	0		0			0	197 = coordination sync
	1	197	6	0	On ·		0	w/o peds 200 = Irt phase service
	2	98		0	Off ·		0	w/o peds
	3	0		0	Off ·		0	201 = Irt phase service w/peds
	4	0		0	Off ·		0	202 = priority return- queue/delay
3	5	0		0	Off ·		0	216 = Irt coordination sync
5	6	0		0	Off ·		0	w/peds 217 = Irt coordination sync
	7	0		0	Off ·		0	w/o peds
	8	0		0	Off ·		0	Phases Serviced -
	9	0		0	Off ·		0	phases 1 - 8
	10	0		0	Off ·		0	Interval Time - 0 - 255 sec or
	1	197	8	0	On ·		0	interval 1 - 10
	2	98		0	Off ·		0	Hold on Input - X = on
	3	0		0	Off ·		0	Outputs On - output 1 - 8
	4	0		0	+ +		0	-
	5	0		0	Off ·		0	Output Modes - 0 = all steady on
4	6	0		0			0	1 = all flash together
	7	0		0	+ +		0	2 = odd flashes WIG, even flashes WAG
		0		0	Off ·		0	3 = 1 - 4 steady on, 5 - 8 all
	8							flash together
	9	0		0	Off ·		0	_
	10	0		0	Off ·		0	

		SI		СЕ ТІМІ	NG (Ne	xt/2/5/0)				
	Sequence	1	2	3	4	5	6	7	8	
	Input Memory									X = on
	Input Priority	6	0	6	6	0	0	0	0	0 = lowest, - 8 = highest
	Min Green	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 0.0 - 25.5 sec
	Walk	0.1	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0 would time the
	Ped Clear	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	normal function time
Entry	Overlap Yellow	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
(Transition)	Overlap Red	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 - 25.5 sec
Parameters	Delay to Preempt	0	0	0	0	0	0	0	0	
	Delay Ped Omit	0	0	0	0	0	0	0	0	0 - 255 sec
	Delay Phase Omit	0	0	0	0	0	0	0	0	
	Min Reservice	0	0	0	0	0	0	0	0	0 - 255 min
	Overlap Inhibits									X = on
	Exit to Coord Plan Offset by X	0	0	0	0	0	0	0	0	0 - 20
	Exit Coord Plan Time	0	0	0	0	0	0	0	0	0 - 60 min
	Exit to Max Plan	0	0	0	0	0	0	0	0	0 - 8
Exit Parameters	Exit Free Time	0	0	0	0	0	0	0	0	
Falameters	Override Time	0	0	0	0	0	0	0	0	
	Fail Time	0	0	0	0	0	0	0	0	0 - 60 min
	Exit Mode Time	0	0	0	0	0	0	0	0	

	F	RIOF		ETUR		ID SP	ECIAI		RVA	LS (Ne	ext/2/	5/0/6,	Next/2	2/5/9)	
Phase	e / Overlap	1	2	3	4	5	6	7	8	Α	В	С	D		
	Enable	Off	0 = di	sabled	; 1 = e	nablec	d; 2 = e	nabled	d and s	kip pre	empt	bhase	on exit		
	A (max)	0	0	0	0	0	0	0	0						
Drievity	B (max)	0	0	0	0	0	0	0	0						
Priority Return	C (max)	0	0	0	0	0	0	0	0	0 - 1	00% of	curre	ntly use	ed max	
Return	D (max)	0	0	0	0	0	0	0	0						
	E (max)	0	0	0	0	0	0	0	0						
	Ped Clear	0	0	0	0	0	0	0	0	0 - 1	00% of	curre	ntly use	ed ped clearance	
Queue Dela	y Recovery	0	0	0	0	0	0	0	0	0 - 2	55 sec				
	1	0	0	0	0	0	0	0	0	0	0	0	0	0 = Dark	
	2	0	0	0	0	0	0	0	0	0	0	0	0	1 = green don't walk 2 = green walk	
	3	0	0	0	0	0	0	0	0	0	0	0	0	3 = green flashing don't walk	
Special	4	0	0	0	0	0	0	0	0	0	0	0	0	4 = yellow	
Special Intervals	5	0	0	0	0	0	0	0	0	0	0 0 0 0 $5 = red 6 = flashing vellow 1$			5 = red 6 = flashing yellow WIG	
	6	0	0	0	0	0	0	0	0	0	0	0 0 7 = flashing yellow		7 = flashing yellow WAG	
	7	0	0	0	0	0	0	0	0	0	0	0	0	8 = flashing red WIG 9 = flashing red WAG	
	8	0	0	0	0	0	0	0	0	0	0	0	0	9 = mashing red wAG 10 = walk only	
	9	0	0	0	0	0	0	0	0	0	0	0	0	11=flashing don't walk only	

	LIGHT RAIL TRAIN (Next/2/5/0/7)											
Light Rail Train	Light Rail Train 1 2 3 4											
Associated Preempt	0	0	0	0	0 = none, preempt 1 - 8							
Time to Green	0	0	0	0	0.055.000							
Horizontal Bar Flash Time	0.0	0.0	0.0	0.0	0 - 255 sec							
Vertical Bar Flash Time	0.0	0.0	0.0	0.0	0.0 - 25.5 sec							
Min Duration	0	0	0	0	0 - 255 sec							

Miscellaneous Data

			TF	RANSI		RITY (Next/2	/7)					
		1	2	3	4	5	6	7	8				
	Phase	s NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	Phases 1 - 8 (max of 2 compatible phases)			
PE Enable (6.25Hz	TP call on Pl	E) X	X	X	Х					X = 6.25 Hz signal will activate TP			
	Priori	ty 0	0	0	0	0	0	0	0	0 - 8, 8 = highest			
	Memo	ry								X = on			
	Delay Tin	ne 0	0	0	0	0	0	0	0	0 - 255 sec			
Minimum Reservice Ti	me (per inpu	t) 0	0	0	0	0	0	0	0	0 - 255 min			
	Override Tim	ne ⁰	0	0	0	0	0	0	0	0 - 255 sec			
	Bus Exter	nd 0	0	0	0	0	0	0	0	0 - 255 min			
/linimum Reservice Ti	me (all input	s) 0	0 - 255	i min									
Free Op	peration Mod	le ⁰	0 = use	shortest	of max	1 or 2, 1	- 8 = use	e max tim	ne of gro	up 1 - 8, 9 = use time of day circuit			
	TRAN		ORITY	ALTE	RNATE	FOR	CE OFF	PLAN	IS (Ne	xt/2/7/6)			
Curre	ent Coord Pla	in 1	2	3	4	5	6	7	8				
Alternate TP Force Off Pla		in ⁰	0	0	0	0	0	0	0	0 = none			
Curre	ent Coord Pla	in 9	10	11	12	13	14	15	16	17 - 32 = coord plan 17 - 32			
Alternate TP I			0	0	0	0	0	0	0	-			
					-			•					
	Dhaqa	1	1			<u> </u>	xt/2/7/5) 7	0				
	Phase · Max Time		2 0	3 0	4 0	5 0	6 0	0	8 0				
Group 1	Walk Time		0	0	0	0	0	0	0	-			
	Max Time		0	0	0	0	0	0	0	-			
Group 2	Walk Time		0	0	0	0	0	0	0	-			
	Max Time		0	0	0	0	0	0	0	-			
Group 3	Walk Time		0	0	0	0	0 0 0	0 0 0	0 0 0	-			
	Max Time		0	0	0	0							
Group 4	Walk Time		0	0		0				0 - 255 sec			
_	Max Time		0	0	0	0	0	0	0	0 would time the normal function			
Group 5	Walk Time	es 0	0	0	0	0	0	0	0	time			
0 0	Max Time	es 0	0	0	0	0	0	0	0				
Group 6	Walk Time	es 0	0	0	0	0	0	0	0				
Ono. 10 7	Max Time	es 0	0	0	0	0	0	0	0				
Group 7	Walk Time	es 0	0	0	0	0	0	0	0				
Group 8	Max Time	es 0	0	0	0	0	0	0	0				
Gloup o	Walk Time	es 0	0	0	0	0	0	0	0				
			TF	RUCK	PRIOR	ITY (N	ext/2/7/	/9)					
Truck	Priority>	1	2	3		4		,					
Associated Trar	nsit Priority	0	0	0		0	0 = non	e 1 - 8 =	transit	priority 1 - 8			
Leadin	g Detector	0	0	0		0	0	o 1 0') data	stor 1 22			
Traillin	g Detector	0	0	0		0	0 = non	e, 1 - 32	z = dete	ctor 1 - 32			
Stop Ba	ar Distance	0	0	0		0	0 - 999 1	feet					
Tra	p Distance	0.0	0.0	0.	0	0.0	0.0 - 99	.9 feet					
Minim	um Speed	0	0	0		0	0 - 100	mph					
	um Length	0	0	0		0	0 - 255	feet					
	Grade (%)	0	0	0		0	0 - 20%						
	Grade (%)	0	0	0		0							
Undersiz	ed Vehicle						X = Ena	bled					

	170 INPUT	5 (Next	/2/8/1)
C1-39	101 - Veh Detector 9	C1-67	22 - Ped Detector 2
C1-40	113 - Veh Detector 19	C1-68	26 - Ped Detector 6
C1-41	106 - Veh Detector 14	C1-69	24 - Ped Detector 4
C1-42	118 - Veh Detector 24	C1-70	28 - Ped Detector 8
C1-43	102 - Veh Detector 10	C1-71	151 - Preempt In 1
C1-44	114 - Veh Detector 20	C1-72	152 - Preempt In 2
C1-45	107 - Veh Detector 15	C1-73	153 - Preempt In 3
C1-46	161 - Veh Detector 25	C1-74	154 - Preempt In 4
C1-47	105 - Veh Detector 13	C1-75	254 - Pin Not Used
C1-48	117 - Veh Detector 23	C1-76	104 - Veh Detector 12
C1-49	112 - Veh Detector 18	C1-77	116 - Veh Detector 22
C1-50	164 - Veh Detector 28	C1-78	111 - Veh Detector 17
C1-51	199 - LRT Ped Inhibit	C1-79	163 - Veh Detector 27
C1-52	155 – Preempt In 5	C1-80	82 - Interval Advance
C1-53	85 - Manual Control Enable	C1-81	137 - Conflict Monitor Status/Flash
C1-54	254 - Pin Not Used	C1-82	62 - Stop Timing Ring 1
C1-55	15 - Veh Detector 5	C11-15	254 - Pin Not Used
C1-56	11 - Veh Detector 1	C11-16	254 - Pin Not Used
C1-57	17 - Veh Detector 7	C11-17	254 - Pin Not Used
C1-58	13 - Veh Detector 3	C11-18	254 - Pin Not Used
C1-59	16 - Veh Detector 6	C11-19	254 - Pin Not Used
C1-60	12 - Veh Detector 2	C11-20	254 - Pin Not Used
C1-61	18 - Veh Detector 8	C11-21	254 - Pin Not Used
C1-62	14 - Veh Detector 4	C11-22	254 - Pin Not Used
C11-10	254 - Pin Not Used	C11-23	254 - Pin Not Used
C11-11	254 - Pin Not Used	C11-24	254 - Pin Not Used
C11-12	254 - Pin Not Used	C11-25	254 - Pin Not Used
C11-13	254 - Pin Not Used	C11-26	254 - Pin Not Used
C1-63	103 - Veh Detector 11	C11-27	254 - Pin Not Used
C1-64	115 - Veh Detector 21	C11-28	
C1-65	108 - Veh Detector 16		254 - Pin Not Used
C1-66	162 - Veh Detector 26	C11-30	254 - Pin Not Used

Connector Type	C1/C11	Change I/O	0 = Disabled	
0 = C1/C11; 1 = 2 = TS2 Port 1; 3	,	X = On (After a downloa	ad without a power o	n - off cycle)

	170 OUTPUT	S (Nex	t/2/8/2)
C1-2	44 - Don't Walk, Ph 4	1	131 - TOD Output 1
C1-2	64 - Walk, Ph 4	C1-36	
C1-3	14 - Red, Ph 4		133 - TOD Output 3
C1-4	24 - Yellow, Ph 4		134 - TOD Output 4
C1-6	34 - Green, Ph 4		53 - Ped Clear, Ph 3
C1-7	13 - Red, Ph 3		51 - Ped Clear, Ph 1
C1-8	23 - Yellow, Ph 3		187 - Soft Flash
C1-9	33 - Green, Ph 3		147 - Watchdog
C1-10	42 - Don't Walk, Ph 2	C1-83	43 - Don't Walk, Ph 3
C1-11	62 - Walk, Ph 2	C1-84	63 - Walk, Ph 3
C1-12	12 - Red, Ph 2	C1-85	116 - Overlap D, Red
C1-13	22 - Yellow, Ph 2	C1-86	115 - Overlap D, Yellow
C1-15	32 - Green, Ph 2	C1-87	114 - Overlap D, Green
C1-16	11 - Red, Ph 1	C1-88	113 - Overlap C, Red
C1-17	21 - Yellow, Ph 1	C1-89	112 - Overlap C, Yellow
C1-18	31 - Green, Ph 1	C1-90	111 - Overlap C, Green
C1-19	48 - Don't Walk, Ph 8	C1-91	41 - Don't Walk, Ph 1
C1-20	68 - Walk, Ph 8	C1-93	61 - Walk, Ph 1
C1-21	18 - Red, Ph 8	C1-94	106 - Overlap B, Red
C1-22	28 - Yellow, Ph 8	C1-95	105 - Overlap B, Yellow
C1-23	38 - Green, Ph 8	C1-96	104 - Overlap B, Green
C1-24	17 - Red, Ph 7	C1-97	103 - Overlap A, Red
C1-25	27 - Yellow, Ph 7	C1-98	102 - Overlap A, Yellow
C1-26	217 - FYLTA, 5	C1-99	101 - Overlap A, Green
C1-27	46 - Don't Walk, Ph 6	C11-1	254 - Pin Not Used
C1-28	66 - Walk, Ph 6	C11-2	254 - Pin Not Used
C1-29	16 - Red, Ph 6	C11-3	254 - Pin Not Used
C1-30	26 - Yellow, Ph 6	C11-4	254 - Pin Not Used
C1-31	36 - Green, Ph 6	C11-5	254 - Pin Not Used
C1-32	15 - Red, Ph 5	C11-6	254 - Pin Not Used
C1-33	223 - FYLTA CLR, 5	C11-7	254 - Pin Not Used
C1-34	35 - Green, Ph 5	C11-8	254 - Pin Not Used

		INTERNAL LOGI	C 1 - 9	6 (Nex	ct/2/9)
Step	Inst.	Comment	Step	Inst.	Comment
1	201		49	0	
2	106		50	0	
3	165		51	0	
4	201		52	0	
5	107		53	0	
6	165		54	0	
7	0		55	0	
8	0		56	0	
9	0		57	0	
10	0		58	0	
11	0		59	0	
12	0		60	0	
13	0		61	0	
14	0		62	0	
15	0		63	0	
16	0		64	0	
17	0		65	0	
18	0		66	0	
19	0		67	0	
20	0		68	0	
20	0		69	0	
21	0		70	0	
22	0		70	0	
23	0		71	0	
	0				
25			73	0	
26	0		74	0	
27	0		75	0	
28	0		76	0	
29	0		77	0	
30	0		78	0	
31	0		79	0	
32	0		80	0	
33	0		81	0	
34	0		82	0	
35	0		83	0	
36	0		84	0	
37	0		85	0	
38	0		86	0	
39	0		87	0	
40	0		88	0	
41	0		89	0	
42	0		90	0	
43	0		91	0	
44	0		92	0	
45	0		93	0	
46	0		94	0	
47	0		95	0	
48	0		96	0	

CONTROLLER ID

Manufacturer ID	NORTHWEST SIGNAL
Model ID	Voyage-0 v05.03.01
Protocol Revision ID	AB3418E V1

4

LEVEL OF SERVICE CRITERIA FOR SIGNALIZED INTERSECTIONS

LEVEL	CONTROL DELAY
OF	PER VEHICLE
SERVICE	(Seconds)
А	<10
В	10-20
С	20-35
D	35-55
Е	55-80
F	>80

LEVEL OF SERVICE CRITERIA FOR UNSIGNALIZED INTERSECTIONS

LEVEL	CONTROL DELAY
OF	PER VEHICLE
SERVICE	(Seconds)
А	<10
В	10-15
С	15-25
D	25-35
Е	35-50
F	>50

LEVEL OF SERVICE

Level of service is used to describe the quality of traffic flow. Levels of service A to C are considered good, and rural roads are usually designed for level of service C. Urban streets and signalized intersections are typically designed for level of service D. Level of service E is considered to be the limit of acceptable delay. For unsignalized intersections, level of service E is generally considered acceptable. Here is a more complete description of levels of service:

Level of service A: Very low delay at intersections, with all traffic signal cycles clearing and no vehicles waiting through more than one signal cycle. On highways, low volume and high speeds, with speeds not restricted by other vehicles.

Level of service B: Operating speeds beginning to be affected by other traffic; short traffic delays at intersections. Higher average intersection delay than for level of service A resulting from more vehicles stopping.

Level of service C: Operating speeds and maneuverability closely controlled by other traffic; higher delays at intersections than for level of service B due to a significant number of vehicles stopping. Not all signal cycles clear the waiting vehicles. This is the recommended design standard for rural highways.

Level of service D: Tolerable operating speeds; long traffic delays occur at intersections. The influence of congestion is noticeable. At traffic signals many vehicles stop, and the proportion of vehicles not stopping declines. The number of signal cycle failures, for which vehicles must wait through more than one signal cycle, are noticeable. This is typically the design level for urban signalized intersections.

Level of service E: Restricted speeds, very long traffic delays at traffic signals, and traffic volumes near capacity. Flow is unstable so that any interruption, no matter how minor, will cause queues to form and service to deteriorate to level of service F. Traffic signal cycle failures are frequent occurrences. For unsignalized intersections, level of service E or better is generally considered acceptable.

Level of service F: Extreme delays, resulting in long queues which may interfere with other traffic movements. There may be stoppages of long duration, and speeds may drop to zero. There may be frequent signal cycle failures. Level of service F will typically result when vehicle arrival rates are greater than capacity. It is considered unacceptable by most drivers.

	≯	+	\mathbf{F}	4	+	•	•	1	1	$\mathbf{\mathbf{b}}$	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	eî		٦	et 🗧			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	235	35	126	326	7	15	2	187	3	5	1
Future Volume (vph)	5	235	35	126	326	7	15	2	187	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	250	37	134	347	7	16	2	199	3	5	1
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	5	287	134	354	217	9						
Volume Left (vph)	5	0	134	0	16	3						
Volume Right (vph)	0	37	0	7	199	1						
Hadj (s)	0.58	-0.01	0.55	0.04	-0.50	0.42						
Departure Headway (s)	6.3	5.7	6.1	5.5	5.3	6.7						
Degree Utilization, x	0.01	0.46	0.23	0.54	0.32	0.02						
Capacity (veh/h)	536	604	574	634	620	460						
Control Delay (s)	8.2	12.3	9.6	13.8	10.7	9.8						
Approach Delay (s)	12.2		12.6		10.7	9.8						
Approach LOS	В		В		В	A						
Intersection Summary												
Delay			12.1									
Level of Service			В									
Intersection Capacity Utilizat	tion		44.6%	IC	CU Level of	of Service			А			
Analysis Period (min)			15									

	-	\mathbf{r}	4	+	•	۲	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ţ,			र्स	¥		
Traffic Volume (veh/h)	369	53	37	426	30	72	
Future Volume (Veh/h)	369	53	37	426	30	72	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	397	57	40	458	32	77	
Pedestrians	1				2		
Lane Width (ft)	12.0				12.0		
Walking Speed (ft/s)	3.5				3.5		
Percent Blockage	0				0		
Right turn flare (veh)	-						
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			456		966	428	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			456		966	428	
tC, single (s)			4.1		6.5	6.3	
tC, 2 stage (s)							
tF (s)			2.2		3.6	3.4	
p0 queue free %			96		88	87	
cM capacity (veh/h)			1087		264	613	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	454	498	109				
Volume Left	0	40	32				
Volume Right	57	0	77				
cSH	1700	1087	442				
Volume to Capacity	0.27	0.04	0.25				
Queue Length 95th (ft)	0.27	3	24				
Control Delay (s)	0.0	1.1	15.8				
Lane LOS	0.0	A	C				
Approach Delay (s)	0.0	1.1	15.8				
Approach LOS	0.0	1.1	15.0 C				
••			U				
Intersection Summary			0.1				
Average Delay	- <u>H</u>		2.1			1 Com de	
Intersection Capacity Utiliza	alion		63.2%	IC	U Level c	I Service	
Analysis Period (min)			15				

	٦	→	-	•	1	1								
Movement	EBL	EBT	WBT	WBR	SBL	SBR								
Lane Configurations	1	•	el el		ľ	1								
Sign Control		Stop	Stop		Stop									
Traffic Volume (vph)	280	156	284	163	92	192								
Future Volume (vph)	280	156	284	163	92	192								
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85								
Hourly flow rate (vph)	329	184	334	192	108	226								
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2									
Volume Total (vph)	329	184	526	108	226									
Volume Left (vph)	329	0	0	108	0									
Volume Right (vph)	0	0	192	0	226									
Hadj (s)	0.60	0.10	-0.13	0.62	-0.58									
Departure Headway (s)	7.0	6.5	6.0	7.9	6.7									
Degree Utilization, x	0.64	0.33	0.88	0.24	0.42									
Capacity (veh/h)	499	535	585	442	521									
Control Delay (s)	20.7	11.6	38.2	12.1	13.2									
Approach Delay (s)	17.4		38.2	12.9										
Approach LOS	С		E	В										
Intersection Summary														
Delay			24.3											
Level of Service			С											
Intersection Capacity Utiliza	ation		55.8%	IC	CU Level c	f Service		В	В	В	В	В	В	В
Analysis Period (min)			15											

HCM Unsignalized Intersection Capacity Analysis 4: 10th St & 8th Ave/8th Ct

Willamette Falls Commercial Building Year 2015 Existing Conditions - AM Peak Period

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SE	SBR
Lane Configurations 🎽 🚯 🦨 🎁 😚	
Traffic Volume (veh/h) 25 6 6 54 8 160 19 337 89 144 22	73
Future Volume (Veh/h) 25 6 6 54 8 160 19 337 89 144 22	73
Sign Control Stop Stop Free Free	
Grade 0% 0% 0% 0	
Peak Hour Factor 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	0.87
Hourly flow rate (vph) 29 7 7 62 9 184 22 387 102 166 25	84
Pedestrians 4 3	
Lane Width (ft) 12.0 12.0	
Walking Speed (ft/s) 3.5 3.5	
Percent Blockage 0 0	
Right turn flare (veh) 5	
Median type None Nor	
Median storage veh)	
Upstream signal (ft) 30	
pX, platoon unblocked 0.98 0.98 0.98 0.98 0.98 0.98	
vC, conflicting volume 1210 1165 303 1082 1156 438 342 489	
vC1, stage 1 conf vol	
vC2, stage 2 conf vol	
vCu, unblocked vol 1204 1157 274 1071 1148 438 314 489	
tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2	
tC, 2 stage (s)	
tF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3	
p0 queue free % 68 96 99 61 94 70 98 84	
cM capacity (veh/h) 91 157 739 159 159 617 1196 1054	
Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2	
Volume Total 29 14 255 511 166 338	
Volume Left 29 0 62 22 166 0	
Volume Right 0 7 184 102 0 84	
cSH 91 259 572 1196 1054 1700	
Volume to Capacity 0.32 0.05 0.45 0.02 0.16 0.20	
Queue Length 95th (ft) 30 4 57 1 14 0	
Control Delay (s) 62.4 19.7 22.0 0.5 9.1 0.0	
Lane LOS F C C A A	
Approach Delay (s) 48.5 22.0 0.5 3.0	
Approach LOS E C	
Intersection Summary	
Average Delay 7.2	
Intersection Capacity Utilization 60.5% ICU Level of Service B	
Analysis Period (min) 15	

	۶	-	\rightarrow	•	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र् ग	1					↑	1	ሻ	↑	
Traffic Volume (vph)	168	0	123	0	0	0	0	328	189	273	308	0
Future Volume (vph)	168	0	123	0	0	0	0	328	189	273	308	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1731	1553					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.31	1.00	
Satd. Flow (perm)		1731	1553					1845	1568	579	1845	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	198	0	145	0	0	0	0	386	222	321	362	0
RTOR Reduction (vph)	0	0	119	0	0	0	0	0	94	0	0	0
Lane Group Flow (vph)	0	198	26	0	0	0	0	386	128	321	362	0
Confl. Peds. (#/hr)	1					1						3
Heavy Vehicles (%)	4%	4%	4%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases		8						6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		12.2	12.2					23.8	23.8	45.0	45.0	
Effective Green, g (s)		12.2	12.2					23.8	23.8	45.0	45.0	
Actuated g/C Ratio		0.18	0.18					0.35	0.35	0.67	0.67	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		314	281					653	555	670	1235	
v/s Ratio Prot								c0.21		c0.12	0.20	
v/s Ratio Perm		0.11	0.02						0.08	0.21		
v/c Ratio		0.63	0.09					0.59	0.23	0.48	0.29	
Uniform Delay, d1		25.4	22.9					17.7	15.3	6.0	4.6	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Incremental Delay, d2		3.4	0.1					3.1	0.7	0.3	0.5	
Delay (s)		28.8	23.0					20.8	16.0	6.4	5.0	
Level of Service		С	С					С	В	А	А	
Approach Delay (s)		26.3			0.0			19.1			5.6	
Approach LOS		С			А			В			А	
Intersection Summary												
HCM 2000 Control Delay			15.0	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.57									
Actuated Cycle Length (s)			67.2	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	ation		71.3%			of Service			С			
Analysis Period (min)			15									
a Critical Lana Croup												

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

	≯	-	\mathbf{r}	•	+	•	•	1	1	1	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ب ا	1	ሻ	•			≜ ⊅	
Traffic Volume (vph)	0	0	0	99	0	170	149	355	0	0	497	326
Future Volume (vph)	0	0	0	99	0	170	149	355	0	0	497	326
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.99	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.94	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1787	1599	1671	1759			3287	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1787	1599	1671	1759			3287	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	111	0	191	167	399	0	0	558	366
RTOR Reduction (vph)	0	0	0	0	0	170	0	0	0	0	86	0
Lane Group Flow (vph)	0	0	0	0	111	21	167	399	0	0	838	0
Confl. Peds. (#/hr)												3
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	8%	8%	8%	2%	2%	2%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					14.0	14.0	13.2	31.9			83.8	
Effective Green, g (s)					14.0	14.0	13.2	31.9			83.8	
Actuated g/C Ratio					0.11	0.11	0.10	0.25			0.66	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					196	175	172	440			2160	
v/s Ratio Prot					c0.06	0.01	0.10	c0.23			c0.25	
v/s Ratio Perm												
v/c Ratio					0.57	0.12	0.97	0.91			0.39	
Uniform Delay, d1					53.9	51.2	57.0	46.4			10.1	
Progression Factor					1.00	1.00	1.00	1.00			0.42	
Incremental Delay, d2					2.7	0.2	59.7	23.3			0.0	
Delay (s)					56.6	51.4	116.6	69.6			4.3	
Level of Service					E	D	F	E			А	
Approach Delay (s)		0.0			53.3			83.5			4.3	
Approach LOS		А			D			F			А	
Intersection Summary												
HCM 2000 Control Delay			37.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacit	y ratio		0.63									
Actuated Cycle Length (s)			127.5	S	um of lost	t time (s)			27.5			
Intersection Capacity Utilizatio	n		51.8%		CU Level o)		А			
Analysis Period (min)			15									
c Critical Lane Group												

HCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15		-	\mathbf{r}	4	-	1	1	
Lane Configurations Image: Configuration in the image: Configuratine in the image: Configuration in the image: Configuration in th	Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Traffic Volume (vph) 34 410 415 56 288 227 Future Volume (vph) 34 410 415 56 288 227 Ideal Flow (vph) 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 5.5 5.5 5.5 6.0 5.5 5.5 5.5 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 0.05 1.00 Stat. Flow (port) 1792 1524 1770 1863 1641 1468 Fit Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Stat. Flow (port) 1792 1524 1770 1863 1641 1468 Pite Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Stat. Flow (pth) 39 466 472 64 327 258 RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64								
Future Volume (vph) 34 410 415 56 288 227 Ideal Flow (vphp) 1900 1900 1900 1900 1900 1900 Total Lost time (s) 5.5 5.5 5.5 6.0 5.5 5.5 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Ft Trotected 1.00 1.00 0.95 1.00 0.85 Std. Flow (port) 1792 1524 1770 1863 1641 1468 Flewritted 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type					-			
Total Lost time (s) 5.5 5.5 5.5 6.0 5.5 5.5 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt 1.00 0.85 1.00 0.95 1.00 0.95 1.00 Std. Flow (prot) 1792 1524 1770 1863 1641 1468 Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 Std. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 6 7 Actuated	Future Volume (vph)	34	410	415	56	288	227	
Lane Util. Factor1.001.001.001.001.001.001.00Frt1.000.851.001.000.951.000.85Flt Protected1.001.000.951.000.951.00Satd. Flow (port)179215241770186316411468Flt Permitted1.000.000.951.000.951.00Satd. Flow (perm)179215241770186316411468Peak-hour factor, PHF0.880.880.880.880.880.88Adj. Flow (vph)3946647264327203Heavy Vehicles (%)6%6%2%2%10%10%Turn TypeNAcustomProtNAProtcustomProtected Phases44.5.7385.6.7Actuated Green, G (s)16.072.933.754.761.3100.5Effective Green, g (s)16.072.933.754.761.3100.5Actuated g/C Ratio0.130.570.260.430.480.79Clearance Time (s)5.55.56.0Vehicle Extension (s)2.32.32.3Lane Gro Cap (vph)2248714677997881157v/s Ratio Prot0.02co.24co.270.03co.200.14v/s Ratio Prot0.02co.24co.270.03co.10Unifor	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Frt 1.00 0.85 1.00 1.00 0.95 1.00 0.85 Flt Protected 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1792 1524 1770 1863 1641 1468 Flt Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 258 RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA prot custom Protected Phases 4 457 3 8 567 35.6 7 </td <td>Total Lost time (s)</td> <td>5.5</td> <td>5.5</td> <td>5.5</td> <td>6.0</td> <td>5.5</td> <td>5.5</td> <td></td>	Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5	
Fit Protected 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (prot) 1792 1524 1770 1863 1641 1468 Fit Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.89 0.89 10% <td>Lane Util. Factor</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td></td>	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Satd. Flow (prot) 1792 1524 1770 1863 1641 1468 Flt Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 457 3 8 5 67 3 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 0.20 0.14	Frt	1.00	0.85	1.00	1.00	1.00	0.85	
Fit Permitted 1.00 1.00 0.95 1.00 0.95 1.00 Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 258 RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 457 3 8 5 67 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Clea	Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm) 1792 1524 1770 1863 1641 1468 Peak-hour factor, PHF 0.88 0.88 0.88 0.88 0.88 0.88 0.88 Adj. Flow (vph) 39 466 472 64 327 258 RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 57 3 8 5 6 7 3 5 6 7 Permitted Phases 4 5 5 5.5 6.13 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated G/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5	Satd. Flow (prot)	1792	1524	1770	1863	1641	1468	
Peak-hour factor, PHF 0.88 0.86 0.88 0.86 0.88 0.86 0.88 0.85 0.70 0.70 0.75		1.00	1.00	0.95	1.00	0.95	1.00	
Adj. Flow (vph) 39 466 472 64 327 258 RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 4.5.7 3 8 5.6.7 3.5.6.7 Permitted Phases 4 5.6.7 3.7.54.7 61.3 100.5 5.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Port 0.02 c0.27 0.03 c0.20 0.14	Satd. Flow (perm)	1792	1524	1770	1863	1641	1468	
RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Permitted Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Perm	Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
RTOR Reduction (vph) 0 107 0 0 0 55 Lane Group Flow (vph) 39 359 472 64 327 203 Heavy Vehicles (%) 6% 6% 2% 10% 10% Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Port 0.02 c0.24 c0.27 0.03 c0.20 0.14								
Heavy Vehicles (%) 6% 6% 2% 2% 10% 10% Turn Type NA custom Prot NA Prot UNA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Permitted Phases 4 5 6 7 3 7 5 4 7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 5 4 7 6 1.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm		0	107	0	0	0	55	
Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Permitted Phases 4 5 6 7 3 8 5 6 7 3 8 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 5 4.7 6 1.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 5 4.7 6 1.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.		39	359	472	64	327	203	
Turn Type NA custom Prot NA Prot custom Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Permitted Phases 4 5 6 7 3 7 5 6 7 3 7 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 5 4.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 5 4.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3	Heavy Vehicles (%)	6%	6%	2%	2%	10%	10%	
Protected Phases 4 4 5 7 3 8 5 6 7 3 5 6 7 Permitted Phases 4 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.27 0.03 c0.20 0.14 v/s Ratio Perm		NA	custom	Prot	NA	Prot	custom	
Permitted Phases 4 5 6 7 Actuated Green, G (s) 16.0 72.9 33.7 54.7 61.3 100.5 Effective Green, g (s) 16.0 72.9 33.7 54.7 61.3 100.5 Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0							3567	
Effective Green, g (s)16.072.9 33.7 54.761.3100.5Actuated g/C Ratio0.130.570.260.430.480.79Clearance Time (s)5.55.56.0Vehicle Extension (s)2.32.32.3Lane Grp Cap (vph)224871467799788V/s Ratio Prot0.02c0.24c0.270.03c0.200.14v/s Ratio Permv/c Ratio0.170.411.010.080.410.18Uniform Delay, d149.815.346.921.521.53.3Progression Factor1.001.001.000.260.00Incremental Delay, d21.70.744.30.20.50.1Delay (s)51.516.091.221.76.00.1Level of ServiceDBFCAAApproach Delay (s)18.782.93.4Approach LOSBFAIntersection SummaryUnitor 0.68A127.5Sum of lost time (s)117.5Sum of lost time (s)117.5Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)1515	Permitted Phases		4				567	
Actuated g/C Ratio 0.13 0.57 0.26 0.43 0.48 0.79 Clearance Time (s) 5.5 5.5 6.0 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 A Approach LOS B F A Intersection Summary 14.4 HCM 2000 Level of Service 0.68 A	Actuated Green, G (s)	16.0	72.9	33.7	54.7	61.3	100.5	
Clearance Time (s) 5.5 5.5 6.0 Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 Approach LOS B F A Intersection Summary HCM 2000 Control Delay 34.4 HCM 2000 Level of Ser	Effective Green, g (s)	16.0	72.9	33.7	54.7	61.3	100.5	
Vehicle Extension (s) 2.3 2.3 2.3 Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach LOS B F A A Intersection Summary 127.5 Sum of lost time (s) Intersection Capacity ratio 0.68 Actuated Cycle Length (s) 127.5 Sum of lost time (s) Intersection Capacity Utilizatio	Actuated g/C Ratio	0.13	0.57	0.26	0.43	0.48	0.79	
Lane Grp Cap (vph) 224 871 467 799 788 1157 v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 Approach LOS B F A Intersection Summary HCM 2000 Control Delay 34.4 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.68 Actuated Cycle Length (s) 127.5 Sum of lost time (s) Intersection Capacity	Clearance Time (s)	5.5		5.5	6.0			
v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 A A Approach LOS B F A A Intersection Summary 0.68 44.4 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.68 44.4 44.4 44.4 Intersection Capacity Utilization 57.5% ICU Level of Service 44.4 Intersection Capacity Utilization 57.5% ICU Level of Service 44.4	Vehicle Extension (s)	2.3		2.3	2.3			
v/s Ratio Prot 0.02 c0.24 c0.27 0.03 c0.20 0.14 v/s Ratio Perm v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 A A Approach LOS B F A A Intersection Summary 0.68 44.4 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.68 44.4 44.4 44.4 Intersection Capacity Utilization 57.5% ICU Level of Service 44.4 Intersection Capacity Utilization 57.5% ICU Level of Service 44.4	Lane Grp Cap (vph)	224	871	467	799	788	1157	
v/c Ratio 0.17 0.41 1.01 0.08 0.41 0.18 Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 A Approach LOS B F A A Intersection Summary 34.4 HCM 2000 Level of Service HCM 2000 Control Delay 34.4 HCM 2000 Level of Service HCM 2000 Volume to Capacity ratio 0.68 A Actuated Cycle Length (s) 127.5 Sum of lost time (s) Intersection Capacity Utilization 57.5% ICU Level of Service Analysis Period (min) 15 15		0.02	c0.24	c0.27	0.03	c0.20	0.14	
Uniform Delay, d1 49.8 15.3 46.9 21.5 21.5 3.3 Progression Factor 1.00 1.00 1.00 0.26 0.00 Incremental Delay, d2 1.7 0.7 44.3 0.2 0.5 0.1 Delay (s) 51.5 16.0 91.2 21.7 6.0 0.1 Level of Service D B F C A A Approach Delay (s) 18.7 82.9 3.4 A Approach LOS B F A A Intersection Summary 34.4 HCM 2000 Level of Service A HCM 2000 Control Delay 34.4 HCM 2000 Level of Service A Actuated Cycle Length (s) 127.5 Sum of lost time (s) Intersection Capacity Utilization Intersection Capacity Utilization 57.5% ICU Level of Service Analysis Period (min) 15 15	v/s Ratio Perm							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	v/c Ratio	0.17	0.41	1.01	0.08	0.41	0.18	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uniform Delay, d1	49.8	15.3	46.9	21.5	21.5	3.3	
Delay (s)51.516.091.221.76.00.1Level of ServiceDBFCAAApproach Delay (s)18.782.93.4Approach LOSBFAIntersection SummaryHCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15		1.00		1.00	1.00	0.26	0.00	
Level of ServiceDBFCAAApproach Delay (s)18.782.93.4Approach LOSBFAIntersection SummaryHCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Incremental Delay, d2	1.7	0.7	44.3	0.2	0.5	0.1	
Approach Delay (s)18.782.93.4Approach LOSBFAIntersection SummaryHCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Delay (s)	51.5	16.0	91.2	21.7	6.0	0.1	
Approach LOSBFAIntersection SummaryHCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Level of Service	D	В	F	С	А	А	
Intersection SummaryHCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Approach Delay (s)	18.7			82.9	3.4		
HCM 2000 Control Delay34.4HCM 2000 Level of ServiceHCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Approach LOS	В			F	А		
HCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	Intersection Summary							
HCM 2000 Volume to Capacity ratio0.68Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	HCM 2000 Control Delay			34.4	Н	CM 200) Level of Serv	/ice
Actuated Cycle Length (s)127.5Sum of lost time (s)Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15	3	y ratio						
Intersection Capacity Utilization57.5%ICU Level of ServiceAnalysis Period (min)15					S	um of los	st time (s)	
Analysis Period (min) 15	, , , , , , , , , , , , , , , , , , ,	n						
	c Critical Lane Group			-				

	≯	+	\mathbf{F}	4	+	•	•	1	1	$\mathbf{\mathbf{b}}$	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	eî		٦	et 🗧			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	6	656	33	167	228	15	15	2	185	17	7	12
Future Volume (vph)	6	656	33	167	228	15	15	2	185	17	7	12
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	713	36	182	248	16	16	2	201	18	8	13
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	7	749	182	264	219	39						
Volume Left (vph)	7	0	182	0	16	18						
Volume Right (vph)	0	36	0	16	201	13						
Hadj (s)	0.53	0.00	0.55	0.01	-0.45	-0.09						
Departure Headway (s)	6.6	6.0	6.7	6.2	6.2	7.2						
Degree Utilization, x	0.01	1.00	0.34	0.45	0.38	0.08						
Capacity (veh/h)	537	749	523	572	562	460						
Control Delay (s)	8.5	59.9	11.9	12.9	12.9	10.8						
Approach Delay (s)	59.5		12.5		12.9	10.8						
Approach LOS	F		В		В	В						
Intersection Summary												
Delay			36.8									
Level of Service			E									
Intersection Capacity Utiliza	ation		68.9%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									

	-	\mathbf{r}	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	4	2011		4	M		
Traffic Volume (veh/h)	815	50	20	399	10	39	
Future Volume (Veh/h)	815	50	20	399	10	39	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	876	54	22	429	11	42	
Pedestrians	9						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	3.5						
Percent Blockage	1						
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			930		1385	903	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			930		1385	903	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		93	87	
cM capacity (veh/h)			731		152	336	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	930	451	53				
Volume Left	0	22	11				
Volume Right	54	0	42				
cSH	1700	731	268				
Volume to Capacity	0.55	0.03	0.20				
Queue Length 95th (ft)	0	2	18				
Control Delay (s)	0.0	0.9	21.7				
Lane LOS		А	С				
Approach Delay (s)	0.0	0.9	21.7				
Approach LOS			С				
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Utiliz	zation		55. 9 %	IC	CU Level o	of Service	
Analysis Period (min)			15				
J							

	٦	-	-	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	•	ę		ľ	1
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	373	452	161	133	162	265
Future Volume (vph)	373	452	161	133	162	265
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	397	481	171	141	172	282
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total (vph)	397	481	312	172	282	
Volume Left (vph)	397	0	0	172	0	
Volume Right (vph)	0	0	141	0	282	
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65	
Departure Headway (s)	7.1	6.6	6.5	8.0	6.7	
Degree Utilization, x	0.78	0.88	0.57	0.38	0.53	
Capacity (veh/h)	500	540	532	439	518	
Control Delay (s)	30.1	39.5	17.6	14.6	15.8	
Approach Delay (s)	35.2		17.6	15.3		
Approach LOS	E		С	С		
Intersection Summary						
Delay			26.4			
Level of Service			D			
Intersection Capacity Utilization	ation		56.7%	IC	CU Level c	f Service
Analysis Period (min)			15			

	٨	+	*	4	Ļ	×	•	1	1	ŕ	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ef 👘			र्भ	1		- ↔		ሻ	eî 👘	
Traffic Volume (veh/h)	118	8	38	38	7	131	30	404	68	108	349	95
Future Volume (Veh/h)	118	8	38	38	7	131	30	404	68	108	349	95
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	134	9	43	43	8	149	34	459	77	123	397	108
Pedestrians		9						6			1	
Lane Width (ft)		12.0						12.0			12.0	
Walking Speed (ft/s)		3.5						3.5			3.5	
Percent Blockage		1						1			0	
Right turn flare (veh)						5						
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											309	
pX, platoon unblocked	0.90	0.90	0.90	0.90	0.90		0.90					
vC, conflicting volume	1351	1310	466	1262	1326	498	514			536		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1335	1290	355	1236	1307	498	408			536		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	93	93	60	93	74	97			88		
cM capacity (veh/h)	73	125	615	107	122	573	1025			1032		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1	SB 2						
Volume Total	134	52	200	570	123	505						
Volume Left	134	0	43	34	123	0						
Volume Right	0	43	149	77	0	108						
cSH	73	367	429	1025	1032	1700						
Volume to Capacity	1.84	0.14	0.47	0.03	0.12	0.30						
Queue Length 95th (ft)	297	12	60	3	10	0						
Control Delay (s)	520.4	16.4	26.3	0.9	9.0	0.0						
Lane LOS	F	С	D	A	A							
Approach Delay (s)	379.5	Ť	26.3	0.9	1.8							
Approach LOS	F		D	0.7								
Intersection Summary												
Average Delay			48.9									
Intersection Capacity Utiliz	ation		70.3%	IC	CU Level o	of Service			С			
Analysis Period (min)			15		3 23.014				~			
			10									

	۶	-	\mathbf{r}	4	-	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1					↑	1	٦	↑	
Traffic Volume (vph)	95	1	68	0	0	0	0	332	318	244	491	0
Future Volume (vph)	95	1	68	0	0	0	0	332	318	244	491	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1758	1568					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.37	1.00	
Satd. Flow (perm)		1758	1568					1845	1568	689	1845	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	108	1	77	0	0	0	0	377	361	277	558	0
RTOR Reduction (vph)	0	0	68	0	0	0	0	0	140	0	0	0
Lane Group Flow (vph)	0	109	9	0	0	0	0	377	221	277	558	0
Confl. Peds. (#/hr)						1						15
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases		8						6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		6.7	6.7					24.7	24.7	42.2	42.2	
Effective Green, g (s)		6.7	6.7					24.7	24.7	42.2	42.2	
Actuated g/C Ratio		0.11	0.11					0.42	0.42	0.72	0.72	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		199	178					773	657	719	1321	
v/s Ratio Prot								c0.20		0.08	c0.30	
v/s Ratio Perm		0.06	0.01						0.14	0.19		
v/c Ratio		0.55	0.05					0.49	0.34	0.39	0.42	
Uniform Delay, d1		24.7	23.3					12.5	11.6	3.8	3.4	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.1	0.1					1.7	1.1	0.2	0.8	
Delay (s)		26.8	23.3					14.2	12.6	4.0	4.2	
Level of Service		С	С					В	В	А	А	
Approach Delay (s)		25.4			0.0			13.4			4.1	
Approach LOS		С			А			В			А	
Intersection Summary												
HCM 2000 Control Delay			10.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	city ratio		0.50									
Actuated Cycle Length (s)			58. 9		um of los				15.0			
Intersection Capacity Utilizat	tion		72.8%	IC	CU Level	of Service			С			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

0. 1011 31 & 1-203 30	i tain	P								Iunions		
	۶	→	\mathbf{r}	4	←	•	•	t	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ب ا	1	۲.	•			↑ ĵ≽	
Traffic Volume (vph)	0	0	0	194	4	300	96	333	0	0	538	186
Future Volume (vph)	0	0	0	194	4	300	96	333	0	0	538	186
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.98	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.96	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1776	1583	1752	1845			3271	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1776	1583	1752	1845			3271	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.70	0.70	0.70	216	4	333	107	370	0.70	0.70	598	207
RTOR Reduction (vph)	0	0	0	0	4	279	0	0	0	0	25	207
Lane Group Flow (vph)	0	0	0	0	220	54	107	370	0	0	780	0
Confl. Peds. (#/hr)	0	0	0	0	220	54	107	370	0	0	700	15
	2%	2%	2%	2%	2%	2%	3%	3%	3%	4%	4%	
Heavy Vehicles (%)	Ζ%	Z70	Ζ%						3%	4%		4%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	_
Permitted Phases					00.4	00.4	11.0	00.7			75.4	
Actuated Green, G (s)					20.1	20.1	11.8	29.7			75.4	_
Effective Green, g (s)					20.1	20.1	11.8	29.7			75.4	
Actuated g/C Ratio					0.16	0.16	0.10	0.24			0.61	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					288	257	166	442			1992	
v/s Ratio Prot					c0.12	0.03	0.06	c0.20			c0.24	
v/s Ratio Perm												
v/c Ratio					0.76	0.21	0.64	0.84			0.39	
Uniform Delay, d1					49.6	45.0	54.0	44.7			12.4	
Progression Factor					1.00	1.00	1.00	1.00			0.54	
Incremental Delay, d2					10.7	0.2	6.9	14.4			0.1	
Delay (s)					60.3	45.2	60.9	59.2			6.7	
Level of Service					E	D	E	E			А	
Approach Delay (s)		0.0			51.2			59.6			6.7	
Approach LOS		А			D			E			А	
Intersection Summary												
HCM 2000 Control Delay			33.9	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacity	/ ratio		0.66									
Actuated Cycle Length (s)			123.8	S	um of lost	t time (s)			27.5			
Intersection Capacity Utilization	n		51.2%			of Service	9		A			
Analysis Period (min)			15									
c Critical Lane Group			. •									

	-	\mathbf{i}	4	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	<u> </u>	1	<u> </u>	1	1	1		
Traffic Volume (vph)	106	430	298	83	372	266		
Future Volume (vph)	106	430	298	83	372	266		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1881	1599	1787	1881	1787	1599		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1881	1599	1787	1881	1787	1599		
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88		
Adj. Flow (vph)	120	489	339	0.88 94	423	302		
RTOR Reduction (vph)	0	124	0	94	423	28		
Lane Group Flow (vph)	120	365	339	94	423	274		
Confl. Peds. (#/hr)	120	1	557	74	723	214		
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%		
Turn Type	NA	custom	Prot	NA	Prot	custom		
Protected Phases	1NA 4	4 5 7	P101 3	NA 8	567	3 5 6 7		
Permitted Phases	4	4 S 7 4	3	0	507	567		
Actuated Green, G (s)	16.0	4 76.8	25.5	46.5	65.8	5 6 7 96.8		
Effective Green, g (s)	16.0	76.8	25.5 25.5	46.5 46.5	65.8	96.8 96.8		
Actuated g/C Ratio	0.13	0.62	25.5 0.21	40.5 0.38	05.8	96.8 0.78		
Clearance Time (s)	0.13	0.02	0.21 5.5	0.38 6.0	0.53	0.70		
• •	5.5 2.3		5.5 2.3	0.0 2.3				
Vehicle Extension (s)		001			040	1050		
Lane Grp Cap (vph)	243	991	368	706	949	1250		
v/s Ratio Prot	c0.06	0.23	c0.19	0.05	c0.24	0.17		
v/s Ratio Perm	0.40	0.07	0.00	0.10	0.45	0.00		
v/c Ratio	0.49	0.37	0.92	0.13	0.45	0.22		
Uniform Delay, d1	50.1	11.6	48.2	25.4	17.8	3.6		
Progression Factor	1.00	1.00	1.00	1.00	0.37	0.07		
Incremental Delay, d2	7.0	0.5	30.7	0.4	0.5	0.1		
Delay (s)	57.1	12.1	78.8	25.8	7.2	0.4		
Level of Service	E	В	E	C	A	А		
Approach Delay (s)	21.0			67.3	4.3			
Approach LOS	С			E	А			
Intersection Summary								
HCM 2000 Control Delay			25.5	Н	CM 2000	D Level of Serv	ice	
HCM 2000 Volume to Capa	city ratio		0.63					
Actuated Cycle Length (s)	-		123.8	S	um of los	st time (s)		
Intersection Capacity Utiliza	ition		53.4%			of Service		
Analysis Period (min)			15					
c Critical Lane Group								

	۶	-	\mathbf{i}	•	-	*	•	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	¢Î		٢	et			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	247	36	131	347	7	16	2	195	3	5	1
Future Volume (vph)	5	247	36	131	347	7	16	2	195	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	263	38	139	369	7	17	2	207	3	5	1
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	5	301	139	376	226	9						
Volume Left (vph)	5	0	139	0	17	3						
Volume Right (vph)	0	38	0	7	207	1						
Hadj (s)	0.58	0.00	0.55	0.04	-0.50	0.42						
Departure Headway (s)	6.4	5.8	6.1	5.6	5.4	6.8						
Degree Utilization, x	0.01	0.49	0.24	0.59	0.34	0.02						
Capacity (veh/h)	528	595	568	627	610	445						
Control Delay (s)	8.3	13.0	9.8	15.0	11.1	9.9						
Approach Delay (s)	13.0		13.6		11.1	9.9						
Approach LOS	В		В		В	A						
Intersection Summary												
Delay			12.9									
Level of Service			В									
Intersection Capacity Utilizat	tion		46.1%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	-	\mathbf{F}	4	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ.			र्भ	¥	
Traffic Volume (veh/h)	387	55	38	451	31	75
Future Volume (Veh/h)	387	55	38	451	31	75
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	416	59	41	485	33	81
Pedestrians	1				2	
Lane Width (ft)	12.0				12.0	
Walking Speed (ft/s)	3.5				3.5	
Percent Blockage	0				0	
Right turn flare (veh)	-				-	
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			477		1016	448
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			477		1016	448
tC, single (s)			4.1		6.5	6.3
tC, 2 stage (s)						
tF (s)			2.2		3.6	3.4
p0 queue free %			96		87	86
cM capacity (veh/h)			1068		247	598
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	475	526	114			
Volume Left	0	41	33			
Volume Right	59	0	81			
cSH	1700	1068	423			
Volume to Capacity	0.28	0.04	0.27			
Queue Length 95th (ft)	0	3	27			
Control Delay (s)	0.0	1.1	16.6			
Lane LOS		А	С			
Approach Delay (s)	0.0	1.1	16.6			
Approach LOS			С			
Intersection Summary						
Average Delay			2.2			
Intersection Capacity Utiliz	zation		65.9%	IC	U Level c	of Service
Analysis Period (min)			15			
			.5			

	٦	-	-	•	1	-									
Movement	EBL	EBT	WBT	WBR	SBL	SBR									
Lane Configurations	1	•	el el		ľ	1									
Sign Control		Stop	Stop		Stop										
Traffic Volume (vph)	294	162	295	173	104	208									
Future Volume (vph)	294	162	295	173	104	208									
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85									
Hourly flow rate (vph)	346	191	347	204	122	245									
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2										
Volume Total (vph)	346	191	551	122	245										
Volume Left (vph)	346	0	0	122	0										
Volume Right (vph)	0	0	204	0	245										
Hadj (s)	0.60	0.10	-0.14	0.62	-0.58										
Departure Headway (s)	7.3	6.7	6.2	8.1	6.8										
Degree Utilization, x	0.70	0.36	0.95	0.27	0.46										
Capacity (veh/h)	486	520	551	440	518										
Control Delay (s)	24.1	12.3	50.5	12.8	14.4										
Approach Delay (s)	19.9		50.5	13.9											
Approach LOS	С		F	В											
Intersection Summary															
Delay			30.0												
Level of Service			D												
Intersection Capacity Utiliza	ation		58.4%	IC	CU Level c	of Service		В	В	В	В	В	В	В	В
Analysis Period (min)			15												

HCM Unsignalized Intersection Capacity Analysis 4: 10th St & 8th Ave/8th Ct

Willamette Falls Commercial Building Year 2017 Background Conditions - AM Peak Period

	٦	-	$\mathbf{\hat{z}}$	4	←	•	•	Ť	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4			र्भ	1		4		ሻ	ef 👘	
Traffic Volume (veh/h)	26	6	6	56	8	166	20	357	93	150	246	76
Future Volume (Veh/h)	26	6	6	56	8	166	20	357	93	150	246	76
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	30	7	7	64	9	191	23	410	107	172	283	87
Pedestrians		4						3				
Lane Width (ft)		12.0						12.0				
Walking Speed (ft/s)		3.5						3.5				
Percent Blockage		0						0				
Right turn flare (veh)						5						
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											309	
pX, platoon unblocked	0.96	0.96	0.96	0.96	0.96		0.96					
vC, conflicting volume	1284	1238	334	1150	1228	464	374			517		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1275	1227	285	1135	1216	464	327			517		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.2		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.3		
p0 queue free %	60	95	99	54	94	68	98			83		
cM capacity (veh/h)	76	139	717	140	141	596	1163			1029		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1	SB 2						
Volume Total	30	14	264	540	172	370						
Volume Left	30	0	64	23	172	0						
Volume Right	0	7	191	107	0	87						
cSH	76	232	505	1163	1029	1700						
Volume to Capacity	0.40	0.06	0.52	0.02	0.17	0.22						
Queue Length 95th (ft)	39	5	75	2	15	0						
Control Delay (s)	80.5	21.5	25.5	0.6	9.2	0.0						
Lane LOS	F	С	D	А	А							
Approach Delay (s)	61.8		25.5	0.6	2.9							
Approach LOS	F		D									
Intersection Summary												
Average Delay			8.2									
Intersection Capacity Utiliza	ation		63.4%	IC	U Level o	of Service			В			
Analysis Period (min)			15									

	٦	+	*	4	ł	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ب ا	1					•	1	ľ	•	
Traffic Volume (vph)	190	0	128	0	0	0	0	347	197	346	336	0
Future Volume (vph)	190	0	128	0	0	0	0	347	197	346	336	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1731	1553					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.27	1.00	
Satd. Flow (perm)		1731	1553					1845	1568	504	1845	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	224	0	151	0	0	0	0	408	232	407	395	0
RTOR Reduction (vph)	0	0	123	0	0	0	0	0	95	0	0	0
Lane Group Flow (vph)	0	224	28	0	0	0	0	408	137	407	395	0
Confl. Peds. (#/hr)	1			Ű	0	1		100		107	070	3
Heavy Vehicles (%)	4%	4%	4%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm	270	270	270	070	NA	Perm	pm+pt	NA	
Protected Phases	T CITI	8	I CIIII					6	I CIIII	5	2	
Permitted Phases	8	0	8					0	6	2	Z	
Actuated Green, G (s)	0	13.5	13.5					24.6	24.6	49.3	49.3	
Effective Green, g (s)		13.5	13.5					24.6	24.6	49.3	49.3	
Actuated g/C Ratio		0.19	0.19					0.34	0.34	0.68	0.68	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
		320	2.3					623	529	679	1249	
Lane Grp Cap (vph) v/s Ratio Prot		320	207					023	029	c0.16		
		0.13	0.02					0.22	0.00	c0.16	0.21	
v/s Ratio Perm		0.13	0.02					045	0.09 0.26		0.22	
v/c Ratio								0.65		0.60	0.32	_
Uniform Delay, d1		27.8	24.6					20.5	17.5	7.3	4.8	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	_
Incremental Delay, d2		5.8	0.1					4.5	0.9	1.1	0.5	
Delay (s)		33.5	24.7					25.0	18.4	8.4	5.3	_
Level of Service		С	С		0.0			C	В	А	A	
Approach Delay (s)		30.0			0.0			22.6			6.9	
Approach LOS		С			А			С			А	
Intersection Summary												
HCM 2000 Control Delay			17.2	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			72.8		um of los				15.0			
Intersection Capacity Utiliza	ation		76.7%	IC	CU Level	of Service			D			
Analysis Period (min)			15									
c Critical Lano Croup												

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

	۶	-	\mathbf{F}	•	-	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					्र	1	<u>۲</u>	↑			∱ }	
Traffic Volume (vph)	0	0	0	103	0	202	155	390	0	0	595	378
Future Volume (vph)	0	0	0	103	0	202	155	390	0	0	595	378
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.99	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.94	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1787	1599	1671	1759			3292	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1787	1599	1671	1759			3292	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	116	0	227	174	438	0	0	669	425
RTOR Reduction (vph)	0	0	0	0	0	202	0	0	0	0	79	0
Lane Group Flow (vph)	0	0	0	0	116	25	174	438	0	0	1015	0
Confl. Peds. (#/hr)												3
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	8%	8%	8%	2%	2%	2%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					14.0	14.0	13.3	32.5			84.6	
Effective Green, g (s)					14.0	14.0	13.3	32.5			84.6	
Actuated g/C Ratio					0.11	0.11	0.10	0.25			0.66	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					194	174	173	445			2169	
v/s Ratio Prot					c0.06	0.02	0.10	c0.25			c0.31	
v/s Ratio Perm												
v/c Ratio					0.60	0.14	1.01	0.98			0.47	
Uniform Delay, d1					54.5	51.8	57.6	47.7			10.8	
Progression Factor					1.00	1.00	1.00	1.00			0.69	
Incremental Delay, d2					3.8	0.2	69.9	38.5			0.0	
Delay (s)					58.3	52.0	127.5	86.2			7.5	
Level of Service					E	D	F	F			А	
Approach Delay (s)		0.0			54.1			98.0			7.5	
Approach LOS		А			D			F			А	
Intersection Summary												
HCM 2000 Control Delay			42.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	/ ratio		0.71									
Actuated Cycle Length (s)			128.4	S	um of lost	t time (s)			27.5			
Intersection Capacity Utilization	n		56.7%		U Level o		;		В			
Analysis Period (min)			15									
c Critical Lano Group												

	-	\mathbf{r}	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations		1	5	↑	۲	1	
Traffic Volume (vph)	45	515	464	62	335	247	
Future Volume (vph)	45	515	464	62	335	247	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	1.00	1.00	0.85	
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	1792	1524	1770	1863	1641	1468	
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	1792	1524	1770	1863	1641	1468	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
Adj. Flow (vph)	51	585	527	70	381	281	
RTOR Reduction (vph)	0	97	0	0	0	59	
Lane Group Flow (vph)	51	488	527	70	381	222	
Heavy Vehicles (%)	6%	6%	2%	2%	10%	10%	
Turn Type	NA	custom	Prot	NA		custom	
Protected Phases	4	457	3	8	567	3567	
Permitted Phases		4				567	
Actuated Green, G (s)	16.0	73.5	33.7	54.7	62.2	101.4	
Effective Green, g (s)	16.0	73.5	33.7	54.7	62.2	101.4	
Actuated g/C Ratio	0.12	0.57	0.26	0.43	0.48	0.79	
Clearance Time (s)	5.5		5.5	6.0			
Vehicle Extension (s)	2.3		2.3	2.3			
Lane Grp Cap (vph)	223	872	464	793	794	1159	
v/s Ratio Prot	0.03	c0.32	c0.30	0.04	c0.23	0.15	
v/s Ratio Perm							
v/c Ratio	0.23	0.56	1.14	0.09	0.48	0.19	
Uniform Delay, d1	50.6	17.3	47.4	22.0	22.2	3.3	
Progression Factor	1.00	1.00	1.00	1.00	0.24	0.00	
Incremental Delay, d2	2.4	1.4	84.5	0.2	0.5	0.1	
Delay (s)	53.0	18.7	131.9	22.2	5.9	0.1	
Level of Service	D	В	F	С	А	А	
Approach Delay (s)	21.5			119.0	3.5		
Approach LOS	С			F	А		
Intersection Summary							
HCM 2000 Control Delay			45.9	Н	CM 2000) Level of Sei	rvice
HCM 2000 Volume to Capacit	ty ratio		0.82				
Actuated Cycle Length (s)			128.4			st time (s)	
Intersection Capacity Utilization	on		66.8%	IC	U Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	۶	-	\mathbf{i}	∢	-	•	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4		ሻ	4			4			4	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	6	691	34	174	243	16	16	2	192	18	7	12
Future Volume (vph)	6	691	34	174	243	16	16	2	192	18	7	12
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	751	37	189	264	17	17	2	209	20	8	13
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	7	788	189	281	228	41						
Volume Left (vph)	7	0	189	0	17	20						
Volume Right (vph)	0	37	0	17	209	13						
Hadj (s)	0.53	0.00	0.55	0.01	-0.45	-0.08						
Departure Headway (s)	6.7	6.1	6.8	6.2	6.2	7.3						
Degree Utilization, x	0.01	1.00	0.36	0.49	0.40	0.08						
Capacity (veh/h)	529	788	519	567	557	453						
Control Delay (s)	8.6	60.4	12.2	13.8	13.3	10.9						
Approach Delay (s)	60.0		13.2		13.3	10.9						
Approach LOS	F		В		В	В						
Intersection Summary												
Delay			37.4									
Level of Service			E									
Intersection Capacity Utilizat	tion		71.6%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	-	\mathbf{F}	4	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	<u>بور</u> م			4	Y		
Traffic Volume (veh/h)	856	52	21	421	10	41	
Future Volume (Veh/h)	856	52	21	421	10	41	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Hourly flow rate (vph)	920	56	23	453	11	44	
Pedestrians	9						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	3.5						
Percent Blockage	1						
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			976		1456	948	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			976		1456	948	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		92	86	
cM capacity (veh/h)			703		137	316	
Direction, Lane #	EB 1	WB 1	NB 1		-		
Volume Total	976	476	55				
Volume Left	0	23	11				
Volume Right	56	0	44				
cSH	1700	703	251				
Volume to Capacity	0.57	0.03	0.22				
Queue Length 95th (ft)	0	3	20				
Control Delay (s)	0.0	0.9	23.3				
Lane LOS		A	С				
Approach Delay (s)	0.0	0.9	23.3				
Approach LOS	0.0	2.7	C				
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Utiliz	ation		58.2%	IC	U Level o	of Service	
Analysis Period (min)			15		5.570		
			10				

	۶	→	-	•	1	-
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ľ	•	ę		ľ	1
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	396	470	168	146	175	282
Future Volume (vph)	396	470	168	146	175	282
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	421	500	179	155	186	300
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total (vph)	421	500	334	186	300	
Volume Left (vph)	421	0	0	186	0	
Volume Right (vph)	0	0	155	0	300	
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65	
Departure Headway (s)	7.3	6.8	6.6	8.1	6.9	
Degree Utilization, x	0.85	0.94	0.62	0.42	0.57	
Capacity (veh/h)	481	523	526	441	509	
Control Delay (s)	38.1	50.3	19.7	15.5	17.4	
Approach Delay (s)	44.8		19.7	16.7		
Approach LOS	E		С	С		
Intersection Summary						
Delay			32.1			
Level of Service			D			
Intersection Capacity Utiliza	ition		59.7%	IC	U Level c	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 4: 10th St & 8th Ave/8th Ct

Willamette Falls Commercial Building Year 2017 Background Conditions - PM Peak Period

	٦	-	$\mathbf{\hat{z}}$	4	←	*	•	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4			र्भ	1		4		ሻ	ef 👘	
Traffic Volume (veh/h)	123	8	40	40	7	136	31	436	71	112	375	99
Future Volume (Veh/h)	123	8	40	40	7	136	31	436	71	112	375	99
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	140	9	45	45	8	155	35	495	81	127	426	113
Pedestrians		9						6			1	
Lane Width (ft)		12.0						12.0			12.0	
Walking Speed (ft/s)		3.5						3.5			3.5	
Percent Blockage		1						1			0	
Right turn flare (veh)						5						
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											309	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87		0.87					
vC, conflicting volume	1434	1392	498	1341	1408	536	548			576		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1424	1376	350	1318	1394	536	408			576		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	92	92	49	92	72	96			87		
cM capacity (veh/h)	58	106	598	89	103	546	990			997		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1	SB 2						
Volume Total	140	54	208	611	127	539						
Volume Left	140	0	45	35	127	0						
Volume Right	0	45	155	81	0	113						
cSH	58	337	356	990	997	1700						
Volume to Capacity	2.41	0.16	0.58	0.04	0.13	0.32						
Queue Length 95th (ft)	350	14	88	3	11	0						
Control Delay (s)	795.7	17.7	33.4	0.9	9.1	0.0						
Lane LOS	F	С	D	А	А							
Approach Delay (s)	579.1		33.4	0.9	1.7							
Approach LOS	F		D									
Intersection Summary												
Average Delay			72.1									
Intersection Capacity Utiliz	ation		73.3%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

	۶	-	\mathbf{i}	•	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	1					↑	1	ሻ	↑	
Traffic Volume (vph)	139	1	71	0	0	0	0	361	331	295	523	0
Future Volume (vph)	139	1	71	0	0	0	0	361	331	295	523	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1757	1568					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.32	1.00	
Satd. Flow (perm)		1757	1568					1845	1568	583	1845	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	158	1	81	0	0	0	0	410	376	335	594	0
RTOR Reduction (vph)	0	0	68	0	0	0	0	0	142	0	0	0
Lane Group Flow (vph)	0	159	13	0	0	0	0	410	234	335	594	0
Confl. Peds. (#/hr)						1						15
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases		8						6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		10.6	10.6					25.5	25.5	45.7	45.7	
Effective Green, g (s)		10.6	10.6					25.5	25.5	45.7	45.7	
Actuated g/C Ratio		0.16	0.16					0.38	0.38	0.69	0.69	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		280	250					709	603	669	1271	
v/s Ratio Prot		200	200					c0.22	000	0.11	c0.32	
v/s Ratio Perm		0.09	0.01					00.22	0.15	0.23	00.02	
v/c Ratio		0.57	0.05					0.58	0.39	0.50	0.47	
Uniform Delay, d1		25.7	23.6					16.1	14.8	5.6	4.7	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.9	0.1					2.7	1.4	0.3	0.9	
Delay (s)		27.6	23.6					18.8	16.2	6.0	5.7	
Level of Service		С	С					В	B	A	A	
Approach Delay (s)		26.3			0.0			17.6	_		5.8	
Approach LOS		C			A			В			A	
Intersection Summary												
HCM 2000 Control Delay			13.0	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.57									
Actuated Cycle Length (s)	,		66.3	S	um of los	t time (s)			15.0			
Intersection Capacity Utiliza	ation		81.4%			of Service			D			
Analysis Period (min)			15									
c Critical Lano Group												

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

	۶	-	\mathbf{r}	*	+	•	1	Ť	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्भ	1	ሻ	↑			A	
Traffic Volume (vph)	0	0	0	202	4	375	100	402	0	0	613	220
Future Volume (vph)	0	0	0	202	4	375	100	402	0	0	613	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.98	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.96	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1776	1583	1752	1845			3265	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1776	1583	1752	1845			3265	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	224	4	417	111	447	0	0	681	244
RTOR Reduction (vph)	0	0	0	0	0	347	0	0	0	0	27	0
Lane Group Flow (vph)	0	0	0	0	228	70	111	447	0	0	898	0
Confl. Peds. (#/hr)												15
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	3%	3%	3%	4%	4%	4%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					21.0	21.0	12.1	30.5			76.2	
Effective Green, g (s)					21.0	21.0	12.1	30.5			76.2	
Actuated g/C Ratio					0.17	0.17	0.10	0.24			0.61	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					296	264	168	447			1977	
v/s Ratio Prot					c0.13	0.04	0.06	c0.24			c0.28	
v/s Ratio Perm												
v/c Ratio					0.77	0.26	0.66	1.00			0.45	
Uniform Delay, d1					50.1	45.7	54.9	47.6			13.5	
Progression Factor					1.00	1.00	1.00	1.00			0.61	
Incremental Delay, d2					11.0	0.3	8.0	42.6			0.1	
Delay (s)					61.1	46.0	62.9	90.2			8.4	
Level of Service					E	D	E	F			A	
Approach Delay (s)		0.0			51.3	_	_	84.8			8.4	
Approach LOS		A			D			F			A	
Intersection Summary												
HCM 2000 Control Delay			41.4	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacity	ratio		0.75									
Actuated Cycle Length (s)			125.8	S	um of los	t time (s)			27.5			
Intersection Capacity Utilization	1		55.1%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\mathbf{r}	•	+	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	<u> </u>	1	<u> </u>	1	1	1		
Traffic Volume (vph)	114	484	319	95	459	300		
Future Volume (vph)	114	484	319	95	459	300		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1881	1599	1787	1881	1787	1599		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1881	1599	1787	1881	1787	1599		
	0.88	0.88	0.88	0.88	0.88	0.88		
Peak-hour factor, PHF	0.88	0.88	0.88 362	0.88	0.88 522	0.88		
Adj. Flow (vph)	130	550 117				23		
RTOR Reduction (vph)	130	433	0 363	0 108	0 522	23 318		
Lane Group Flow (vph) Confl. Peds. (#/hr)	130	433	303	IUδ	522	310		
	1%	1%	1%	10/	1%	1%		
Heavy Vehicles (%)				1%				
Turn Type	NA	custom	Prot	NA		custom		
Protected Phases	4	457	3	8	567	3567		
Permitted Phases	1/ 0	4		47 E	(7.0	567		
Actuated Green, G (s)	16.0	78.5	25.5 25.5	46.5	67.8	98.8		
Effective Green, g (s)	16.0	78.5	25.5	46.5	67.8	98.8		
Actuated g/C Ratio	0.13	0.62	0.20	0.37	0.54	0.79		
Clearance Time (s)	5.5		5.5	6.0				
Vehicle Extension (s)	2.3		2.3	2.3		105-		
Lane Grp Cap (vph)	239	997	362	695	963	1255		
v/s Ratio Prot	c0.07	0.27	c0.20	0.06	c0.29	0.20		
v/s Ratio Perm								
v/c Ratio	0.54	0.43	1.00	0.16	0.54	0.25		
Uniform Delay, d1	51.5	12.2	50.1	26.5	18.9	3.6		
Progression Factor	1.00	1.00	1.00	1.00	0.35	0.16		
Incremental Delay, d2	8.6	0.7	48.0	0.5	0.6	0.1		
Delay (s)	60.1	12.9	98.1	27.0	7.2	0.7		
Level of Service	E	В	F	С	А	А		
Approach Delay (s)	21.9			81.8	4.6			
Approach LOS	С			F	А			
Intersection Summary								
HCM 2000 Control Delay			28.5	Н	CM 200	0 Level of Serv	/ice	С
HCM 2000 Volume to Ca			0.72					
Actuated Cycle Length (s			125.8	S	um of los	st time (s)		27.5
Intersection Capacity Utili			59.4%			of Service		В
Analysis Period (min)			15					
c Critical Lane Group								

	٭	→	\mathbf{F}	4	+	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	ef 🔰		٦	et 🗧			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	5	248	36	131	348	7	16	2	196	3	5	1
Future Volume (vph)	5	248	36	131	348	7	16	2	196	3	5	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	5	264	38	139	370	7	17	2	209	3	5	1
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	5	302	139	377	228	9						
Volume Left (vph)	5	0	139	0	17	3						
Volume Right (vph)	0	38	0	7	209	1						
Hadj (s)	0.58	0.00	0.55	0.04	-0.50	0.42						
Departure Headway (s)	6.4	5.8	6.1	5.6	5.4	6.8						
Degree Utilization, x	0.01	0.49	0.24	0.59	0.34	0.02						
Capacity (veh/h)	528	594	567	626	610	443						
Control Delay (s)	8.3	13.1	9.8	15.1	11.1	10.0						
Approach Delay (s)	13.0		13.7		11.1	10.0						
Approach LOS	В		В		В	A						
Intersection Summary												
Delay			12.9									
Level of Service			В									
Intersection Capacity Utiliza	tion		46.2%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	-	\mathbf{r}	∢	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ.			ا	Y	
Traffic Volume (veh/h)	387	57	62	451	32	81
Future Volume (Veh/h)	387	57	62	451	32	81
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	416	61	67	485	34	87
Pedestrians	1				2	
Lane Width (ft)	12.0				12.0	
Walking Speed (ft/s)	3.5				3.5	
Percent Blockage	0				0	
Right turn flare (veh)	Ŭ				Ŭ	
Median type	None			None		
Median storage veh)				110110		
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			479		1068	448
vC1, stage 1 conf vol					1000	110
vC2, stage 2 conf vol						
vCu, unblocked vol			479		1068	448
tC, single (s)			4.1		6.5	6.3
tC, 2 stage (s)						
tF (s)			2.2		3.6	3.4
p0 queue free %			94		85	85
cM capacity (veh/h)			1066		223	597
Direction, Lane #	EB 1	WB 1	NB 1		-	
Volume Total	477	552	121			
Volume Left	477	67	34			
Volume Right	61	07	87			
cSH	1700	1066	406			
Volume to Capacity	0.28	0.06	0.30			
Queue Length 95th (ft)	0.28	0.00	31			
Control Delay (s)	0.0	1.7	17.6			
	0.0	-	-			
Lane LOS	0.0	A	C			
Approach Delay (s) Approach LOS	0.0	1.7	17.6 C			
Approach LUS			C			
Intersection Summary						
Average Delay			2.7			
Intersection Capacity Utiliz	zation		67.8%	IC	CU Level c	of Service
Analysis Period (min)			15			
, ,						

	٦	-	-	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	•	el el		7	1
Sign Control	•	Stop	Stop		Stop	
Traffic Volume (vph)	300	162	296	173	104	231
Future Volume (vph)	300	162	296	173	104	231
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85
Hourly flow rate (vph)	353	191	348	204	122	272
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total (vph)	353	191	552	122	272	
Volume Left (vph)	353	0	0	122	0	
Volume Right (vph)	0	0	204	0	272	
Hadj (s)	0.60	0.10	-0.14	0.62	-0.58	
Departure Headway (s)	7.4	6.9	6.3	8.1	6.9	
Degree Utilization, x	0.72	0.36	0.97	0.27	0.52	
Capacity (veh/h)	485	511	552	439	518	
Control Delay (s)	26.3	12.6	55.1	12.9	15.9	
Approach Delay (s)	21.4		55.1	15.0		
Approach LOS	С		F	В		
Intersection Summary						
Delay			32.2			
Level of Service			D			
Intersection Capacity Utiliza	ation		58.8%	IC	CU Level c	f Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 4: 10th St & 8th Ave/8th Ct

Willamette Falls Commercial Building Year 2017 Background Plus Site - AM Peak Period

Lane Configurations N b b b c c c c c c c c c c		٦	-	$\mathbf{\hat{z}}$	4	←	*	٠	Ť	1	5	Ļ	~
Traffic Volume (veh/n) 26 6 6 56 8 166 20 363 93 150 269 76 Future Volume (Veh/n) 26 6 6 56 8 166 20 363 93 150 269 76 Sign Control Stop Free Free Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (Veh/h) 26 6 5 8 166 20 363 93 150 269 76 Sign Control Stop Stop OR	Lane Configurations	٦	4Î			र्भ	1		\$		٦	et 🕺	
Stop Stop Free Free Grade 0% 0% 0% 0% 0% 0% Grade 0% 087 0.87	Traffic Volume (veh/h)	26	6	6	56		166	20	363	93	150	269	76
Grade 0% 0% 0% 0% Peak Hour Factor 0.87 <	Future Volume (Veh/h)	26	6	6	56	8	166	20	363	93	150	269	76
Peak Hour Factor 0.87	Sign Control		Stop			Stop			Free			Free	
Hourly flow rate (vph) 30 7 7 64 9 191 23 417 107 172 309 87 Pedestrians 4 - 12.0 Malking Speed (ft/s) 3.5 Percent Blockage 0 - 12.0 Walking Speed (ft/s) 3.5 Percent Blockage 0 - 0 Right run flare (veh) - 5 Wedian type	Grade		0%			0%			0%			0%	
Pedestrians 4 3 Lane Width (ft) 12.0 3.5 Lane Width (ft) 12.0 0 Waking Speed (ft/s) 3.5 3.5 Percent Blockage 0 0 Right turn flare (veh) 5 None None Median storage veh) 5 0.95 0.95 0.95 0.95 Ox, platoon unblocked 0.95 0.95 0.95 0.95 0.95 VC1, stage 1 conf vol vC2, stage 2 conf vol	Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87
Pedestrians 4 3 Lane Width (ft) 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 Percent Blockage 0 0 Right turn flare (veh) 5 None Median type None None Median storage veh) 5 0.95 Upstream signal (ft) 5 0.95 Oc, conflicting volume 1317 1270 360 1183 1260 470 400 524 VC1, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage 1 conf vol vC2, stage (s)	Hourly flow rate (vph)	30	7	7	64	9	191	23	417	107	172	309	87
Walking Speed (it/s) 3.5 3.5 Percent Blockage 0 0 Right run flare (veh) 5 Median storage veh) 5 Upstream signal (ft) 309 pX, platoon unblocked 0.95 0.95 0.95 OC, conflicting volume 1317 1270 360 1183 1260 470 400 524 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 3 524 VC2, unblocked vol 1308 1259 300 1167 1248 470 343 524 VC2, stage 2 conf vol vC2, stage 3 7.1 6.5 6.2 4.1 4.2 VC2, stage (s)	Pedestrians		4						3				
Percent Blockage 0 0 Right tum flare (veh) 5 Median type None None Wedian storage veh) 309 Upstream signal (ft) 309 pX, platoon unblocked 0.95 0.95 0.95 0.95 pX, platoon unblocked 0.95 0.95 0.95 0.95 0.95 vC1, stage 1 conf vol VC2, stage 2 2.4 1 4.2 (C2, stage (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 (C2, stage (s) 7.1 131 65 98 83 0023 Direction, Lane # EB1 EB2 WB1 NB1 SB1 SB2 1136 1023 Volume Total 30 14 264 547 172 396 1023 1023 Volume Right 0 7 191	Lane Width (ft)		12.0						12.0				
5 None None Median storage veh) Some Upstream signal (ft) Some None pX, platoon unblocked 0.95 0.	Walking Speed (ft/s)		3.5						3.5				
Median type None None Median storage veh) 309 Upstream signal (ft) 309 pX, platoon unblocked 0.95 0.95 0.95 0.95 VC2, conflicting volume 1317 1270 360 1183 1260 470 400 524 vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2 stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2 stage 1 conf vol vC2, stage 2 conf vol vC2	Percent Blockage		0						0				
Median storage veh) Upstream signal (tt) 309 pX, platoon unblocked 0.95 0.95 0.95 0.95 0.95 0.95 pX, platoon unblocked 0.95	Right turn flare (veh)						5						
Upstream signal (ft) 309 0X, platoon unblocked 0.95 0.95 0.95 0.95 0.95 VC, conflicting volume 1317 1270 360 1183 1260 470 400 524 VC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vC2, stage 3 524 470 343 524 VC2, stage (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 VC, capse (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 VC, capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume 104 1023 Direction Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume 104 1023 1023 Volume Left 30 0 64 23 172 0 Volume 104 1023 1700 Volume 104 107	Median type								None			None	
bx, platoon unblocked 0.95 0.95 0.95 0.95 vC, conflicting volume 1317 1270 360 1183 1260 470 400 524 vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 1 conf vol vC2, stage 2 conf vol vC1, stage 1 conf vol v	Median storage veh)												
VC, conflicting volume 1317 1270 360 1183 1260 470 400 524 vC1, stage 1 conf vol vC2, stage 2 conf vol 524 vCu, unblocked vol 1308 1259 300 1167 1248 470 343 524 C, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 C, 2 stage (s) VG (acaptity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB1 EB2 WB1 NB1 SB1 SB2 Volume Total 30 14 264 547 172 396 <td< td=""><td>Upstream signal (ft)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>309</td><td></td></td<>	Upstream signal (ft)											309	
vC1, stage 1 conf vol vC2, stage 2 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1308 1259 300 1167 1248 470 343 524 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 IC, stage (s)	pX, platoon unblocked	0.95	0.95	0.95	0.95	0.95		0.95					
vC2, stage 2 conf vol vCu, unblocked vol 1308 1259 300 1167 1248 470 343 524 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 IC, stage (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3 Do queue free % 58 95 99 51 93 68 98 83 CM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume Latt 100 0 64 23 172 0 0 Volume Total 30 0 64 23 172 0 0 0 131 136 1023 1700 Volume Capacity	vC, conflicting volume	1317	1270	360	1183	1260	470	400			524		
vCu, unblocked vol 1308 1259 300 1167 1248 470 343 524 IC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 IC, 2 stage (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3 p0 queue free % 58 95 99 51 93 68 98 83 cM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 . . Volume Total 30 14 264 547 172 396 Volume Right 0 7 191 107 0 87 <	vC1, stage 1 conf vol												
tC, single (s) 7.1 6.5 6.2 7.1 6.5 6.2 4.1 4.2 tC, 2 stage (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3 p0 queue free % 58 95 99 51 93 68 98 83 cM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 2 Volume Total 30 14 264 547 172 396 Volume Ctal 30 14 264 547 172 396 Volume Right 0 7 191 107 0 87 Volume Right 0 7 191 107 0 87 0	vC2, stage 2 conf vol												
IC, 2 stage (s) IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3 p0 queue free % 58 95 99 51 93 68 98 83 cM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume Total 30 14 264 547 172 396 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach LOS F D H A Approach LOS F D A Average Delay 8.5 Intersection Summary Average Delay 8.5 Intersection Capacity Utilization 64.9% ICU Level of Service C	vCu, unblocked vol	1308	1259	300	1167	1248	470	343			524		
IF (s) 3.5 4.0 3.3 3.5 4.0 3.3 2.2 2.3 p0 queue free % 58 95 99 51 93 68 98 83 cM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume Total 30 14 264 547 172 396 Volume Total 30 0 64 23 172 0 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F D A A Approach LOS F <td>tC, single (s)</td> <td>7.1</td> <td>6.5</td> <td>6.2</td> <td>7.1</td> <td>6.5</td> <td>6.2</td> <td>4.1</td> <td></td> <td></td> <td>4.2</td> <td></td> <td></td>	tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.2		
p0 queue free % 58 95 99 51 93 68 98 83 cM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 SB 2 Volume Total 30 14 264 547 172 396	tC, 2 stage (s)												
CM capacity (veh/h) 71 131 696 131 133 591 1136 1023 Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume Total 30 14 264 547 172 396 Volume Left 30 0 64 23 172 0 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach LOS F D D E D Intersection Summary 8.5 ICU Level of Service C	tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.3		
Direction, Lane # EB 1 EB 2 WB 1 NB 1 SB 1 SB 2 Volume Total 30 14 264 547 172 396 Volume Left 30 0 64 23 172 0 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D A A Approach LOS F D A A Intersection Summary 8.5 ICU Level of Service	p0 queue free %	58	95	99	51	93	68	98			83		
Volume Total 30 14 264 547 172 396 Volume Left 30 0 64 23 172 0 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D A A Average Delay 8.5 Intersection Summary Average Delay 8.5 Intersection Capacity Utilization 64.9% ICU Level of Service C	cM capacity (veh/h)	71	131	696	131	133	591	1136			1023		
Volume Left 30 0 64 23 172 0 Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D A A Average Delay 8.5 Intersection Summary Intersection Capacity Utilization 64.9% ICU Level of Service C	Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1	SB 2						
Volume Right 0 7 191 107 0 87 cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D A Atherage Delay 8.5 Intersection Summary Average Delay 8.5 ICU Level of Service C	Volume Total	30	14	264	547	172	396						
cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D D Intersection Summary Average Delay 8.5 ICU Level of Service C	Volume Left	30	0	64	23	172	0						
cSH 71 221 475 1136 1023 1700 Volume to Capacity 0.42 0.06 0.56 0.02 0.17 0.23 Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D D A Average Delay 8.5 External External Intersection Capacity Utilization 64.9% ICU Level of Service C	Volume Right	0	7	191	107	0	87						
Queue Length 95th (ft) 42 5 83 2 15 0 Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D D D Intersection Summary 8.5 Intersection Capacity Utilization 8.5	cSH	71	221	475	1136	1023	1700						
Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D D D Intersection Summary Average Delay 8.5 D Intersection Capacity Utilization 64.9% ICU Level of Service C	Volume to Capacity	0.42	0.06	0.56	0.02	0.17	0.23						
Control Delay (s) 89.0 22.4 27.3 0.6 9.2 0.0 Lane LOS F C D A A Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D D D Intersection Summary 8.5 D D Intersection Capacity Utilization 64.9% ICU Level of Service C	Queue Length 95th (ft)	42	5	83	2	15	0						
Approach Delay (s) 67.8 27.3 0.6 2.8 Approach LOS F D Intersection Summary Average Delay 8.5 Intersection Capacity Utilization 64.9% ICU Level of Service C	Control Delay (s)	89.0	22.4	27.3	0.6	9.2	0.0						
Approach LOS F D Intersection Summary Average Delay 8.5 Intersection Capacity Utilization 64.9% ICU Level of Service C	Lane LOS	F	С	D	А	А							
Approach LOS F D Intersection Summary Average Delay 8.5 Intersection Capacity Utilization 64.9% ICU Level of Service C		67.8		27.3	0.6	2.8							
Average Delay8.5Intersection Capacity Utilization64.9%ICU Level of ServiceC	Approach LOS	F		D									
Intersection Capacity Utilization 64.9% ICU Level of Service C	Intersection Summary												
Intersection Capacity Utilization 64.9% ICU Level of Service C	Average Delay			8.5									
		ation			IC	U Level o	of Service			С			
	Analysis Period (min)			15									

	≯	-	7	4	+	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1					↑	1	۲.	↑	
Traffic Volume (vph)	190	0	135	0	0	0	0	350	200	346	352	0
Future Volume (vph)	190	0	135	0	0	0	0	350	200	346	352	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1731	1553					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.27	1.00	
Satd. Flow (perm)		1731	1553					1845	1568	506	1845	
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	224	0	159	0	0	0	0	412	235	407	414	0
RTOR Reduction (vph)	0	0	130	0	0	0	0	0	94	0	0	0
Lane Group Flow (vph)	0	224	29	0	0	0	0	412	141	407	414	0
Confl. Peds. (#/hr)	1	407	407	00/	001	1	00/	00/	00/	004	00/	3
Heavy Vehicles (%)	4%	4%	4%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases	-	8	-					6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		13.5	13.5					25.2	25.2	49.8	49.8	
Effective Green, g (s)		13.5	13.5					25.2	25.2	49.8	49.8	
Actuated g/C Ratio		0.18	0.18					0.34	0.34	0.68	0.68	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		318	286					634	539	676	1253	
v/s Ratio Prot		0.40	0.00					0.22	0.00	c0.16	0.22	_
v/s Ratio Perm		0.13	0.02					0.45	0.09	c0.25	0.00	
v/c Ratio		0.70	0.10					0.65	0.26	0.60	0.33	
Uniform Delay, d1		28.0	24.9					20.3	17.3	7.3	4.9	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	_
Incremental Delay, d2		6.1	0.1					4.3	0.9	1.2	0.5	
Delay (s)		34.2	25.0					24.6	18.2	8.5	5.4	
Level of Service		C	С		0.0			C	В	А	A	
Approach Delay (s)		30.3 C			0.0			22.3			6.9	
Approach LOS		U			А			С			А	
Intersection Summary												
HCM 2000 Control Delay			17.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.66									
Actuated Cycle Length (s)			73.3		um of los				15.0			
Intersection Capacity Utilization	on		77.0%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

	۶	-	\mathbf{r}	*	+	•	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					÷	1	۲.	•			≜ ⊅	
Traffic Volume (vph)	0	0	0	115	0	202	157	391	0	0	599	378
Future Volume (vph)	0	0	0	115	0	202	157	391	0	0	599	378
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.99	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.94	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1787	1599	1671	1759			3293	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1787	1599	1671	1759			3293	
Peak-hour factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	129	0	227	176	439	0	0	673	425
RTOR Reduction (vph)	0	0	0	0	0	202	0	0	0	0	78	0
Lane Group Flow (vph)	0	0	0	0	129	25	176	439	0	0	1020	0
Confl. Peds. (#/hr)												3
Heavy Vehicles (%)	2%	2%	2%	1%	1%	1%	8%	8%	8%	2%	2%	2%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				. 7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					14.0	14.0	13.3	32.5			84.6	
Effective Green, g (s)					14.0	14.0	13.3	32.5			84.6	
Actuated g/C Ratio					0.11	0.11	0.10	0.25			0.66	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					194	174	173	445			2169	
v/s Ratio Prot					c0.07	0.02	0.11	c0.25			c0.31	
v/s Ratio Perm												
v/c Ratio					0.66	0.14	1.02	0.99			0.47	
Uniform Delay, d1					54.9	51.8	57.6	47.7			10.8	
Progression Factor					1.00	1.00	1.00	1.00			0.69	
Incremental Delay, d2					7.1	0.2	73.0	39.1			0.0	
Delay (s)					62.1	52.0	130.6	86.8			7.5	
Level of Service					E	D	F	F			А	
Approach Delay (s)		0.0			55.6			99.3			7.5	
Approach LOS		А			E			F			А	
Intersection Summary												
HCM 2000 Control Delay			43.1	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		0.73									
Actuated Cycle Length (s)			128.4	S	um of losi	t time (s)			27.5			
Intersection Capacity Utilization	n		57.6%	IC	U Level	of Service	;		В			
Analysis Period (min)			15									
c Critical Lane Group												

	-	\mathbf{r}	1	+	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1	1	1	1	1	1	
Traffic Volume (vph)	45	516	467	62	335	248	
Future Volume (vph)	45	516	467	62	335	248	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	1.00	0.85	1.00	1.00	1.00	0.85	
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (prot)	1792	1524	1770	1863	1641	1468	
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00	
Satd. Flow (perm)	1792	1524	1770	1863	1641	1468	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	
Adj. Flow (vph)	51	586	531	70	381	282	
RTOR Reduction (vph)	0	96	0	0	0	59	
Lane Group Flow (vph)	51	490	531	70	381	223	
Heavy Vehicles (%)	6%	6%	2%	2%	10%	10%	
Turn Type	NA	custom	Prot	NA		custom	
Protected Phases	4	457	3	8	567	3567	
Permitted Phases		4				567	
Actuated Green, G (s)	16.0	73.5	33.7	54.7	62.2	101.4	
Effective Green, g (s)	16.0	73.5	33.7	54.7	62.2	101.4	
Actuated g/C Ratio	0.12	0.57	0.26	0.43	0.48	0.79	
Clearance Time (s)	5.5		5.5	6.0			
Vehicle Extension (s)	2.3		2.3	2.3			
Lane Grp Cap (vph)	223	872	464	793	794	1159	
v/s Ratio Prot	0.03	c0.32	c0.30	0.04	c0.23	0.15	
v/s Ratio Perm							
v/c Ratio	0.23	0.56	1.14	0.09	0.48	0.19	
Uniform Delay, d1	50.6	17.3	47.4	22.0	22.2	3.3	
Progression Factor	1.00	1.00	1.00	1.00	0.24	0.00	
Incremental Delay, d2	2.4	1.4	87.7	0.2	0.5	0.1	
Delay (s)	53.0	18.7	135.1	22.2	5.9	0.1	
Level of Service	D	В	F	С	А	А	
Approach Delay (s)	21.5			121.9	3.4		
Approach LOS	С			F	А		
Intersection Summary							
HCM 2000 Control Delay			47.0	Н	CM 2000) Level of Se	rvice
HCM 2000 Volume to Capacit	y ratio		0.83				
Actuated Cycle Length (s)			128.4			st time (s)	
Intersection Capacity Utilization	n		67.0%	IC	CU Level	of Service	
Analysis Period (min)			15				
c Critical Lane Group							

	٨	+	\mathbf{F}	4	+	*	•	†	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	¢Î		٢	et			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Traffic Volume (vph)	6	692	34	176	245	16	16	2	193	18	7	12
Future Volume (vph)	6	692	34	176	245	16	16	2	193	18	7	12
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	7	752	37	191	266	17	17	2	210	20	8	13
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total (vph)	7	789	191	283	229	41						
Volume Left (vph)	7	0	191	0	17	20						
Volume Right (vph)	0	37	0	17	210	13						
Hadj (s)	0.53	0.00	0.55	0.01	-0.45	-0.08						
Departure Headway (s)	6.7	6.1	6.8	6.2	6.2	7.3						
Degree Utilization, x	0.01	1.00	0.36	0.49	0.40	0.08						
Capacity (veh/h)	528	789	518	566	557	452						
Control Delay (s)	8.6	60.5	12.3	13.9	13.3	10.9						
Approach Delay (s)	60.0		13.2		13.3	10.9						
Approach LOS	F		В		В	В						
Intersection Summary												
Delay			37.4									
Level of Service			E									
Intersection Capacity Utiliza	tion		71.8%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,			स्	¥	
Traffic Volume (veh/h)	856	54	42	421	14	75
Future Volume (Veh/h)	856	54	42	421	14	75
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93
Hourly flow rate (vph)	920	58	45	453	15	81
Pedestrians	9					
Lane Width (ft)	12.0					
Walking Speed (ft/s)	3.5					
Percent Blockage	1					
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			978		1501	949
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			978		1501	949
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)						
tF (s)			2.2		3.5	3.3
p0 queue free %			94		88	74
cM capacity (veh/h)			702		125	316
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	978	498	96			
Volume Left	0	45	15			
Volume Right	58	0	81			
cSH	1700	702	255			
Volume to Capacity	0.58	0.06	0.38			
Queue Length 95th (ft)	0	5	42			
Control Delay (s)	0.0	1.8	27.4			
Lane LOS		А	D			
Approach Delay (s)	0.0	1.8	27.4			
Approach LOS			D			
Intersection Summary						
Average Delay			2.2			
Intersection Capacity Utilizati	ion		69.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	-	-	•	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	•	el el		1	1
Sign Control		Stop	Stop		Stop	
Traffic Volume (vph)	428	472	169	146	175	302
Future Volume (vph)	428	472	169	146	175	302
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	455	502	180	155	186	321
Direction, Lane #	EB 1	EB 2	WB 1	SB 1	SB 2	
Volume Total (vph)	455	502	335	186	321	
Volume Left (vph)	455	0	0	186	0	
Volume Right (vph)	0	0	155	0	321	
Hadj (s)	0.55	0.05	-0.24	0.55	-0.65	
Departure Headway (s)	7.4	6.9	6.7	8.1	6.9	
Degree Utilization, x	0.93	0.96	0.62	0.42	0.62	
Capacity (veh/h)	455	502	535	439	508	
Control Delay (s)	51.3	53.9	20.2	15.7	19.2	
Approach Delay (s)	52.6		20.2	17.9		
Approach LOS	F		С	С		
Intersection Summary						
Delay			36.8			
Level of Service			E			
Intersection Capacity Utiliza	ation		61.6%	IC	U Level c	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 4: 10th St & 8th Ave/8th Ct

Willamette Falls Commercial Building Year 2017 Background Plus Site - PM Peak Period

	۶	-	$\mathbf{\hat{z}}$	4	←	•	٠	Ť	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4Î			र्भ	1		\$		٦	ef 👘	
Traffic Volume (veh/h)	123	8	40	40	7	136	31	468	71	112	395	99
Future Volume (Veh/h)	123	8	40	40	7	136	31	468	71	112	395	99
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Hourly flow rate (vph)	140	9	45	45	8	155	35	532	81	127	449	113
Pedestrians		9						6			1	
Lane Width (ft)		12.0						12.0			12.0	
Walking Speed (ft/s)		3.5						3.5			3.5	
Percent Blockage		1						1			0	
Right turn flare (veh)						5						
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											309	
pX, platoon unblocked	0.86	0.86	0.86	0.86	0.86		0.86					
vC, conflicting volume	1494	1452	520	1401	1468	574	571			613		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1492	1444	368	1386	1462	574	426			613		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	91	92	42	91	70	96			87		
cM capacity (veh/h)	50	95	580	78	93	520	967			966		
Direction, Lane #	EB 1	EB 2	WB 1	NB 1	SB 1	SB 2						
Volume Total	140	54	208	648	127	562						
Volume Left	140	0	45	35	127	0						
Volume Right	0	45	155	81	0	113						
cSH	50	314	314	967	966	1700						
Volume to Capacity	2.80	0.17	0.66	0.04	0.13	0.33						
Queue Length 95th (ft)	370	15	110	3	11	0						
Control Delay (s)	987.3	18.8	39.8	1.0	9.3	0.0						
Lane LOS	F	С	E	А	А							
Approach Delay (s)	717.7		39.8	1.0	1.7							
Approach LOS	F		E									
Intersection Summary												
Average Delay			85.9									
Intersection Capacity Utiliz	ation		74.9%	IC	CU Level o	of Service			D			
Analysis Period (min)			15									
- · · ·												

	≯	-	7	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		÷	1					•	1	ľ	•	
Traffic Volume (vph)	139	1	77	0	0	0	0	376	348	295	537	0
Future Volume (vph)	139	1	77	0	0	0	0	376	348	295	537	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Lane Util. Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Frpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Flpb, ped/bikes		1.00	1.00					1.00	1.00	1.00	1.00	
Frt		1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1757	1568					1845	1568	1752	1845	
Flt Permitted		0.95	1.00					1.00	1.00	0.30	1.00	
Satd. Flow (perm)		1757	1568					1845	1568	556	1845	
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Adj. Flow (vph)	158	1	88	0	0	0	0	427	395	335	610	0
RTOR Reduction (vph)	0	0	74	0	0	0	0	0	143	0	0	0
Lane Group Flow (vph)	0	159	14	0	0	0	0	427	252	335	610	0
Confl. Peds. (#/hr)						1						15
Heavy Vehicles (%)	3%	3%	3%	2%	2%	2%	3%	3%	3%	3%	3%	3%
Turn Type	Perm	NA	Perm					NA	Perm	pm+pt	NA	
Protected Phases		8						6		5	2	
Permitted Phases	8		8						6	2		
Actuated Green, G (s)		10.6	10.6					25.8	25.8	46.1	46.1	
Effective Green, g (s)		10.6	10.6					25.8	25.8	46.1	46.1	
Actuated g/C Ratio		0.16	0.16					0.39	0.39	0.69	0.69	
Clearance Time (s)		5.0	5.0					5.0	5.0	5.0	5.0	
Vehicle Extension (s)		2.3	2.3					6.9	6.9	2.3	6.9	
Lane Grp Cap (vph)		279	249					713	606	658	1275	
v/s Ratio Prot								c0.23		0.12	c0.33	
v/s Ratio Perm		0.09	0.01						0.16	0.23		
v/c Ratio		0.57	0.06					0.60	0.42	0.51	0.48	
Uniform Delay, d1		25.9	23.8					16.3	14.9	5.8	4.8	
Progression Factor		1.00	1.00					1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.9	0.1					2.9	1.6	0.4	1.0	
Delay (s)		27.9	23.9					19.2	16.6	6.2	5.7	
Level of Service		С	С					В	В	А	А	
Approach Delay (s)		26.4			0.0			17.9			5.9	
Approach LOS		С			А			В			А	
Intersection Summary												
HCM 2000 Control Delay			13.3	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.58									
Actuated Cycle Length (s)			66.7		um of los				15.0			
Intersection Capacity Utiliza	ition		82.6%	IC	CU Level	of Service			E			
Analysis Period (min)			15									

HCM Signalized Intersection Capacity Analysis 6: 10th St & I-205 SB Ramp

	≯	-	\mathbf{r}	4	+	×	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					र्स	1	٦	†			≜ †⊅	
Traffic Volume (vph)	0	0	0	213	4	375	109	408	0	0	616	220
Future Volume (vph)	0	0	0	213	4	375	109	408	0	0	616	220
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					5.5	5.5	5.5	5.5			5.5	
Lane Util. Factor					1.00	1.00	1.00	1.00			0.95	
Frpb, ped/bikes					1.00	1.00	1.00	1.00			0.98	
Flpb, ped/bikes					1.00	1.00	1.00	1.00			1.00	
Frt					1.00	0.85	1.00	1.00			0.96	
Flt Protected					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (prot)					1775	1583	1752	1845			3266	
Flt Permitted					0.95	1.00	0.95	1.00			1.00	
Satd. Flow (perm)					1775	1583	1752	1845			3266	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	237	4	417	121	453	0	0	684	244
RTOR Reduction (vph)	0	0	0	0	0	348	0	0	0	0	27	0
Lane Group Flow (vph)	0	0	0	0	241	70	121	453	0	0	901	0
Confl. Peds. (#/hr)												15
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	3%	3%	3%	4%	4%	4%
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				7	7	7	1	5			234	
Permitted Phases												
Actuated Green, G (s)					21.0	21.0	12.6	30.5			75.9	
Effective Green, g (s)					21.0	21.0	12.6	30.5			75.9	
Actuated g/C Ratio					0.17	0.17	0.10	0.24			0.60	
Clearance Time (s)					5.5	5.5	5.5	5.5				
Vehicle Extension (s)					2.3	2.3	2.3	5.2				
Lane Grp Cap (vph)					295	263	175	446			1967	
v/s Ratio Prot					c0.14	0.04	0.07	c0.25			c0.28	
v/s Ratio Perm					00.11	0.01	0.07	00.20			00.20	
v/c Ratio					0.82	0.26	0.69	1.02			0.46	
Uniform Delay, d1					50.6	45.8	54.8	47.8			13.8	
Progression Factor					1.00	1.00	1.00	1.00			0.62	
Incremental Delay, d2					15.4	0.3	9.9	46.6			0.1	
Delay (s)					66.0	46.1	64.7	94.4			8.5	
Level of Service					E	D	E	F			A	
Approach Delay (s)		0.0			53.4	5	_	88.1			8.5	
Approach LOS		A			D			F			A	
Intersection Summary												
HCM 2000 Control Delay			43.3	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacity	ratio		0.77		2 2000	2010101	2 0. 1.00		2			
Actuated Cycle Length (s)			126.0	S	um of losi	t time (s)			27.5			
Intersection Capacity Utilization	n		56.3%			of Service	•		Β			
Analysis Period (min)			15		5 201011				D			
c Critical Lane Group												

	-	\mathbf{i}	•	-	1	~			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	<u> </u>	1	<u> </u>	1	<u> </u>	101			
Traffic Volume (vph)	114	485	321	95	461	304			
Future Volume (vph)	114	485	321	95	461	304			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	5.5	5.5	5.5	6.0	5.5	5.5			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00			
Frpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	0.85	1.00	1.00	1.00	0.85			
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00			
Satd. Flow (prot)	1881	1599	0.95 1787	1881	1787	1599			
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00			
				1881		1599			
Satd. Flow (perm)	1881	1599	1787		1787				
Peak-hour factor, PHF	0.88	0.88	0.88	0.88	0.88	0.88			
Adj. Flow (vph)	130	551	365	108	524	345			
RTOR Reduction (vph)	0	117	0	0	0	23			
Lane Group Flow (vph)	130	434	365	108	524	322			
Confl. Peds. (#/hr)		1							
Heavy Vehicles (%)	1%	1%	1%	1%	1%	1%			
Turn Type	NA	custom	Prot	NA		custom			
Protected Phases	4	457	3	8	567	3567			
Permitted Phases		4				567			
Actuated Green, G (s)	16.0	78.5	25.5	46.5	68.0	99.0			
Effective Green, g (s)	16.0	78.5	25.5	46.5	68.0	99.0			
Actuated g/C Ratio	0.13	0.62	0.20	0.37	0.54	0.79			
Clearance Time (s)	5.5		5.5	6.0					
Vehicle Extension (s)	2.3		2.3	2.3					
Lane Grp Cap (vph)	238	996	361	694	964	1256			
v/s Ratio Prot	c0.07	0.27	c0.20	0.06	c0.29	0.20			
v/s Ratio Perm									
v/c Ratio	0.55	0.44	1.01	0.16	0.54	0.26			
Uniform Delay, d1	51.6	12.3	50.2	26.6	18.9	3.6			
Progression Factor	1.00	1.00	1.00	1.00	0.35	0.16			
Incremental Delay, d2	8.7	0.7	50.2	0.5	0.6	0.1			
Delay (s)	60.3	13.0	100.4	27.1	7.1	0.7			
Level of Service	E	13.0 B	F	27.1 C	A	A			
Approach Delay (s)	22.0	D		83.7	4.6	~			
Approach LOS	22.0 C			53.7 F	4.0 A				
	U				7				
Intersection Summary									
HCM 2000 Control Delay			28.9	Н	CM 200	0 Level of Servi	се	С	
HCM 2000 Volume to Cap			0.72						
Actuated Cycle Length (s)			126.0			st time (s)		27.5	
Intersection Capacity Utiliz	zation		59.6%	IC	CU Level	of Service		В	
Analysis Period (min)			15						
Critical Lane Group									

Willamette Falls Commercial Willamette Falls Drive & 11th Street West Linn, Oregon

DRAINAGE REPORT

January 2016

Prepared By:

Bruce D. Goldson, PE

Theta, llc

PO Box 1345, Lake Oswego, Oregon 97035

2015-107B

SIGNATURE DATE:

INDEX

Narrative	pg
Summary	pg
Regulatory	pg
Design Parameters	pg
Hydrographic Results	pg
Summary	pg
Appendix	pg

NARRATIVE ASSUMPTIONS

Existing Conditions:

The subject property three old tax lots (3S 1E 02BA TL 4100) with two existing buildings bordered on three sides with public roads and containing 0.34 Acres. The property slopes to the northwesterly direction at approximately 3%. There is sanitary, storm and water service to the property.

Developed Conditions:

A proposed multi-story commercial building is proposed to cover the entire property. With complete lot coverage with impervious area on-site infiltration is not possible. On-site detention and water quality facilities are propose. The storm discharge will be to the existing public storm system in the adjacent street

Summary of storm water flow

	2-YEAR	5-YEAR	10-YEAR	25-YEAR
PRE-DEVELOP	0.11 CFS	0.15 CFS	0.19 CFS	0.23 CFS
POST-DEVELOP	0.22 CFS	0.26 CFS	0.30 CFS	0.35 CFS

REGULATORY DESIGN CRITERIA

The storm water quantity management requirements of the City of West Linn.

References

1. King County Department of Public Works, Surface Water Management Division, Hydrographic

Programs, Version 4.21B

Water Quality Facility

Design Parameters

The design storm is a 24 hour standard SCS Type 1A

- 2-year.....2.5 inches

- 25-year..... 3.9 inches
- 100-year.....4.5 inches

SOIL TYPES

Willamette Silt Loam – type C soil

Time of Concentration

 $T = (0.42)[(nL)^{.8}/(p_2)^{.5}(s_0)^{.4}$

Pre-development: $T = (0.42)[(0.01)(45)]^{.8}/(2.5)^{.5}(.04)^{.4} = 0.50 \text{ min}$

$$T = (0.42)[(0.15)(78)]^{.8}/(2.5)^{.5}(.03)^{.4} = 7.73 min$$

 $T_{total} = 8.23 \text{ min (Pre)}$

Assume 5-minutes developedk

HYDROGRAPH RESULTS

KING COUNTY DEPARTMENT OF PUBLIC WORKS

Surface Water Management Division

HYDROGRAPH PROGRAMS

Version 4.21B

- 1 INFO ON THIS PROGRAM
- 2 SBUHYD
- 3 MODIFIELD SBUHYD
- 4 ROUTE
- 5 ROUTE2
- 6 ADDHYD

7 - BASEFLOW

8 - PLOTHYD

9 - DTATA

10 - REFAC

11 - RETURN TO DOS

ENTER OPTION:

2

SBUN/SCS METHOD FOR COMPUTING RUNOFF HYDROGRAPH

STORM OPTIONS:

1 - S.C.S. TYPE-1A

2 - 7-DAY DESIGN STORM

3 - STORM DATA FILE

SPECIFY STORM OPTION:

1

S.C.S. TYPE - 1A RAINFALL DISTRIBUTION

```
ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)
```

2,24,2.6

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1

0.30,86,0.04,98,8.23

DATA PRINT OUT:

AREA(ACRES)	PERVIOUS		IMPERV	IOUS	TC(MINUTES)
	А	CN	A	CN	
.3	.3	86	.0	98	8.2
PEAK-Q(CFS)	T-PEAK(HRS)		VOL(CU	-FT)	
.11	7.83		1683	}	

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

C:WF2pre

```
SPECIFY: C - CONTINUE, N - NEWSTORM, P -PRINT, S - STOP
```

С

```
ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1
```

0.0,86,034,98,5

DATA PRINT OUT:

AREA(ACRES)	PERVIOUS		IMPER	/IOUS	TC(MINUTES)
	A	CN	А	CN	
.3	.0	86	.3	98	5.0
PEAK-Q(CFS)	T-PEAK(HRS)		VOL(CL	J-FT)	
.22	7.67		2802	2	

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

C:WF2post

SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP

```
n
```

STORM OPTIONS:

1 - S.C.S. TYPE-1A

2 - 7-DAY DESIGN STORM

3 - STORM DATA FILE

SPECIFY STORM OPTION:

1

ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)

5,24,3.0

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1 0.30,86,0.04,98,8.23 DATA PRINT OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN CN A .3 .3 86 .0 98 8.2 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) 7.83 .15 2211 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: C:WF5pre SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP С 0.0,86,0.34,98,5 DATA PRINT OUT: AREA(ACRES) PERVIOUS IMPERVIOUS TC(MINUTES) A CN A CN .3 .0 86 .3 98 5.0 PEAK-Q(CFS) T-PEAK(HRS) VOL(CU-FT) .26 7.67 3416 ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH: C:WF5post SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP n STORM OPTIONS: 1 - S.C.S. TYPE-1A 2 - 7-DAY DESIGN STORM

3 - STORM DATA FILE

SPECIFY STORM OPTION:

1

ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)

10,24,3.4

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1

0.30,86,04,98,8.23

DATA PRINT OUT:

AREA(ACRES)	PERVIOUS	IMPERVIOUS	TC(MINUTES)
	A CN	A CN	
.3	.3 86	.0 98	8.2
PEAK-Q(CFS)	T-PEAK(HRS)	VOL(CU-FT)	
.19	7.83	2648	

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

C:WF10pre

SPECIFY: C - CONTINUE, N - NEWSTORM, P - DATA PRINT OUT:

С

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1

0.0,86,0.34,98,5

AREA(ACRES)	PERVIOUS	IMPERVIOUS	TC(MINUTES)
	A CN	A CN	
.3	.0 86	.3 98	5.0
PEAK-Q(CFS)	T-PEAK(HRS)	VOL(CU-FT)	
.30	7.67	3908	

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

```
C:WF10post
```

SPECIFY: C - CONTINUE, N - NEWSTORM, P - PRINT, S - STOP

n

STORM OPTIONS:

1 - S.C.S. TYPE-1A

2 - 7-DAY DESIGN STORM

3 - STORM DATA FILE

SPECIFY STORM OPTION:

1

ENTER; FREQ(YEAR), DURATION(HOUR), PRECIP(INCHES)

25,24,3.9

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1

0.30,86,04,98,8.23

DATA PRINT OUT:

AREA(ACRES)	PERVIOUS		IMPERV	lous	TC(MINUTES)
	А	CN	А	CN	
.3	.3	86	.0	98	8.2
PEAK-Q(CFS)	T-PEAK	(HRS)	VOL(CU	-FT)	
.23	7.83		3205		

ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:

C:WF25pre

SPECIFY: C - CONTINUE, N - NEWSTORM, P - DATA PRINT OUT:

С

ENTER: A(PERV), CN(PERV), A(IMPERV), CN(IMPERV), TC FOR BASIN NO. 1

0.0,86,0.34,98,5

```
TC(MINUTES)
AREA(ACRES)
            PERVIOUS
                               IMPERVIOUS
                    A CN
                                      A CN
   .3
                  .0 86
                                       .3 98
                                                              5.0
                                 VOL(CU-FT)
PEAK-Q(CFS) T-PEAK(HRS)
                      7.67
  .35
                                          4523
ENTER [d:][path]filename[.ext] FOR STORAGE OF COMPUTED HYDROGRAPH:
C:WF25post
i
DETENTION SIZING
ENTER OPTION
10
R/D FACILITY DESIGN ROUTINE
SPEFICY TYPE OF R/D FACILTY
1 - POND 4 - INFILTRATION POND
2 - TANK 5 - INFILTRATION TANK
3 -VAULT 6 - GRAVEL TRENCH/BED
2
ENTER: POND SIDE SLOPE (HORIZ. COMPOENT)
3
ENTER: TANK DIAMETER (ft). EFFECTIVE STORAGE DEPTH (ft)
4,4
ENTER: [d:][[atj]filename[.ext] OF PRIMARY DESIGN INFLOW HYDROGRAPH:
C:WF25POST
PRELIMINARY DESIGN INFLOW PEAK = .35 CFS
ENTER PRIMARY DESIGN RELEASE RATE(cfs)
0.23
```

3

ENTER [d:][path]filename[.ext] OF HYDROGRAPH 1:

C:WF10POST

ENTER TARGET RELEASE RATE (cfs)

0.19

ENTER [d:][path]filename[.ext] OF HYDROGRAPH 2:

C:WF5POST

ENTER TARGET RELEASE RATE (cfs)

0.15

0. ENTER [d:][path]filename[.ext] OF HYDROGRAPH 3:

C:WF2POST

ENTER TARGET RELEASE RATE (cfs)

0.11

ENTER: NUMBER OF ORIFICES, RISER-HEAD (ft), RISER-DIAMETER(in)

3.4.10

RISER OVERFLOW DEPTH FOR PRIMARY PEAK INFLOW= 0.12 FT

SPECIFY ITERATION DISPLAY: Y -YES, N - NO

N

SPECIFY: R - REVIEW/REVISE INPUT, C - CONTINUE

С

INITIAL STORAGE VALUE FOR ITERATION PURPOSES: 1170 CU-FT

BOTTOM ORIFICE: ENTER Q-MAX(cfs)

0.10

DIA. = 1.36 INCHES

MIDDLE ORIFICE: ENTER Q-MAX(cfs), HEIGHT(ft)

0.0.07

DIA. = 1.35 INCHES

TOP ORIFICE: ENTER HEIGHT(ft)

3.4

DIA. = 1.69 INCHES

PERFORMANCE:	INFLOW	TARGET-OUTFLOW	ACTUAL-OUTFLOW	PK-STAGE S	TORAGE
DESIGN HYD:	.35	.23	.23	3.99	547
TEST HYD 1:	.30	.19	.15	3.42	490
TEST HYD 2:	.26	.15	.13	3.42	430
TEST HYD 3:	.22	.11	.11	2.40	340

SPECIFY: D - DOCUMENT, R -REVISE, A - ADJUST ORIF, E -ENLARGE, S -STOP

PRELIMINARY DESIGN:

A detention tank 48" in diameter and 44 feet long will provide the necessary volume, with three orifices will meet the outflow of the 2, 5 10, and 25 year predeveloped flow rates per the city code.

Recurrence Interval (year)	Annual Chance of Occurrence (%)	Rainfall Depth (inches)
2	50	2.5
5	20	3.0
10	10	3.4
25	4	3.9
50	2	4.3
100	1	4.5
500	0.2	5.3

Table 4.1 24-Hour Rainfall Depths

Fable 4-3 MODIFIED CURVE NUMBERS

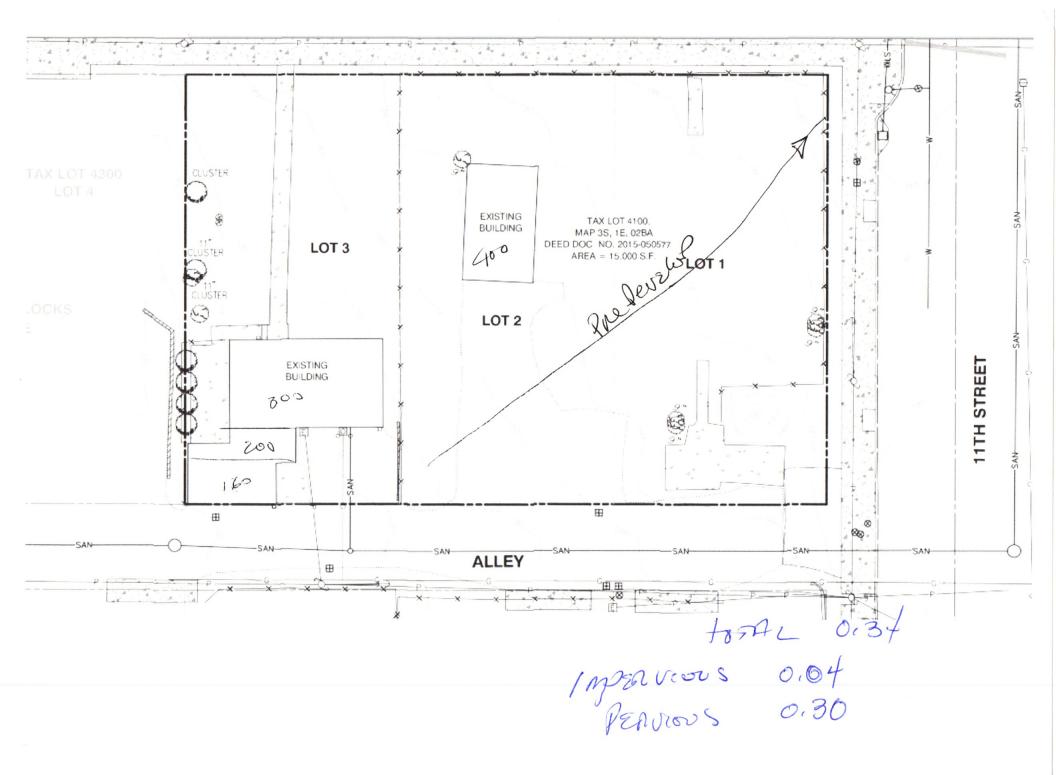
SCS Western Washington Runoff Curve Numbers

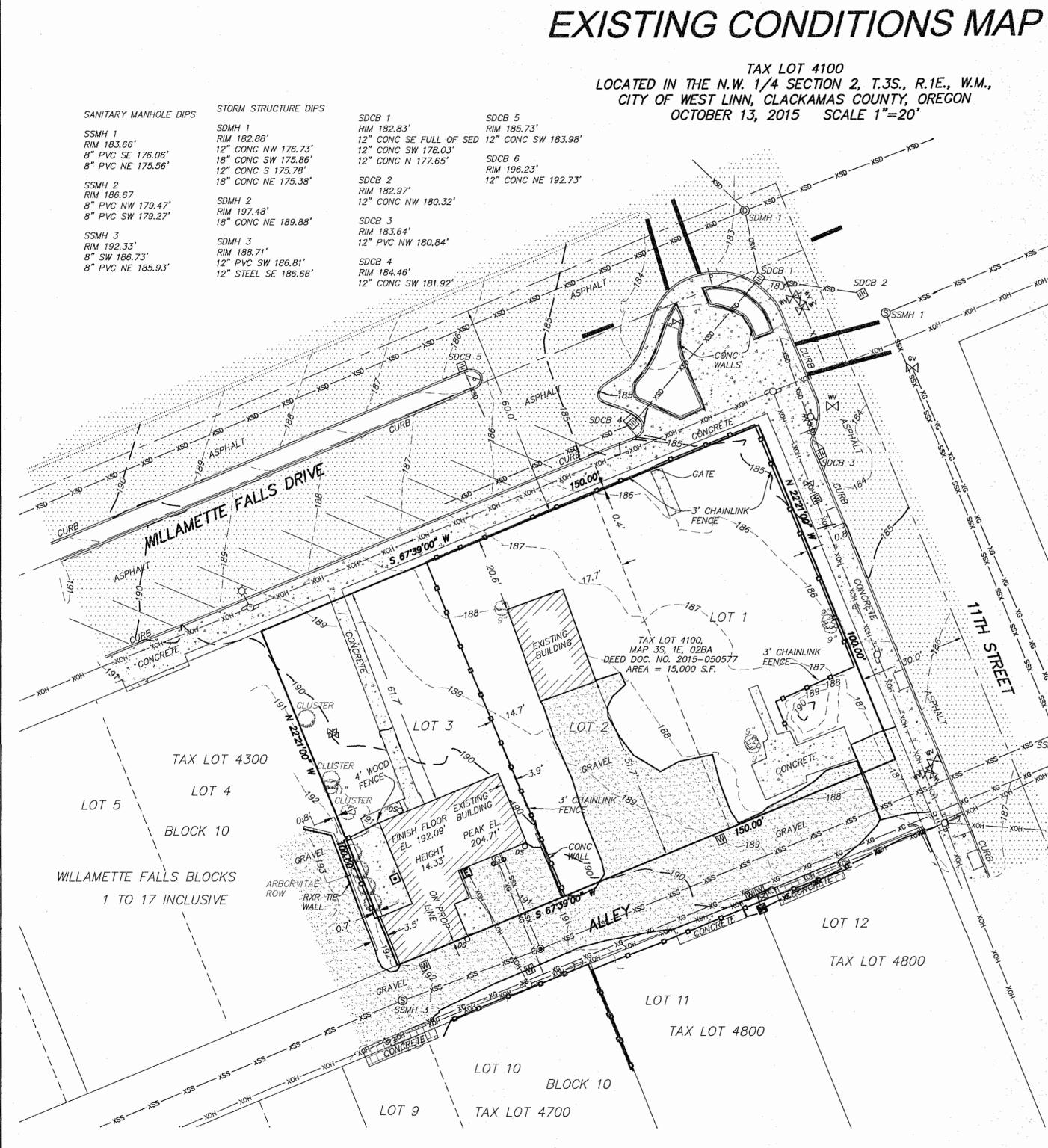
Runoff curve numbers for selected agricultural, suburban, and urban land use for Type 1A rainfall distribution, 24-hour storm duration. (Published by SCS in 1982)

·公司:12.4463			an and	thay at	
	AND USE DESCRIPTION	Charles Contraction of the	Service of the second	010	1 A 44 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				1000	
Cultivated land	Winter Condition	86	91	94	95
Mountain Open Areas	s: Low growing brush and grassland.	74	82	89	92
Meadow or pasture:		65	78	85	89
Wood or forest land:	Undisturbed	42	64	76	81
	Established second growth ²	48	68	78	83
	Young second growth or brush	55	72	81	86
Orchard:	With over crop	81	88	92	94
Open spaces, lawns, p	arks, golf courses, cemeteries, landscaping			1	
Good Condition:	Grass cover on $> =75\%$ of area	68	80	86	90
Fair Condition:	Grass cover on 50-75% of area	77	85	90	92
Gravel Roads and Par	king Lots:	76	85	89	91
Dirt Roads and Parkin		72	82	87	89
Impervious surfaces, p	pavement, roofs, etc.	98	98	98	98
Open water bodies:	Lakes, wetlands, ponds, etc.	100	100	100	10
Single Family Resider					
Dwelling unit/gross a	cre <u>% Impervious</u> ⁴	{			
1.0 DU/GA	15				
1.5 DU/GA	20				
2.0 DU/GA	25				
2.5 DU/GA	30				
3.0 DU/GA	34			ate curv	
3.5 DU/GA	38			ervious a	
4.0 DU/GA	42			ortions o	of the
4.5 DU/GA	46	site or	basin.		
5.0 DU/GA	48				
5.5 DU/GA	50				
6.0 DU/GA	52				
6.5 DU/GA	54				
7.0 DU/GA	56				
Planned Unit Develop				ate curv	
condominiums, aparta				ervious	
commercial businesse	s & Must be computed			ortions o	or the
industrial areas ³		site of	basin.		

¹ For a more detailed description of agricultural land use curve numbers, refer to National Engineering Handbook, Sec. 4, Hydrology, Chapter 9, August 1972. ² Modified by KCFW, 1995.

⁴ The remaining pervious areas (lawn) are considered to be in good condition for these curve numbers.


Print Date: 04/14/00 10:40 AM File Name: H:\WRDFILES\BOB\STORMMAN\NEW\CHAP4.DOC


Chapter 4, Page 12

³ Assumes roof and driveway runoff is directed into street/storm system.

Table 4-4 MANNING'S COEFFICIENTS/ K" FACTOR	S		
"b" AND "k" Value Used in Time Calculations for Hydrographs			
"a." Sheet Flow Equation Hanning's Values (for initial 300 fl. of travel)	n,		
Smooth surfaces (concrete, asphalt, gravel, or bare hand packed soil)	0.01		
Fallow fields or loose soil surface (no residue)	0.05		
Cultivated soil with residue cover (s # 0.20 ft/ft) 0.06			
Cultivated soil with residue cover (s > 0.20 ft/ft)	0.17		
Short prairie grass and lawns	0.15		
Dense grasses	0.24		
Bermuda grass	0.41		
Range (natural)	0.13		
Woods or forest with light underbrush	0.40		
Woods or forest with dense underbrush	0.80		
Manning values for sheet flow only, from Overton and Meadows 1976 r.	See		
SCS's TR-55, 1986) "h" Values Used in Travel Time/Time of Concentration			
Calculations Shallow Concentrated Flow (After the initial 300 ft of sheet			
flow, $R = 0.1$	k,		
1. Forest with heavy ground litter and meadows $(n = 0.10)$	3		
2. Brushy ground with some trees $(n = 0.060)$	5		
3. Fallow or minimum tillage cultivation (n=0.040)	8		
4. High grass (n=0.035)	9		
5. Short grass, pasture, and lawns (n=0.030)	11		
6. Nearly bare ground (n=0.025)	13		
7. Paved and gravel areas (n=0.012)	27		
** Channel flow (intermittent) (At beginning of visible channels R=0.2)	Ke		
1. Forested swale with heavy ground litter (n=0.10)	5		
2. Forested drainage course/ravine with defined channel bed (n=0.050)	10		
3. Rock-lined waterway (n=0.035)	15		
4. Grassed waterway (n=0.030)	17		
5. Earth-lined waterway (n=0.025)	20		
6. CMP pipe (n=0.024)	21		
7. Concrete pipe (0.012)	42		
8. Other waterways and pipe 0.508/n			
Channel flow (Continuous stream, R=0.4)	k,		
9. Meandering stream with some pools (n=0.040)	20		
10. Rock-lined stream (n=0.035)	23		
11. Grass-lined stream (n=0.030)	27		
12. Other streams, man-made channels and pipe 0.807/n **			
** See Table 6-3 for additional Mannings "n" values for open channels.			

Prin: Date: 04/14/00 10:40 AM File Neme: H:/WRDFILES/BOB/STORMMAN/NEW/CHAP4.DOC Chapter 4, Page 14

SDCB 2

SSSMH

 \bowtie

1TH

STREET

1

THE DATUM FOR THIS SURVEY IS BASED UPON NATIONAL GEODETIC SURVEY BENCHMARK NUMBER V 723, BEING A BRASS DISC AT THE JUNCTION INTERSTATE HIGHWAY 205 AND STATE HIGHWAY 99E, SET VERTICALLY IN THE EAST FACE OF THE MOST SOUTHERLY ONE OF FIVE COLUMNS OF THE FIRST PIER WEST OF THE EAST ABUTMENT OF THE INTERSTATE HIGHWAY OVERPASS. THE ELEVATION IS 62.48', NAVD 88.

A TRIMBLE S6-SERIES ROBOTIC INSTRUMENT WAS USED TO COMPLETE A CLOSED LOOP FIELD TRAVERSE.

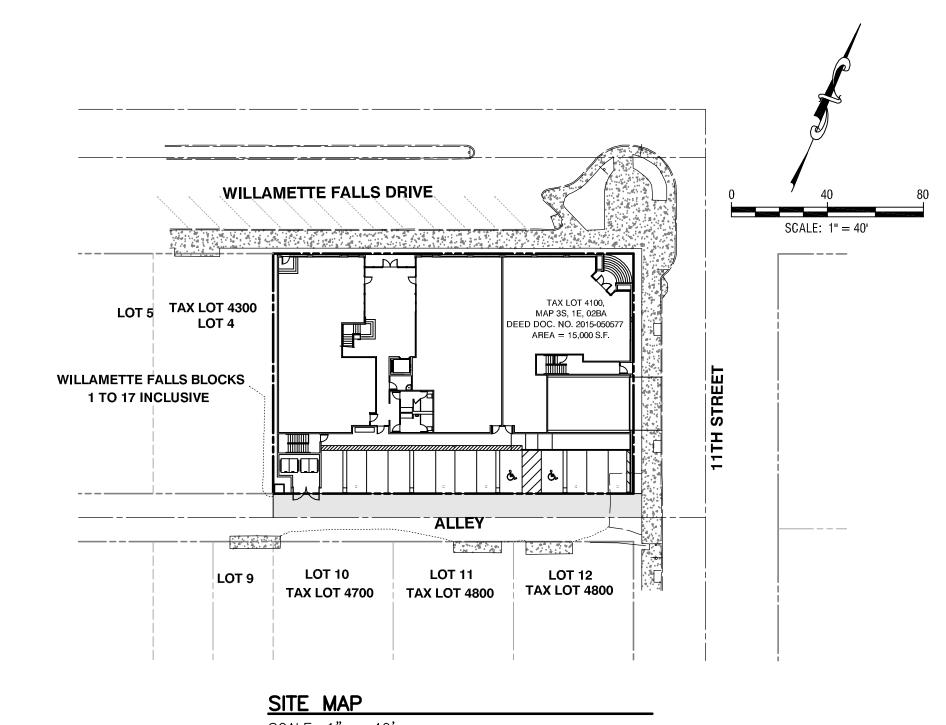
THE BASIS OF BEARINGS FOR THIS SURVEY IS PER MONUMENTS FOUND AND HELD PER THE PLAT OF "WILLAMETTE FALLS BLOCKS 1 TO 17 INCLUSIVE", RECORDS OF CLACKAMAS COUNTY.

THE PURPOSE OF THIS SURVEY IS TO RESOLVE AND DETERMINE THE PERIMETER BOUNDARY OF THE SUBJECT PROPERTY, TO SHOW ALL PERTINENT BOUNDARY ISSUES AND ENCROACHMENTS. NO PROPERTY CORNERS WERE SET IN THIS SURVEY.

NO WARRANTIES ARE MADE AS TO MATTERS OF UNWRITTEN TITLE, SUCH AS ADVERSE POSSESSION, ESTOPPEL, ACQUIESCENCE, ETC.

NO TITLE REPORT WAS SUPPLIED OR USED IN THE PREPARATION OF THIS MAP.

THE UNDERGROUND UTILITIES AS SHOWN ON THIS MAP HAVE BEEN LOCATED FROM FIELD SURVEY OF ABOVE GROUND STRUCTURES AND AS MARKED BY OTHERS. THE SURVEYOR MAKES NO GUARANTEE THAT THE UNDERGROUND UTILITIES SHOWN COMPRISE ALL SUCH UTILITIES IN THE AREA, EITHER IN SERVICE OR ABANDONED. THE SURVEYOR FUTHER DOES NOT WARRANT THAT THE UNDERGROUND UTILITIES ARE IN THE EXACT LOCATION INDICATED, ALTHOUGH HE DOES CERTIFY THAT THEY ARE LOCATED AS ACCURATELY AS POSSIBLE FROM INFORMATION AVAILABLE. THE SURVEYOR HAS NOT PHYSICALLY LOCATED THE UNDERGROUND UTILITIES. SUBSURFACE AND ENVIRONMENTAL CONDITIONS WERE NOT EXAMINED OR CONSIDERED AS A PART OF THIS SURVEY. NO STATEMENT IS MADE CONCERNING THE EXISTENCE OF UNDERGROUND OR OVERHEAD CONTAINERS OR FACILITIES THAT MAY AFFECT THE USE OR DEVELOPMENT OF THIS TRACT. THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY SURVEYOR.


LEGEND:

Some Symbols shown may not be used on map

	9	DECIDUOUS TREE	ත-පු	UTILITY AND LIGHT POLE	
a definition de la composition de la co	談	EVERGREEN TREE	G	UTILITY POLE	
	D	STORM SEWER MANHOLE	¢	LIGHT POLE	
		CATCH BASIN	\rightarrow	GUY WIRE	
	۲	SANITARY SEWER CLEANOUT		ELECTRIC BOX	
	S	SANITARY SEWER MANHOLE	E	ELECTRIC METER	
	M	IRRIGATION CONTROL VALVE	(P)	ELECTRICAL POWER PEDESTAL	
\mathbf{n}	\mathbb{N}	WATER VALVE	¢	ELECTRIC RISER	
	W	WATER METER	٥	HEAT PUMP	
	щ	FIRE HYDRANT	XOH	OVERHEAD LINE	
	GV	GAS VALVE	XG	GAS LINE	
	G	GAS METER	XE	ELECTRICAL LINE	
	° o	BOLLARD	ХСОМ	COMMUNICATIONS LINE	
		SIGN	XSS	SANITARY SEWER LINE	
76 \	D	MAILBOX	XSD	STORM DRAIN LINE	
	[C]	COMMUNICATIONS PEDESTAL	xw	WATER LINE	
	Ð	COMMUNICATIONS MANHOLE	-00	FENCELINE	
SMH 2		COMMUNICATIONS BOX	\mathbb{O}	UTILITY RISER	
XG		STORM OUTFALL	DS	DOWN SPOUT TO	
H- C		PROPERTY CORNER	\bigcirc	SPLASH GUARD/GROUND ARBORVITAE	
1	DS	DOWN SPOUT TO STORM SYSTEM	*6.45 ⁶	ANDONYITAL	
С.хон					
· / · ·		SIGNED ON: 150CT 15			
			-	GRAPHIC SCALE	
		REGISTERED PROFESSIONAL	<i>20</i>	0 10 20 40)
		LAND SURVEYOR			
				(IN FEET)	
				1 INCH = 20 FT.	
		JULY 13, 2004 TOBY G. BOLDEN			
		60377LS			
		RENEWS: DECEMBER 31, 2015	A		
		CENT	ERLIN	ECONCEPTS	
	<			/EYING, INC.	
		729	MOLALLA A	VE., SUITE 1 & 2	
		0	REGON CITY,	OREGON 97045 3 FAX 593.650.0189	
		FIDILED M: (FROUED IS (IC	UN-WILLAWE / IL	E FALLS DR-1969\dwg\ECM.dwg	

Plotted: M: \PROJECTS \ICON-WILLAMETTE FALLS DR-1969 \dwg \ECM.dwg

SCALE: 1" = 40'

2015-129

DESIGNED: DRAWN:	BDG BJS				Th
SCALE:	1" = 20'				 ENGINEERING
DATE:	January, 2016				PO Box 1345
FILE:	Willamette Design Review1	DATE	NO.	REVISION	Lake Oswego, Oregon 970

WILLAMETTE FALLS MIXED USE West Linn, Oregon

OWNER/APPLICANT

Icon Construction & Development, LLC 1980 Willamette Falls Drive, Suite 200 West Linn, Oregon 97068 Phone 503-657-0406

ARCHITECT

SGA 10940 SW Barnes Road, No. 364 Portland, Oregon 97225 Phone 503-201-0725

ENGINEERING

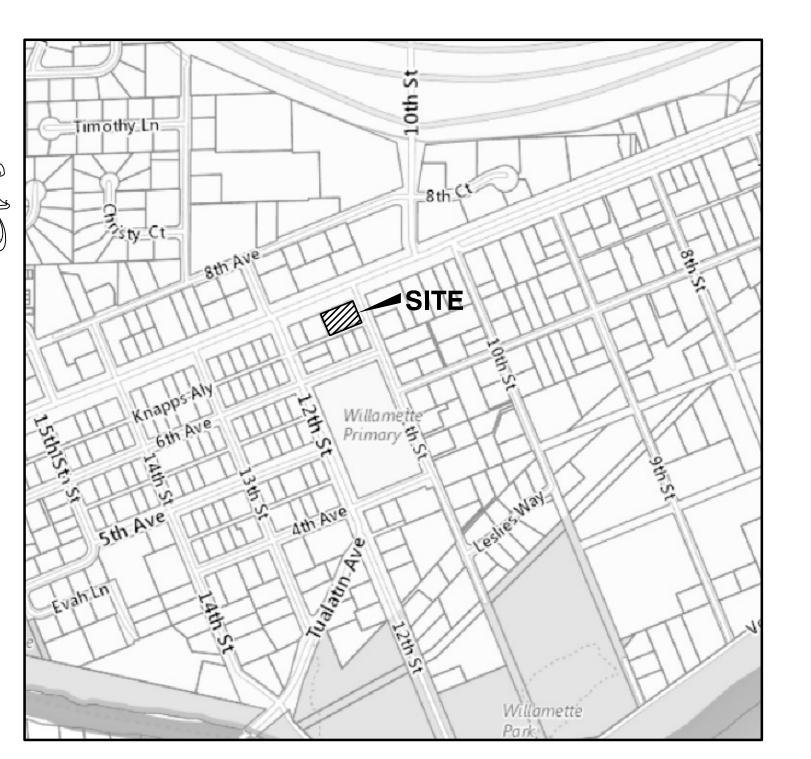
Bruce D. Goldson, PE Theta, LLC PO Box 1345 Lake Oswego, Oregon 97035 Phone 503-481-8822

SURVEYING

Centerline Concepts, land surveying, Inc. 729 Molalla Ave, Suite 1 &2 Oregon City, Oregon 97045 Phone 503-650-0188

LEGAL

T3S R1E Section 2, TL 4100


ADDRESS:

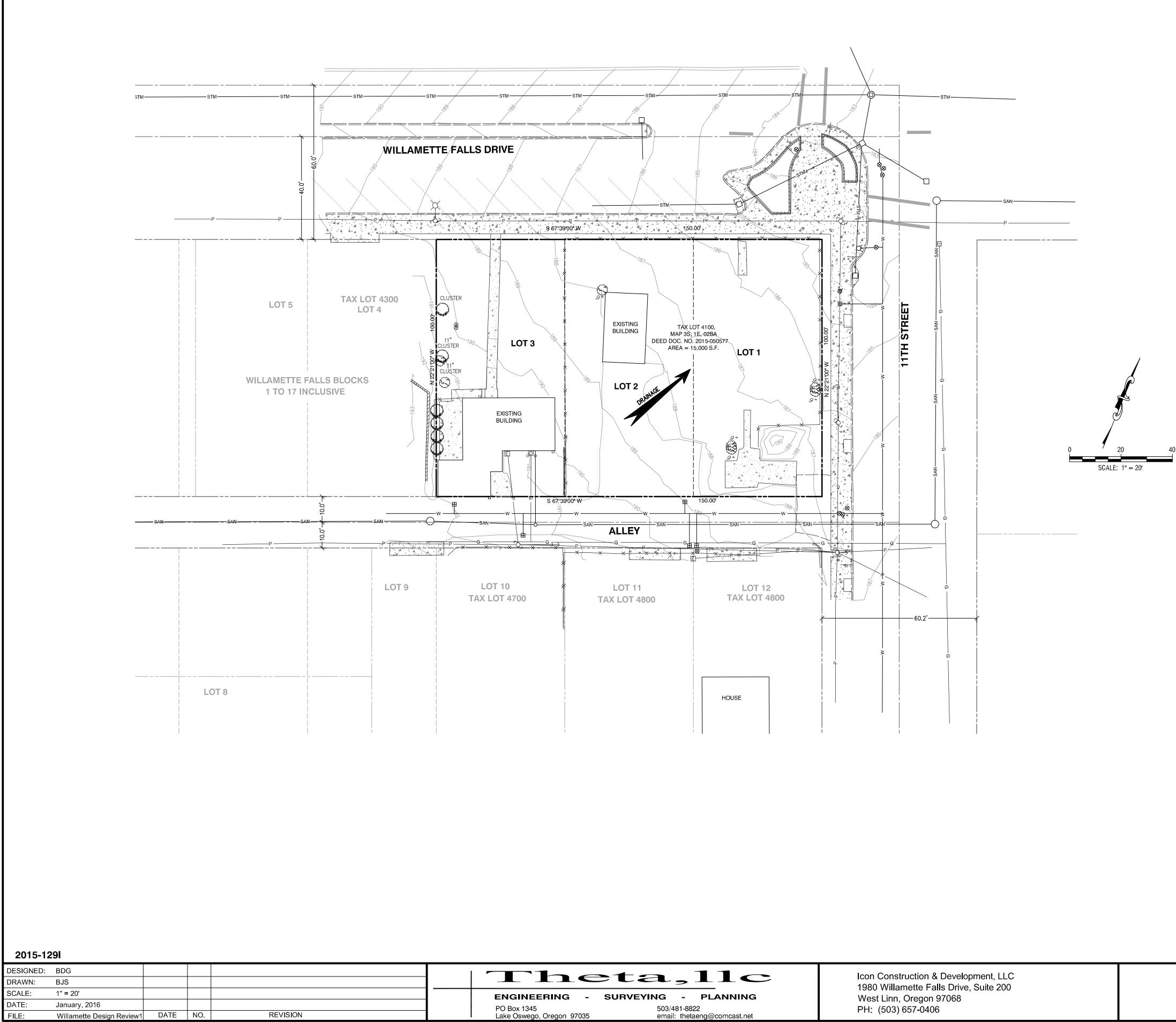
1969 Willamette Falls Drive West Linn, Oregon

RING-SURVEYING-PLANNING503/481-8822
email:503/481-8822
thetaeng@comcast.net

Icon Construction & Development, LLC 1980 Willamette Falls Drive, Suite 200 West Linn, Oregon 97068 PH: (503) 657-0406

VICINITY MAP SCALE: NTS

SHEET INDEX


- 1 COVER
- 2 SITE ANALYSIS
- 3 SITE AND UTILITY PLAN
- 4 GRADING AND EROSION CONTROL PLAN

DESIGN REVIEW - COVER

Tax Lot 4100 T.3S., R.1E., Section 2 West Linn, Oregon SHEET:

1/4

FILE:

Willamette Design Review1 DATE NO.

REVISION

he	eta,11c
ERING -	SURVEYING - PLANNING
, Oregon 97035	503/481-8822 email: thetaeng@comcast.net

West Linn, Oregon 97068 PH: (503) 657-0406

RESOURCE AREAS:

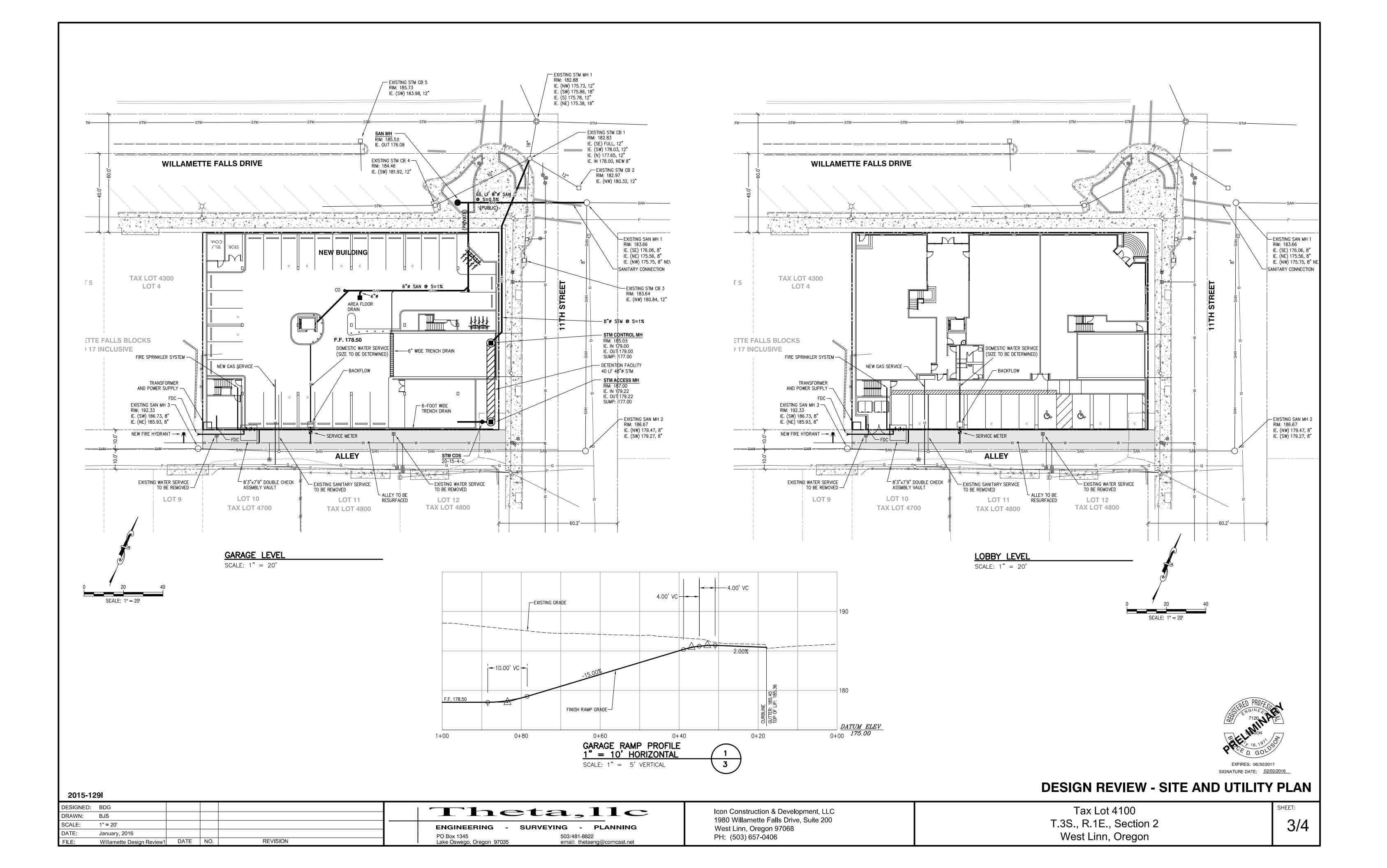
- A NO WETLAND PRESENT
- B NOT IN REPARIAN CORRIDOR
- C NO STREAMS OR INTERMITTENT WATER WAYS
- D NO HABITAT CONSERVATION AREA
- E NO ROCK OUTCROPPINGS

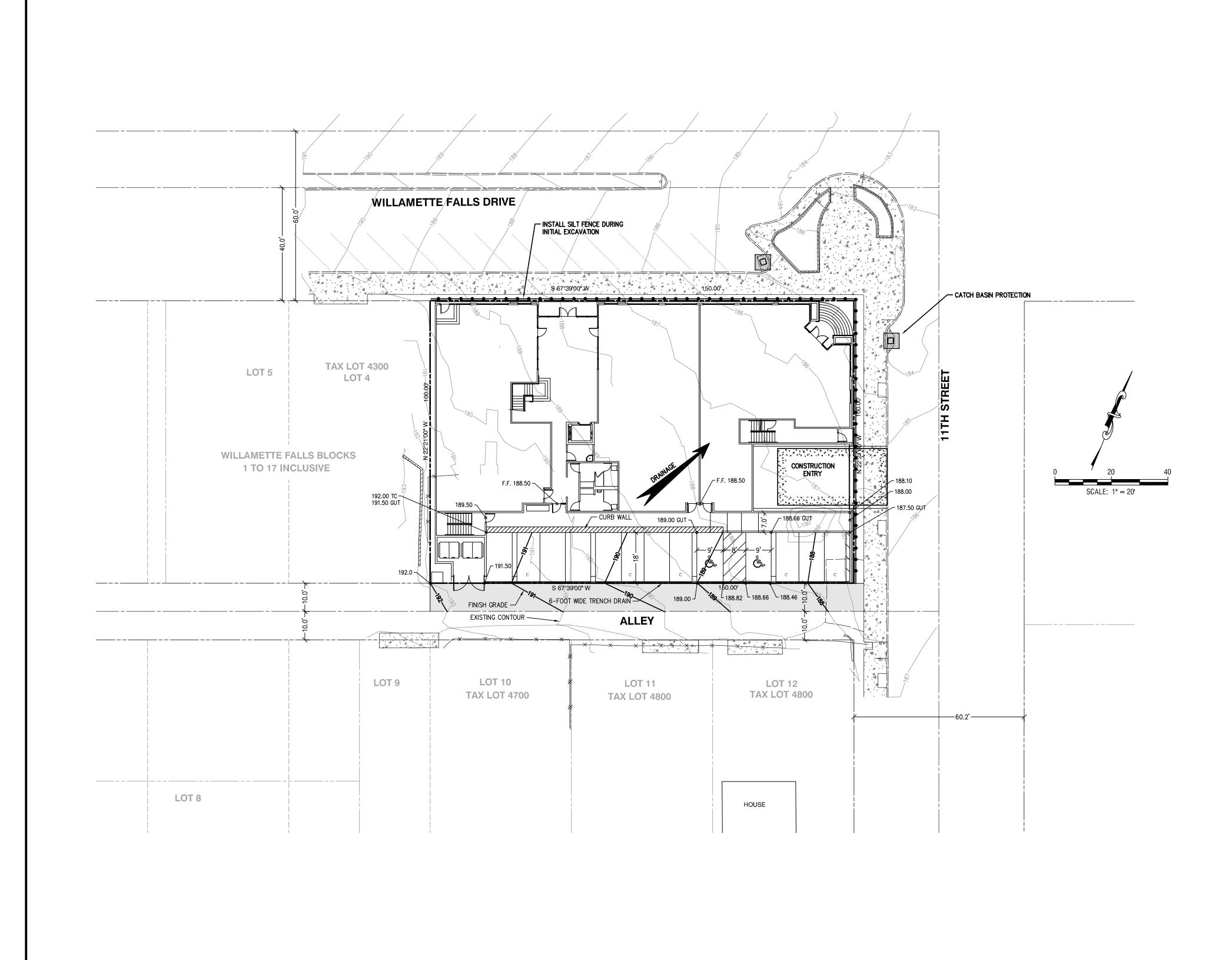

NATURAL HAZARD AREAS:

- A NOT IN FLOOD PLAIN
- B NOT IN WATER RESOURCE AREAS
- C NOT IN LANDSLIDE AREA D NOT IN LANDSLIDE VULNERABLE ANALYSIS AREA

GROSS AREA = 15,000 SQ.FT.

SLOPE ANALYSIS

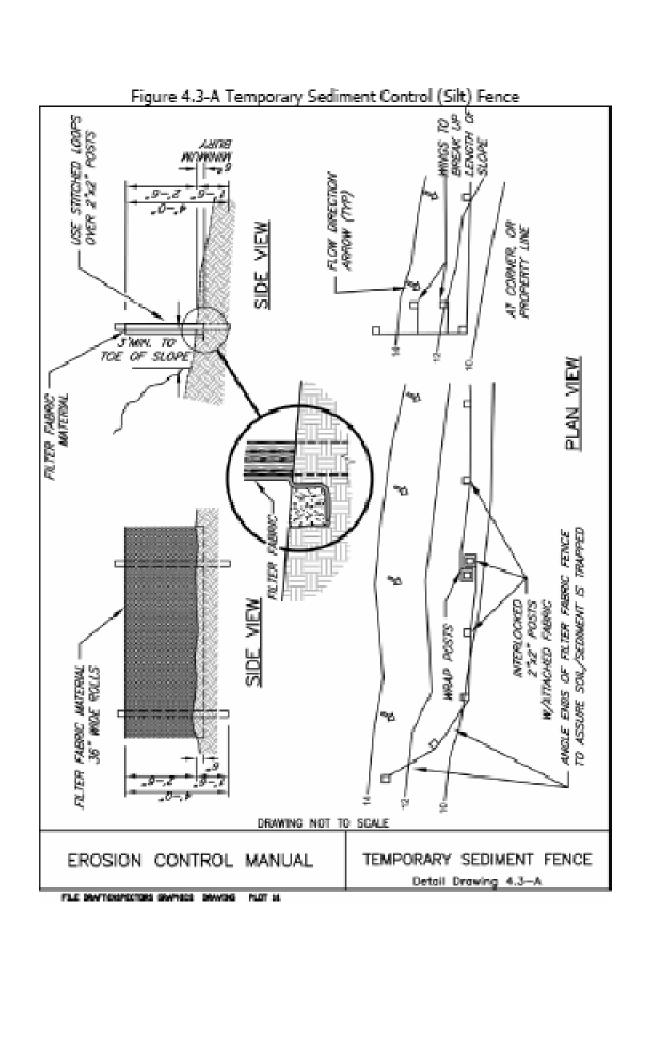

TYPE I:	(UNDER 15%)	= 15,000 SQ.FT.
TYPE II:	(15% TO 25%)	= 0.00 SQ.FT.
TYPE III:	(25% TO 35%)	= 0.00 SQ.FT.
TYPE IV:	(OVER 35%)	= 0.00 SQ.FT.



DESIGN REVIEW - SITE ANALYSIS

Tax Lot 4100 T.3S., R.1E., Section 2 West Linn, Oregon

SHEET: 2/4



2015-129	
----------	--

DESIGNED: BDG		Theta,11c			
DRAWN: BJS			La, LC		
SCALE: 1" = 20'		ENGINEERING - SU	RVEYING - PLANNING		
DATE: January, 2016		PO Box 1345	503/481-8822		
FILE: Willamette Design Review1 DATE NO.	REVISION	Lake Oswego, Oregon 97035	email: thetaeng@comcast.net		

Icon Construction & Development, LLC 1980 Willamette Falls Drive, Suite 200 West Linn, Oregon 97068 PH: (503) 657-0406

EXPIRES: 06/30/2017 SIGNATURE DATE: <u>02/03/2016</u>

DESIGN REVIEW - GRADING AND EROSION CONTROL PLAN

Tax Lot 4100 T.3S., R.1E., Section 2 West Linn, Oregon

SHEET:

4/4

SITE ANALYSIS

PROJECT DESCRIPTION A TWO STORY MIXED USE BUILDING AT THE CORNER OF WILLAMETTE FALLS DRIVE AND 11TH STREET, WEST LINN, OR. POSSIBLE USES INCLUDE RETAIL, RESTAURANT, OFFICE, OR HOTEL.

<u>CODES</u> 2014 OREGON STRUCTURAL SPECIALTY CODE 2014 OREGON MECHANICAL SPECIALTY CODE

2014 OREGON PLUMBING SPECIALTY CODE 2014 OREGON ENERGY EFFICIENCY SPECIALTY CODE COVER

ZONING

JURISDICTION: CITY OF WEST LINN CODE: COMMUNITY DEVELOPMENT CODE ZONE: GC (GENERAL COMMERCIAL - CDC CHAPTER 19) ZONE OVERLAYS: WILLAMETTE COMMERCIAL HISTORIC OVERLAY ZONE

UTILITIES WATER/SEWER: WEST LINN PUBLIC WORKS - 503 656-6081 (OPERATIONS) TRASH: WEST LINN REFUSE - 503-557-3900 ELECTRIC: PORTLAND GENERAL ELECTRIC - 800-542-8818 GAS: NW NATURAL - 800-422-4012

LEGAL DESCRIPTION LOTS 1,2, & 3, BLOCK 10, CITY OF WEST LINN, CLACKAMAS COUNTY, OREGON TAX LOT: 31E02BA04100 / PARCEL: 00749168

RESTRICTIONS/EASEMENTS NONE

ADJACENT ZONES

MU (NORTH & EAST), R-5 MEDIUM DENSITY RESIDENTIAL (SOUTH), GC (WEST)

PERMITTED USES (19.030, ANTICIPATED USES) BUSINESS USES, RESTAURANT, RETAIL, HOTEL, PROFESSIONAL/MEDICAL SERVICES.

DIMENSIONAL REQUIREMENTS (19.070)

MINIMUM FRONT LOT LINE WIDTH: 35' REQ. / 150' PROPOSED AVERAGE MINIMUM FRONT LOT LINE WIDTH: 50' REQ. / 150' PROPOSED AVERAGE MINIMUM LOT DEPTH: 90' REQ. / 100' PROPOSED BUILDING HEIGHT (CDC): 2 STORIES/35' MAX. / 2 STORIES/35' PROPOSED GROUND LEVEL MINIMUM HEIGHT: 10' REQ. / 28' PROPOSED SETBACKS: FRONT - 0' MIN. / 0' MAX., SIDE - 0' MIN. / 0' MAX., REAR 20' MIN. / 20' MAX. LOT COVERAGE: 100% MAX.

SITE LANDSCAPING NONE REQUIRED.

CODE REVIEW

POSSIBLE OCCUPANCY GROUPS A-2: RESTAURANT

B: BUSINESS

M: RETAIL

R-1: HOTEL S-2: PARKING GARAGE

CONSTRUCTION TYPE

PROPOSED CONSTRUCTION TYPE - GROUND & SECOND FLOORS: V-B <u>SPRINKLERED</u> (WOOD FRAME CONSTRUCTION). PROJECTED CONSTRUCTION TYPE - GARAGE: TYPE 1 OR 2 (CONCRETE OR MASONRY CONSTRUCTION).

ALLOWABLE AREAS BY OCCUPANCY GROUP

	MADLE ARLAS DI V	
(INCL	UDES INCREASES F	OR SPRINKLER AND SEPARATIONS)*:
A-2:	RESTAURANT -	6000 + [6000 X 2 (SPRINKLER)] + [6000 X .17 (SEPARATION)] = 19,020
S.F.		
B:	BUSINESS -	9000 + [9000 X 2 (SPRINKLER)] + [9000 X .17 (SEPARATION)] = 28,530
S.F.		
M:	RETAIL -	9000 + [9000 X 2 (SPRINKLER)] + [9000 X .17 (SEPARATION)] = 28,530
S.F.		
R-1:	HOTEL -	7000 + [7000 X 2 (SPRINKLER)] + [7000 X .17 (SEPARATION)] = 22,190S.F.
S-2:	GARAGE -	13,500 + [13,500 X 2 (SPRINKLER)] + [13,500 X .17 (SEPARATION)] =

42,795 S.F. *SUBJECT TO THE 'SUM OF THE RATIOS' LIMITATION: THE COMBINED AREAS OF EACH OCCUPANCY DIVIDED BY THE OVERALL BUILDING AREA MUST RESULT IN A RATIO OF LESS THAN 1.0.

ALLOWABLE BUILDING HEIGHT ABOVE GRADE

BY CONSTRUCTION TYPE: 40' BY ZONE: 35' (THE HEIGHT LIMITATION IN THE ZONE GOVERNS)

OCCUPANCY SEPARATIONS (VERTICAL AND HORIZONTAL) A-2: RESTAURANT / B: BUSINESS, M: RETAIL, OR R-1: HOTEL = 1-HOUR R-1: HOTEL / B: BUSINESS, M: RETAIL, OR A-2: RESTAURANT = 1-HOUR S-2: GARAGE / B: BUSINESS & M: RETAIL = 1-HOUR

FIRE RESISTIVE REQUIREMENTS PRIMARY STRUCTURAL FRAME: NONE

BEARING & NON-BEARING WALLS (EXTERIOR, NORTH/EAST/SOUTH): NONE BEARING & NON-BEARING WALLS (EXTERIOR, WEST): 2 HOUR AT GROUND FLOOR RETAIL / 1 HOUR AT 2ND FLOOR BEARING & NON-BEARING WALLS (INTERIOR): NONE FLOOR & ROOF CONSTRUCTION: NONE SHAFT ENCLOSURES (STAIRS & ELEVATOR): 1-HOUR PARAPETS: PER OSSC SECTION 705.11

OPENINGS IN RATED WALLS (BASED UPON SEPARATION FROM PROPERTY LINE) 0' TO LESS THAN 3': NOT PERMITTED

3' TO LESS THAN 5': 15% OF WALL AREA PER STORY 5' TO LESS THAN 10': 25% OF WALL AREA PER STORY 10' TO LESS THAN 15': 45% OF WALL AREA PER STORY 15' TO LESS THAN 20': 75% OF WALL AREA PER STORY 20'+: UNLIMITED

EXITING ELEVATOR: REQUIRED

STAIRS: TWO STAIRS WILL BE REQUIRED. AT LEAST ONE STAIR MUST BE ENCLOSED ON THE UPPER FLOORS, BOTH MUST BE ENCLOSED AT THE GARAGE LEVEL. ALL REQUIRED EXITS MUST MEET ACCESSIBILITY STANDARDS PER CHAPTERS 10 & 11.

WILLAMETTE FALLS PROFESSI AI IN 1969 WILLAMETTE FALLS DRIVE, WEST LINN

DIRECTORY

OWNER

ICON CONSTRUCTION & DEVELOPMENT 1980 WILLAMETTE FALLS DRIVE, Suite 200 WEST LINN, OREGON 97068 CONTACT: MARK HANDRIS, 503-657-0406, mark@iconconstruction.net DARREN GUSDORF, 503-657-0406, darren@iconconstruction.net

ARCHITECT

SG ARCHITECTURE, LLC. 10940 SW BARNES RD. #364 PORTLAND, OREGON 97225 CONTACT: SCOT SUTTON, 503-347-4685, ssutton@sg-arch.net KEVIN GODWIN, 503-201-0725, kgodwin@sg-arch.net

CIVIL THETA, LLC PO BOX 1345 WEST LINN, OREGON 97035

CONTACT: BRUCE GOLDSON, 503-481-8822, thetaeng@comcast.net

SURVEYING

CENTERLINE CONCEPTS LAND SURVEYING, INC. 729 MOLLALLA AVE, SUITE 1&2 OREGON CITY, OREGON 97045 503-650-0188

BUILDING DATA:

1ST FLOOR LEVEL (STREET LEVEL) 2ND LEVEL FLOOR TOTAL BUILDING AREA GARAGE LEVEL BUILDING TOTAL AREA

14,560 SF 24,510 SF (LEASABLE) 14,415 SF 38,925 SF

9,950 SF

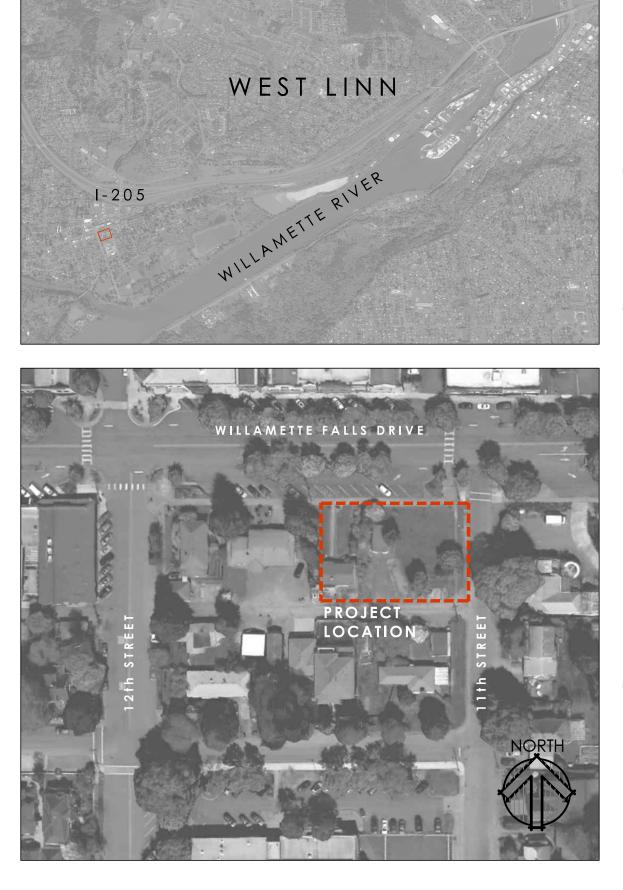
TOTAL PARKING PROVIDE (ON-SITE)	
UNDERGROUND	29 SPACES
STREET LEVEL COVERED	13 SPACES
TOTAL PARKING PROVIDED	42 SPACES

SHEET INDEX

ARCHITE A0.0	CTURAL COVERSHEET, CODE PLANS
EX	EXISTING CONDITION PLAN (SURVEY
A2.0	BASEMENT PARKING LEVEL PLAN
A2.1	GROUND FLOOR PLAN (STREET LEVE
A2.2a	SECOND FLOOR PLAN - OFFICE LAY
A2.2b	SECOND FLOOR PLAN - HOTEL LAYO
A3.1	EXTERIOR ELEVATIONS (COLOR)

10940 SW Barnes Road #364 Portland, Oregon 97225

WILLAMETTE FALLS

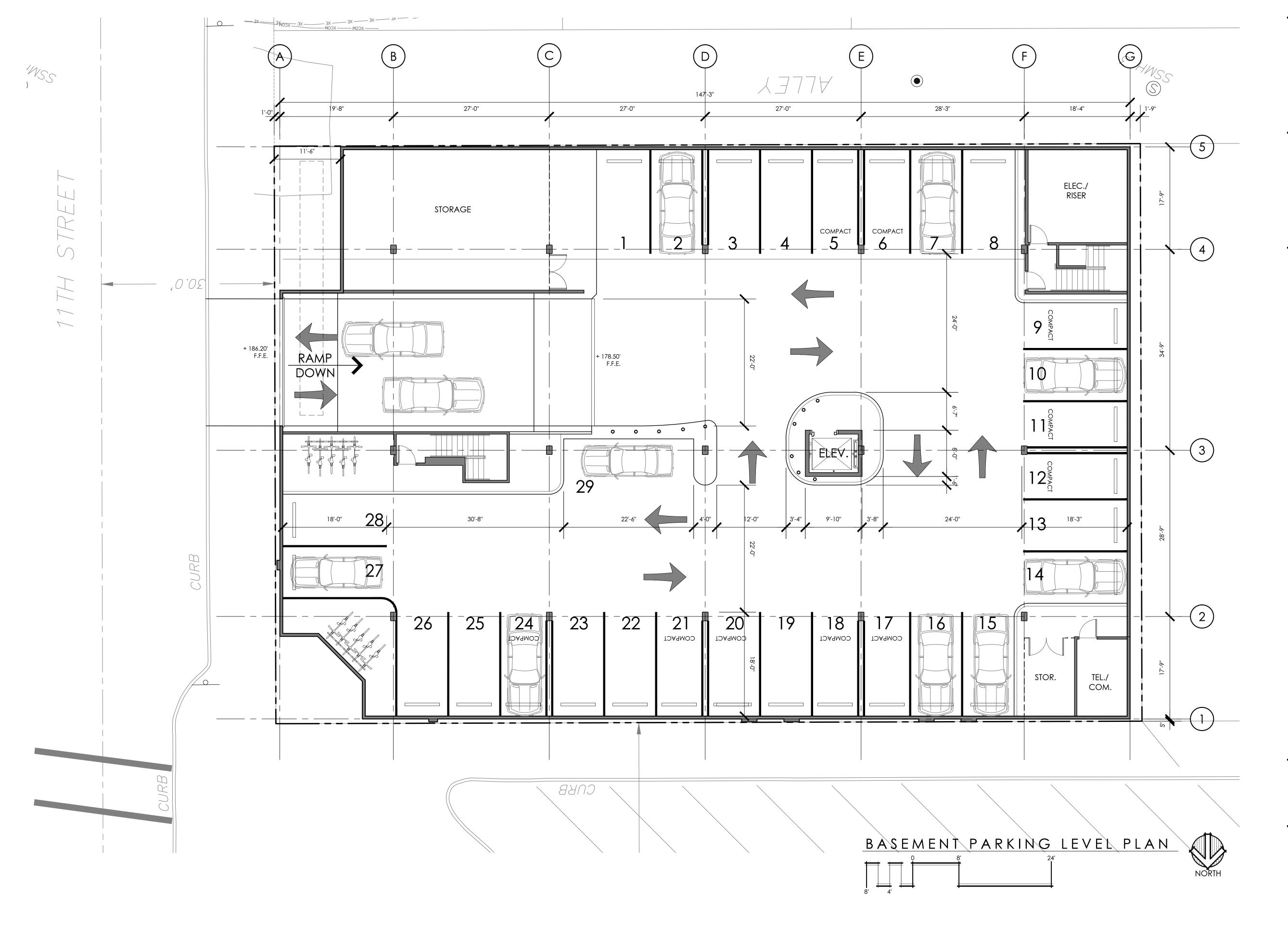

MIXED-USE BUILDING WILLAMETTE FALLS DR. & 11th ST. WEST LINN, OREGON

ICON CONSTRUCTION & DEVELOPMENT 1980 WILLAMETTE FALLS DR., SUITE 200 WEST LINN, OREGON 97068

VICINITY MAP

EY)

′EL) YOUT (OUT


CLASS II & HISTORIC **DESIGN REVIEW** SUBMITTAL DRAWINGS

PROJECT NUMBER: 15-104 ISSUE DATE: FEBRUARY, 2016 DRAWN BY:

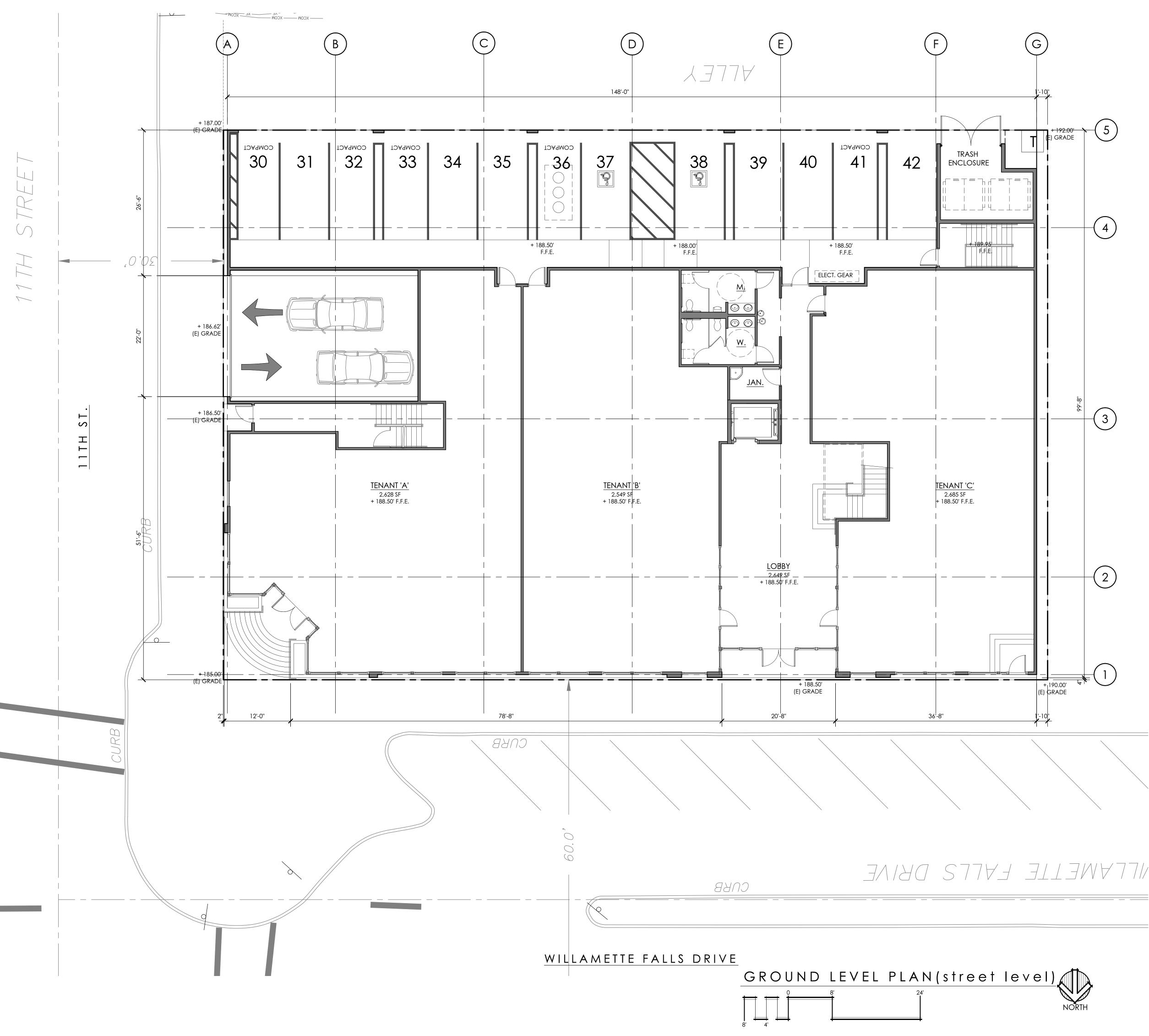
REVISIONS:

COVER SHEET AND GENERAL NOTES

10940 SW Barnes Road #364 Portland, Oregon 97225

WILLAMETTE FALLS MIXED-USE BUILDING

WILLAMETTE FALLS DR. & 11th ST. WEST LINN, OREGON


ICON CONSTRUCTION & DEVELOPMENT 1980 WILLAMETTE FALLS DR., SUITE 200 WEST LINN, OREGON 97068

CLASS II & HISTORIC DESIGN REVIEW SUBMITTAL DRAWINGS

PROJECT NUMBER: 15-104 ISSUE DATE: FEBRUARY, 2016 DRAWN BY:

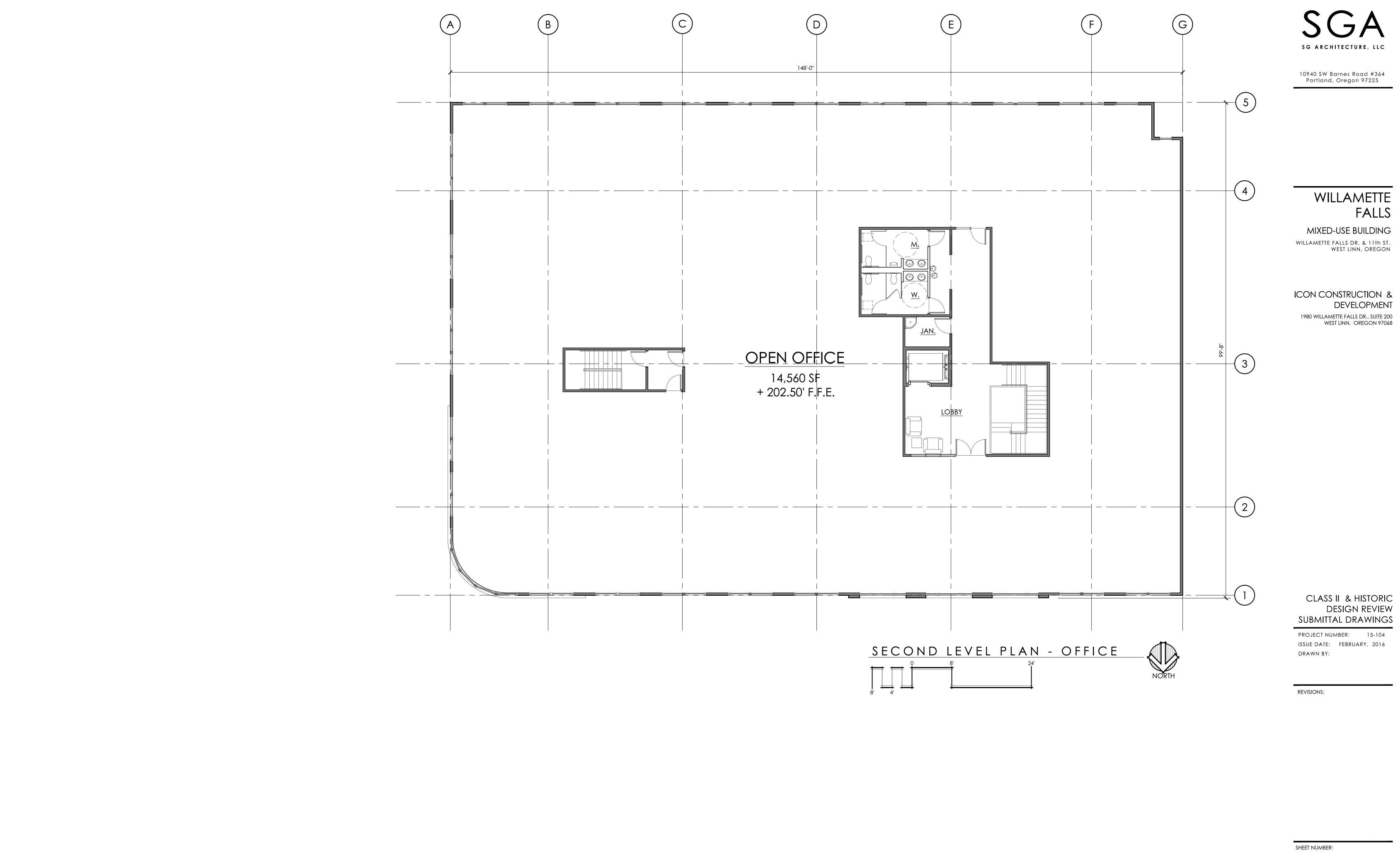
REVISIONS:

10940 SW Barnes Road #364 Portland, Oregon 97225

WILLAMETTE FALLS

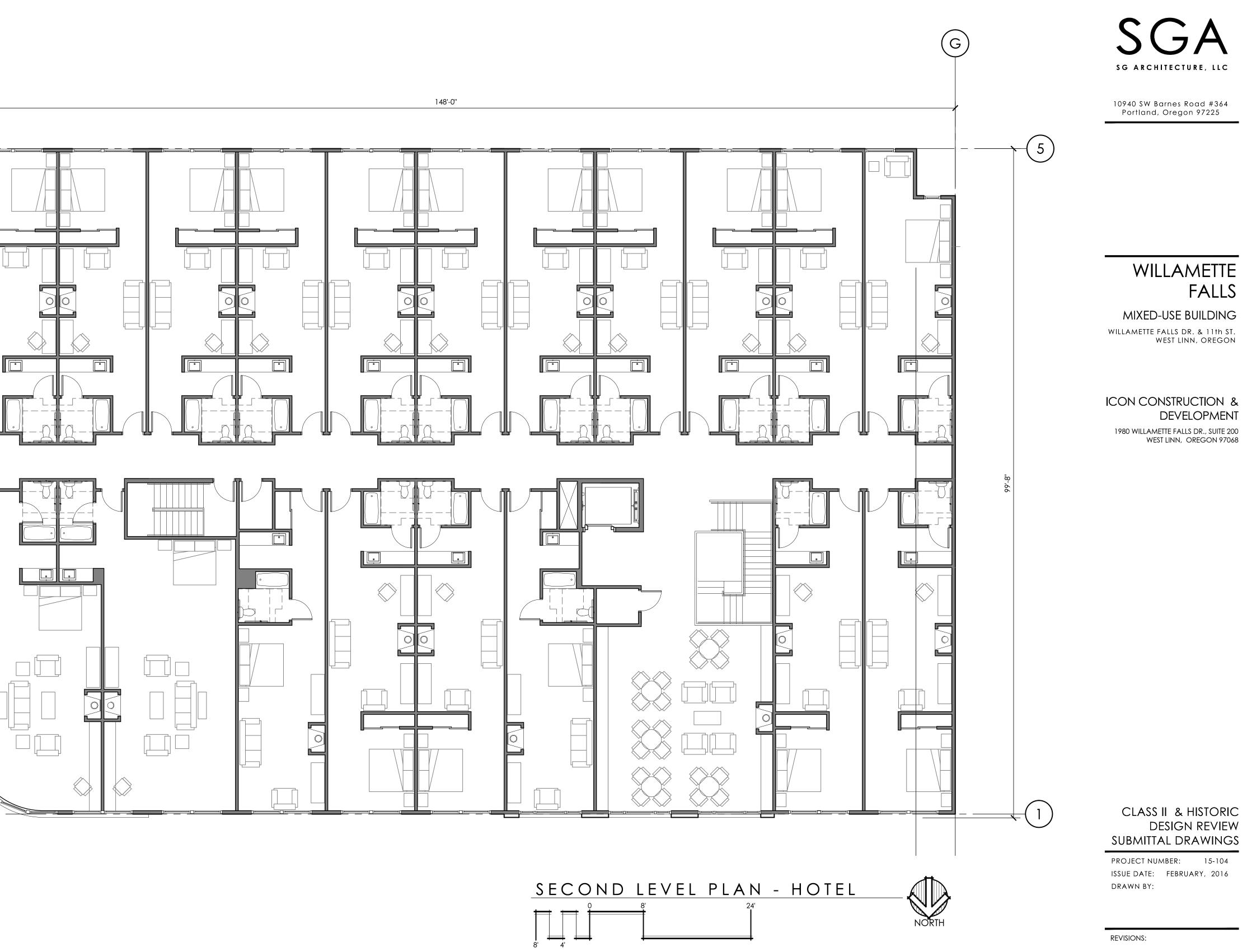
MIXED-USE BUILDING WILLAMETTE FALLS DR. & 11th ST. WEST LINN, OREGON

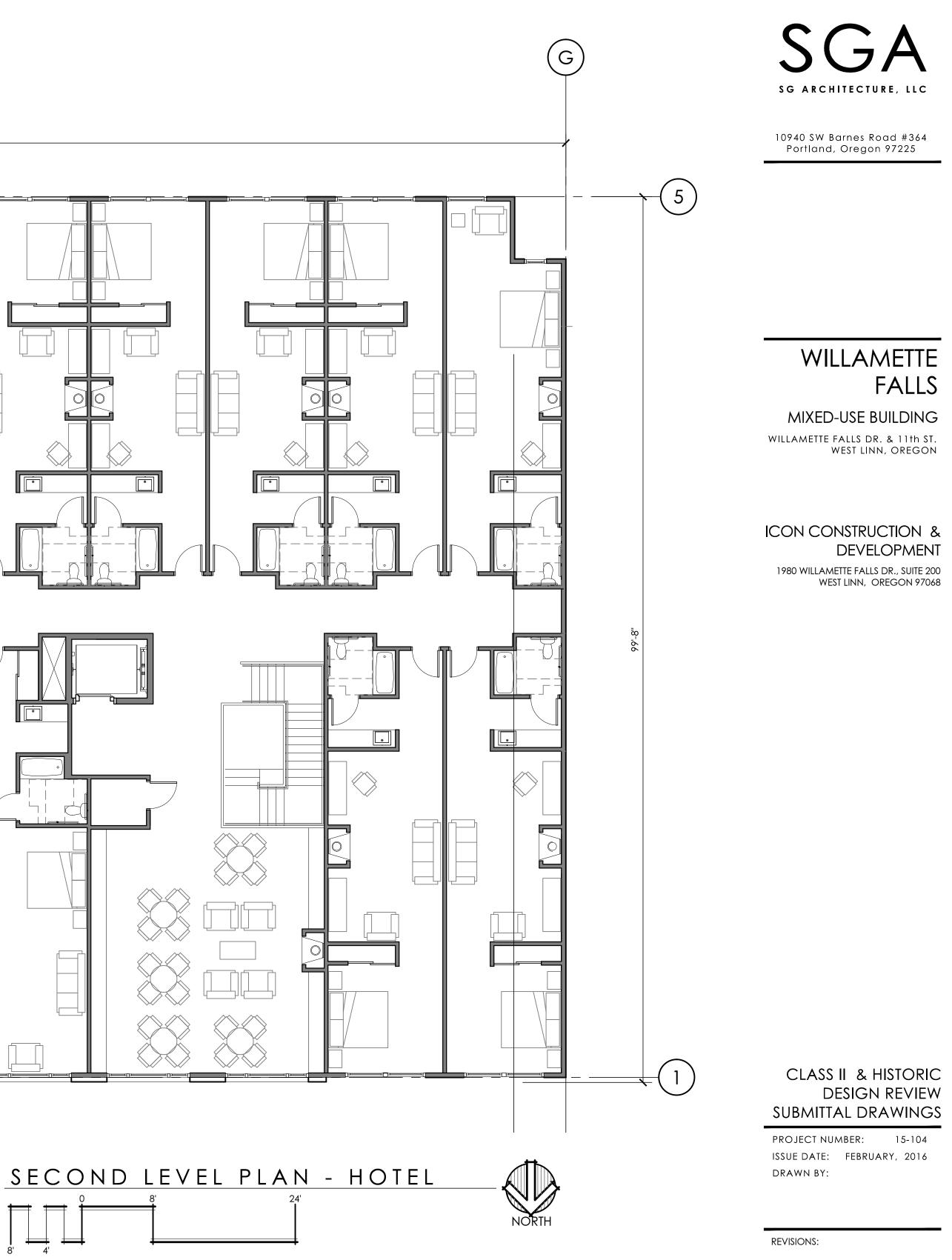
ICON CONSTRUCTION & DEVELOPMENT


1980 WILLAMETTE FALLS DR., SUITE 200 WEST LINN, OREGON 97068

CLASS II & HISTORIC DESIGN REVIEW SUBMITTAL DRAWINGS

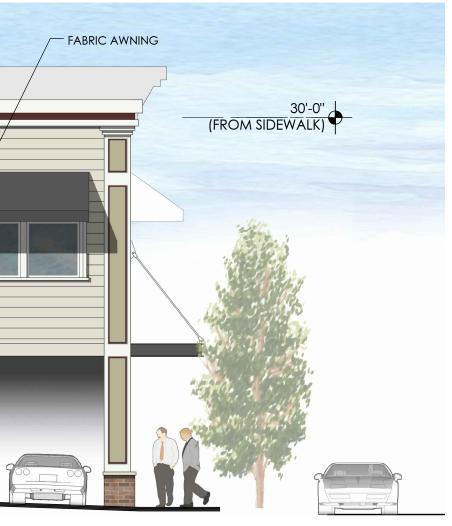
PROJECT NUMBER: 15-104 ISSUE DATE: FEBRUARY, 2016 DRAWN BY:


REVISIONS:


MELLE EVERS DEINE

 (A)

P-3 P-2 P-1 P-2 CLAD WOOD WINDOWS w/WOOD TRIM 7 - METAL CAP WOOD SIDING W-1 COVERED PARKING KNAPP'S ALLEY SOUTH ELEVATION


10940 SW Barnes Road #364 Portland, Oregon 97225

WILLAMETTE FALLS

MIXED-USE BUILDING WILLAMETTE FALLS DR. & 11th ST. WEST LINN, OREGON

COLOR / MATERIAL SCHEDULE

- P-1a BRUSHED ALUMINUM (alternate color) Main Building / Window Trim / Cornices
- Main Building / Wood Pilaster Panels
- Accent Trim 'Benjamin Moore'
- Fabric & Metal Awnings 'Pike Awnings'
- Painted Wood or Vinyl Clad 'Anderson' / 'Pella' / 'Jeld-Wen'
- HardiePlank Cement Fiber Siding 'James Hardi' Products
- **B-1 BRICK** Chestnut / Mission Texture 'Mutual Materials'

11TH STREET

ICON CONSTRUCTION & DEVELOPMENT 1980 WILLAMETTE FALLS DR., SUITE 200

WEST LINN, OREGON 97068

CLASS II & HISTORIC DESIGN REVIEW SUBMITTAL DRAWINGS

PROJECT NUMBER: 15-104 ISSUE DATE: FEBRUARY, 2016 DRAWN BY:

REVISIONS:

