Development Review Application

	$\text { Project no(s). } 541-1523$	
Non-Refundable Fee(s)	Refundable Deposit(s)	TOTAL //500

Type of Review (Please check all that apply):Annexation (ANX) Appeal and Review (AP) *Historic Review Conditional Use (CUP) Legislative Plan or Change
x Subdivision (SUB) $4200+200$ per lot Design Review (DR) Lot Line Adjustment (LLA) */** Minor Partition (MIP) (Preliminary Plat or Plan) Easement Vacation Non-Conforming Lots, Uses \& StructuresTemporary Uses* 11000^{-}froppl Extraterritorial Ext. of Utilities Planned Unit Development (PUD)
Final Plat or Plan (FP) Flood Management Area Pre-Application Conference (PA) */** Hillside Protection \& Erosion Control Street Vacation Time Extension * Variance (VAR) Water Resource Area Protection/Single Lot (WAP) Water Resource Area Protection/Wetland (WAP) Willamette \& Tualatin River Greenway (WRG)
Zone Change
Home Occupation, Pre-Application, Sidewalk Use, Sign Review Permit, and Temporary Sign Permit applications require different or additional application forms, available on the City website or at City Hall.

Site Location/Address:

18000 Upper Midhill Drive

Assessor's Map No.: 21E14CA
Tax Lot(s): 200
Total Land Area:

Brief Description of Proposal:

The Applicant is proposing a 34 lot single family subdivision consistent with the standards of the R-4.5 zone.

Applicant Name: \quad Upper Midhill Estates, LLC attn: Ryan Zygar	Phone: $360-798-4838$	
Address:	931 SW King Avenue	Email: ryan@zygar.com

City State Zip: Portland, OR 97205

Owner Name (required): 18000 Midhill Drive, LLC C/O David Chiddix
(please print)
Address: 1235 N Dutton Ave \#E
City State Zip: Santa Rosa, CA 95401

Phone:

Email:

Phone: 503-545-1907
Email: andrew.tull@3j-consulting.com

City State Zip: Beaverton, OR 97005

1. All application fees are non-refundable (excluding deposit). Any overruns to deposit wil resuit an antonai fillind
2. The owner/applicant or their representative should be present at all public hearings.
3. A denial or approval may be reversed on appeal. No permit will be in effect until the ap

HIECEVED
4. Three (3) complete hard-copy sets (single sided) of application materials must be submitted with this application. One (1) complete set of digital application materials must also be submitted on CD in PDF format. OCT 212015 If large sets of plans are required in application please submit only two sets.

* No CD required / ** Only one hard-copy set needed

The undersigned property owner(s) hereby authorizes the filing of this application, and authorizes on site reviewby autbrlate Stiflilikereby agree to comply with all code requirements applicable to my application. Acceptance of this application does not infepacomplete sublAffral. All amendments to the Community Development Code and to other regulations adopted after the application is approved shall be enforced where applicable.
Appogysignf

CONTENTS
GENERAL INFORMATION 3
SITE INFORMATION 3
INTRODUCTION 4
APPLICANT'S REQUEST 4
PROPOSED SITE IMPROVEMENTS. 4
APPLICABLE CRITERIA 5
DIVISION 2. ZONING PROVISIONS 5
CHAPTER 14. SINGLE-FAMILY RESIDENTIAL ATTACHED AND DETACHED/DUPLEX, R-4.5 5
14.030 PERMITTED USES 5
14.070 DIMENSIONAL REQUIREMENTS, USES PERMITTED OUTRIGHT AND USES PERMITTED UNDER PRESCRIBED CONDITIONS 5
DIVISION 8. LAND DIVISION 6
CHAPTER 85. GENERAL PROVISIONS 6
85.170 SUPPLEMENTAL SUBMITTAL REQUIREMENTS FOR TENTATIVE SUBDIVISION OR PARTITION PLAN 6
85.200 APPROVAL CRITERIA 9
DIVISION 3. SUPPLEMENTAL PROVISIONS AND EXCEPTIONS 26
CHAPTER 32. WATER RESOURCE AREA PROTECTION 26
CHAPTER 42. CLEAR VISION AREAS 28
42.020 CLEAR VISION AREAS REQUIRED, USES PROHIBITED 28
42.030 EXCEPTIONS 28
42.040 COMPUTATION; STREET AND ACCESSWAY 24 FEET OR MORE IN WIDTH 28
42.050 COMPUTATION; ACCESSWAY LESS THAN 24 FEET IN WIDTH 29
CHAPTER 44. FENCES 29
44.020 SIGHT-OBSCURING FENCE; SETBACK AND HEIGHT LIMITATIONS 29
44.030 SCREENING OF OUTDOOR STORAGE 30
44.040 LANDSCAPING 30
44.050 STANDARDS FOR CONSTRUCTION 30
CHAPTER 54. LANDSCAPING 30
54.020 APPROVAL CRITERIA 30
54.030 PLANTING STRIPS FOR MODIFIED AND NEW STREETS 32
54.040 INSTALLATION 32
54.050 PROTECTION OF STREET TREES 32
54.060 MAINTENANCE 33
54.070 SPECIFICATION SUMMARY 33
DIVISION 4. DESIGN REVIEW 33
CHAPTER 55. DESIGN REVIEW 33
55.100 APPROVAL STANDARDS - CLASS II DESIGN REVIEW 33
DIVISION 8. LAND DIVISIONS 36
CHAPTER 92. REQUIRED IMPROVEMENTS 36
92.010 PUBLIC IMPROVEMENTS FOR ALL DEVELOPMENT 36
92.030 IMPROVEMENT PROCEDURES 40
DIVISION 9. ADMINISTRATIVE PROCEDURES CHAPTER 99 PROCEDURES FOR DECISION MAKING: QUASI- JUDICIAL 40
99.030 APPLICATION PROCESS: WHO MAY APPLY, PRE-APPLICATION CONFERENCE, REQUIREMENTS, REFUSAL OF APPLICATION, FEES 40
99.033 FEES 41
99.038 NEIGHBORHOOD CONTACT REQUIRED FOR CERTAIN APPLICATIONS 42
Appendix List
Appendix A - Land Use Application
Appendix B - Pre-Application Conference NotesAppendix C - Neighborhood Meeting DocumentationAppendix D - Technical ReportsAppendix E - Preliminary Land Use Plans

Property Owner:	18000 Midhill Drive, LLC 1235 North Dutton Ave, Suite E Santa Rosa, CA 95401 Contact: David Chiddix
Applicant:	Upper Midhill Estates, LLC 931 SW King Avenue Portland, OR 97205 Contact: Ryan Zygar Phone: 360-798-4838 Email: ryan@zygar.com
Applicant's Representative:	3J Consulting, Inc. 5075 SW Griffith Drive, Suite 150 Beaverton, OR 97005 Contact: Andrew Tull Phone: 503-545-1907 Email: andrew.tull@3j-consulting.com
SITE INFORMATION	
Tax Lot Numbers:	2S1E13CA0200
Address:	18000 Upper Midhill Drive
Size:	6.10 acres
Zoning Designation:	R-4.5 (City of West Linn)
Neighborhood:	Robinwood
Comprehensive Plan:	Medium Density Residential
Existing Use:	The site is vacant.
Street Functional	The site currently takes access from Upper Midhill Drive, a local street.
Classification:	Adjacent College View Drive, Scenic Drive and Hillside Drive are local streets.
Surrounding Zoning:	North, East and West- City of Lake Oswego South- R-4.5 (West Linn)

INTRODUCTION

APPLICANT'S REQUEST

The Applicant seeks approval of an application for Subdivision Preliminary Plat and Water Resource Area (WRA) Alternative Review for the development of 34 residential lots (Chêne Blanc Estates). This narrative describes the proposed subdivision of the site and documents compliance with the relevant sections of the City of West Linn's Community Development Code ("CDC").

PROPOSED SITE IMPROVEMENTS

The project site consists of a total of 6.10 acres. The property is located at the north end of Upper Midhill Drive, adjacent to the City of Lake Oswego to the north. The site is currently vacant. The 34 lots will take access from either Upper Midhill Drive or Scenic Drive, both local streets.

The intent of this subdivision is to provide thirty-four (34) buildable lots on the subject property. Each of the proposed lots will exceed the minimum of 4,500 square feet in size, for development with singlefamily detached homes, a use permitted outright in the R-4.5 zone. This application would create thirtyfour (34) lots for needed housing, contributing to the City's inventory of diverse and available housing stock.

The lot layout and configuration of streets and drainage are dictated by four main factors: topography, existing street grades, the abundance of significant trees, and the city's requirement that any development provide a minimum of 34 lots. The application demonstrates how these factors have been successfully addressed in compliance with all applicable criteria.

APPLICABLE CRITERIA

The following sections of the CDC have been extracted as they have been deemed to be applicable to the proposal. Following each applicable criteria or design standard, the Applicant has provided a series of draft findings. The intent of providing code and detailed responses and findings is to document that the proposed development has satisfied the approval criteria for Subdivision Preliminary Plat.

DIVISION 2. ZONING PROVISIONS

CHAPTER 14. SINGLE-FAMILY RESIDENTIAL ATTACHED AND DETACHED/DUPLEX, R-4.5

14.030 PERMITTED USES

The following uses are permitted outright in this zoning district.

1. Single-family detached residential unit.
2. Duplex residential units.
3. Family day care.
4. Single-family attached residential units.
5. Community recreation.
6. Residential home.
7. Utilities, minor.
8. Manufactured housing.
9. Transportation facilities (Type I). (Ord. 1180, 1986; Ord. 1226, 1988; Ord. 1248, 1989; Ord. 1354, 1994; Ord. 1584, 2008)

Applicant's The proposed subdivision is intended for single-family detached residential units, a use Finding: permitted outright in the R-4.5 zone.

The requirements of this section have been satisfied.

14.070 DIMENSIONAL REQUIREMENTS, USES PERMITTED OUTRIGHT AND USES PERMITTED UNDER PRESCRIBED CONDITIONS

Except as may be otherwise provided by the provisions of this code, the following are the requirements for uses within this zone:
A. The minimum lot size shall be:

1. For a single-family detached unit, 4,500 square feet.
2. For each attached single-family unit, 4,000 square feet.
3. For a duplex, 8,000 square feet or 4,000 square feet for each unit.
B. The minimum front lot line length or the minimum lot width at the front lot line shall be 35 feet.
C. The average minimum lot width shall be 35 feet.
D. Repealed by Ord. 1622.
E. The minimum yard dimensions or minimum building setback areas from the lot line shall be:
4. For a front yard, 20 feet; except for steeply sloped lots where the provisions of CDC 41.010 shall apply.
5. For an interior side yard, five feet.
6. For a side yard abutting a street, 15 feet.
7. For a rear yard, 20 feet.
F. The maximum building height shall be 35 feet, except for steeply sloped lots in which case the provisions of CDC 41.010 shall apply.
G. The maximum lot coverage shall be 40 percent.
H. The minimum width of an accessway to a lot which does not abut a street or a flag lot shall be 15 feet.
I. The floor area ratio shall be 0.45 . Type I and II lands shall not be counted toward lot area when determining allowable floor area ratio, except that a minimum floor area ratio of 0.30 shall be allowed regardless of the classification of lands within the property. That 30 percent shall be based upon the entire property including Type I and II lands. Existing residences in excess of this standard may be replaced to their prior dimensions when damaged without the requirement that the homeowner obtain a non-conforming structures permit under Chapter 66 CDC.
J. The sidewall provisions of Chapter 43 CDC shall apply. (Ord. 1226, 1988; Ord. 1308, 1991; Ord. 1377, 1995; Ord. 1538, 2006; Ord. 1622 § 24, 2014)

Applicant's	The proposed lots range in size from 4,615 square feet to 9,905 square feet, well over the
Finding:	4,500 square foot minimum for single-family detached residential in the R-4.5 zone. The
lot widths at front property line and lot width averages all exceed 35 feet, as	
demonstrated on the submitted plans. There are no accessways proposed as all lots	
access a public street. Yard dimensions, building height, lot coverage, floor area ratios	
and sidewall provisions will all meet the requirements of this section and will be verified	
at time of building permit submittal.	

The requirements of this section have been satisfied.

DIVISION 8. LAND DIVISION

CHAPTER 85. GENERAL PROVISIONS

85.170 SUPPLEMENTAL SUBMITTAL REQUIREMENTS FOR TENTATIVE SUBDIVISION OR PARTITION PLAN

B. Transportation.
2. Traffic Impact Analysis (TIA).
a. Purpose. The purpose of this section of the code is to implement Section 660-012-0045(2)(e) of the State Transportation Planning Rule that requires the City to adopt a process to apply conditions to development proposals in order to minimize adverse impacts to and protect transportation facilities. This section establishes the standards for when a proposal must be reviewed for potential traffic impacts; when a Traffic Impact Analysis must be submitted with a development application in order to determine whether conditions are needed to minimize impacts to and protect transportation facilities; what must be in a Traffic Impact Study; and who is qualified to prepare the study.
b. Typical average daily trips. The latest edition of the Trip Generation manual, published by the Institute of Transportation Engineers (ITE) shall be used as the standards by which to gauge average daily vehicle trips.
c. When required. A Traffic Impact Analysis may be required to be submitted to the City with a land use application, when the following conditions apply:

1) The development application involves one or more of the following actions:
(A) A change in zoning or a plan amendment designation; or

Applicant's
Finding:

Applicant's Finding:

Applicant's Finding:

Applicant's Finding:

The Applicant is not proposing a change in zoning or a plan amendment designation as a part of this land use application, therefore a Traffic Impact Analysis is not required per this subsection.

The requirements of this section have been satisfied.
(B) Any proposed development or land use action that ODOT states may have operational or safety concerns along a State highway; and

The proposed development is not located along a State highway, therefore a Traffic Impact Analysis is not required per this subsection.

The requirements of this section have been satisfied.
(C) The development shall cause one or more of the following effects, which can be determined by field counts, site observation, traffic impact analysis or study, field measurements, crash history, Institute of Transportation Engineers Trip Generation manual; and information and studies provided by the local reviewing jurisdiction and/or ODOT:
(1) An increase in site traffic volume generation by 250 average daily trips (ADT) or more (or as required by the City Engineer); or

The Institute of Transportation Engineers Trip Generation Manual, $9^{\text {th }}$ Edition estimates an average increase in daily trips as 9.5 trips/ residential lot. The proposed 34 lot subdivision will generate 323 average daily trips (ADT), exceeding the 250 ADT threshold. Therefore, the submittal includes a Transportation Impact Analysis prepared by Kittleson \& Associates, Inc. in support of this project.

The requirements of this section have been satisfied.
(2) An increase in use of adjacent streets by vehicles exceeding the 20,000-pound gross vehicle weights by 10 vehicles or more per day; or

The proposed development is intended to serve primarily residential traffic and is not estimated to increase the use of adjacent streets by vehicles exceeding 20,000-pound gross vehicle weights by 10 vehicles or more per day, therefore a Traffic Impact Analysis is not required per this subsection.

The requirements of this section have been satisfied.
(3) The location of the access driveway does not meet minimum intersection sight distance requirements, or is located where vehicles entering or leaving the property are restricted, or such vehicles queue or hesitate on the State highway, creating a safety hazard; or

Applicant's	Proposed access driveways have been designed to meet the minimum intersection site
Finding:	distance for new single family homes.

The requirements of this section have been satisfied.
(4) The location of the access driveway does not meet the access spacing standard of the roadway on which the driveway is located; or

Applicant's Proposed access driveways have been designed to meet the minimum intersection site Finding: distance for new single family homes.

The requirements of this section have been satisfied.
(5) A change in internal traffic patterns that may cause safety problems, such as backup onto the highway or traffic crashes in the approach area.

Applicant's No changes to local traffic patterns hold the potential to cause off-site safety problems. Finding:

The requirements of this section have been satisfied.
d. Traffic impact analysis requirements.

1) Preparation. A Traffic Impact Analysis shall be prepared by a professional engineer qualified under OAR 734-051-0040. The City shall commission the traffic analysis and it will be paid for by the applicant.
2) Transportation Planning Rule compliance. See CDC 105.050(D), Transportation Planning Rule Compliance.
3) Pre-application conference. The applicant will meet with West Linn Public Works prior to submitting an application that requires a traffic impact application. This meeting will determine the required elements of the TIA and the level of analysis expected.
e. Approval criteria.
4) Criteria. When a Traffic Impact Analysis is required, approval of the development proposal requires satisfaction of the following criteria:
(A) The Traffic Impact Analysis was prepared by a professional traffic engineer qualified under OAR 734-051-0040; and
(B) If the proposed development shall cause one or more of the effects in subsection (B)(2) of this section, or other traffic hazard or negative impact to a transportation facility, the Traffic Impact Analysis includes mitigation measures that meet the City's
level of service and are satisfactory to the City Engineer, and ODOT when applicable; and
(C) The proposed site design and traffic and circulation design and facilities, for all transportation modes, including any mitigation measures, are designed to:
(1) Have the least negative impact on all applicable transportation facilities; and
(2) Accommodate and encourage non-motor vehicular modes of transportation to the extent practicable; and
(3) Make the most efficient use of land and public facilities as practicable; and
(4) Provide the most direct, safe and convenient routes practicable between onsite destinations, and between on-site and off-site destinations; and
(5) Otherwise comply with applicable requirements of the City of West Linn Community Development Code.
f. Conditions of approval. The City may deny, approve, or approve the proposal with appropriate conditions.
5) Dedication of land for streets, transit facilities, sidewalks, bikeways, paths, or accessways shall be required where the existing transportation system will be impacted by or is inadequate to handle the additional burden caused by the proposed use.
6) Improvements such as paving, curbing, installation or contribution to traffic signals, or construction of sidewalks, bikeways, accessways, paths, or streets that serve the proposed use where the existing transportation system may be burdened by the proposed use may be required.

Applicant's	The transportation impact analysis submitted with this application was prepared by a
Finding:	professional traffic engineer and finds that the proposed subdivision can be constructed while maintaining safe and acceptable traffic operations at the study intersection and adjacent roadways. The following is a list of recommended mitigation measures:

- Construct an extension of Upper Midhill Road consistent with the City's local street standard.
- Shrubbery and landscaping near the internal intersections and site access points should be maintained to ensure adequate sight distance.
- Develop a cost estimate for the proposed improvements to the Arbor/highway 43 intersection in coordination with the City and ODOT staff and pay a proportionate share (estimated at 1.9 percent) of the total cost of the improvements.

The requirements of this section have been satisfied.

85.200 APPROVAL CRITERIA

No tentative subdivision or partition plan shall be approved unless adequate public facilities will be available to provide service to the partition or subdivision area prior to final plat approval and the Planning Commission or Planning Director, as applicable, finds that the following standards have been satisfied, or can be satisfied by condition of approval.
A. Streets.

1. General. The location, width and grade of streets shall be considered in their relation to existing and planned streets, to the generalized or reasonable layout of streets on adjacent undeveloped lot or parcels, to topographical conditions, to public convenience and safety, to accommodate various types of transportation (automobile, bus, pedestrian, bicycle), and to the proposed use of land to be served by the streets. The functional class of a street aids in defining the primary function and associated design standards for the facility. The hierarchy of the facilities within the network in regard to the type of traffic served (through or local trips), balance of function (providing access and/or capacity), and the level of use (generally measured in vehicles per day) are generally dictated by the functional class. The street system shall assure an adequate traffic or circulation system with intersection angles, grades, tangents, and curves appropriate for the traffic to be carried. Streets should provide for the continuation, or the appropriate projection, of existing principal streets in surrounding areas and should not impede or adversely affect development of adjoining lands or access thereto.
To accomplish this, the emphasis should be upon a connected continuous pattern of local, collector, and arterial streets rather than discontinuous curvilinear streets and cul-de-sacs. Deviation from this pattern of connected streets should only be permitted in cases of extreme topographical challenges including excessive slopes (35 percent-plus), hazard areas, steep drainageways, wetlands, etc. In such cases, deviations may be allowed but the connected continuous pattern must be reestablished once the topographic challenge is passed. Streets should be oriented with consideration of the sun, as site conditions allow, so that over 50 percent of the front building lines of homes are oriented within 30 degrees of an east-west axis.
Internal streets are the responsibility of the developer. All streets bordering the development site are to be developed by the developer with, typically, half-street improvements or to City standards prescribed by the City Engineer. Additional travel lanes may be required to be consistent with adjacent road widths or to be consistent with the adopted Transportation System Plan (TSP) and any adopted updated plans.
An applicant may submit a written request for a waiver of abutting street improvements if the TSP prohibits the street improvement for which the waiver is requested. Those areas with numerous (particularly contiguous) under-developed or undeveloped tracts will be required to install street improvements. When an applicant requests a waiver of street improvements and the waiver is granted, the applicant shall pay an in-lieu fee equal to the estimated cost, accepted by the City Engineer, of the otherwise required street improvements. As a basis for this determination, the City Engineer shall consider the cost of similar improvements in recent development projects and may require up to three estimates from the applicant. The amount of the fee shall be established prior to the Planning Commission's decision on the associated application. The in-lieu fee shall be used for in kind or related improvements. Streets shall also be laid out to avoid and protect tree clusters and significant trees, but not to the extent that it would compromise connectivity requirements per this subsection (A)(1), or bring the density below 70 percent of the maximum density for the developable net area. The developable net area is calculated by taking the total site acreage and deducting Type I and II lands; then up to $\mathbf{2 0}$ percent of the remaining land may be excluded as necessary for the purpose of protecting significant tree clusters or stands as defined in CDC 55.100(B)(2).

[^0]will not negatively affect the connectivity of these two streets. Figure 8-6 of the West Linn Transportation System Plan - Future Local Street Connectivity Improvements, does not identify a new street connection within or adjacent to this site. However, the proposed subdivision will include connection of Upper Midhill Drive to Scenic Drive to provide connectivity throughout this site.

The extension of Upper Midhill and Scenic will require right-of-way dedication with this subdivision. The Applicant proposes additional right-of-way within the site for the extension of both of these streets, as discussed below. Sidewalks and planter strips are also proposed.

This section requires the developer to be responsible for the construction of internal streets. The Applicant proposes full responsibility for construction of the extensions of Upper Midhill and Scenic.

The requirements of this section have been satisfied.
2. Right-of-way and roadway widths. In order to accommodate larger tree-lined boulevards and sidewalks, particularly in residential areas, the standard right-of-way widths for the different street classifications shall be within the range listed below. But instead of filling in the right-of-way with pavement, they shall accommodate the amenities (e.g., boulevards, street trees, sidewalks). The exact width of the right-of-way shall be determined by the City Engineer or the approval authority. The following ranges will apply:

Street Classification	Right-of-Way
Local Street	$40^{\prime}-60^{\prime}$

Additional rights-of-way for slopes may be required. Sidewalks shall not be located outside of the right-of-way unless to accommodate significant natural features or trees.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The Applicant proposes dedication of a variable width between } 48^{\prime} \text { and } 50^{\prime} \text { of right-of- } \\
\text { Finding: } & \text { way within the site for both Upper Midhill and Scenic, as shown on the preliminary plat, } \\
\text { sheet C200. These dedications are consistent with the Transportation System Plan (TSP) } \\
\text { requirements of } 40^{\prime}-60^{\prime} \text { ROW for a local street. }
\end{array}
$$

The requirements of this section have been satisfied.
3. Street widths. Street widths shall depend upon which classification of street is proposed. The classifications and required cross sections are established in Chapter 8 of the adopted TSP.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The width of the paved section of the extensions of Upper Midhill and Scenic will be } 24 \\
\text { Finding: } & \text { feet, per the TSP standard for a local street. }
\end{array}
$$

The requirements of this section have been satisfied.
4. The decision-making body shall consider the City Engineer's recommendations on the desired right-of-way width, pavement width and street geometry of the various street types within the subdivision after consideration by the City Engineer of the following criteria:
a. The type of road as set forth in the Transportation Master Plan.
b. The anticipated traffic generation.
c. On-street parking requirements.
d. Sidewalk and bikeway requirements.
e. Requirements for placement of utilities.
f. Street lighting.
g. Drainage and slope impacts.
h. Street trees.
i. Planting and landscape areas.
j. Existing and future driveway grades.
k. Street geometry.
l. Street furniture needs, hydrants.

Applicant's The City's Development Engineer has reviewed the proposal and made recommendations Finding: to the applicant, which are incorporated into the proposed roadway configuration.

> The Applicant has specifically requested a modification along the western edge of the extension of Scenic Drive. This modification would involve the placement of a curb-tight sidewalk along the western edge of the street. The curb-tight sidewalk has been proposed in order to reduce grading impacts and wall construction along the roadway's western edge. The western edge of Scenic currently abuts several existing structures.

The requirements of this section have been satisfied.
5. Additionally, when determining appropriate street width, the decision-making body shall consider the following criteria:
a. When a local street is the only street serving a residential area and is expected to carry more than the normal local street traffic load, the designs with two travel and one parking lane are appropriate.
b. Streets intended to serve as signed but unstriped bike routes should have the travel lane widened by two feet.
c. Collectors should have two travel lanes and may accommodate some parking. Bike routes are appropriate.
d. Arterials should have two travel lanes. On-street parking is not allowed unless part of a Street Master Plan. Bike lanes are required as directed by the Parks Master Plan and Transportation Master Plan.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The local street load will not exceed that expected of a residential area. This site is also } \\
\text { Finding: } & \text { not designated as a bike route and does not include collector or arterial streets. }
\end{array}
$$

The requirements of this section have been satisfied.
6. Reserve strips. Reserve strips or street plugs controlling the access to streets are not permitted unless owned by the City.

Applicant's The applicant does not propose reserve strips or street plugs with this application. All Finding: rights-of-way will be dedicated to the edge of the adjoining properties.

The requirements of this section have been satisfied.
7. Alignment. All streets other than local streets or cul-de-sacs, as far as practical, shall be in alignment with existing streets by continuations of the centerlines thereof. The staggering of street alignments resulting in " T " intersections shall, wherever practical, leave a minimum distance of 200 feet between the centerlines of streets having approximately the same direction and otherwise shall not be less than 100 feet.

Applicant's The extension of both local streets will be in direct alignment. One "L" shaped Finding: intersection between Scenic and Upper Midhill Drive is proposed, where the two streets intersect at the northwestern corner of the site.

The requirements of this section have been satisfied.
8. Future extension of streets. Where necessary to give access to or permit a satisfactory future subdivision of adjoining land, streets shall be extended to the boundary of the subdivision and the resulting dead-end streets may be approved without turnarounds. (Temporary turnarounds built to Fire Department standards are required when the dead-end street is over 100 feet long.)

$$
\begin{array}{ll}
\text { Applicant's } & \text { The Applicant proposes to construct Upper Midhill to connect to Scenic, both local public } \\
\text { Finding: } & \text { streets. }
\end{array}
$$

The requirements of this section have been satisfied.
9. Intersection angles. Streets shall be laid out to intersect angles as near to right angles as practical, except where topography requires lesser angles, but in no case less than 60 degrees unless a special intersection design is approved. Intersections which are not at right angles shall have minimum corner radii of 15 feet along right-of-way lines which form acute angles. Right-of-way lines at intersections with arterial streets shall have minimum curb radii of not less than 35 feet. Other street intersections shall have curb radii of not less than 25 feet. All radii shall maintain a uniform width between the roadway and the right-of-way lines. The intersection of more than two streets at any one point will not be allowed unless no alternative design exists.

Applicant's The proposed street configuration includes one intersection between Scenic and Upper Finding: Midhill Drive. The proposed intersection has limited options for alignment due to the grading necessary to connect these two streets. The proposed angle between Upper Midhill and Scenic Drive is approximately 74 degrees.
10. Additional right-of-way for existing streets. Wherever existing street rights-of-way adjacent to or within a tract are of inadequate widths based upon the standards of this chapter, additional right-ofway shall be provided at the time of subdivision or partition.

Applicant's Additional right-of-way for extensions of Upper Midhill and Scenic, as discussed above, Finding: will be dedicated at time of subdivision.

The requirements of this section have been satisfied.
11. Cul-de-sacs.
a. New cul-de-sacs and other closed-end streets (not including stub streets intended to be connected) on sites containing less than 5 acres, or sites accommodating uses other than residential or mixed use development, are not allowed unless the applicant demonstrates that there is no feasible alternative due to :***

Applicant's No cul-de-sacs are proposed with this subdivision.
Finding:
The requirements of this section have been satisfied.
12. Street names. No street names shall be used which will duplicate or be confused with the names of existing streets within the City. Street names that involve difficult or unusual spellings are discouraged. Street names shall be subject to the approval of the Planning Commission or Planning Director, as applicable. Continuations of existing streets shall have the name of the existing street. Streets, drives, avenues, ways, boulevards, and lanes shall describe through streets. Place and court shall describe cul-de-sacs. Crescent, terrace, and circle shall describe loop or arcing roads.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The street names of Upper Midhill and Scenic are established. No new street names are } \\
\text { Finding: } & \text { proposed. }
\end{array}
$$

The requirements of this section have been satisfied.
13. Grades and curves. Grades shall not exceed 8 percent on major or secondary arterials, 10 percent on collector streets, or 15 percent on any other street unless by variance. Willamette Drive/Highway 43 shall be designed to a minimum horizontal and vertical design speed of 45 miles per hour, subject to Oregon Department of Transportation (ODOT) approval. Arterials shall be designed to a minimum horizontal and vertical design speed of 35 miles per hour. Collectors shall be designed to a minimum horizontal and vertical design speed of 30 miles per hour. All other streets shall be designed to have a minimum centerline radii of 50 feet. Super elevations (i.e., banking) shall not exceed four percent. The centerline profiles of all streets may be provided where terrain constraints (e.g., over 20 percent slopes) may result in considerable deviation from the originally proposed alignment.

Applicant's The grade of the extensions of Hillside Drive and Scenic Drive will not exceed 15 percent, Finding: per this standard. All city centerline radii standards will be met.
14. Access to local streets. Intersection of a local residential street with an arterial street may be prohibited by the decision-making authority if suitable alternatives exist for providing interconnection of proposed local residential streets with other local streets. Where a subdivision or partition abuts or contains an existing or proposed major arterial street, the decision-making authority may require marginal access streets, reverse-frontage lots with suitable depth, visual barriers, noise barriers, berms, no-access reservations along side and rear property lines, and/or other measures necessary for adequate protection of residential properties from incompatible land uses, and to ensure separation of through traffic and local traffic.

Applicant's The subject property does not abut nor contain an existing or proposed Major Arterial Finding: Street, nor is an intersection of a Local Residential Street with an Arterial Street proposed.

The requirements of this section have been satisfied.
15. Alleys. Alleys shall be provided in commercial and industrial districts unless other permanent provisions for access to off-street parking and loading facilities are made as approved by the decisionmaking authority. While alley intersections and sharp changes in alignment should be avoided, the corners of necessary alley intersections shall have radii of not less than 10 feet. Alleys may be provided in residential subdivisions or multi-family projects. The decision to locate alleys shall consider the relationship and impact of the alley to adjacent land uses. *

$$
\text { Applicant's } \quad \text { No alleys are proposed with this subdivision. }
$$

Finding:
The requirements of this section have been satisfied.
16. Sidewalks. Sidewalks shall be installed per CDC $92.010(H)$, Sidewalks. The residential sidewalk width is six feet plus planter strip as specified below. Sidewalks in commercial zones shall be constructed per subsection (A)(3) of this section. See also subsection C of this section. Sidewalk width may be reduced with City Engineer approval to the minimum amount (e.g., four feet wide) necessary to respond to site constraints such as grades, mature trees, rock outcroppings, etc., or to match existing sidewalks or right-of-way limitations.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The applicant proposes to install a } 6 \text {-foot sidewalk plus planter strip along the both sides } \\
\text { Finding: } & \text { of Upper Midhill and Scenic within this property, per this standard. }
\end{array}
$$

The requirements of this section have been satisfied.
17. Planter strip. The planter strip is between the curb and sidewalk providing space for a grassed or landscaped area and street trees. The planter strip shall be at least 6 feet wide to accommodate a fully matured tree without the boughs interfering with pedestrians on the sidewalk or vehicles along the curbline. Planter strip width may be reduced or eliminated, with City Engineer approval, when it cannot
be corrected by site plan, to the minimum amount necessary to respond to site constraints such as grades, mature trees, rock outcroppings, etc., or in response to right-of-way limitations.

Applicant's The applicant proposes to install a minimum 6-foot planter strip between all proposed Finding: sidewalks and paved street sections on Upper Midhill. The Applicant proposes a curbtight sidewalk configuration along the western edge of Scenic in order to reduce the intensity of grading and wall construction required adjacent to the site's neighboring single family homes.

The requirements of this section have been satisfied.
18. Streets and roads shall be dedicated without any reservations or restrictions.

Applicant's No reservations or restrictions are proposed with the street dedication.
Finding:
The requirements of this section have been satisfied.
19. All lots in a subdivision shall have access to a public street. Lots created by partition may have access to a public street via an access easement pursuant to the standards and limitations set forth for such accessways in Chapter 48 CDC.

Applicant's All lots have direct access to a public street.
Finding:
The requirements of this section have been satisfied.
20. Gated streets. Gated streets are prohibited in all residential areas on both public and private streets. A driveway to an individual home may be gated.

Applicant's Gated streets are not proposed.
Finding:
The requirements of this section have been satisfied.
21. Entryway treatments and street isle design. When the applicant desires to construct certain walls, planters, and other architectural entryway treatments within a subdivision, the following standards shall apply:
a. All entryway treatments except islands shall be located on private property and not in the public right-of-way.
b. Planter islands may be allowed provided there is no structure (i.e., brick, signs, etc.) above the curbline, except for landscaping. Landscaped islands shall be set back a minimum of $\mathbf{2 4}$ feet from the curbline of the street to which they are perpendicular.
c. All islands shall be in public ownership. The minimum aisle width between the curb and center island curbs shall be 14 feet. Additional width may be required as determined by the City Engineer. d. Brick or special material treatments are acceptable at intersections with the understanding that the City will not maintain these sections except with asphalt overlay, and that they must meet the

Americans with Disabilities Act (ADA) standards. They shall be laid out to tie into existing sidewalks at intersections.
e. Maintenance for any common areas and entryway treatments (including islands) shall be guaranteed through homeowners association agreements, CC\&Rs, etc.
f. Under Chapter 52 CDC, subdivision monument signs shall not exceed 32 square feet in area.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The applicant does not propose to construct entryway treatments to the subdivision at } \\
\text { Finding: } & \text { this time. }
\end{array}
$$

The requirements of this section have been satisfied.
22. Based upon the determination of the City Manager or the Manager's designee, the applicant shall construct or cause to be constructed, or contribute a proportionate share of the costs, for all necessary off-site improvements identified by the transportation analysis commissioned to address CDC $85.170(B)(2)$ that are required to mitigate impacts from the proposed subdivision. The proportionate share of the costs shall be determined by the City Manager or Manager's designee, who shall assume that the proposed subdivision provides improvements in rough proportion to identified impacts of the subdivision. Off-site transportation improvements will include bicycle and pedestrian improvements as identified in the adopted City of West Linn TSP.

Applicant's Finding:	The submitted Transportation Impact Analysis includes the following mitigation measures:
	- Construct an extension of Upper Midhill Road consistent with the City's local street standard. - Shrubbery and landscaping near the internal intersections and site access points should be maintained to ensure adequate sight distance. - Develop a cost estimate for the proposed improvements to the Arbor/highway 43 intersection in coordination with the City and ODOT staff and pay a proportionate share (estimated at 1.9 percent) of the total cost of the improvements.

The Applicant proposes to accomplish these mitigation measures with this subdivision project.

The requirements of this section have been satisfied.

B. Blocks and lots.

1. General. The length, width, and shape of blocks shall be designed with due regard for the provision of adequate building sites for the use contemplated; consideration of the need for traffic safety, convenience, access, circulation, and control; and recognition of limitations and opportunities of topography and solar access.

Applicant's	The lot layout is based on due regard for the provision of adequate building sites; traffic
Finding:	safety, convenience, access, circulation and control; and the limitations and opportunities
of topography and existing roadway network. The lots are generously sized to	
accommodate homes that are similar in nature to those in surrounding subdivisions. The	

extensions of Upper Midhill Drive and Scenic Drive allow all traffic access from a localclassification street. The site is adjacent to the City's boundary to the north, east and west, limiting connectivity options. The lots are all deep in the north-south direction, thus enhancing solar access on the building sites.

The requirements of this section have been satisfied.
2. Sizes. The recommended block size is $\mathbf{4 0 0}$ feet in length to encourage greater connectivity within the subdivision. Blocks shall not exceed 800 feet in length between street lines, except for blocks adjacent to arterial streets or unless topographical conditions or the layout of adjacent streets justifies a variation. Designs of proposed intersections shall demonstrate adequate sight distances to the City Engineer's specifications. Block sizes and proposed accesses must be consistent with the adopted TSP.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Though the site has topographic considerations as well as the location adjacent to the City } \\
\text { Finding: } & \text { limits, no block length exceeds } 800 \text { feet. Scenic Drive connects to Hillside Drive less than } \\
800 \text { feet from where it turns } 90 \text { degrees to connect with Upper Midhill Drive. Upper } \\
\text { Midhill Drive connects to College View Drive less than } 800 \text { feet from where it turns } 90 \\
\text { degrees to connect with Scenic Drive. The entire site is looped to enhance connectivity } \\
\text { and meet the intent of the block length standards. }
\end{array}
$$

The requirements of this section have been satisfied.
3. Lot size and shape. Lot or parcel size, width, shape, and orientation shall be appropriate for the location of the subdivision or partition, for the type of use contemplated, for potential utilization of solar access, and for the protection of drainageways, trees, and other natural features. No lot or parcel shall be dimensioned to contain part of an existing or proposed street. All lots or parcels shall be buildable. "Buildable" describes lots that are free of constraints such as wetlands, drainageways, etc., that would make home construction impossible. Lot or parcel sizes shall not be less than the size required by the zoning code unless as allowed by planned unit development (PUD).
Depth and width of properties reserved or laid out for commercial and industrial purposes shall be adequate to provide for the off-street parking and service facilities required by the type of use proposed.

Chapter 14- Single-Family Residential Detached and Attached, R-4.5 standards are as follows:

Lot Size (Detached Dwelling Units)	4,500 square feet
Lot Size (Attached Dwelling Units)	4,000 square feet
Front Lot Line Length/Minimum Lot Width at Front Lot Line	$\mathbf{3 5}$ feet
Average Minimum Lot Width	$\mathbf{3 5}$ feet

Applicant's All proposed lots are a minimum of 4,500 square feet in size to accommodate singleFinding: family detached dwelling units. All 34 proposed lots exceed the minimum requirements for front lot line length, lot width and lot depth.

The requirements of this section have been satisfied.
4. Access. Access to subdivisions, partitions, and lots shall conform to the provisions of Chapter 48 CDC, Access, Egress and Circulation.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Section } 48.020 . \text { B states: "All lots shall have access from a public street or from a platted } \\
\text { Finding: } & \text { private street approved under the land division chapter." All proposed lots will have } \\
& \text { access from a public street. }
\end{array}
$$

The requirements of this section have been satisfied.
5. Double frontage lots and parcels. Double frontage lots and parcels have frontage on a street at the front and rear property lines. Double frontage lots and parcels shall be avoided except where they are essential to provide separation of residential development from arterial streets or adjacent nonresidential activities, or to overcome specific disadvantages of topography and orientation. A planting screen or impact mitigation easement at least 10 feet wide, and across which there shall be no right of access, may be required along the line of building sites abutting such a traffic artery or other incompatible use.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Due to the location of the Upper Midhill right-of-way and topography of the site, Lots } 21 \\
\text { Finding: } & \text { and } 22 \text { are double frontage. However, the tip of Upper Midhill, which will be the rear of } \\
\text { these two lots, is a local street that will be providing access to other homes in the } \\
\text { subdivision. No access restrictions are necessary. Two double-frontage lots were } \\
\text { unavoidable to accommodate the topography, the need for connectivity, and the existing } \\
\text { public street pattern. }
\end{array}
$$

The requirements of this section have been satisfied.
6. Lot and parcel side lines. The lines of lots and parcels, as far as is practicable, should run at right angles to the street upon which they face, except that on curved streets they should be radial to the curve.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Though the shape of the subject site is somewhat irregular, all side lot lines run at } \\
\text { Finding: } & \text { approximate right angles to the streets upon which they face as far as practicable. }
\end{array}
$$

The requirements of this section have been satisfied.
7. Flag lots. Flag lots can be created where it can be shown that no other reasonable street access is possible to achieve the requested land division. A single flag lot shall have a minimum street frontage of $\mathbf{1 5}$ feet for its accessway. Where two to four flag lots share a common accessway, the minimum street frontage and accessway shall be eight feet in width per lot. Common accessways shall have mutual maintenance agreements and reciprocal access and utility easements. *

Applicant's	There are no flag lots proposed with this subdivision.
Finding:	The requirements of this section have been satisfied.

8. Large lots or parcels. In dividing tracts into large lots or parcels which, at some future time, are likely to be redivided, the approval authority may:
a. require that the blocks be of such size and shape, and be so divided into building sites, and contain such easements and site restrictions as will provide for extension and opening of streets at intervals which will permit a subsequent division of any tract into lots or parcels of smaller size; or
b. alternately, in order to prevent further subdivision or partition of oversized and constrained lots or parcels, restrictions may be imposed on the subdivision or partition plat.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Lot } 5 \text { is sized such that it could be redivided in the future; however, the location of the lot } \\
\text { Finding: } & \text { adjacent to Tract } A \text { and the width of the lot's frontage make redivision very unlikely. If } \\
\text { redivision is proposed in the future, all requirements of the R-4.5 zone could be met while } \\
\text { accommodating two parcels from lot } 5 .
\end{array}
$$

The requirements of this section have been satisfied.
C. Pedestrian and bicycle trails.

1. Trails or multi-use pathways shall be installed, consistent and compatible with federal ADA requirements and with the Oregon Transportation Planning Rule, between subdivisions, cul-de-sacs, and streets that would otherwise not be connected by streets due to excessive grades, significant tree(s), and other constraints natural or manmade. Trails shall also accommodate bicycle or pedestrian traffic between neighborhoods and activity areas such as schools, libraries, parks, or commercial districts. Trails shall also be required where designated by the Parks Master Plan.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The proposed extensions of Upper Midhill Drive and Scenic Drive include sidewalks and, } \\
\text { Finding: } & \text { therefore, additional trails or pedestrian connections are not required. There are no } \\
& \text { existing trail connections which require connection from this site. }
\end{array}
$$

The requirements of this section have been satisfied.

D. Transit facilities.

1. The applicant shall consult with Tri-Met and the City Engineer to determine the appropriate location of transit stops, bus pullouts, future bus routes, etc., contiguous to or within the development site. If transit service is planned to be provided within the next two years, then facilities such as pullouts shall be constructed per Tri-Met standards at the time of development. More elaborate facilities, like shelters, need only be built when service is existing or imminent. Additional rights-of-way may be required of developers to accommodate buses.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Transit facilities have not been identified by Tri-Met or the City Development Engineer } \\
\text { Finding: } & \text { adjacent to this property. }
\end{array}
$$

The requirements of this section have been satisfied.
E. Grading. Grading of building sites shall conform to the following standards unless physical conditions demonstrate the propriety of other standards:

1. All cuts and fills shall comply with the excavation and grading provisions of the Uniform Building Code and the following:
a. Cut slopes shall not exceed one and one-half feet horizontally to one foot vertically (i.e., 67 percent grade).
b. Fill slopes shall not exceed two feet horizontally to one foot vertically (i.e., $\mathbf{5 0}$ percent grade). Please see the following illustration. ${ }^{* * *}$
2. The character of soil for fill and the characteristics of lot and parcels made usable by fill shall be suitable for the purpose intended.
3. If areas are to be graded (more than any four-foot cut or fill), compliance with CDC 85.170(C) is required.
4. The proposed grading shall be the minimum grading necessary to meet roadway standards, and to create appropriate building sites, considering maximum allowed driveway grades.
5. Type I lands shall require a report submitted by an engineering geologist, and Type I and Type II lands shall require a geologic hazard report.
6. Repealed by Ord. 1635.
7. On land with slopes in excess of $\mathbf{1 2}$ percent, cuts and fills shall be regulated as follows:
a. Toes of cuts and fills shall be set back from the boundaries of separate private ownerships at least three feet, plus one-fifth of the vertical height of the cut or fill. Where an exception is required from that requirement, slope easements shall be provided.
b. Cuts shall not remove the toe of any slope where a severe landslide or erosion hazard exists (as described in subsection (G)(5) of this section).
c. Any structural fill shall be designed by a registered engineer in a manner consistent with the intent of this code and standard engineering practices, and certified by that engineer that the fill was constructed as designed.
d. Retaining walls shall be constructed pursuant to Section 2308(b) of the Oregon State Structural Specialty Code.
e. Roads shall be the minimum width necessary to provide safe vehicle access, minimize cut and fill, and provide positive drainage control.
8. Land over 50 percent slope shall be developed only where density transfer is not feasible. The development will provide that:
a. At least $\mathbf{7 0}$ percent of the site will remain free of structures or impervious surfaces.
b. Emergency access can be provided.
c. Design and construction of the project will not cause erosion or land slippage.
d. Grading, stripping of vegetation, and changes in terrain are the minimum necessary to construct the development in accordance with subsection J of this section.

Applicant's	A geotechnical engineering report is included with this submittal. A preliminary grading
Finding:	plan has been included in the submitted plans which complies with all criteria of this
subsection. The Applicant has provided a plan which minimizes cuts and fills and reduces	
the need for significant retaining walls where possible.	

The requirements of this section have been satisfied.
F. Water.

1. A plan for domestic water supply lines or related water service facilities shall be prepared consistent with the adopted Comprehensive Water System Plan, plan update, March 1987, and subsequent superseding revisions or updates.
2. Adequate location and sizing of the water lines.
3. Adequate looping system of water lines to enhance water quality.
4. For all non-single-family developments, there shall be a demonstration of adequate fire flow to serve the site.
5. A written statement, signed by the City Engineer, that water service can be made available to the site by the construction of on-site and off-site improvements and that such water service has sufficient volume and pressure to serve the proposed development's domestic, commercial, industrial, and fire flows.

$$
\begin{array}{ll}
\text { Applicant's } & \text { The applicant will connect all lots to public water per the submitted Composite Utility } \\
\text { Finding: } & \text { Plan, sheet C300. This plan is consistent with the adopted Comprehensive Water System } \\
& \text { Plan. }
\end{array}
$$

The requirements of this section have been satisfied.

G. Sewer.

1. A plan prepared by a licensed engineer shall show how the proposal is consistent with the Sanitary Sewer Master Plan (July 1989). Agreement with that plan must demonstrate how the sanitary sewer proposal will be accomplished and how it is gravity-efficient. The sewer system must be in the correct basin and should allow for full gravity service.
2. Sanitary sewer information will include plan view of the sanitary sewer lines, including manhole locations and depth or invert elevations.
3. Sanitary sewer lines shall be located in the public right-of-way, particularly the street, unless the applicant can demonstrate why the alternative location is necessary and meets accepted engineering standards.
4. Sanitary sewer line should be at a depth that can facilitate connection with down-system properties in an efficient manner.
5. The sanitary sewer line should be designed to minimize the amount of lineal feet in the system.
6. The sanitary sewer line shall avoid disturbance of wetland and drainageways. In those cases where that is unavoidable, disturbance shall be mitigated pursuant to Chapter 32 CDC, Water Resource Area Protection, all trees replaced, and proper permits obtained. Dual sewer lines may be required so the drainageway is not disturbed.
7. Sanitary sewer shall be extended or stubbed out to the next developable subdivision or a point in the street that allows for reasonable connection with adjacent or nearby properties.
8. The sanitary sewer system shall be built pursuant to DEQ, City, and Tri-City Service District sewer standards. The design of the sewer system should be prepared by a licensed engineer, and the applicant must be able to demonstrate the ability to satisfy these submittal requirements or standards at the preconstruction phase.
9. A written statement, signed by the City Engineer, that sanitary sewers with sufficient capacity to serve the proposed development and that adequate sewage treatment plant capacity is available to the City to serve the proposed development.

Applicant's The applicant will connect all lots to public sanitary sewer per the submitted Composite
Finding: Utility Plan, Sheet C300. The proposed sanitary sewer system is consistent with the Sanitary Sewer Master Plan, is in the correct basin and allows for full gravity service.

The requirements of this section have been satisfied.

H. Storm

1. A stormwater quality and detention plan shall be submitted which complies with the submittal criteria and approval standards contained within Chapter 33 CDC. It shall include profiles of proposed drainageways with reference to the adopted Storm Drainage Master Plan.
2. Storm treatment and detention facilities shall be sized to accommodate a $\mathbf{2 5}$-year storm incident. A registered civil engineer shall prepare a plan and statement which shall be supported by factual data that clearly shows that there will be no adverse off-site impacts from increased intensity of runoff downstream or constriction causing ponding upstream. The plan and statement shall identify all on- or off-site impacts and measures to mitigate those impacts. The plan and statement shall, at a minimum, determine the off-site impacts from a 25-year storm.
3. Plans shall demonstrate how storm drainage will be collected from all impervious surfaces including roof drains. Storm drainage connections shall be provided to each dwelling unit/lot. The location, size, and type of material selected for the system shall correlate with the 25-year storm incident.
4. Treatment of storm runoff shall meet municipal code standards.

Applicant's The proposed stormwater treatment and detention has been designed to meet City Finding: standards, as detailed in the submitted stormwater report. The project will be served by a stormwater facility located at midpoint of the development in Tract C.

The requirements of this section have been satisfied.
I. Utility easements. Subdivisions and partitions shall establish utility easements to accommodate the required service providers as determined by the City Engineer. The developer of the subdivision shall make accommodation for cable television wire in all utility trenches and easements so that cable can fully serve the subdivision.

Applicant's The applicant will establish utility easements as determined by the City Engineer and Finding: shown on the preliminary plat.

The requirements of this section have been satisfied.

J. Supplemental provisions.

1. Wetland and natural drainageways. Wetlands and natural drainageways shall be protected as required by Chapter 32 CDC, Water Resource Area Protection. Utilities may be routed through the protected corridor as a last resort, but impact mitigation is required.

$$
\begin{array}{ll}
\text { Applicant's } & \text { There are two small wetlands on the site that will be removed and mitigated to } \\
\text { Finding: } & \text { accommodate the public roadway network. Given the minimum density requirements }
\end{array}
$$

and the need to grade and connect roadways on site, there is no alternative to routing utilities and roadways through the two wetlands. This is discussed further in response to the provisions of Chapter 32.
2. Willamette and Tualatin Greenways. The approval authority may require the dedication to the City or setting aside of greenways which will be open or accessible to the public. Except for trails or paths, such greenways will usually be left in a natural condition without improvements. Refer to Chapter $\underline{28}$ CDC for further information on the Willamette and Tualatin River Greenways.

$$
\begin{array}{ll}
\text { Applicant's } & \text { No greenways exist on this site or have been identified for dedication on this property. } \\
\text { Finding: } & \text { This property is not adjacent to the Willamette or Tualatin River and, therefore, a River } \\
& \text { Greenway is not feasible on this site. }
\end{array}
$$

The requirements of this section have been satisfied.
3. Street trees. Street trees are required as identified in the appropriate section of the municipal code and Chapter 54 CDC.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Street trees will be installed as part of the public improvements with the development of } \\
\text { Finding: } & \text { this subdivision. }
\end{array}
$$

The requirements of this section have been satisfied.
4. Lighting. To reduce ambient light and glare, high or low pressure sodium light bulbs shall be required for all subdivision street or alley lights. The light shall be shielded so that the light is directed downwards rather than omni-directional.

Applicant's Any street light installation within the subdivision will utilize LED fixtures. Finding:

The requirements of this section have been satisfied.
5. Dedications and exactions. The City may require an applicant to dedicate land and/or construct a public improvement that provides a benefit to property or persons outside the property that is the subject of the application when the exaction is roughly proportional. No exaction shall be imposed unless supported by a determination that the exaction is roughly proportional to the impact of development.

Applicant's The applicant is proposing right-of-way dedication and improvements that are roughly Finding: proportional to the development of a 34 -lot subdivision. The proposed improvements include, the creation and improvement of a local street network from which the proposed homes will take access, a new infrastructure system for the provision of urban services to the development, and a contribution of a proportionate share of the eventual improvements to the intersection improvements associated with Highway 43 and Arbor Drive.
6. Underground utilities. All utilities, such as electrical, telephone, and television cable, that may at times be above ground or overhead shall be buried underground in the case of new development. The exception would be in those cases where the area is substantially built out and adjacent properties have above-ground utilities and where the development site's frontage is under 200 feet and the site is less than one acre. High voltage transmission lines, as classified by Portland General Electric or electric service provider, would also be exempted. Where adjacent future development is expected or imminent, conduits may be required at the direction of the City Engineer. All services shall be underground with the exception of standard above-grade equipment such as some meters, etc.

Applicant's All utilities will be installed in compliance with this section.

Finding:
The requirements of this section have been satisfied.
7. Density requirement. Density shall occur at 70 percent or more of the maximum density allowed by the underlying zoning. These provisions would not apply when density is transferred from Type I and II lands as defined in CDC $\mathbf{0 2 . 0 3 0}$. Development of Type I or II lands are exempt from these provisions. Land divisions of three lots or less would also be exempt.

Applicant's The R-4.5 zone permits a maximum density of 9.68 dwelling units per net acre. Net acre Finding: is defined as "The total gross acres less the public right-of-way and other acreage deductions, as applicable". The net acreage of this site after removal of dedicated rightof way is 5.10 acres. At 9.68 dwelling units per net acre, the maximum number of dwelling units on this site is 49 . The minimum density of this site is 70% of 49 units, or 34 units, which is the number of dwelling units proposed.

The requirements of this section have been satisfied.
8. Mix requirement. The "mix" rule means that developers shall have no more than $\mathbf{1 5}$ percent of the R-2.1 and R-3 development as single-family residential. The intent is that the majority of the site shall be developed as medium high density multi-family housing.

$$
\begin{array}{ll}
\text { Applicant's } & \text { This property is zoned R-4.5 and, therefore, the use of the parcel as an entirely residential } \\
\text { Finding: } & \text { development is permitted. }
\end{array}
$$

The requirements of this section have been satisfied.
9. Heritage trees/significant tree and tree cluster protection. All heritage trees, as defined in the Municipal Code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction. All non-heritage trees and clusters of trees (three or more trees with overlapping dripline; however, native oaks need not have an overlapping dripline) that are considered significant by virtue of their size, type, location, health, or numbers shall be saved pursuant to CDC
55.100(B)(2). Trees are defined per the municipal code as having a trunk six inches in diameter or 19 inches in circumference at a point five feet above the mean ground level at the base of the trunk.

```
Applicant's No heritage trees have been identified on this site. Tree preservation is discussed further
Finding: in this report in Section 55.100.
```

The requirements of this section have been satisfied.

DIVISION 3. SUPPLEMENTAL PROVISIONS AND EXCEPTIONS

CHAPTER 32. WATER RESOURCE AREA PROTECTION

32.070 ALTERNATE REVIEW PROCESS

This section establishes a review and approval process that applicants can use when there is reason to believe that the width of the WRA prescribed under the standard process (CDC 32.060(D)) is larger than necessary to protect the functions of the water resource at a particular site. It allows a qualified professional to determine what water resources and associated functions (see Table 32-4 below) exist at a site and the WRA width that is needed to maintain those functions. (Ord. 1623 § 1, 2014)

32.080 APPROVAL CRITERIA (ALTERNATE REVIEW PROCESS)

Applications reviewed under the alternate review process shall meet the following approval criteria:
A. The proposed WRA shall be, at minimum, qualitatively equal, in terms of maintaining the level of functions allowed by the WRA standards of CDC 32.060(D).
B. If a WRA is already significantly degraded (e.g., native forest and ground cover have been removed or the site dominated by invasive plants, debris, or development), the approval authority may allow a reduced WRA in exchange for mitigation, if:

1. The proposed reduction in WRA width, coupled with the proposed mitigation, would result in better performance of functions than the standard WRA without such mitigation. The approval authority shall make this determination based on the applicant's proposed mitigation plan and a comparative analysis of ecological functions under existing and enhanced conditions (see Table 32-4).
2. The mitigation project shall include all of the following components as applicable. It may also include other forms of enhancement (mitigation) deemed appropriate by the approval authority.
a. Removal of invasive vegetation.
b. Planting native, non-invasive plants (at minimum, consistent with CDC 32.100) that provide improved filtration of sediment, excess nutrients, and pollutants. The amount of enhancement (mitigation) shall meet or exceed the standards of CDC 32.090(C).
c. Providing permanent improvements to the site hydrology that would improve water resource functions.
d. Substantial improvements to the aquatic and/or terrestrial habitat of the WRA.
C. Identify and discuss site design and methods of development as they relate to WRA functions.
D. Address the approval criteria of CDC 32.060, with the exception of CDC 32.060(D).

Applicant's Finding:

The Applicant engaged Schott \& Associates, Ecologists \& Wetland Specialists to determine the size and location of the WRA area on the site. There are two areas of WRA on this site. The first WRA consists of two small wetlands located in the alignment of the public road right-of-way totaling 3,963 square feet; and the other is the ephemeral drainageway along the northwest property line. The ephemeral drainageway will not be affected by this development. The wetlands will be removed due to roadway construction; however, mitigation will be accomplished as identified below.

The requirements of this section have been satisfied.

32.090 MITIGATION PLAN

A A mitigation plan shall only be required if development is proposed within a WRA (including development of a PDA). (Exempted activities of CDC 32.040 do not require mitigation unless specifically stated. Temporarily disturbed areas, including TDAs associated with exempted activities, do not require mitigation, just grade and soil restoration and re-vegetation.) The mitigation plan shall satisfy all applicable provisions of CDC 32.100, Re-Vegetation Plan Requirements.
B. Mitigation shall take place in the following locations, according to the following priorities (subsections (B)(1) through (4) of this section):

1. On-site mitigation by restoring, creating or enhancing WRAs.
2. Off-site mitigation in the same sub-watershed will be allowed, but only if the applicant has demonstrated that:
a. It is not practicable to complete mitigation on-site, for example, there is not enough area on-site; and
b. The mitigation will provide equal or superior ecological function and value.
3. Off-site mitigation outside the sub-watershed will be allowed, but only if the applicant has demonstrated that:
a. It is not practicable to complete mitigation on-site, for example, there is not enough area on-site; and
b. The mitigation will provide equal or superior ecological function and value.
4. Purchasing mitigation credits though DSL or other acceptable mitigation bank.
C. Amount of mitigation.
5. The amount of mitigation shall be based on the square footage of the permanent disturbance area by the application. For every one square foot of non-PDA disturbed area, on-site mitigation shall require one square foot of WRA to be created, enhanced or restored.
6. For every one square foot of PDA that is disturbed, on-site mitigation shall require one half a square foot of WRA vegetation to be created, enhanced or restored.
7. For any off-site mitigation, including the use of DSL mitigation credits, the requirement shall be for every one square foot of WRA that is disturbed, two square feet of WRA shall be created, enhanced or restored. The DSL mitigation credits program or mitigation bank shall require a legitimate bid on the cost of on-site mitigation multiplied by two to arrive at the appropriate dollar amount.
D. The Planning Director may limit or define the scope of the mitigation plan and submittal requirements commensurate with the scale of the disturbance relative to the resource and pursuant to
the authority of Chapter 99 CDC. The Planning Director may determine that a consultant is required to complete all or a part of the mitigation plan requirements.
E. A mitigation plan shall contain the following information:
8. A list of all responsible parties including, but not limited to, the owner, applicant, contractor, or other persons responsible for work on the development site.
9. A map showing where the specific adverse impacts will occur and where the mitigation activities will occur.
10. A re-vegetation plan for the area(s) to be mitigated that meets the standards of CDC 32.100.
11. An implementation schedule, including timeline for construction, mitigation, mitigation maintenance, monitoring, and reporting. All in-stream work in fish bearing streams shall be done in accordance with the Oregon Department of Fish and Wildlife.
12. Assurances shall be established to rectify any mitigation actions that are not successful within the first three years. This may include bonding or other surety. (Ord. 1623 § 1, 2014)

Applicant's Mitigation for the 3,963 square feet of wetland area is proposed off-site at a ratio of two Finding: square feet of mitigation per every one square foot of WRA removal. This 7,926 square feet of mitigation is proposed to be located within a City owned or a City sponsored property. The Applicant intends to work with the City's parks department to find a suitable location for the proposed mitigation. The subject property does not have a suitable WRA mitigation site located within the development.

The requirements of this section have been satisfied.

CHAPTER 42. CLEAR VISION AREAS

42.020 CLEAR VISION AREAS REQUIRED, USES PROHIBITED

A. A clear vision area shall be maintained on the corners of all property adjacent to an intersection as provided by CDC 42.040 and 42.050 .
B. A clear vision area shall contain no planting, fence, wall, structure or temporary or permanent obstruction (except for an occasional utility pole or tree) exceeding three feet in height, measured from the top of the curb, or, where no curb exists, from the street centerline grade, except that trees exceeding this height may be located in this area, provided all branches below eight feet are removed. (Ord. 1192, 1987)

42.030 EXCEPTIONS

The following described area in Willamette shall be exempt from the provisions of this chapter. The parcels of land zoned General Commercial which abut Willamette Falls Drive, located between 10th and 16th Streets. Beginning at the intersection of Willamette Falls Drive and 11th Street on 7th Avenue to 16th Street; on 16th Street to 9th Avenue; on 9th Avenue to 14th Street to the Tualatin River; following the Tualatin River and Willamette River to 12th Street; on 12th Street to 4th Avenue; on 4th Avenue to 11th Street; on 11th Street to Willamette Falls Drive. This described area does not include the northerly side of Willamette Falls Drive.

42.040 COMPUTATION; STREET AND ACCESSWAY 24 FEET OR MORE IN WIDTH

The clear vision area for all street intersections and street and accessway intersections (accessways having $\mathbf{2 4}$ feet or more in width) shall be that triangular area formed by the right-of-way or property
lines along such lots and a straight line joining the right-of-way or property line at points which are 30 feet distant from the intersection of the right-of-way line and measured along such lines.

42.050 COMPUTATION; ACCESSWAY LESS THAN 24 FEET IN WIDTH

The clear vision area for street and accessway intersections (accessways having less than $\mathbf{2 4}$ feet in width) shall be that triangular area whose base extends 30 feet along the street right-of-way line in both directions from the centerline of the accessway at the front setback line of a single-family and two-family residence, and 30 feet back from the property line on all other types of uses.

$$
\begin{array}{ll}
\text { Applicant's } & \text { All clear vision areas at the intersections of public streets with driveways or other public } \\
\text { Finding: } & \begin{array}{l}
\text { streets on the subject site will be free of plantings, fences, walls, structures and } \\
\text { obstructions, meeting the requirements for clear vision areas. }
\end{array}
\end{array}
$$

The requirements of this section have been satisfied.

CHAPTER 44. FENCES

44.020 SIGHT-OBSCURING FENCE; SETBACK AND HEIGHT LIMITATIONS

A. A sight- or non-sight-obscuring fence may be located on the property line or in a yard setback area subject to the following:

1. The fence is located within:
a. A required front yard area, and it does not exceed three feet, except pillars and driveway entry features subject to the requirements of Chapter 42 CDC, Clear Vision Areas, and approval by the Planning Director;
b. A required side yard which abuts a street and it is within that portion of the side yard which is also part of the front yard setback area and it does not exceed three feet;
c. A required side yard which abuts a street and it is within that portion of the side yard which is not also a portion of the front yard setback area and it does not exceed six feet provided the provisions of Chapter 42 CDC are met;
d. A required rear yard which abuts a street and it does not exceed six feet; or
e. A required side yard area which does not abut a street or a rear yard and it does not exceed six feet.

Applicant's New fences are not indicated on the proposed plans because the exact locations have yet Finding: to be determined. All fences constructed as part of this subdivision will meet the requirements of these standards.
B. Fence or wall on a retaining wall. When a fence is built on a retaining wall or an artificial berm, the following standards shall apply:

1. When the retaining wall or artificial berm is 30 inches or less in height from finished grade, the maximum fence or wall height on top of the retaining wall shall be six feet.
2. When the retaining wall or earth berm is greater than 30 inches in height, the combined height of the retaining wall and fence or wall from finished grade shall not exceed eight and one-half feet.
3. Fences or walls located on top of retaining walls or earth berms in excess of $\mathbf{3 0}$ inches above finished grade may exceed the total allowed combined height of eight and one-half feet; provided, that the fence or wall is located a minimum of two feet from the retaining wall and the fence or wall height shall not exceed six feet.
Applicant's Any fences built on retaining walls will meet these standards.
Finding:

The requirements of this section have been satisfied.

44.030 SCREENING OF OUTDOOR STORAGE

A. All service, repair, and storage activities carried on in connection with any commercial, business or industrial activity and not conducted within an enclosed building shall be screened from view of all adjacent properties and adjacent streets by a sight-obscuring fence.
B. The sight-obscuring fence shall be in accordance with provisions of Chapter 42 CDC, Clear Vision Areas, and shall be subject to the provisions of Chapter $\underline{55}$ CDC, Design Review.

$$
\begin{array}{ll}
\text { Applicant's } & \text { This site is residential and no service, repair, or storage activities in connection with } \\
\text { Finding: } & \text { commercial, business, or industry activities are proposed. }
\end{array}
$$

44.040 LANDSCAPING

Landscaping which is located on the fence line and which impairs sight vision shall not be located within the clear vision area as provided in Chapter 42 CDC.

44.050 STANDARDS FOR CONSTRUCTION

A. The structural side of the fence shall face the owner's property; and
B. The sides of the fence abutting adjoining properties and the street shall be maintained. (Ord.

1291, 1990
Applicant's Any fences built will meet these standards.
Finding:
The requirements of this section have been satisfied.

CHAPTER 54. LANDSCAPING

54.020 APPROVAL CRITERIA

A. Every development proposal requires inventorying existing site conditions which include trees and landscaping. In designing the new project, every reasonable attempt should be made to preserve and protect existing trees and to incorporate them into the new landscape plan. Similarly, significant landscaping (e.g., bushes, shrubs) should be integrated. The rationale is that saving a 30 -foot-tall mature tree helps maintain the continuity of the site, they are qualitatively superior to two or three two-inch caliper street trees, they provide immediate micro-climate benefits (e.g., shade), they soften views of the street, and they can increase the attractiveness, marketability, and value of the development.

Applicant's	This subdivision application includes a tree inventory and preservation plan focused on
Finding:	maintaining significant trees and clusters. Roads, utilities, and lots have been carefully
	placed to allow the retention of as many trees as possible.

B. To encourage tree preservation, the parking requirement may be reduced by one space for every significant tree that is preserved in the parking lot area for a maximum reduction of 10 percent of the required parking. The City Parks Supervisor or Arborist shall determine the significance of the tree and/or landscaping to determine eligibility for these reductions.

Applicant's No parking areas, aside from driveways, are required for residential subdivisions. No Finding: parking reduction is requested.
C. Developers must also comply with the municipal code chapter on tree protection.

Applicant's The developer will comply with all municipal code requirements for tree protection.
Finding:
D. Heritage trees. Heritage trees are trees which, because of their age, type, notability, or historical association, are of special importance. Heritage trees are trees designated by the City Council following review of a nomination. A heritage tree may not be removed without a public hearing at least 30 days prior to the proposed date of removal. Development proposals involving land with heritage tree(s) shall be required to protect and save the tree(s). Further discussion of heritage trees is found in the municipal code.

Applicant's No heritage trees have been identified on this site.
Finding:
The requirements of this section have been satisfied.

E. (Not applicable to single-family residential)

F. Landscaping (trees) in new subdivision.

1. Street trees shall be planted by the City within the planting strips (minimum six-foot width) of any new subdivision in conformity with the street tree plan for the area, and in accordance with the planting specifications of the Parks and Recreation Department. All trees shall be planted during the first planting season after occupancy. In selecting types of trees, the City Arborist may determine the appropriateness of the trees to local conditions and whether that tree has been overplanted, and whether alternate species should be selected. Also see subsection (C) of this section.
2. The cost of street trees shall be paid by the developer of the subdivision.
3. The fee per street tree, as established by the City, shall be based upon the following:
a. The cost of the tree;
b. Labor and equipment for original placement;
c. Regular maintenance necessary for tree establishment during the initial two-year period following the City schedule of maintenance; and
d. A two-year replacement warranty based on the City's established failure rate. (Ord. 1408, 1998; Ord. 1463, 2000)

Applicant's	The applicant will pay for the installation of street trees by the City and maintain the trees
Finding:	for the two-year establishment period.

The requirements of this section have been satisfied.

54.030 PLANTING STRIPS FOR MODIFIED AND NEW STREETS

All proposed changes in width in a public street right-of-way or any proposed street improvement shall, where feasible, include allowances for planting strips. Plans and specifications for planting such areas shall be integrated into the general plan of street improvements. This chapter requires any multi-family, commercial, or public facility which causes change in public right-of-way or street improvement to comply with the street tree planting plan and standards.

$$
\begin{array}{ll}
\text { Applicant's } & \text { Minimum width 6-foot-wide planting strips will be installed between the sidewalk and the } \\
\text { Finding: } & \text { asphalt within the right-of-way of Bland Circle and Tannler Drive. }
\end{array}
$$

The requirements of this section have been satisfied.

54.040 INSTALLATION

A. All landscaping shall be installed according to accepted planting procedures.
B. The soil and plant materials shall be of good quality.
C. Landscaping shall be installed in accordance with the provisions of this code.
D. Certificates of occupancy shall not be issued unless the landscaping requirements have been met or other arrangements have been made and approved by the City such as the posting of a bond.

Applicant's All landscaping installation will meet the requirements of this section.
Finding:
The requirements of this section have been satisfied.

54.050 PROTECTION OF STREET TREES

Street trees may not be topped or trimmed unless approval is granted by the Parks Supervisor or, in emergency cases, when a tree imminently threatens power lines.
Applicant's There are no existing street trees adjacent to this property.
Finding:

The requirements of this section have been satisfied.

54.060 MAINTENANCE

A. The owner, tenant and their agent, if any, shall be jointly and severally responsible for the maintenance of all landscaping which shall be maintained in good condition so as to present a healthy, neat, and orderly appearance and shall be kept free from refuse and debris.
B. All plant growth in interior landscaped areas shall be controlled by pruning, trimming, or otherwise so that:

1. It will not interfere with the maintenance or repair of any public utility;
2. It will not restrict pedestrian or vehicular access; and
3. It will not constitute a traffic hazard because of reduced visibility.

Applicant's The owners of this property, including future homeowners, will be responsible for Finding: maintenance of landscaping.

The requirements of this section have been satisfied.

54.070 SPECIFICATION SUMMARY

***25\% of residential/multi-family site must be landscaped.

Applicant's A minimum of 25% of this site will be landscaped as part of the yards of future homes.
Finding:
The requirements of this section have been satisfied

DIVISION 4. DESIGN REVIEW

CHAPTER 55. DESIGN REVIEW

55.100 APPROVAL STANDARDS - CLASS II DESIGN REVIEW

B. Relationship to the natural and physical environment.

1. The buildings and other site elements shall be designed and located so that all heritage trees, as defined in the municipal code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction.

Applicant's No heritage trees were identified on this site.
Finding:
The requirements of this section have been satisfied.
2. All heritage trees, as defined in the municipal code, all trees and clusters of trees ("cluster" is defined as three or more trees with overlapping driplines; however, native oaks need not have an overlapping dripline) that are considered significant by the City Arborist, either individually or in consultation with certified arborists or similarly qualified professionals, based on accepted arboricultural standards including consideration of their size, type, location, health, long term survivability, and/or numbers, shall be protected pursuant to the criteria of subsections (B)(2)(a) through (f) of this section. In cases where there is a difference of opinion on the significance of a tree or tree cluster, the City Arborist's
findings shall prevail. It is important to acknowledge that all trees are not significant and, further, that this code section will not necessarily protect all trees deemed significant.

Applicant's The findings of subsections (B)(2)(a) through (f) are found below.
Finding:
The requirements of this section have been satisfied.
a. Non-residential and residential projects on Type I and II lands shall protect all heritage trees and all significant trees and tree clusters by either the dedication of these areas or establishing tree conservation easements. Development of Type I and II lands shall require the careful layout of streets, driveways, building pads, lots, and utilities to avoid heritage trees and significant trees and tree clusters, and other natural resources pursuant to this code. The method for delineating the protected trees or tree clusters ("dripline + 10 feet") is explained in subsection (B)(2)(b) of this section. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply.

$$
\begin{array}{ll}
\text { Applicant's } & \text { This site is not classified as Type I or Type II and, therefore, this standard is not applicable } \\
\text { Finding: } & \text { to the vast majority of the property. The Applicant has submitted a slope analysis showing } \\
\text { the slopes present on the site. A very small portion of type I and Type II lands exist on the } \\
\text { property however these areas fall within a portion of the site which is located adjacent to } \\
\text { a Water Quality Resource. These areas will not be developed at the time of site } \\
\text { construction and tree protection within these areas will be achieved. }
\end{array}
$$

The requirements of this section have been satisfied.
b. Non-residential and residential projects on non-Type I and II lands shall set aside up to 20 percent of the area to protect trees and tree clusters that are determined to be significant, plus any heritage trees. Therefore, in the event that the City Arborist determines that a significant tree cluster exists at a development site, then up to 20 percent of the non-Type I and II lands shall be devoted to the protection of those trees, either by dedication or easement. The exact percentage is determined by establishing the driplines of the trees or tree clusters that are to be protected. In order to protect the roots which typically extend further, an additional 10 -foot measurement beyond the dripline shall be added. The square footage of the area inside this "dripline plus 10 feet" measurement shall be the basis for calculating the percentage (see figure below). The City Arborist will identify which tree(s) are to be protected. Development of non-Type I and II lands shall also require the careful layout of streets, driveways, building pads, lots, and utilities to avoid significant trees, tree clusters, heritage trees, and other natural resources pursuant to this code. Exemptions of subsections (B)(2)(c), (e), and (f) of this section shall apply. Please note that in the event that more than 20 percent of the non-Type I and II lands comprise significant trees or tree clusters, the developer shall not be required to save the excess trees, but is encouraged to do so.

Applicant's The proposed subdivision is located on non-Type I and II lands. Streets, driveways, building Finding: pads, lots and utilities have been carefully laid out so as to avoid significant trees and clusters with particular attention to the vegetation around the boundary of the site. The site plan's concept includes deeper than necessary lots around the boundary with the specific goal of retaining a buffer of trees between this site and the neighboring, developed properties. Every reasonable effort has been made to retain trees as they enhance the value of the properties for the developer and the future homeowners. The applicant has inventoried all trees on site and has consulted with the City's arborist to determine which trees on site are significant. The
applicant is proposing tree preservation consistent with these requirements, as detailed in the tree plan.

There are a total of 169 trees identified as significant on this site. The significant tree canopy area on site totals 238,212 square feet or 5.4 acres. Of these trees, 50 significant trees will be retained through the site development and homebuilding process. A total of 77,863 square feet of significant canopy will be retained or 1.7 acres. The proposed retention represents 33 percent of the site's existing canopy. In addition to the trees determined to be significant, 62 additional non-significant trees have been proposed for retention. The retention of these trees has been made possible through the Applicant's careful placement of streets, driveways, building pads, lots and utilities throughout the project site. With larger than required back yards and purposeful placement of utilities, the site's preservation requirement of 20% of the significant tree canopy has been met and exceeded.

The requirements of this section have been satisfied.
c. Where stubouts of streets occur on abutting properties, and the extension of those streets will mean the loss of significant trees, tree clusters, or heritage trees, it is understood that tree loss may be inevitable. In these cases, the objective shall be to minimize tree loss. These provisions shall also apply in those cases where access, per construction code standards, to a lot or parcel is blocked by a row or screen of significant trees or tree clusters.

> Applicant's No street stub outs are proposed on abutting properties.
> Finding:

The requirements of this section have been satisfied.
d. For both non-residential and residential development, the layout shall achieve at least 70 percent of maximum density for the developable net area. The developable net area excludes all Type I and II lands and up to $\mathbf{2 0}$ percent of the remainder of the site for the purpose of protection of stands or clusters of trees as defined in subsection (B)(2) of this section.

Applicant's	The R-4.5 zone permits a maximum density of 9.68 dwelling units per net acre. Net acre
Finding:	is defined as "The total gross acres less the public right-of-way and other acreage
deductions, as applicable". The net acreage of this site after removal of dedicated right-	
of way is 5.10 acres. At 9.68 dwelling units per net acre, the maximum number of dwelling	
units on this site is 49. The minimum density of this site is 70% of 49 units, or 34 units,	
which is the number of dwelling units proposed.	

The requirements of this section have been satisfied.
e. For arterial and collector street projects, including Oregon Department of Transportation street improvements, the roads and graded areas shall avoid tree clusters where possible. Significant trees, tree clusters, and heritage tree loss may occur, however, but shall be minimized.

Applicant's No arterial or collector street projects are included with this development application. Finding:

The requirements of this section have been satisfied.
f. If the protection of significant tree(s) or tree clusters is to occur in an area of grading that is necessary for the development of street grades, per City construction codes, which will result in an adjustment in the grade of over or under two feet, which will then threaten the health of the tree(s), the applicant will submit evidence to the Planning Director that all reasonable alternative grading plans have been considered and cannot work. The applicant will then submit a mitigation plan to the City Arborist to compensate for the removal of the tree(s) on an "inch by inch" basis (e.g., a 48-inch Douglas fir could be replaced by 12 trees, each four-inch). The mix of tree sizes and types shall be approved by the City Arborist.

Applicant's 19 significant trees with a total DBH of 434 inches are proposed for removal due to street Finding: construction. The Applicant is proposing to mitigate for the removal of 434 inches of DBH by planting street trees and landscape trees on the project site. The remaining trees which are not able to be planted on site will be mitigated for either in off-site plantings in a location chosen by the City's arborist or the Applicant will pay a fee in lieu to the City for trees which cannot be planted on site.

The requirements of this section have been satisfied.

DIVISION 8. LAND DIVISIONS

CHAPTER 92. REQUIRED IMPROVEMENTS

92.010 PUBLIC IMPROVEMENTS FOR ALL DEVELOPMENT

The following improvements shall be installed at the expense of the developer and meet all City codes and standards:

A. Streets within subdivisions.

1. All streets within a subdivision, including alleys, shall be graded for the full right-of-way width and improved to the City's permanent improvement standards and specifications which include sidewalks and bicycle lanes, unless the decision-making authority makes the following findings:
a. The right-of-way cannot be reasonably improved in a manner consistent with City road standards or City standards for the protection of wetlands and natural drainageways.
b. The right-of-way does not provide a link in a continuous pattern of connected local streets, or, if it does provide such a link, that an alternative street link already exists or the applicant has proposed an alternative street which provides the necessary connectivity, or the applicant has proven that there is no feasible location on the property for an alternative street providing the link.
2. When the decision-making authority makes these findings, the decision-making authority may impose any of the following conditions of approval:
a. A condition that the applicant initiate vacation proceedings for all or part of the right-of-way.
b. A condition that the applicant build a trail, bicycle path, or other appropriate way.

If the applicant initiates vacation proceedings pursuant to subsection (A)(2)(a) of this section, and the right-of-way cannot be vacated because of opposition from adjacent property owners, the City Council shall consider and decide whether to process a City-initiated street vacation pursuant to Chapter 271 ORS.

Construction staging area shall be established and approved by the City Engineer. Clearing, grubbing, and grading for a development shall be confined to areas that have been granted approval in the land use approval process only. Clearing, grubbing, and grading outside of land use approved areas can only be approved through a land use approval modification and/or an approved Building Department grading permit for survey purposes. Catch basins shall be installed and connected to pipe lines leading to storm sewers or drainageways.
B. Extension of streets to subdivisions. The extension of subdivision streets to the intercepting paving line of existing streets with which subdivision streets intersect shall be graded for the full right-of-way width and improved to a minimum street structural section and width of 24 feet.
C. Local and minor collector streets within the rights-of-way abutting a subdivision shall be graded for the full right-of-way width and approved to the City's permanent improvement standards and specifications. The City Engineer shall review the need for street improvements and shall specify whether full street or partial street improvements shall be required. The City Engineer shall also specify the extent of storm drainage improvements required. The City Engineer shall be guided by the purpose of the City's systems development charge program in determining the extent of improvements which are the responsibility of the subdivider.
D. Monuments. Upon completion of the first pavement lift of all street improvements, monuments shall be installed and/or reestablished at every street intersection and all points of curvature and points of tangency of street centerlines with an iron survey control rod. Elevation benchmarks shall be established at each street intersection monument with a cap (in a monument box) with elevations to a U.S. Geological Survey datum that exceeds a distance of $\mathbf{8 0 0}$ feet from an existing benchmark.
E. Surface drainage and storm sewer system. A registered civil engineer shall prepare a plan and statement which shall be supported by factual data that clearly shows that there will be no adverse impacts from increased intensity of runoff off site of a 100 -year storm, or the plan and statement shall identify all off-site impacts and measures to mitigate those impacts commensurate to the particular land use application. Mitigation measures shall maintain pre-existing levels and meet buildout volumes, and meet planning and engineering requirements.
F. Sanitary sewers. Sanitary sewers shall be installed to City standards to serve the subdivision and to connect the subdivision to existing mains.

1. If the area outside the subdivision to be directly served by the sewer line has reached a state of development to justify sewer installation at the time, the Planning Commission may recommend to the City Council construction as an assessment project with such arrangement with the subdivider as is desirable to assure financing his share of the construction.
2. If the installation is not made as an assessment project, the City may reimburse the subdivider an amount estimated to be a proportionate share of the cost for each connection made to the sewer by property owners outside of the subdivision for a period of 10 years from the time of
installation of the sewers. The actual amount shall be determined by the City Administrator considering current construction costs.
G. Water system. Water lines with valves and fire hydrants providing service to each building site in the subdivision and connecting the subdivision to City mains shall be installed. Prior to starting building construction, the design shall take into account provisions for extension beyond the subdivision and to adequately grid the City system. Hydrant spacing is to be based on accessible area served according to the City Engineer's recommendations and City standards. If required water mains will directly serve property outside the subdivision, the City may reimburse the developer an amount estimated to be the proportionate share of the cost for each connection made to the water mains by property owners outside the subdivision for a period of 10 years from the time of installation of the mains. If oversizing of water mains is required to areas outside the subdivision as a general improvement, but to which no new connections can be identified, the City may reimburse the developer that proportionate share of the cost for oversizing. The actual amount and reimbursement method shall be as determined by the City Administrator considering current or actual construction costs.
H. Sidewalks.
3. Sidewalks shall be installed on both sides of a public street and in any special pedestrian way within the subdivision, except that in the case of primary or secondary arterials, or special type industrial districts, or special site conditions, the Planning Commission may approve a subdivision without sidewalks if alternate pedestrian routes are available.

In the case of the double-frontage lots, provision of sidewalks along the frontage not used for access shall be the responsibility of the developer. Providing front and side yard sidewalks shall be the responsibility of the land owner at the time a request for a building permit is received. Additionally, deed restrictions and CC\&Rs shall reflect that sidewalks are to be installed prior to occupancy and it is the responsibility of the lot or homeowner to provide the sidewalk, except as required above for double-frontage lots.
2. On local streets serving only single-family dwellings, sidewalks may be constructed during home construction, but a letter of credit shall be required from the developer to ensure construction of all missing sidewalk segments within four years of final plat approval pursuant to CDC 91.010(A)(2).
3. The sidewalks shall measure at least six feet in width and be separated from the curb by a sixfoot minimum width planter strip. Reductions in widths to preserve trees or other topographic features, inadequate right-of-way, or constraints, may be permitted if approved by the City Engineer in consultation with the Planning Director.
4. Sidewalks should be buffered from the roadway on high volume arterials or collectors by landscape strip or berm of three and one-half-foot minimum width.
5. The City Engineer may allow the installation of sidewalks on one side of any street only if the City Engineer finds that the presence of any of the factors listed below justifies such waiver:
a. The street has, or is projected to have, very low volume traffic density;
b. The street is a dead-end street;
c. The housing along the street is very low density; or
d. The street contains exceptional topographic conditions such as steep slopes, unstable soils, or other similar conditions making the location of a sidewalk undesirable.
I. Bicycle routes. If appropriate to the extension of a system of bicycle routes, existing or planned, the Planning Commission may require the installation of separate bicycle lanes within streets and separate bicycle paths.
J. Street name signs. All street name signs and traffic control devices for the initial signing of the new development shall be installed by the City with sign and installation costs paid by the developer.
K. Dead-end street signs. Signs indicating "future roadway" shall be installed at the end of all discontinued streets. Signs shall be installed by the City per City standards, with sign and installation costs paid by the developer.
L. Signs indicating future use shall be installed on land dedicated for public facilities (e.g., parks, water reservoir, fire halls, etc.). Sign and installation costs shall be paid by the developer.
M. Street lights. Street lights shall be installed and shall be served from an underground source of supply. The street lighting shall meet IES lighting standards. The street lights shall be the shoe-box style light (flat lens) with a 30 -foot bronze pole in residential (non-intersection) areas. The street light shall be the cobra head style (drop lens) with an approximate 50 -foot (sized for intersection width) bronze pole. The developer shall submit to the City Engineer for approval of any alternate residential, commercial, and industrial lighting, and alternate lighting fixture design. The developer and/or homeowners association is required to pay for all expenses related to street light energy and maintenance costs until annexed into the City.
N. Utilities. The developer shall make necessary arrangements with utility companies or other persons or corporations affected for the installation of underground lines and facilities. Electrical lines and other wires, including but not limited to communication, street lighting, and cable television, shall be placed underground.
O. Curb cuts and driveways. Curb cuts and driveway installations are not required of the subdivider at the time of street construction, but, if installed, shall be according to City standards. Proper curb cuts and hard-surfaced driveways shall be required at the time buildings are constructed.
P. Street trees. Street trees shall be provided by the City Parks and Recreation Department in accordance with standards as adopted by the City in the Municipal Code. The fee charged the subdivider for providing and maintaining these trees shall be set by resolution of the City Council.
Q. Joint mailbox facilities shall be provided in all residential subdivisions, with each joint mailbox serving at least two, but no more than eight, dwelling units. Joint mailbox structures shall be placed in the street right-of-way adjacent to roadway curbs. Proposed locations of joint mailboxes shall be designated on a copy of the tentative plan of the subdivision, and shall be approved as part of the tentative plan approval. In addition, sketch plans for the joint mailbox structures to be used shall be submitted and approved by the City Engineer prior to final plat approval. (Ord. 1180, 1986; Ord. 1192, 1987; Ord. 1287, 1990; Ord. 1321, 1992; Ord. 1339, 1993; Ord. 1401, 1997; Ord. 1408, 1998; Ord. 1442, 1999)

> Applicant's \quad All improvements will be installed per the submitted plans and in conformance with the Finding: \quad requirements of this title.

The requirements of this section have been satisfied.

92.030 IMPROVEMENT PROCEDURES

In addition to other requirements, improvements installed by the developer, either as a requirement of these regulations or at the developer's own option, shall conform to the requirements of this title and permanent improvement standards and specifications adopted by the City and shall be installed in accordance with the following procedure:
A. Improvement work shall not be commenced until plans have been checked for adequacy and approved by the City. To the extent necessary for evaluation of the proposal, the improvement plans may be required before approval of the tentative plan of a subdivision or partition. Plans shall be prepared in accordance with the requirements of the City.
B. Improvement work shall not be commenced until the City has been notified in advance, and if work has been discontinued for any reason, it shall not be resumed until the City has been notified.
C. Improvements shall be constructed under the Engineer. The City may require changes in typical sections and details in the public interest if unusual conditions arise during construction to warrant the change.
D. All underground utilities, sanitary sewers, and storm drains installed in streets by the subdivider or by any utility company shall be constructed prior to the surfacing of the streets. Stubs for service connections for underground utilities and sanitary sewers shall be placed to a length obviating the necessity for disturbing the street improvements when service connections are made.
E. A digital and mylar map showing all public improvements as built shall be filed with the City Engineer upon completion of the improvements. (Ord. 1408, 1998)

Applicant's	All improvements will be installed in conformance with the requirements of this title.
Finding:	The requirements of this section have been satisfied.

DIVISION 9. ADMINISTRATIVE PROCEDURES

CHAPTER 99 PROCEDURES FOR DECISION MAKING: QUASI-JUDICIAL
99.030 APPLICATION PROCESS: WHO MAY APPLY, PRE-APPLICATION CONFERENCE, REQUIREMENTS,
REFUSAL OF APPLICATION, FEES
A. Who may apply.

1. Applications for approval required under this chapter may be initiated by:
a. The owner of the property that is the subject of the application or the owner's duly authorized representative;
b. The purchaser of such property who submits a duly executed written contract or copy thereof, which has been recorded with the Clackamas Clerk;
c. A lessee in possession of such property who submits written consent of the owner to make such application; or

d. Motion by the Planning Commission or City Council.

2. Any person authorized by this chapter to submit an application for approval may be represented by an agent who is authorized in writing by such a person to make the application.

Applicant's The owner of the property is initiating this application for approval.
Finding:
The requirements of this section have been satisfied.
B. Pre-application conferences.

1. Subject to subsection (B)(4) of this section, a pre-application conference is required for, but not limited to, ***I. land divisions.

Applicant's A pre-application meeting was held September 3, 2015.
Finding:
The requirements of this section have been satisfied.

C. The requirements for making an application.

1. The application shall be made on forms provided by the Director as provided by CDC 99.040(A)(1);
2. The application shall be complete and shall contain the information requested on the form, shall address the appropriate submittal requirements and approval criteria in sufficient detail for review and action, and shall be accompanied by the deposit or fee required by CDC 99.033. No application will be accepted if not accompanied by the required fee or deposit. In the event an additional deposit is required by CDC 99.033 and not provided within the time required, the application shall be rejected without further processing or deliberation and all application materials shall be returned to the applicant, notwithstanding any determination of completeness. (Ord. 1527, 2005; Ord. 1568, 2008; Ord. 1590 § 1, 2009; Ord. 1599 § 6, 2011)

$$
\begin{array}{ll}
\text { Applicant's } & \text { This application has been made on forms provided by the City's Planning Department. } \\
\text { Finding: } & \text { The application contains the necessary information and the required fee. }
\end{array}
$$

The requirements of this section have been satisfied.

99.033 FEES

The Council shall adopt a schedule of fees reasonably calculated to defray the expenses of the administrative process. The Council may establish either a set fee or a deposit system in which the applicant pays a deposit and the City determines the total administrative cost at the end of the process and refunds any unused amount of the deposit to the applicant. No additional deposit shall be required for additional costs that are incurred because the matter is referred to or called up by a higher decisionmaking authority. The Council shall charge no fees for City-initiated land use applications or appeals filed by a recognized neighborhood association pursuant to the provisions of CDC 99.240. (Ord. 1527, 2005; Ord. 1568, 2008; Ord. 1604 § 70, 2011)

Applicant's	The required fee was submitted with the land use application.
Finding:	The requirements of this section have been satisfied.

99.038 NEIGHBORHOOD CONTACT REQUIRED FOR CERTAIN APPLICATIONS

Prior to submittal of an application for any subdivision, conditional use permit, multi-family project, planned unit development of four or more lots, non-residential buildings of over 1,500 square feet, or a zone change that requires a Comprehensive Plan amendment, the applicant shall contact and discuss the proposed development with any affected neighborhood as provided in this section. Although not required for other or smaller projects, contact with neighbors is highly recommended. The Planning Director may require neighborhood contact pursuant to this section prior to the filing of an application for any other development permit if the Director deems neighborhood contact to be beneficial.
A. Purpose. The purpose of neighborhood contact is to identify potential issues or conflicts regarding a proposed application so that they may be addressed prior to filing. This contact is intended to result in a better application and to expedite and lessen the expense of the review process by avoiding needless delays, appeals, remands, or denials. The City expects an applicant to take the reasonable concerns and recommendations of the neighborhood into consideration when preparing an application. The City expects the neighborhood association to work with the applicant to provide such input.
B. The applicant shall contact by letter all recognized neighborhood associations whose boundaries contain all or part of the site of the proposed development and all property owners within 500 feet of the site.
C. The letter shall be sent by to the president of the neighborhood association, and to one designee as submitted to the City by the neighborhood association, and shall be sent by regular mail to the other officers of the association and the property owners within 500 feet. If another neighborhood association boundary is located within the 500 -foot notice radius, the letter shall be sent to that association's president, and to one designee as submitted to the City by the neighborhood association as well. The letter shall briefly describe the nature and location of the proposed development, and invite the association and interested persons to a meeting to discuss the proposal in more detail. The meeting shall be scheduled at the association's regularly scheduled monthly meeting, or at another time at the discretion of the association, and not less than $\mathbf{2 0}$ days from the date of mailing of the notice. If the meeting is scheduled as part of the association's regular monthly meeting, the letter shall explain that the proposal may not be the only topic of discussion on the meeting agenda. The letter shall encourage concerned citizens to contact their association president, or their association designee, with any questions that they may want to relay to the applicant.

Neighborhood contact shall be initiated by the applicant by mailing the association president, and to one designee as submitted to the City by the neighborhood association, a letter, return receipt requested, formally requesting, within 60 days, a date and location to have their required neighborhood meeting. The 60 days shall be calculated from the date that the applicant mails this letter to the association. If the neighborhood association does not want to meet within the 60-day timeframe, or if there is no neighborhood association, the applicant may hold a public meeting during the evening after 6:00 p.m., or on the weekend no less than 20 days from the date of mailing of the notice. All meetings shall be held at a location open to the public within the boundaries of the association or at a public facility within the City of West Linn. If the meeting is held at a business, it shall be posted at the time of the meeting as the meeting place and shall note that the meeting is open to the public and all interested persons may attend.
D. On the same date the letters described in subsections \mathbf{A} through C of this section are mailed, the applicant shall provide and post notice on the property subject to the proposed application. The notice shall be posted at a location visible from the public right-of-way. If the site is not located adjacent to a
through street, then an additional sign shall be posted on the nearest through street. The sign notice shall be at least 11 inches by 17 inches in size on durable material and in clear, legible writing. The notice shall state that the site may be subject to a proposed development (e.g., subdivision, variance, conditional use) and shall set forth the name of the applicant and a telephone number where the applicant can be reached for additional information. The site shall remain posted until the conclusion of the meeting.
E. An application shall not be accepted as complete unless and until the applicant demonstrates compliance with this section by including with the application:

1. A copy of the certified letter to the neighborhood association with a copy of return receipt;
2. A copy of the letter to officers of the association and to property owners within 500 feet, including an affidavit of mailing and a copy of the mailing list containing the names and addresses of such owners and residents;
3. A copy of the required posted notice, along with an affidavit of posting;
4. A copy of the minutes of the meetings, produced by the neighborhood association, which shall include a record of any verbal comments received, and copies of any written comments from property owners, residents, and neighborhood association members. If there are no minutes, the applicant may provide a summary of the meeting comments. The applicant shall also send a copy of the summary to the chair of the neighborhood association. The chair shall be allowed to supplement the summary with any additional comments regarding the content of the meeting, as long as such comments are filed before the record is closed;
5. An audiotape of the meeting; and
6. In the event that it is discovered by staff that the aforementioned procedures of this section were not followed, or that a review of the audio tape and meeting minutes show the applicant has made a material misrepresentation of the project at the neighborhood meeting, the application shall be deemed incomplete until the applicant demonstrates compliance with this section. (Ord. 1425, 1998; Ord. 1474, 2001; Ord. 1568, 2008; Ord. 1590 § 1, 2009)

Applicant's This section requires the applicant to contact and discuss the proposed development with Finding: any affected neighborhood as provided in this section.

A meeting was held with the Robinwood and Skyline Ridge Neighborhood Associations on August 11, 2015. The meeting was scheduled and noticed per the requirements of this section, and the required neighborhood meeting documentation is submitted with this application. The applicant provided renderings and information regarding the proposed subdivision and answered all questions asked by the members of the neighborhood association.

The requirements of this section have been satisfied.

Based upon the materials submitted herein, the Applicant respectfully requests that the City's Planning Commission approve this 34-lot subdivision and water resource area permit.

City of West Linn
 PRE-APPLICATION CONFERENCE MEETING
 SUMMARY NOTES

September 3, 2015

SUBJECT:	Application for a 34 lot subdivision and a Water Resource Area (WRA) permit
at 1800 Upper Midhill Drive.	

FILE: PA-15-33

ATTENDEES: Applicants: Ryan Zygar, Andrew Tull, Aaron Murphy, David Noren Staff: Peter Spir (Planning), Khoi Le (Engineering)
ODOT: Avi Tayar, Joshua Brooking
Public: Kevin Bryck, Dorianne Palmer

The following is a summary of the meeting discussion provided to you from staff meeting notes. Additional information may be provided to address any "follow-up" items identified during the meeting. These comments are PRELIMINARY in nature. Please contact the Planning Department with any questions regarding approval criteria, submittal requirements, or any other planning-related items. Please note disclaimer statement below.

SITE INFORMATION:

Site Address: 1800 Upper Midhill Drive (21E14CA tax lot 200)
Site Area: 266,726 square feet
Neighborhood: Robinwood NA
Comp. Plan: Medium density residential
Zoning: R-4.5 (Single Family Residential Attached and Detached/Duplex / 4,500 square foot minimum lot size for detached homes)
Applicable code: CDC Chapter 32: Water Resource Area (WRA) permit
CDC Chapter 85: Land Division
CDC Chapter 14: R-4.5

PROJECT DETAILS:

The site comprises a tree covered hillside that slopes down from west to east at a fairly constant 14 percent. There are some small isolated wetlands at the north end of the site as well as a potential ephemeral stream along the north property line.

The proposal is to develop a 34 lot subdivision with all lots over 4,500 square feet. Two existing street right of ways (ROW): Upper Midhill and Hillside Drive will be connected to access the lots. Issues raised included the disposition of an unused section of Upper Midhill Drive ROW and the appropriateness of a sidewalk and planter strip on the west/uphill side of Hillside Drive.

Engineering/TVFR Comments: Contact Khoi Le at kle@westlinnoregon.gov for Engineering comments and Ty Darby at tdarby@tvfr.com for TVFR comments.

PROCESS:

The application requires a neighborhood meeting per CDC 99.038. Please follow those requirements very carefully. Contact the Robinwood Neighborhood Association, at RobinwoodNA@westlinnoregon.gov and Skyline Ridge Neighborhood Association, at SkylineNA@westlinnoregon.gov.

Land use applications include subdivision (Chapter 85) and a WRA permit (Chapter 32). Staff recommends the Alternate Review Process (32.070 and 32.080) for the WRA permit. The CDC is online at http://westlinnoregon.gov/cdc.

Required specialist studies include an arborist's tree inventory, wetland delineation, geotechnical (including drainage) report and traffic study.
N / A is not an acceptable response to the approval criteria. The submittal requirements may be waived, but the applicant must first identify the specific submittal requirement and request, in letter form, that it be waived by the Planning Manager and must identify the specific grounds for that waiver. The waiver may or may not be granted by the Planning Director. Waivers may also be subsequently overruled by the decision making body.

Submit the application to the Planning Department with an application form signed by the property owner. The deposit for a subdivision is $\$ 4,200$ plus $\$ 200$ per lot. The final plat fee is $\$ 2,000$. There is also a $\$ 500$ fee for final site inspection. The deposit for a WRA is $\$ 2,600$ and an inspection fee of $\$ 250$.

Once the application and deposit/fee are submitted, the City has 30 days to determine if the application is complete or not. If the application is not complete, the applicant has 180 days to make it complete or provide written notice to staff that no other information will be provided. Once the submittal is deemed complete, staff will provide notice per CDC Chapter 99 and schedule a public hearing with the Planning Commission. Appeals of the Planning Commission's decision are heard by City Council.

Typical land use applications can take 6-10 months from beginning to end.

DISCLAIMER: This summary discussion covers issues identified to date. It does not imply that these are the only issues. The burden of proof is on the applicant to demonstrate that all approval criteria have been met. These notes do not constitute an endorsement of the proposed application or provide any assurance of potential outcomes. Staff responses are based on limited material presented at this pre-application meeting. New issues, requirements, etc. could emerge as the application is developed. A new pre-application conference would have to be scheduled one that period lapses and these notes would no longer be valid. Any changes to the CDC standards may require a different design or submittal.

July 16, 2015

Robinwood Neighborhood Association
Kazi Ahmed
Robinwood NA President
18649 Midhill Cir
West Linn, OR 97068

18000 Upper Midhill Drive Proposed Residential Subdivision

Dear Mr. Ahmed,
3J Consulting acts on behalf of Upper Midhill Estates LLC., regarding the planned subdivision of a property located off of 18000 Upper Midhill Drive. The location of the property is shown on the attached map. The tax lot number for the property is 21E 14CA 200. The property is located inside the City of West Linn's boundaries and it is zoned R-4.5 for Single Family Dwellings.

Upper Midhill Estates is considering a subdivision of the 6.13 acre property in order to create 34 new single-family residential lots. It is envisaged that each of the proposed lots will exceed 4,500 square feet, which is the minimum lot size within the R-4.5 zoning district. The proposed lots will take access from Upper Midhill Drive and Hillside Drive.

Before finalizing an application to the City's Planning Department for the proposed subdivision, we would like to take the opportunity to discuss this proposal with the members of the Robinwood and neighborhood association and property owners residing within 500 feet of the property.

The purpose of this meeting will be to provide a forum for surrounding property owners and residents to review the proposal and to identify issues so they can be given proper consideration. These meetings are required the public to share with the project team any special information about the property involved. The project team will try to answer questions related to how the project meets the relevant development standards consistent with West Linn's land use regulations.

We would like to formally request a meeting with the neighborhood association. Further to our discussions over the phone, we understand that the Neighborhood Association would be able to include us during your agenda for the Robinwood Neighborhood Association's August $11^{\text {th }}$ meeting. If you could please confirm that this meeting is possible, we will send notification to residents located within the City's 500 foot notification boundary.

Please note that this will be an informational meeting based upon preliminary development plans and that these plans may change before the application is submitted to the City.

If the proposed meeting is acceptable, we would ask that you please respond to this letter with an email to andrew.tull@3j-consulting.com or phone call to 503-946-9365.

Sincerely,

Andrew Tull
Principal Planner
3J Consulting, Inc

July 16, 2015
Robinwood Neighborhood Association
Kevin Bryck
Robinwood NA Designee
18840 Nixon Avenue
West Linn, OR 97068
18000 Upper Midhill Drive Proposed Residential Subdivision

Dear Mr. Bryck,
3J Consulting acts on behalf of Upper Midhill Estates LLC., regarding the planned subdivision of a property located off of 18000 Upper Midhill Drive. The location of the property is shown on the attached map. The tax lot number for the property is 21E 14CA 200. The property is located inside the City of West Linn's boundaries and it is zoned R-4.5 for Single Family Dwellings.

Upper Midhill Estates is considering a subdivision of the 6.13 acre property in order to create 34 new single-family residential lots. It is envisaged that each of the proposed lots will exceed 4,500 square feet, which is the minimum lot size within the R-4.5 zoning district. The proposed lots will take access from Upper Midhill Drive and Hillside Drive.

Before finalizing an application to the City's Planning Department for the proposed subdivision, we would like to take the opportunity to discuss this proposal with the members of the Robinwood and neighborhood association and property owners residing within 500 feet of the property.

The purpose of this meeting will be to provide a forum for surrounding property owners and residents to review the proposal and to identify issues so they can be given proper consideration. These meetings are required the public to share with the project team any special information about the property involved. The project team will try to answer questions related to how the project meets the relevant development standards consistent with West Linn's land use regulations.

We would like to formally request a meeting with the neighborhood association. Further to our discussions over the phone, we understand that the Neighborhood Association would be able to include us during your agenda for the Robinwood Neighborhood Association's August $11^{\text {th }}$ meeting. If you could please confirm that this meeting is possible, we will send notification to residents located within the City's 500 foot notification boundary.

Please note that this will be an informational meeting based upon preliminary development plans and that these plans may change before the application is submitted to the City.

If the proposed meeting is acceptable, we would ask that you please respond to this letter with an email to andrew.tull@3j-consulting.com or phone call to 503-946-9365.

Sincerely,

Andrew Tull
Principal Planner
3J Consulting, Inc

July 16, 2015
Robinwood Neighborhood Association
Tracey Gilday
Skyline Ridge NA President
1341 Stonehaven Dr
West Linn, OR 97068
18000 Upper Midhill Drive Proposed Residential Subdivision

Dear Ms. Gilday,
3J Consulting acts on behalf of Upper Midhill Estates LLC., regarding the planned subdivision of a property located off of 18000 Upper Midhill Drive. The location of the property is shown on the attached map. The tax lot number for the property is 21E 14CA 200. The property is located inside the City of West Linn's boundaries and it is zoned R-4.5 for Single Family Dwellings.

Upper Midhill Estates is considering a subdivision of the 6.13 acre property in order to create 34 new single-family residential lots. It is envisaged that each of the proposed lots will exceed 4,500 square feet, which is the minimum lot size within the R-4.5 zoning district. The proposed lots will take access from Upper Midhill Drive and Hillside Drive.

Before finalizing an application to the City's Planning Department for the proposed subdivision, we would like to take the opportunity to discuss this proposal with the members of the Robinwood and neighborhood association and property owners residing within 500 feet of the property.

The purpose of this meeting will be to provide a forum for surrounding property owners and residents to review the proposal and to identify issues so they can be given proper consideration. These meetings are required the public to share with the project team any special information about the property involved. The project team will try to answer questions related to how the project meets the relevant development standards consistent with West Linn's land use regulations.

We would like to formally request a meeting with the neighborhood association. Further to our discussions over the phone, we understand that the Neighborhood Association would be able to include us during your agenda for the Robinwood Neighborhood Association's August $11^{\text {th }}$ meeting. If you could please confirm that this meeting is possible, we will send notification to residents located within the City's 500 foot notification boundary.

Please note that this will be an informational meeting based upon preliminary development plans and that these plans may change before the application is submitted to the City.

If the proposed meeting is acceptable, we would ask that you please respond to this letter with an email to andrew.tull@3j-consulting.com or phone call to 503-946-9365.

Sincerely,

Andrew Tull
Principal Planner
3J Consulting, Inc

July 21, 2015

18000 Upper Midhill Drive
 Proposed Residential Subdivision

To Our Neighbors,
3J Consulting acts on behalf of Upper Midhill Estates LLC., regarding the planned subdivision of a property located off of 18000 Upper Midhill Drive. The location of the property is shown on the attached map. The tax lot number for the property is 21E 14CA 200. The property is located inside the City of West Linn's boundaries and it is zoned R-4.5 for Single Family Dwellings.

Upper Midhill Estates is considering a subdivision of the 6.13 acre property in order to create 34 new singlefamily residential lots. It is envisaged that each of the proposed lots will exceed 4,500 square feet, which is the minimum lot size within the R-4.5 zoning district. The proposed lots will take access from Upper Midhill Drive and Hillside Drive.

Before finalizing an application to the City's Planning Department for the proposed subdivision, we would like to take the opportunity to discuss this proposal with the members of the Robinwood and Skyline Ridge Neighborhoods and property owners residing within 500 feet of the property.

A meeting to discuss this project has been scheduled at the following time and location:
Informational Meeting
Tuesday, August 11th at 7:00 pm
Robinwood Station Community Center 3706 Cedaroak Drive, West Linn, 97068

The purpose of this meeting will be to provide a forum for surrounding property owners and residents to review the proposal and to identify issues so they can be given property consideration. This meeting will provide the opportunity for the public share with the project team any special information about the property involved. The project team will try to answer questions related to how the project meets the relevant development standards consistent with West Linn's land use regulations.

Please note that this will be an informational meeting based upon preliminary development plans and that these plans may change before the application is submitted to the City.

We look forward to discussing this proposal with you. Please feel free to contact us by emailing andrew.tull@3j-consulting.com if you have any questions.

Sincerely,

Andrew Tull
Principal Planner
3J Consulting, Inc.

PUBLIC NOTICE

OF A NEIGHBORHOOD MEETING

THIS SITE MAY BE SUBJECT TO A PROPOSED SUBDIVISION.

PLEASE CONTACT THE APPLICANT FOR MORE INFORMATION AT THE FOLLOWING NUMBER OR FEEL FREE TO ATTEND THE SCHEDULED NEIGHBORHOOD MEETING:
3J CONSULTING, INC. C/O ANDREW TULL 503-946-9365

NEIGHBORHOOD MEETING:
Robinwood neighborhood Association
AUGUST 11, 2015 ат 7:00 рм
Robinwood Station Community Center
3706 Cedaroak Drive, West Linn, OR 97068

SENDER: GOMPLETE THIS SECTION

COMPLETE THIS SECTION QN DELIVERY

$7 /$ Agent Addressee
B. Received by (Printed Name) C. Date of Delivery C. Noyck 7-18
D. Is delivery address different from item 1? \square Yes If YES, enter delivery address below: \square No
3. Service Type $\begin{array}{ll}\square \text { Certified Mail }^{\top} & \square \text { Priority Mail Express } \\ \square \text { Registered } & \square \text { Return Receipt for Merchandise }\end{array}$ \square Insured Mail \square Collect on Delivery
4. Restricted Delivery? (Extra Fee) \square Yes

PS Form 3811, July 2013
OKGDGAlestic Return Receipt

SENDER: COMPLETE THIS SECTION

1. Article Addressed to:

KAZI AHMEO

18649 MIDHILLCTR
WEST LINN DR 97068

COMPLETE THIS SECTION ON DELIVERY

D. Is delivery address different from item 1? \square Yes If YES, enter delivery address below: \square No

3. Service Type	
\square Cerifified Maile	\square Priority Mail Express"'
\square Registered	\square Return Receipt for Merchandise
\square Insured Mail	\square Collect on Delivery
4.	Restricted Delivery? (Extra Fee)

[^1]

Meeting Minutes - Upper Midhill Estates

Date: \quad August 11, 2015
Meeting No: Neighborhood Meeting
Project: Upper Midhill Estates
3J No.: $\quad 15266$
Location: Robinwood Community Center, West Linn

Presenters	Company
Andrew Tull	3J Consulting
Ryan Zygar	Upper Midhill Estates

In preparation for the submission of a land use application for the subdivision or partitioning of the subject property, the applicant conducted a neighborhood meeting with the Robinwood Neighborhood Association.

The meeting began with a presentation by Andrew Tull and Ryan Zygar. The project team started by explain that the property would be subdivided in accordance with the City's development codes. A description of the development, the road access, and the proposed lots was provided. The general timeframe for the land use and construction process was described.

Following the introduction of the project, neighbors and attendees openly asked questions of the project team. The following is a record of the questions and the project teams' responses.

Item	Question	Response
$\mathbf{1}$	Have you completed a traffic study?	The traffic study is underway, it will be submitted to the City with our land use applications.
$\mathbf{2}$	When with the Application be submitted?	1 to 2 months.
$\mathbf{3}$	Will you be transparent in the land use review process?	We will not post this on our website. The City's website will have the most up to date information.
$\mathbf{4}$	What's the name of the developer and what is his experience. What else has the developer completed? What reports will the City require for you to submit with the Application.	The developer is Ryan Zygar with Upper Midhill Estates. Ryan has 15 years of experience. First subdivision in Forest Grove. l've completed 40 or so subdivisions since that time. We've completed several parade of homes neighborhoods. We will be required to submit a stormwater report, plans, and a traffic report with our application.
$\mathbf{5}$	What is the average lot size?	The project's average is approximately 6,250 sf. The zoning for the property is R-4.5, 4,500 sf. The zoning was set because the area has larger lots which could be divided. Roads within the neighborhood could be improved as properties come together to develop. The lot count is at the lower end of the density range

6	Why no access through lake Oswego?	Roadways which would have connected to the North were vacated several years ago. The road connections are fairly well established.
7	Neighbors not happy about the lot sizes. The streets cannot likely handle the traffic impacts. There need to be fewer, larger lots which are consistent with the neighborhood.	Thanks for your comments. Your comments are going to the City as part of this recording.
8	Will you be contributing to parks?	The developer will be required to pay system development charges which pay for infrastructure and parks.
9	Will you be retaining trees along the boundaries?	The project has been laid out to try to retain trees along the boundary. We know we have a tree retention requirement and we hope to use the trees along the boundaries to meet the tree retention requirement.
10	Will Hilltop Road be improved?	The developer will be required to develop a road within the Hilltop Right-of-way. We're willing to ask the City if we can reduce the amount of infrastructure which will be required within the right-of-way. If the City will allow us to drop one of the sidewalks or planters, we'll certainly work with them to design less.
11	This project is impacting the sale of our house. What should we do?	It should be regarded as a good thing to have a new neighborhood come into the area.
12	The height limit is how high?	35'. The builders have not yet been selected.
13	What size home would be permitted?	The lots, we believe, will have a 40% lot coverage requirement. The project will probably have 2 story homes, with daylight basements and garage under homes.
14	What kind of homes will come in with the application?	We are only handling the land use applications. No homes are currently proposed. Buildings will be proposed by individuals.
15	How much will the homes be priced?	These are going to be on the higher end of the pricing range for lots in West Linn?
16	Will there be an HOA/CC\&R's?	There will be some common property, its likely that there will be CC\&R's.
17	Will every home be restricted to certain minimum standards?	This is a possibility.
18	Are you at the minimum density? Would you be willing to work with the City to rezone the property?	The project is at the minimum density for the zone. The developer is not willing to rezone the property. 10,000 SF lots would not be economical and it was not part of the development plan.
19	Is the fire department's requirements being considered as part of this?	The project has two points of entry/exit. The fire marshal will review and provide input.
20	Are the schools able to handle all these additional students?	We've not spoken with the school district however the district is required to plan for the zoning within the City. Other school districts in the area have been receptive to higher density as they are in need of younger families with new students.
21	A handful of builders are concerning because we are not keen to be living next to ongoing construction.	

The meeting concluded at approximately 7:50pm.

21E14CA-200

\square Subject Property

\square 500ft Radius
Radius Results

WFG National Title Insurance Company
a Williston Financial Group company

WFG National Title - Customer Service Department 12909 SW 68th Pkwy \# 350 Portland, OR 97223 Phone: 503.603.1700 Fax: 888.833.6840
E-mail: cs@wfgnationaltitle.com

SEARCH PARAMETERS

Reference Parcel Number... 137
21E14BC00702
21E14BC00703
21E14BC00800
21E14BC00803
21E14BC01300
21E14BC01400
21E14BC01500 21E14BC01600
21E14BC01700 21E14BC01800 21E14BC01900 21E14BC02000 21E14BC02100 21E14BC02200 21E14BC02300 21E14BC02400 21E14BC02500 21E14BC02600 21E14BD00100 21E14BD01700 21E14BD01800 21E14BD02000 21E14BD02100 21E14BD02200 21E14BD02300 21E14BD02400 21E14BD02500 21E14BD02600 21E14BD02700 21E14BD02800 21E14BD02900 21E14BD03000 21E14BD03100 21E14BD03200 21E14BD03300 21E14BD03400 21E14BD03500

SEARCH PARAMETERS (Continued)

21E14BD03600
21E14BD03700
21E14BD03800
21E14BD03900
21E14BD04000
21E14BD04100
21E14BD04200
21E14BD04300
21E14BD04400
21E14BD04500
21E14BD04600
21E14BD05900
21E14BD06000
21E14BD06100
21E14BD06200
21E14BD06700
21E14BD06800
21E14BD06900
21E14BD07000
21E14BD07100
21E14BD07200
21E14BD07300
21E14BD07900
21E14BD08100
21E14BD08200
21E14BD08300
21E14CA00105
21E14CA00106
21E14CA00107
21E14CA00108
21E14CA00109
21E14CA00110
21E14CA00111
21E14CA00112
21E14CA00113
21E14CA00117
21E14CA00118
21E14CA00119
21E14CA00120
21E14CA00121
21E14CA00200
21E14CA00308
21E14CA00309
21E14CA00310
21E14CA00311
21E14CA00312
21E14CA00313
21E14CA00314
21E14CA00315
21E14CA00316
21E14CA00317
21E14CA00318
21E14CA00319
21E14CA00320
21E14CA00321
21E14CA00322
21E14CA00323
21E14CA00324
21E14CA00325
21E14CA00326
21E14CA00327
21E14CA00328

SEARCH PARAMETERS (Continued)

21E14CA00329
21E14CA01400 21E14CA01401 21E14CA01402 21E14CA01403 21E14CA01404 21E14CA01405 21E14CA01406 21E14CA01407 21E14CA01408 21E14CA01409 21E14CA01410 21E14CA01411 21E14CA01412 21E14CA01413 21E14CA01414 21E14CA01415 21E14CA01416 21E14CA01417 21E14CA01418 21E14CA01419 21E14CA01420 21E14CA01421 21E14CA01422 21E14CA01429 21E14CA01430 21E14CA01431 21E14CA01432 21E14CA01433 21E14CA01434 21E14CA01435 21E14CA01436 21E14CA01500 21E14CA01600 21E14CB00300 21E14CB00400 21E14CB00500 21E14CB00600

SUB-15-03
18000 Upper Midhill Drive

CITIZEN CONTACT INFORMATION

To lessen the bulk of agenda packets, land use application notice, and to address the worries of some City residents about testimony contact information and online application packets containing their names and addresses as a reflection of the mailing notice area, this sheet substitutes for the photocopy of the testimony forms and/or mailing labels. A copy is available upon request.

ARBORIST REPORT WILL BE SUBMITTED UNDER A SEPARATE COVER

Kittelson \& Associates, inc.
TRANSPORTATIONENGINEERING/PLANNING 610 SW Alder Street, Suite 700, Portland, OR $97205 P 503.228 .5230$ F 503.273.8169

MEMORANDUM

Dale:

To:

CC:

From:
Project:
Subject:

September 10, 2015

Khoi Le, City of West Linn Avi Tayar, Oregon Department of Transportation, Region 1 Ryan Zygar, Upper Midhill Estates, LLC

Matt Bell, Anthony Yi, and Alexander Kado Upper Midhill Estates Residential Development Transportation Impact Analysis

This memorandum summarizes the results of a transportation impact analysis prepared for the proposed Upper Midhill Estates residential development located at the northern terminus of Upper Midhill Road in West Linn, Oregon. Figure 1 illustrates the site vicinity map. The proposed development plan includes 34 single-family residential homes located along an extension of Upper Midhill Drive that connects to Hillside Drive to the west. Figure 2 illustrates the conceptual site plan. Construction of the proposed development is expected to occur in 2015 with full build-out and occupancy in 2016.

The results of this analysis indicate that the proposed Upper Midhill Estates residential development can be constructed while maintaining safe and acceptable traffic operations at the study intersections assuming provision of the recommended mitigation measures. Additional details of the study methodology, findings, and recommendations are provided herein.

SCOPE OF THE REPORT

This analysis determines the transportation-related impacts associated with the proposed Upper Midhill Estates residential development and was prepared in accordance with the City of West Linn and Oregon Department of Transportation Department (ODOT) requirements for transportation impact analyses. The study intersections and scope of this project were selected in coordination with City and ODOT staff. The operational analyses were performed at the following study intersections:

- Willamette Drive (OR43)/Marylbrook Drive
- Willamette Drive (OR43)/Arbor Drive
- Willamette Drive (OR43)/Marylhurst Drive
- Upper Midhill Drive/Arbor Drive
- Upper Midhill Drive/Marylhurst Drive

H:\projfile\18758 - West Linn Reesman Property Residential\dwgs\figs\18758_fig1.dwg Sep 01, 2015-3:43pm - mbell Layout Tab: Fig01
Site Vicinity Map
West Linn, OR

Figure 1

This report evaluates these transportation issues:

- Year 2015 existing land-use and transportation-system conditions within the site vicinity during the weekday a.m. and p.m. peak periods;
- Developments and transportation improvements planned in the study area;
- Year 2016 background traffic conditions (without the proposed development) during the weekday a.m. and p.m. peak periods;
- Trip generation and distribution estimates for the proposed development; and
- Year 2016 total traffic conditions (with full build-out and occupancy of the proposed development) during the weekday a.m. and p.m. peak periods.

EXISTING CONDITIONS

The existing conditions analysis identifies the site conditions and the current physical and operational characteristics of the roadways within the study area. These conditions will be compared with future conditions later in this report.

Kittelson \& Associates, Inc. (KAI) staff visited and inventoried the proposed development site and surrounding study area in July 2015. At that time, KAI collected information regarding site conditions, adjacent land uses, existing traffic operations, and transportation facilities in the study area.

SITE CONDITIONS AND ADJACENT LAND USES

The proposed development site is located within the West Linn city limits, is currently vacant, and is zoned for medium density residential. The adjacent land uses include single family residential homes and a small city park located further south along Upper Midhill Drive.

TRANSPORTATION FACILITIES

Table 1 summarizes the characteristics of the transportation facilities within the site vicinity.
Table 1: Existing Transportation Facilities

Roadway	Functional Classification					
Highway 43	Principal Arterial	Number of Lanes	Posted Speed (mph)	Sidewalks	Bicycle Lanes	On-Street Parking
Upper Midhill Drive	Local Street	2	35	Partial	Yes	No
Arbor Drive	Local Street	2	25	Partial	No	Yes
Marylhurst Drive	Collector	2	25	No	No	No

1. City of West Linn Transportation System Plan (TSP - Reference 1).

Roadway Facilities

Willamette Drive is the major north-south arterial within the City of West Linn providing access to the cities of Lake Oswego and Portland to the north, and Oregon City to the south. Marylhurst Drive is an east-west collector, which provides access to Willamette Drive via a signalized intersection. Arbor Drive is an east-west local street that provides access to Willamette Drive via a two-way stop-control intersection. Upper Midhill Drive is a north-south local street that connects the proposed development to Arbor Drive and Marylhurst Drive. The segment of Upper Midhill Drive located south of Arbor Drive is relatively narrow; however, two vehicles can pass each other on the roadway. Also, should redevelopment occur along Upper Midhill Drive, it is assumed the roadway will be improved to the City's local street standard. Figure 3 illustrates the existing lane configurations and traffic control devices at the study intersections.

Pedestrian and Bicycle Facilities

Sidewalks are limited within the site vicinity to segments of Upper Midhill Drive located north of Arbor Drive and segments of Willamette Drive located north and south of Marylhurst Drive. Crosswalks are provided at the Willamette Drive/Marylhurst Drive and Willamette Drive/Marylbrook intersections, which are signalized with pedestrian pushbuttons and countdown signal heads. Bike lanes are provided within the site vicinity to Willamette Drive, which provides continuous bike lanes north and south of the proposed development.

Transit Facilities

Local transit service is provided within the site vicinity by TriMet. TriMet Line 35 provides frequent service along Willamette Drive, Monday through Friday from 6:00 a.m. to 12:00 a.m. on 15-30 minute headways. Limited service is provided on Saturdays and Sundays. Line 35 serves two stops located adjacent to Arbor Drive (Stop 6301 and 6302) and two stops located adjacent to Marylhurst Drive (Stop 9216 and 6337). The stops located adjacent to Arbor Drive are not supported by sidewalks or crosswalks, while the stops located adjacent to Marylhurst Drive have sidewalks and a signalized crossing at the Willamette Drive/Marylhurst Drive intersection.

TRAFFIC VOLUMES AND PEAK HOUR OPERATIONS

Manual turning movement counts were conducted at the study intersections in June 2015. All the counts were conducted on a typical mid-week day during the morning (7:00 to 9:00 a.m.) and evening (4:00 to 6:00 p.m.) peak time periods. The system-wide morning and evening peak hours were found to occur between 7:00 and 8:00 a.m. and 4:40 and 5:40 p.m., respectively. Figure 4 provides a summary of the year 2015 turning-movement counts for the weekday a.m. and p.m. peak hours. The traffic counts shown in Figure 4 were seasonally adjusted to $30^{\text {th }}$ Highest Hour Volumes (30 HV) in accordance with the methodology outlined in the ODOT Analysis Procedures Manual (APM - Reference 2). Appendix " A " contains the traffic count worksheets used in this study.

Existing Lane Configurations \&

Existing Traffic Conditions Weekday AM \& PM Peak Hour West Linn, OR

Figure
4

Current Levels of Service

All level-of-service analyses described in this report were performed in accordance with the procedures stated in the 2000 Highway Capacity Manual (HCM - Reference 3). A description of level of service and the criteria by which they are determined is presented in Appendix " B ". Appendix " B " also indicates how level of service is measured and what is generally considered an acceptable range.

The City of West Linn requires all signalized and unsignalized intersections to maintain LOS D or better, while ODOT requires all signalized and unsignalized intersections to maintain a v/c ration of 0.99 . The City controls the Upper Midhill Drive/Arbor Drive and Upper Midhill Drive/Marylhurst Drive intersections while the ODOT controls the intersections located along Willamette Drive.

All intersection level-of-service evaluations used the peak 15-minute flow rates that occurred during the weekday a.m. and p.m. peak hours. Using the peak 15 -minute flow rates ensures that this analysis is based on a reasonable worst-case scenario. For this reason, the analysis reflects conditions that are only likely to occur for 15 minutes out of each average peak hour. The transportation system will likely operate under conditions better than those described in this report during all other time periods.

Figure 4 summarizes the results of the traffic operations analysis at the study intersections under existing traffic conditions. As shown, all of the study intersections currently operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection. Additional information on the operational issues identified at the study intersection is provided below. Appendix " C " includes the worksheets used to evaluate existing traffic conditions at the study intersections.

Willamette Drive/Arbor Drive

The eastbound approach to the Willamette Drive/Arbor Drive intersection currently operates at LOS F and above capacity during the weekday p.m. peak hour. This is primarily due to the relatively low volume of eastbound traffic along Arbor Drive conflicting with the relatively high volume of northbound and southbound traffic along Willamette Drive. Potential mitigation measures are identified later in this report.

Traffic Safety

The crash history of the study intersections was reviewed in an effort to identify any potential safety issues. ODOT provided the five most recent years of crash data available for the study intersections, including January 1, 2009 through December 31, 2013. Table 2 summarizes the crash history of the study intersections over the five-year period.

Table 2: Study Intersection Crash Summary (January 1, 2009 - December 31, 2013)

	Crash Type						Severity			Total
Location	Angle	Turn	Rear- End	Side Swipe	Fixed Object	Ped/ Bike	PDO	Injury	Fatal	
Willamette Drive/Marylbrook Drive	0	1	1	0	0	1	0	3	0	3
Willamette Drive/Arbor Drive	0	4	5	0	0	0	4	5	0	9
Willamette Drive/Marylhurst Drive	0	1	2	0	0	0	1	2	0	3
Upper Midhill Drive/Arbor Drive	0	0	0	0	0	0	0	0	0	0
Upper Midhill Drive/Marylhurst Drive	0	0	0	0	0	0	0	0	0	0

PDO = Property Damage Only
As shown in Table 2, the Willamette Drive/Arbor Drive intersection experienced the highest number of crashes over the five year period. Further review of the crashes indicates that a majority of the rear-end crashes occurred in the northbound direction when a motorist failed to avoid another slowed or stopped motorist waiting to turn left onto Arbor Drive. Potential mitigation measures are identified later in this report. No other trends or patterns were identified in the crash data that requires mitigation associated with the proposed development. Appendix "D" contains the crash data obtained from ODOT.

TRANSPORTATION IMPACT ANALYSIS

The transportation impact analysis identifies how the study area's transportation system will operate in the year the proposed development is expected to be fully built, year 2016. The impact of traffic generated by the proposed development was examined as follows:

- Developments and transportation improvements planned in the site vicinity were identified.
- Year 2016 background traffic conditions (without the proposed development) were analyzed at the study intersections during the weekday a.m. and p.m. peak hours.
- Background traffic conditions were developed by applying a 1-percent annual growth rate to the existing traffic volumes to account for regional growth in the site vicinity between years 2015 and 2016.
- Site-generated trips were estimated for build-out of the site.
- Site trip-distribution patterns were derived after the existing traffic patterns and the major trip origins and destinations in West Linn and the Metro area.
- Year 2016 total traffic conditions (with full build-out and occupancy of the proposed development) were analyzed at the study intersections during the weekday a.m. and p.m. peak hours.

YEAR 2016 BACKGROUND TRAFFIC CONDITIONS

The year 2016 background traffic conditions analysis identifies how the study area's transportation system will operate without the proposed development. This analysis includes traffic attributed to planned developments within the study area and to general growth in the region, but does not include traffic from the proposed development.

Planned Developments and Transportation Improvements

No planned developments or transportation improvements were identified within the site vicinity that will impact traffic operations under year 2016 traffic conditions.

Traffic Volumes

The growth rate used in this analysis was developed based on a review of historical traffic volumes along Willamette Drive and discussions with City staff. Based on the review and discussions, a 1-percent annual growth rate was applied to the existing traffic volumes to account for regional growth between 2015 and 2016. Figure 5 illustrates the resulting forecast year 2016 background traffic volumes during the weekday a.m. and p.m. peak hours.

Intersection Level-of-Service

The traffic volumes shown in Figure 5 were used to conduct an operations analysis at the study intersections under year 2016 background traffic conditions. As shown, all of the study intersections are expected to operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection. Additional information on the operational issues identified at the study intersection is provided below. Appendix " E " includes the worksheets used to evaluate year 2016 background traffic conditions at the study intersections.

Willamette Drive/Arbor Drive

The eastbound approach to the Willamette Drive/Arbor Drive intersection is expected to continue to operate at LOS F and above capacity during the weekday p.m. peak hour. Potential mitigation measures are identified later in this report.

CM $=$ CRITICAL MOVEMENT (TWSC)
LOS $=$ INTERSECTION LEVEL OF SERVICE (SIGNALIZED/AWSC) / CRITICAL MOVEMENT LEVEL OF SERVICE (TWSC)
Del $=$ INTERSECTION AVERAGE CONTROL DELAY (SIGNALIZED/ AWSC) / CRITICAL MOVEMENT CONTROL DELAY (TWSC)
V/C $=$ CRITICAL VOLUME-TO-CAPACITY RATIO
TWC = TWO-WAY STOP CONTRO
AWSC= ALL-WAY STOP CONTROL
STD = MOBILITY STANDARD
Year 2016 Background Traffic Conditions
Weekday AM \& PM Peak Hour
West Linn, OR
Figure
5

PROPOSED DEVELOPMENT PLAN

Upper Midhill Estates, LLC is proposing to develop the 6.14 acre site located at the northern terminus of Upper Midhill Drive. The proposed development plan consists of 34 single-family residential homes located along an extension of Upper Midhill Drive that will connect to Scenic Drive to the west. Construction of the proposed development is expected to occur in 2015 with full build-out and occupancy in 2016.

Trip Generation

A trip generation estimate was prepared for the proposed development based on information provided in the standard reference manual, Trip Generation, $9^{\text {th }}$ Edition, published by the Institute of Transportation Engineers (ITE - Reference 4). Table 3 summarizes the trip generation estimate for the daily, weekday a.m. and weekday p.m. peak hours.

Table 3: Trip Generation Estimate

Land Use	ITE Code	Size	Daily Trips	Weekday AM Peak Hour Trips			Weekday PM Peak Hour Trips		
				Total	In	Out	Total	In	Out
Single-Family Homes	210	34 units	389	34	9	25	40	25	15

As shown in Table 3, the proposed development is estimated to generate approximately 389 daily trips, including 34 trips (9 inbound, 25 outbound) during the weekday a.m. peak hour and 40 trips (25 inbound, 15 outbound) during the weekday p.m. peak hour.

Site Trip Distribution/Trip Assignment

The site-generated trips were distributed onto the study area roadway system according to the existing traffic patterns, the location of major trip origins and destinations in West Linn and the Metro area. Figure 6 illustrates the estimated trip distribution pattern for the proposed development.

The site-generated trips were assigned to the network by distributing the trips shown in Table 3 according to the trip distribution pattern shown in Figure 6. Figure 6 also illustrates the site-generated trips that are expected to use the roadway system during the weekday a.m. and p.m. peak hours. As shown, no additional trips were added to the eastbound left-turn movement at the Willamette Drive/Arbor Drive intersection due to the existing and projected future operational issues associated with that movement. It is assumed that all trips from the site headed north on Willamette Drive will use the traffic signal at Willamette Drive/Marylhurst Drive.

YEAR 2016 TOTAL TRAFFIC CONDITIONS

The total traffic conditions analysis forecasts how the study area's transportation system will operate with the traffic generated by the proposed development. The year 2016 background traffic volumes shown in Figure 5 were added to the site-generated traffic shown in Figure 6 to arrive at the total traffic volumes shown in Figure 7.

Intersection Level of Service

The traffic volumes shown in Figure 7 were used to conduct an operations analysis at the study intersections under year 2016 total traffic conditions. As shown, all of the study intersections are expected to operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection. Additional information on the operational issues identified at the study intersection is provided below. Appendix " F " includes the worksheets used to evaluate year 2016 total traffic conditions at the study intersections.

Willamette Drive/Arbor Drive

The eastbound approach to the Willamette Drive/Arbor Drive intersection is expected to operate at LOS F and above capacity during the weekday a.m. and p.m. peak hours under year 2016 total traffic conditions. Potential mitigation measures are identified below.

Mitigation

The provision of a separate northbound left-turn lane at the Willamette Drive/Arbor Drive intersection would provide an incremental improvement in traffic operations over total traffic conditions as well as improve safety by providing separation between the slowed or stopped northbound left-turning vehicles and northbound through vehicles; however, the intersection would continue to operate at LOS F and above capacity during the weekday p.m. peak hour. If, however, the north leg of the intersection were designed to accommodate two-stage left-turn movements from the eastbound approach, the intersection would operate at LOS C during the weekday a.m. and LOS D during the weekday p.m. peak hours and below capacity during both time periods.

Figure 8 summarizes the results of the traffic operations analysis at the study intersection under year 2016 total traffic conditions with the proposed mitigation (with and without the two-stage left-turn capability). Appendix " G " includes the worksheets used to evaluate year 2016 total traffic conditions at the Willamette Drive/Arbor Drive intersection with the proposed mitigation.

Year 2016 Total Traffic Conditions
 Weekday AM \& PM Peak Hour West Linn, OR

Figure

Proportionate Share

The proposed development will result in a 1.9 percent increase in traffic volumes at the Willamette Drive/Arbor Drive intersection during the weekday a.m. peak hour and a 1.8 percent increase during the weekday p.m. peak hour. Therefore, the cost of the proposed mitigation will likely exceed the proportionate impacts of the proposed development. Section 55.125 of the West Linn Community Development Code (CDC) allows the City to condition mitigation that either addresses or minimizes the impacts of a proposed development. Section 55.100.I.1 allows the City to require construction or contribution of a proportionate share for necessary off-site improvements identified by the transportation analysis. Because the cost of the proposed mitigation will likely exceed the project's share of the impact, we recommend the City collect a proportionate share of the project's impact for use on the future project. A cost estimate for the proposed mitigation should be developed in coordination with the City and ODOT and the developer should pay a 1.9 percent proportionate share of the total cost.

CONCLUSIONS AND RECOMMENDATIONS

The results of the traffic impact analysis indicate that the proposed Upper Midhill Estates residential development can be constructed while maintaining safe and acceptable traffic operations at the study intersection and adjacent roadways assuming provision of the recommended mitigation measures. The findings of this analysis and our recommendations are discussed below.

FINDINGS

Existing Conditions

- All of the study intersections operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection.
- Mitigation measures have been identified as described below.
- The Willamette Drive/Arbor Drive intersection experienced the highest number of crashes over the five year study period, a majority of which involved vehicles turning to/from the minor street.
- Mitigation measures have been identified as described below.
- No other trends or patterns were identified in the crash data that require mitigation associated with this project.
- The segment of Upper Midhill Drive located south of Arbor Drive is relatively narrow; however, two vehicles can pass each other on the roadway. Also, should redevelopment occur along Upper Midhill Drive, it is assumed the roadway will be improved to the City's local street standard.

Year 2016 Background Traffic Conditions

- No planned developments or transportation improvements were identified within the site vicinity that will impact traffic operations under 2016 traffic conditions.
- All of the study intersections are forecast to operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection.
- Mitigation measures have been identified as described below.

Proposed Development Plan

- The proposed development will include 34 single family residential homes located along an extension of Upper Midhill Drive.
- The proposed development is estimated to generate approximately 400 daily trips, including 34 trips (9 inbound, 25 outbound) during the weekday a.m. peak hour and 40 trips (25 inbound, 15 outbound) during the weekday p.m. peak hour.

Year 2016 Total Traffic Conditions

- All of the study intersections are forecast to operate acceptably during the weekday a.m. and p.m. peak hours with the exception of the Willamette Drive/Arbor Drive intersection.
- Mitigation measures have been identified as described below.

RECOMMENDATIONS

The following list summarizes the mitigation measures recommended as part of this proposed development.

- Construct an extension of Upper Midhill Road consistent with the City's local street standard.
- Shrubbery and landscaping near the internal intersections and site access points should be maintained to ensure adequate sight distance.
- Develop a cost estimate for the proposed mitigation in coordination with the City and ODOT staff and pay a proportionate share (1.9 percent) of the total cost toward the improvement.

REFERENCES

1. City of West Linn. Transportation System Plan. 2008.
2. Oregon Department of Transportation. Analysis Procedures Manual. 2015.
3. Transportation Research Board. Highway Capacity Manual. 2000.
4. Institute of Transportation Engineers. Trip Generation, $9^{\text {th }}$ Edition. 2012.

APPENDIX

A. Traffic Counts
B. Description of Level of Service
C. Existing Traffic Conditions Worksheets
D. Crash Data
E. Year 2016 Background Traffic Conditions Worksheets
F. Year 2016 Total Traffic Conditions Worksheets
G. Year 2016 Total Traffic Conditions Worksheets - Mitigated

Appendix A Traffic Counts

QC JOB \#: 13423110 DATE: Wed, Jun 172015

Peak-Hour: 4:40 PM -- 5:40 PM Peak 15-Min: 4:40 PM -- 4:55 PM

Quality Counts
RANSPORTATION DATA
COLLECTION SERVICES

LOCATION: Willamette Dr (OR 43) -- Marylhurst Dr/Lazy River Dr CITY/STATE: West Linn, OR															QC JOB \#: 13423105DATE: Wed, Jun 172015		
							eak-H eak 15			M -- AM --	:05 AM 7:35 A oun ION D SERVIC 卧 $\stackrel{f}{1}$	S ES		$\begin{gathered} 18.2<0 . \\ 0 . \\ 0.0 . \end{gathered}$ $\begin{aligned} & \hline \\ & \hline 0 \\ & 0 \\ & 0 \end{aligned}$		0.0 0.0 	0 0
$\begin{gathered} \hline 5-\text { Min Count } \\ \text { Period } \\ \text { Beginning At } \\ \hline \hline \end{gathered}$	Willamette Dr (OR 43) (Northbound)				Willamette Dr (OR 43) (Southbound)				Marylhurst Dr/Lazy River Dr (Eastbound)				Marylhurst Dr/Lazy River Dr(Westbound) Total				Hourly Totals
7:00 AM	1	76	3	0	0	10	0	0	6	1	${ }_{3}$	0	0	1	1	102	
7:05 AM	3	78	3	0	0	25	2	0	2	0	4	0		0	2	121	
7:10 AM	0	74	3	0	0	29	0	0	2	1	6	0	0	0	3	118	
7:15 AM	1	73	7	0	0	21	0	0	5	0	2	0	2	0	1	112	
7:20 AM	1	84	6	0	0	18	0	0	6	0	1		2	0	4	122	
7:25 AM	1	89	4	0	1	25	1	0	8	0	3	0	,	0	1	134	
7:30 AM	1	86	3	0	1	26	0	0	3	0	2	0	0	0	2	124	
7:35 AM	0	72	1	0	1	24	0	0	4	1	4	0	3	0	1	111	
7:40 AM	2	76	3	0	1	24	0	0	3	0	0	0	2	1	2	114	
7:45 AM	1	74	2	0	1	34	0	0		0	3	0	3	0	1	123	
7:50 AM	0	75	3	0	0	29	0	0	3	0	3	0	1	0	3	117	
7:55 AM	2	63	4	0	1	30	3	0	2	1	4	0	0	0	0	110	1408
8:00 AM	3	68	3	0	0	27	0	0	2	1	1	0	1	0	1	107	1413
8:05 AM	2	51	3	0	0	24	0	0	3	0	4	0	0	1	3	91	1383
8:10 AM	1	67	6	0	0	27	1	0	2	1	6	0	3	0	1	115	1380
8:15 AM	0	60	5	0	0	34	0	0	3	0	3	0	1	0	3	109	1377
8:20 AM	3	61	8	0	1	26	0	0	4	2	3	0	3	0	2	113	1368
8:25 AM	1	46	4	0	0	42	0	0	7	1	7	0	1	0	1	110	1344
8:30 AM	2	65	6	0	,	39	0	0	5	0	8	0	3	0	2	131	1351
8:35 AM	3	62	3	0	4	46	3	0	4	0	6	0	0	0	2	133	1373
8:40 AM	2	58	3	0	2	31	1	0	2	1	8	0	2	0	1	111	1370
8:45 AM	0	70	3	0	2	40	1	0	5	0	4	0	0	0	2	127	1374
8:50 AM 8:55 AM	2	61	2	0	0	39	3	0	5	0	8	0	0	0	1	121	1378
Peak 15-Min Flowrates	5	65	4	0	Southbound				1	0	3	0	0	0	1	105	1373
	Northbound								Eastbound				Westbound			Total	
	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right		
All Vehicles	12	1036	52	0	8	276	4	0	68	0	24	0	12	0	28		
Heavy Trucks	4	44	0		0	20	0		0	0	0		0	0	0		
Pedestrians Bicycles Railroad Stopped Buses	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0		0	0	0		0	0	0		0	0	0		
Comments:																	

Appendix B Description of Level of Service

DESCRIPTION OF LEVEL OF SERVICE

Level of service (LOS) is a concept developed to quantify the degree of comfort (including such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles) afforded to drivers as they travel through an intersection or roadway segment. Six grades are used to denote the various level of service from " A " to " F ". 1

Signalized Intersections

The six level-of-service grades are described qualitatively for signalized intersections in Table B1. Additionally, Table B2 identifies the relationship between level of service and average control delay per vehicle. Control delay is defined to include initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Using this definition, Level of Service "D" is generally considered to represent the minimum acceptable design standard.

Table B1: Level-of-Service Definitions (Signalized Intersections)

Level of Service	
A	Very low average control delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Average control delay is greater than 10 seconds per vehicle and less than or equal to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for a level of service A, causing higher levels of average delay.
C	Average control delay is greater than 20 seconds per vehicle and less than or equal to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Average control delay is greater than 35 seconds per vehicle and less than or equal to 55 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Average control delay is greater than 55 seconds per vehicle and less than or equal to 80 seconds per vehicle. This is usually considered to be the limit of acceptable delay. These high delay values generally (but not always) indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.
F	Average control delay is in excess of 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such high delay values.

1 Most of the material in this appendix is adapted from the Transportation Research Board, Highway Capacity Manual, (2000).
Table B2: Level-of-Service Criteria for Signalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	<10.0
B	>10 and ≤ 20
C	>20 and ≤ 35
D	>35 and ≤ 55
E	>55 and ≤ 80
F	>80

Unsignalized Intersections

Unsignalized intersections include two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections. The 2000 Highway Capacity Manual (HCM) provides models for estimating control delay at both TWSC and AWSC intersections. A qualitative description of the various service levels associated with an unsignalized intersection is presented in Table B3. A quantitative definition of level of service for unsignalized intersections is presented in Table B4. Using this definition, Level of Service "E" is generally considered to represent the minimum acceptable design standard.

Table B3: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	
A	• Nearly all drivers find freedom of operation.
• Very seldom is there more than one vehicle in queue.	
B	- Some drivers begin to consider the delay an inconvenience.
- Occasionally there is more than one vehicle in queue.	

Table B4: Level-of-Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	<10.0
B	>10.0 and ≤ 15.0
C	>15.0 and ≤ 25.0
D	>25.0 and ≤ 35.0
E	>35.0 and ≤ 50.0
F	>50.0

It should be noted that the level-of-service criteria for unsignalized intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, there are a number of driver behavior considerations that combine to make delays at signalized intersections less galling than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, while drivers on the minor street approaches to TWSC intersections must remain attentive to the task of identifying
acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized intersections than signalized intersections. For these reasons, it is considered that the control delay threshold for any given level of service is less for an unsignalized intersection than for a signalized intersection. While overall intersection level of service is calculated for AWSC intersections, level of service is only calculated for the minor approaches and the major street left turn movements at TWSC intersections. No delay is assumed to the major street through movements. For TWSC intersections, the overall intersection level of service remains undefined: level of service is only calculated for each minor street lane.

In the performance evaluation of TWSC intersections, it is important to consider other measures of effectiveness (MOEs) in addition to delay, such as v / c ratios for individual movements, average queue lengths, and 95th-percentile queue lengths. By focusing on a single MOE for the worst movement only, such as delay for the minor-street left turn, users may make inappropriate traffic control decisions. The potential for making such inappropriate decisions is likely to be particularly pronounced when the HCM level-of-service thresholds are adopted as legal standards, as is the case in many public agencies.

Appendix C Existing Traffic Conditions Worksheets

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\boldsymbol{\Phi}$			$\boldsymbol{\uparrow}$		\uparrow	\uparrow		\uparrow	\uparrow	
Volume (vph)	48	4	35	16	2	21	13	928	42	6	298	6

	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Ideal Flow (vphpl)	4.5			4.5		4.5	5.0		4.5	5.0		
Total Lost time (s)		1.00			1.00		1.00	1.00		1.00	1.00	

Frpb, ped/bikes		1.00			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Fit		0.95			0.93		1.00	0.99		1.00	1.00	
Flt Protected		0.97			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1723			1701		1568	1802		1805	1812	
Flt Permitted		0.86			0.84		0.56	1.00		0.19	1.00	
Satd. Flow (perm)		1517			1452		926	1802		355	1812	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	52	4	38	17	2	23	14	998	45	6	320	6
RTOR Reduction (vph)	0	28	0	0	21	0	0	1	0	0	0	0
Lane Group Flow (vph)	0	66	0	0	21	0	14	1042	0	6	326	0
Confl. Peds. (\#/hr)	2					2	1					1
Heavy Vehicles (\%)	0\%	0\%	3\%	0\%	0\%	0\%	15\%	5\%	0\%	0\%	4\%	33\%

Turn Type	Perm	Perm	pm+pt		pm+pt	
Protected Phases	8	4	5	2	1	6
Permitted Phases	8	4	2		6	
Actuated Green, G (s)	8.4	8.4	77.7	76.6	77.5	76.5
Effective Green, g (s)	8.4	8.4	77.7	76.6	77.5	76.5
Actuated g/C Ratio	0.08	0.08	0.78	0.77	0.78	0.76
Clearance Time (s)	4.5	4.5	4.5	5.0	4.5	5.0
Vehicle Extension (s)	2.5	2.5	2.3	5.2	2.3	5.2
Lane Grp Cap (vph)	127	122	727	1380	290	1386
v/s Ratio Prot			c0.00	c0.58	0.00	0.18
v/s Ratio Perm	c0.04	0.01	0.01		0.02	
v/c Ratio	0.52	0.17	0.02	0.76	0.02	0.23
Uniform Delay, d1	43.9	42.6	2.5	6.5	6.3	3.4
Progression Factor	1.00	1.00	1.00	1.00	1.90	1.79
Incremental Delay, d2	2.6	0.5	0.0	3.9	0.0	0.4
Delay (s)	46.5	43.1	2.5	10.4	11.9	6.4
Level of Service	D	D	A	B	B	A
Approach Delay (s)	46.5	43.1		10.3		6.5
Approach LOS	D	D		B		A

Intersection Summary			
HCM Average Control Delay	12.6	HCM Level of Service	B
HCM Volume to Capacity ratio	0.68		9.0
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	C
Intersection Capacity Utilization	66.6%	ICU Level of Service	
Analysis Period (min)	15		
c Critical Lane Group			

	t	4	\uparrow	p			\downarrow	
Movement	WBL	WBR	NBT	NBR		SBL	SBT	
Lane Configurations	*		\uparrow				\uparrow	
Sign Control	Stop		Stop				Stop	
Volume (vph)	2	4	1	0		31	2	
Peak Hour Factor	0.66	0.66	0.66	0.66		0.66	0.66	
Hourly flow rate (vph)	3	6	2	0		47	3	
Direction, Lane\#	WB 1	NB 1	SB 1					
Volume Total (vph)	9	2	50					
Volume Left (vph)	3	0	47					
Volume Right (vph)	6	0	0					
Hadj (s)	-0.33	1.70	0.19					
Departure Headway (s)	3.7	5.7	4.1					
Degree Utilization, x	0.01	0.00	0.06					
Capacity (veh/h)	958	624	870					
Control Delay (s)	6.7	8.7	7.4					
Approach Delay (s)	6.7	8.7	7.4					
Approach LOS	A	A	A					
Intersection Summary								
Delay			7.3					
HCM Level of Service			A					
Intersection Capacity Utilization			18.5\%			Level of	Service	A
Analysis Period (min)			15					

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		$\hat{\uparrow}$	F	\%	个 \uparrow	F	${ }^{*}$	个 \uparrow	F
Volume (vph)	5	1	8	42	0	22	6	490	20	16	1021	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb, ped/bikes		1.00	1.00		1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.98
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.96	1.00		0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)		1822	1615		1719	1594	1805	3505	1570	1803	3471	1576
Flt Permitted		0.78	1.00		0.75	1.00	0.24	1.00	1.00	0.45	1.00	1.00
Satd. Flow (perm)		1479	1615		1364	1594	453	3505	1570	846	3471	1576
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	5	1	9	46	0	24	7	538	22	18	1122	4
RTOR Reduction (vph)	0	0	8	0	0	22	0	0	5	0	0	1
Lane Group Flow (vph)	0	6	1	0	46	2	7	538	17	18	1122	3
Confl. Peds. (\#/hr)	1					1	1		2	2		1
Confl. Bikes (\#hr)									4			3
Heavy Vehicles (\%)	0\%	0\%	0\%	5\%	0\%	0\%	0\%	3\%	0\%	0\%	4\%	0\%
Turn Type	Perm		Perm	Perm		Perm	pm+pt		Perm	pm+pt		Perm

Protected Phases	8			4		5	2		1	6	
Permitted Phases	8	8	4	4	4	2		2	6		6
Actuated Green, G (s)	7.7	7.7		7.7	7.7	87.7	86.7	86.7	89.9	87.8	87.8
Effective Green, $\mathrm{g}(\mathrm{s})$	7.7	7.7		7.7	7.7	87.7	86.7	86.7	89.9	87.8	87.8
Actuated g/C Ratio	0.07	0.07		0.07	0.07	0.80	0.79	0.79	0.82	0.80	0.80
Clearance Time (s)	4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	2.5	2.5		2.5	2.5	2.3	4.8	4.8	2.3	4.8	4.8
Lane Grp Cap (vph)	104	113		95	112	373	2763	1237	710	2770	1258
v/s Ratio Prot						0.00	0.15		c0.00	c0.32	
v/s Ratio Perm	0.00	0.00		c0.03	0.00	0.01		0.01	0.02		0.00
v/c Ratio	0.06	0.01		0.48	0.01	0.02	0.19	0.01	0.03	0.41	0.00
Uniform Delay, d1	47.8	47.6		49.2	47.6	2.4	2.9	2.5	1.9	3.3	2.2
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	0.0		2.8	0.0	0.0	0.2	0.0	0.0	0.2	0.0
Delay (s)	47.9	47.6		52.1	47.7	2.4	3.1	2.5	1.9	3.5	2.2
Level of Service	D	D		D	D	A	A	A	A	A	A
Approach Delay (s)	47.7			50.5			3.0			3.5	
Approach LOS	D			D			A			A	

Intersection Summary

HCM Average Control Delay	5.5	HCM Level of Service	A
HCM Volume to Capacity ratio	0.39		9.0
Actuated Cycle Length (s)	110.0	Sum of lost time (s)	A
Intersection Capacity Utilization	50.0%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*		${ }^{7}$	\hat{F}		\%	个	
Volume (vph)	25	1	48	53	3	4	65	491	18	19	960	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.98			1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.91			0.99		1.00	0.99		1.00	1.00	
Flt Protected		0.98			0.96		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1654			1763		1770	1852		1716	1821	
FIt Permitted		0.90			0.69		0.17	1.00		0.45	1.00	
Satd. Flow (perm)		1512			1265		309	1852		815	1821	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	26	1	50	55	3	4	68	511	19	20	1000	25
RTOR Reduction (vph)	0	46	0	0	3	0	0	1	0	0	1	0
Lane Group Flow (vph)	0	31	0	0	59	0	68	529	0	20	1024	0
Confl. Peds. (\#/hr)	1		2	2		1	1		3	3		1
Confl. Bikes (\#/hr)									5			3
Heavy Vehicles (\%)	0\%	0\%	2\%	2\%	0\%	0\%	2\%	2\%	0\%	5\%	4\%	0\%
Turn Type	Perm			Perm			pm+pt			pm+pt		

Protected Phases	8	4	5	2	1	6
Permitted Phases	8	4	2		6	
Actuated Green, G (s)	8.1	8.1	80.5	75.8	75.3	73.2
Effective Green, g (s)	8.1	8.1	80.5	75.8	75.3	73.2
Actuated g/C Ratio	0.08	0.08	0.80	0.76	0.75	0.73
Clearance Time (s)	4.5	4.5	4.5	5.0	4.5	5.0
Vehicle Extension (s)	2.5	2.5	2.3	5.2	2.3	5.2
Lane Grp Cap (vph)	122	102	317	1404	633	1333
v/s Ratio Prot			c0.01	0.29	0.00	c0.56
v / s Ratio Perm	0.02	c0.05	0.16		0.02	
v/c Ratio	0.25	0.58	0.21	0.38	0.03	0.77
Uniform Delay, d1	43.1	44.3	8.2	4.1	3.1	8.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.8	6.8	0.2	0.8	0.0	4.3
Delay (s)	43.9	51.1	8.4	4.9	3.1	12.5
Level of Service	D	D	A	A	A	B
Approach Delay (s)	43.9	51.1		5.3		12.3
Approach LOS	D	D		A		B

Intersection Summary			
HCM Average Control Delay	12.7	HCM Level of Service	B
HCM Volume to Capacity ratio	0.76		18.5
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	C

c Critical Lane Group

	\rangle					4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (veh/h)	2	50	1	1	60	7	0	0	1	8	0	8
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Hourly flow rate (vph)	3	75	1	1	90	10	0	0	1	12	0	12
Pedestrians												
Lane Width (ft)												
Walking Speed (tt/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					868							
PX, platoon unblocked												
VC , conflicting volume	100			76			191	184	75	181	180	95
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	100			76			191	184	75	181	180	95
tC , single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			100	100	100	98	100	99
cM capacity (veh/h)	1505			1536			762	711	992	782	715	967
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	79	101	1	24								
Volume Left	3	,	0	12								
Volume Right	1	10	1	12								
cSH	1505	1536	992	865								
Volume to Capacity	0.00	0.00	0.00	0.03								
Queue Length 95th (ft)	0	0	0	2								
Control Delay (s)	0.3	0.1	8.6	9.3								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.3	0.1	8.6	9.3								
Approach LOS			A	A								
Intersection Summary												
Average Delay			1.3									
Intersection Capacity Utilization			18.2\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix D Crash Data

CRASH SUMMARIES BY YEAR BY COLLISION TYPE

State Street /Oswego Hwy (003) \& Marylbrook Drive/Furman Drive

$$
\text { January 1, } 2009 \text { through December 31, } 2013
$$

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	$\begin{aligned} & \text { WET } \\ & \text { SURF } \end{aligned}$	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2012														
PEDESTRIAN	0	1	0	1	0	1	0	1	0	1	0	1	0	0
REAR-END	0	1	0	1	0	3	0	0	1	1	0	1	0	0
TURNING MOVEMENTS	0	1	0	1	0	2	0	1	0	0	1	1	0	0
2012 TOTAL	0	3	0	3	0	6	0	2	1	2	1	3	0	0
FINAL TOTAL	0	3	0	3	0	6	0	2	1	2	1	3	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Willamette Drive /Oswego Hwy (003) \& Arbor Drive
January 1, 2009 through December 31, 2013

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	$\begin{array}{r} \text { TOTAL } \\ \text { CRASHES } \end{array}$	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{aligned} & \text { DRY } \\ & \text { SURF } \end{aligned}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	OFF- ROAD
YEAR: 2013														
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2013 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2012														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2012 TOTAL	0	0	1	1	0	0	0	1	0	1	0	1	0	0
YEAR: 2011														
REAR-END	0	1	0	1	0	3	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	2	0	2	0	2	0	0	2	2	0	2	0	0
2011 TOTAL	0	3	0	3	0	5	0	1	2	3	0	3	0	0
YEAR: 2010														
REAR-END	0	2	0	2	0	2	0	2	0	2	0	2	0	0
2010 TOTAL	0	2	0	2	0	2	0	2	0	2	0	2	0	0
YEAR: 2009														
REAR-END	0	0	1	1	0	0	0	1	0	1	0	1	0	0
TURNING MOVEMENTS	0	0	1	1	0	0	0	1	0	1	0	1	0	0
2009 TOTAL	0	0	2	2	0	0	0	2	0	2	0	2	0	0
FINAL TOTAL	0	5	4	9	0	7	0	7	2	9	0	9	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
CRASH SUMMARIES BY YEAR BY COLLISION TYPE
Willamette Drive /Oswego Hwy (003) \& Marylhurst Drive/Lazy River Drive January 1, 2009 through December 31, 2013

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \\ \hline \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	DRY SURF	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$
YEAR: 2012														
TURNING MOVEMENTS	0	0	1	1	0	0	0	0	1	1	0	1	0	0
2012 TOTAL	0	0	1	1	0	0	0	0	1	1	0	1	0	0
YEAR: 2010														
REAR-END	0	2	0	2	0	3	0	1	1	2	0	2	0	0
2010 TOTAL	0	2	0	2	0	3	0	1	1	2	0	2	0	0
FINAL TOTAL	0	2	1	3	0	3	0	1	2	3	0	3	0	0

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

Upper Midhill Drive \& Arbor Drive

January 1, 2009 through December 31, 2013

COLLISION TYPE	FATAL CRASHES	$\begin{array}{r} \text { NON- } \\ \text { FATAL } \\ \text { CRASHES } \end{array}$	PROPERTY DAMAGE ONLY	TOTAL CRASHES	PEOPLE KILLED	PEOPLE INJURED	TRUCKS	$\begin{gathered} \text { DRY } \\ \text { SURF } \end{gathered}$	WET SURF	DAY	DARK	INTERSECTION	INTERSECTION RELATED	$\begin{aligned} & \text { OFF- } \\ & \text { ROAD } \end{aligned}$

YEAR:

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

YEAR:

TOTAL
FINAL TOTAL

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

ACTION CODE TRANSLATION LIST
CODE DESCRIPTION LONG DESCRIPTION

CODE	CRIPTION	Long description
000	NONE	NO ACTION OR NON-WARRANTED
001	SKIDDED	SKIDDED
002	on/ofe V	GEtting on or off stopped or parked vehicle
003	LOAD OVR	OVERHANGING LOAD Struck Another vehicle, etc.
006	SLOW DN	SLOWED DOWN
007	AVoiding	Avoiding maneuver
008	PAR PARK	PARALLEL PARKING
009	Ang Park	Angle Parking
010	Interfere	PASSENGER INTERFERING WITH DRIVER
011	Stopped	Stopped in traffic not Waiting to make a left turn
012	STP/L TRN	Stopped because of left turn Signal or waiting, etc.
013	STP TURN	Stopped while executing a turn
015	GO A/STOP	PROCEED AFTER Stopping For a stop Sign/flashing Red.
016	TRN A/RED	turned on red after stopping
017	LOSTCTRL	LOST CONTROL OF VEHICLE
018	Exit DWy	ENTERING STREET OR HIGHWAY FROM ALley OR DRIVEWAY
019	ENTR DWY	ENTERING ALLEY OR DRIVEWAY FROM StReet OR HIGHWAY
020	StR Entr	BEFORE ENTERING ROADWAY, STRUCK PEdestrian, Etc. On SIDEWALK OR SHOULDER
021	NO DRVR	CAR RAN AWAY - NO DRIVER
022	PREV COL	Struck, OR WAS Struck by, vehicle or pedestrian in prior collision before acc. Stabilized
023	StALLED	VEHICLE STALLED
024	DRVR DEAD	DEAD BY UNASSOCIATED CAUSE
025	FATIGUE	FAtIGUED, SLEEPY, ASLEEP
026	SUN	DRIVER BLINDED BY SUN
027	HDLGHTS	DRIVER BLINDED BY HEADLIGHTS
028	ILLNESS	PHYSICALLY ILL
029	THRU MED	VEHICLE CROSSED, PLuNGED OVER, OR THROUGH MEDIAN BARRIER
030	PURSUIT	PURSUING OR ATTEMPTING TO STOP A VEHICLE
031	PASSING	PASSING SITUATION
032	PRKOFFRD	Vehicle parked beyond curb or shoulder
033	CROS MED	VEHICLE CROSSED EARTH OR GRASS MEDIAN
034	X N/SGNL	Crossing at intersection - no traffic signal present
035	x w/ SGNL	CRossing at intersection - traffic signal present
036	DIAGONAL	Crossing at intersection - diagonally
037	BTWN INT	CROSSING BETWEEN INTERSECTIONS
038	DISTRACT	DRIVER'S Attention distracted
039	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
040	A/traf-S	WALKING, RUNNING, RIDING, EtC., ON SHOULDER FACING TRAFFIC
041	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC
042	A/TRAF-P	WALKIng, RUNNING, RIding, etc., On PAVEMENT FACING traffic
043	PLAYINRD	PLAying in Street or road
044	puSh mv	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
045	WORK ON	WORKING IN ROADWAY OR ALONG SHOULDER
046	W/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WIth traffic
047	A/ TRAFIC	NON-MOTORIST WALKING, RUNNING, RIDIng, ETC. FACING tRAFFIC
050	LAY ON RD	Standing or lying in roadway
051	ENT OFFRD	Entering / Starting in traffic lane from off road
052	MERGING	MERGING
055	SPRAY	BLINDED By WAter spray
088	OTHER	OTHER ACTION

ACTION CODE TRANSLATION LIST

CODE DESCRIPTION LONG DESCRIPTION
 099 UNK UNKNOWN ACTION

CAUSE CODE TRANSLATION LIST

CAUSE SHORT

CODE DESCRIPTION LONG DESCRIPTION

00	NO CODE	NO CAUSE ASSOCIATED AT THIS LEVEL
01	TOO-FAST	TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED
02	NO-YIELD	DID NOT YIELD RIGHT-OF-WAY
03	PAS-STOP	PASSED STOP SIGN OR RED FLASHER
04	DIS SIG	DISREGARDED TRAFFIC SIGNAL
05	LEFT-CTR	DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING
06	IMP-OVER	IMPROPER OVERTAKING
07	TOO-CLOS	FOLLOWED TOO CLOSELY
08	IMP-TURN	MADE IMPROPER TURN
09	DRINKING	ALCOHOL OR DRUG INVOLVED
10	OTHR-IMP	OTHER IMPROPER DRIVING
11	MECH-DEF	MECHANICAL DEFECT
12	OTHER	OTHER (NOT IMPROPER DRIVING)
13	IMP LN C	IMPROPER CHANGE OF TRAFFIC LANES
14	DIS TCD	DISREGARDED OTHER TRAFFIC CONTROL DEVICE
15	WRNG WAY	WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED RO:
16	FATIGUE	DRIVER DROWSY/FATIGUED/SLEEPY
17	ILLNESS	PHYSICAL ILLNESS
18	IN RDWY	NON-MOTORIST ILIEGALLY IN ROADWAY
19	NT VISBL	NOT VISIBLE: DARK / NON-REFLECTIVE CLOTHING
20	IMP PKNG	VEHICLE IMPROPERLY PARKED
21	DEF STER	DEFECTIVE STEERING MECHANISM
22	DEF BRKE	INADEQUATE OR NO BRAKES
24	LOADSHFT	VEHICLE LOST LOAD OR LOAD SHIFTED
25	TIREFAIL	TIRE FAILURE
26	PHANTOM	PHANTOM / NON-CONTACT VEHICLE
27	INATTENT	INATTENTION
28	NM INATT	NON-MOTORIST INATTENTION
29	FAVOID	FAILED TO AVOID VEHICLE AHEAD
30	SPEED	DRIVING IN EXCESS OF POSTED SPEED
31	RACING	SPEED RACING (PER PAR)
32	CARELESS	CARELESS DRIVING (PER PAR)
33	RECKLESS	RECKLESS DRIVING (PER PAR)
34	AGGRESV	AGGRESSIVE DRIVING (PER PAR)
35	RDRAGE	ROAD RAGE (PER PAR)
40	VIEW OBS	VIEW OBSCURED
50	USED MDN	IMPROPER USE OF MEDIAN OR SHOULDER

COLLISION TYPE CODE TRANSLATION LIST

$\begin{array}{lll}\text { COLL } & \text { SHORT } & \text { DESCRIPTION } \\ \text { LONG DESCRIPTION }\end{array}$

CODE	DESCRIPTION	LONG DESCRIPTION
$\&$	OTH	MISCELLANEOUS
-	BACK	BACKING
0	PED	PEDESTRIAN
1	ANGL	ANGLE
2	HEAD	HEAD-ON
3	REAR	REAR-END
4	SS-M	SIDESWIPE - MEETING
5	SS-O	SIDESWIPE - OVERTAKING
6	TURN	TURNING MOVEMENT
7	PARK	PARKING MANEUVER
8	NCOL	NON-COLLISION
9	FIX	FIXED OBJECT OR OTHER OBJECT

CRASH TYPE CODE TRANSLATION LIST

CRASH SHORT
TYPE DESCRIPTION LONG DESCRIPTION

$\&$	OVERTURN	OVERTURNED
0	NON-COLL	OTHER NON-COLLISION
1	OTH RDWY	MOTOR VEHICLE ON OTHER ROADWAY
2	PRKD MV	PARKED MOTOR VEHICLE
3	PED	PEDESTRIAN
4	TRAIN	RAILWAY TRAIN
6	BIKE	PEDALCYCLIST
7	ANIMAL	ANIMAL
8	FIX OBJ	FIXED OBJECT
9	OTH OBJ	OTHER OBJECT
A	ANGL-STP	ENTERING AT ANGLE - ONE VEHICLE STOPPED
B	ANGL-OTH	ENTERING AT ANGLE - ALL OTHERS
C	S-STRGHT	FROM SAME DIRECTION - BOTH GOING STRAIGHT
D	S-1TURN	FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT
E	S-1STOP	FROM SAME DIRECTION - ONE STOPPED
F	S-OTHER	FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING
G	O-STRGHT	FROM OPPOSITE DIRECTION - BOTH GOING STRAIGHT
H	O-1TURN	FROM OPPOSITE DIRECTION - ONE TURN, ONE STRAIGHT
I	O-1STOP	FROM OPPOSITE DIRECTION - ONE STOPPED
J	O-OTHER	FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING

DRIVER LICENSE CODE TRANSLATION LIST

DRIVER RESIDENCE CODE TRANSLATION LIST

LIC CODE	SHORT DESC	LONG DESCRIPTION
0	NONE	NOT LICENSED (HAD NEVER BEEN LICENSED)
1	OR-Y	VALID OREGON LICENSE
2	OTH-Y	VALID LICENSE, OTHER STATE OR COUNTRY
3	SUSP	SUSPENDED/REVOKED

ERROR CODE TRANSLATION LIS

ERROR CODE	SHORT DESCRIPTION	FULL DESCRIPTION
000	NONE	NO ERROR
001	WIDE TRN	WIDE TURN
002	CUT CORN	CUT CORNER ON TURN
003	FAIL TRN	FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS
004	L IN TRF	LEFT TURN IN FRONT OF ONCOMING TRAFFIC
005	L PROHIB	LEFT TURN WHERE PROHIBITED
006	FRM WRNG	TURNED FROM WRONG LANE
007	TO WRONG	turned into wrong lane
008	Illeg U	U-TURNED ILLEGALLY
009	IMP STOP	IMPROPERLY STOPPED IN TRAFFIC LANE
010	IMP SIG	IMPROPER SIGNAL OR FAILURE TO SIGNAL
011	IMP BACK	BACKING IMPROPERLY (NOT PARKING)
012	IMP PARK	IMPROPERLY PARKED
013	UNPARK	Improper Start leaving Parked position
014	IMP STRT	IMPROPER START FROM STOPPED POSITION
015	IMP LGHT	IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)
016	INATTENT	INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)
017	UNSF VEH	DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)
018	Oth PARK	ENTERING/EXITING PARKED POSITION w/ InSufficient Clearance; other improper parking maneuver
019	DIS DRIV	DISREGARDED OTHER DRIVER'S SIGNAL
020	DIS SGNL	disRegarded traffic Signal
021	RAN STOP	DISREGARDED STOP SIGN OR FLASHING RED
022	DIS SIGN	DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER
023	DIS OFCR	DISREGARDED POLICE OFFICER OR FLAGMAN
024	DIS EMER	DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE
025	DIS RR	DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN
026	REAR-END	FAILED TO AVOID Stopped or parked vehicle ahead other than school bus
027	BIKE ROW	DId Not have RIGht-OF-WAY OVER PEDALCYCLIST
028	No Row	DID NOT HAVE RIGHT-OF-WAY
029	PED ROW	FAILED TO Yield Right-of-wAy to pedestrian
030	PAS CURV	PASSING ON A CURVE
031	PAS WRNG	PASSING ON THE WRONG SIDE
032	PAS TANG	PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS
033	PAS X -WK	PASSED VEHICLE StOpped at crosswalk for pedestrian
034	PAS INTR	PASSING AT INTERSECTION
035	PAS HILL	PASSING ON CREST OF HILL
036	N/PAS ZN	PASSING IN "NO PASSING" ZONE
037	PAS TRAF	PASSING IN FRONT OF ONCOMING TRAFFIC
038	CUT-IN	CUtting in (two lanes - two way only)
039	WRNGSIDE	DRIVING ON WRONG SIDE OF THE ROAD (2-WAY Undivided roadways)
040	THRU MED	DRIVING THROUGH SAFETY ZONE OR OVER ISLAND
041	F/ST BUS	FAILED TO STOP FOR SCHOOL BUS

ERROR CODE TRANSLATION LIST

ERROR SHORT

CODE DESCRIPTION FULL DESCRIPTION

042	F/SLO MV	FAiled to decrease speed for Slower moving vehicle
043	TO CLOSE	FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)
044	STRDL LN	STRADDLING OR DRIVING ON WRONG LANES
045	IMP CHG	Improper change of traffic lanes
046	WRNG WAY	WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIded road
047	BASCRULE	DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)
048	OPN DOOR	OPENED DOOR INTO ADJACENT TRAFFIC LANE
049	Impeding	IMPEDING TRAFFIC
050	SPEED	driving in excess of posted speed
051	RECKLESS	RECKLESS DRIVING (PER PAR)
052	CARELESS	CARELESS DRIVING (PER PAR)
053	RACIng	SPEED RACING (PER PAR)
054	$\mathrm{X} \mathrm{N} / \mathrm{SGNL}$	CROSSING AT Intersection, no traffic signal present
055	X W/SGNL	CROSSING AT INTERSECTION, TRAFFIC SIGNAL PRESENT
056	DIAGONAL	CROSSING AT INTERSECTION - DIAGONALLY
057	BTWN INT	CROSSING BETWEEN INTERSECTIONS
059	W/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC
060	A/TRAF-S	WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC
061	W/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WIth traffic
062	A/TRAF-P	WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC
063	PLAYINRD	PLAYing in Street OR ROAD
064	PUSH MV	PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER
065	WK IN RD	WORKING IN ROADWAY OR ALONG SHOULDER
070	LAYON RD	Standing OR LYing in roadway
071	NM IMP USE	IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST
073	Eluding	eluding / Attempt to elude
079	F NEG CURV	failed to negotiate a curve
080	FAIL LN	FAILED to MAintain lane
081	OFF RD	RAN OfF ROAD
082	No CLEAR	DRIVER MISJUDGED CLEARANCE
083	OVRSTEER	OVER-CORRECTING
084	NOT USED	CODE NOT IN USE
085	OVRLOAD	OVERLOADING OR IMPROPER LOADING OF VEHICLE WIth CARGO OR PASSENGERS
097	UN	UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE

EVENT CODE TRANSLATION LIST

EVENT	SHORT	
CODE	DESCRIPTION	LONG DESCRIPTION
001	FEL/JUMP	OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE
002	INTERER	PASSENGER INTERFERED WITH DRIVER
003	BUG INTF	ANIMAL OR INSECT IN VEHICL INTERFERED WITH DRIVER
004	INDRCT PED	PEDESTRIAN INDIRECTLY INOLVED (NOT STRUCK)
005	SUB-PED	"SUB-PED" PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.
006	INDRCT BIK	PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)
007	HITCHKR	HITCHHIKER (SOLICITING A RIDE)
008	PSNGR TOW	PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE
009	ON/OFF V	GETTING ON/OFF STOPPED/PARKED VEHICLE (OCCUPANTS ONLY; MUST HAVE PHYSICAL CONTACT
010	SUB OTRN	OVERTURNED AFTER FIRST HARMFUL EVENT

EVENT CODE TRANSLATION LIST

EVENT SHORT

EVENT CODE	SHORT DESCRIPTION	LONG DESCRIPTION
060	MARKER	DELINEATOR OR MARKER (REFLECTOR POSTS)
061	MAILBOX	MAILBOX
062	TREE	TREE, STUMP OR SHRUBS
063	VEG OHED	tree branch or other vegetation overhead, etc.
064	WIRE/CBL	WIRE OR CABLE ACROSS OR OVER THE ROAD
065	TEMP SGN	TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.
066	PERM SGN	PERMANENT SIGN OR BARRICADE IN/OFF ROAD
067	SLIDE	SLIDES, FALLEN OR FALLING ROCKS
068	FRGN OBJ	FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)
069	EQP WORK	EQUIPMENT WORKING IN/OFF ROAD
070	OTH EQP	OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)
071	MAIN EQP	WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT
072	OTHER WALL	ROCK, BRICK OR OTHER SOLID WALL
073	IRRGL PVMT	OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)
074	OVERHD OBJ	OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE
075	CAVE In	BRIDGE OR ROAD CAVE IN
076	HI WATER	HIGH WATER
077	SNO BANK	SNOW BANK
078	LO-HI EDGE	Low OR HIGH Shoulder at pavement edge
079	DITCH	CUT SLOPE OR DITCH EMBANKMENT
080	OBJ FRM MV	STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)
081	FLY-OBJ	STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)
082	VEH HID	VEHICLE OBSCURED VIEW
083	VEG HID	VEGEtATION OBSCURED VIEW
084	BLDG HID	VIEW OBSCURED BY Fence, SIGN, Phone booth, etc.
085	WIND GUST	WIND GUST
086	IMMERSED	VEHICLE IMMERSED In Body of water
087	FIRE/EXP	FIRE OR EXPLOSION
088	FENC/BLD	FENCE OR BUILDING, ETC.
089	OTHR CRASH	CRASH RELATED TO ANOTHER SEPARATE CRASH
090	TO 1 SIDE	TWO-WAY traffic on divided roadway all routed to one side
091	BUILDING	BUILDING OR OTHER STRUCTURE
092	PHANTOM	OTHER (PHANTOM) NON-CONTACT VEHICLE
093	CELL PHONE	CELL PHONE (ON PAR OR DRIVER IN USE)
094	VIOL GDL	teenage driver in violation of graduated license pgm
095	GUY WIRE	GUY WIRE
096	BERM	BERM (EARTHEN OR GRAVEL MOUND)
097	GRAVEL	GRAVEL IN ROADWA
098	ABR EDGE	ABRUPT EDGE
099	CELL WTNSD	CELL PHONE USE WItNESSED BY OTHER PARTICIPANT
100	UNK FIXD	FIXED OBJECT, UNKNOWN TYPE.
101	OTHER OBJ	NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE
102	TEXTING	TEXTING
103	WZ WORKER	WORK ZONE WORKER
104	ON VEHICLE	PASSENGER RIDING ON VEHICLE EXTERIOR
105	PEDAL PSGR	PASSENGER RIDING ON PEDALCYCLE
106	MAN WHLCHR	PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR
107	MTR WHLCHR	PEDESTRIAN IN MOTORIZED Wheelchair
108	OFFICER	LAW ENFORCEMENT / POLICE OFFICER
109	SUB-BIKE	"SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.
110	N-MTR	NON-MOTORIST STRUCK VEHICLE
111	S CAR VS V	Street Car/trolley (on RAILS OR OVERheAd wire system) Struck vehicle
112	v VS S CAR	VEhICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM)
113	S CAR ROW	At OR ON Street car or trolley Right-of-way
114	RR EQUIP	VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS
115	DSTRCT GPS	DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE
116	DSTRCT OTH	DISTRACTED BY Other electronic device
117	RR GATE	RAIL CROSSING DROP-ARM GATE

EVENT SHORT

| EVENT
 CODE | SHORT
 DESCRIPTION | LONG DESCRIPTION |
| :---: | :--- | :--- | :--- |
| 118 | EXPNSN JNT | EXPANSION JOINT |
| 119 | JERSEY BAR | JERSEY BARRIER |
| 120 | WIRE BAR | WIRE OR CABLE MEDIAN BARRIER |
| 121 | FENCE | FENCE |
| 123 | OBJ IN VEH | LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT |
| 124 | SLIPPERY | SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL) |
| 125 | SHLDR | SHOULDER GAVE WAY |
| 126 | BOULDER | ROCK (S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE) |
| 127 | LAND SLIDE | ROCK SLIDE OR LAND SLIDE |
| 128 | CURVE INV | CURVE PRESENT AT CRASH LOCATION |
| 129 | HILL INV | VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION |
| 130 | CURVE HID | VIEW OBSCURED BY CURVE |
| 131 | HILL HID | VIEW OBSCURED BY VERTICAL GRADE / HILL |
| 132 | WINDOW HID | VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS |
| 133 | SPRAY HID | VIEW OBSCURED BY WATER SPRAY |

FUNCTIONAL CLASSIFICATION TRANSLATION LIST

FUNC
 CLASS DESCRIPTION

01 RURAL PRINCIPAL ARTERIAL - INTERSTATE
02 RURAL PRINCIPAL ARTERIAL - OTHER
06 RURAL MINOR ARTERIAL
07 RURAL MAJOR COLLECTOR
08 RURAL MINOR COLLECTOR
09 RURAL LOCAL
12 URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXP
14 URBAN PRINCIPAL ARTERIAL - OTHER
16 URBAN MINOR ARTERIAL
17 URBAN COLLECTOR
19 URBAN LOCAL
78 UNKNOWN RURAL SYSTEM
79 UNKNOWN RURAL NON-SYSTEM
98 UNKNOWN URBAN SYSTEM
99 UNKNOWN URBAN NON-SYSTEM

INJURY SEVERITY CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
1	KILL	FATAL INJURY
2	INJA	INCAPACITATING INJURY - BLEEDING, BROKEN BONES
3	INJB	NON-INCAPACITATING INJURY
4	INJC	POSSIBLE INJURY - COMPLAINT OF PAIN
5	PRI	DIED PRIOR TO CRASH
7	NO<5	NO INJURY - 0 TO 4 YEARS OF AGE

MEDIAN TYPE CODE TRANSLATION LIST

SHORT

CODE	DESC	LONG DESCRIPTION
0	NONE	NO MEDIAN
1	RSDMD	SOLID MEDIAN BARRIER
2	DIVMD	EARTH, GRASS OR PAVED MEDIAN

CODE	LONG DESCRIPTION
0	REGULAR MILEAGE
T	TEMPORARY
Y	SPUR
Z	OVERLAPPING

MOVEMENT TYPE CODE TRANSLATION LIST

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	STRGHT	STRAIGHT AHEAD
2	TURN-R	TURNING RIGHT
3	TURN-L	TURNING LEFT
4	U-TURN	MAKING A U-TURN
5	BACK	BACKING
6	STOP	STOPPED IN TRAFFIC
7	PRKD-P	PARKED - PROPERLY
8	PRKD-I	PARKED - IMPROPERLY

pedestrian location code tranclation list

CODE	LONG DESCRIPTION
00	AT INTERSECTION - NOT IN ROADWAY
01	AT INTERSECTION - INSIDE CROSSWALK
02	AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK
03	AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN
04	NOT AT INTERSECTION - IN ROADWAY
05	NOT AT INTERSECTION - ON SHOULDER
06	NOT AT INTERSECTION - ON MEDIAN
07	NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY
08	NOT AT INTERSECTION - IN BIKE PATH
09	NOT-AT INTERSECTION - ON SIDEWALK
10	OUTSIDE TRAFFICWAY BOUNDARIES
13	AT INTERSECTION - IN BIKE LANE
15	NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK
18	OTHER, NOT IN ROADWAY
99	UNKNOWN LOCATION

ROAD CHARACTER CODE TRANSLATION LIST
SHORT

CODE	SHORT DESC	LONG DESCRIPTION
0	UNK	UNKNOWN
1	INTER	INTERSECTION
2	ALLEY	DRIVEWAY OR ALLEY
3	STRGHT	STRAIGHT ROADWAY
4	TRANS	TRANSITION
5	CURVE	CURVE (HORIZONTAL CURVE)
6	OPENAC	OPEN ACCESS OR TURNOUT
7	GRADE	GRADE (VERTICAL CURVE)
8	BRIDGE	BRIDGE STRUCTURE
9	TUNNEL	TUNNEL

PARTICIPANT TYPE CODE TRANSLATION LIS

CODE	SHORT DESC	LONG DESCRIPTION
0	OCC	UNKNOWN OCCUPANT TYPE
1	DRVR	DRIVER
2	PSNG	PASSENGER
3	PED	PEDESTRIAN
4	CONV	PEDESTRIAN USING A PEDESTRIAN CONVEYA.
5	PTOW	PEDESTRAN TOWING OR TRAILERING AN OB.
6	BIKE	PEDALCYCLIST
7	BTOW	PEDALCYCLIST TOWING OR TRAILERING AN
8	PRKD	OCCUPANT OF A PARKED MOTOR VEHICLE
9	UNK	UNKNOWN TYPE OF NON-MOTORIST

traffic Control device code translation list

CODE	SHORT DESC	LONG DESCRIPTION
000	NONE	NO CONTROL
001	TRE SIGNAL	TRAFFIC SIGNALS
002	FLASHBCN-R	FLASHING BEACON - RED (STOP)
003	FLASHBCN-A	FLASHING BEACON - AMBER (SLOW)
004	STOP SIGN	STOP SIGN
005	SLOW SIGN	SLOW SIGN
006	REG-SIGN	REGULATORY SIGN
007	YIELD	YIELD SIGN
008	WARNING	WARNING SIGN
009	CURVE	CURVE SIGN
010	SCHL X-ING	SCHOOL CROSSING SIGN OR SPECIAL SIGNAL
011	OFCR/FLAG	POLICE OFFICER, FLAGMAN - SCHOOL PATROL
012	BRDG-GATE	BRIDGE GATE - BARRIER
013	TEMP-BARR	TEMPORARY BARRIER
014	NO-PASS-ZN	NO PASSING ZONE
015	ONE-WAY	ONE-WAY STREET
016	CHANNEL	CHANNELIZATION
017	MEDIAN BAR	MEDIAN BARRIER
018	PILOT CAR	PILOT CAR
019	SP PED SIG	SPECIAL PEDESTRIAN SIGNAL
020	X-BUCK	CROSSBUCK
021	THR-GN-SIG	THROUGH GREEN ARROW OR SIGNAL
022	L-GRN-SIG	LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
023	R-GRN-SIG	RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL
024	WIGWAG	WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE
025	X-BUCK WRN	CROSSBUCK AND ADVANCE WARNING
026	WW W/ GATE	FLASHING LIGHTS WITH DROP-ARM GATES
027	OVRHD SGNL	SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)
028	SP RR STOP	SPECIAL RR STOP SIGN
029	ILUM GRD X	ILLUMINATED GRADE CROSSING
037	RAMP METER	METERED RAMPS
038	RUMBLE STR	RUMBLE STRIP
090	L-TURN REF	LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)
091	R-TURN ALL	RIGHT TURN AT ALL TIMES SIGN, ETC.
092	EMR SGN/FL	EMERGENCY SIGNS OR FLARES
093	ACCEL LANE	ACCELERATION OR DECELERATION LANES
094	R-TURN PRO	RIGHT TURN PROHIBITED ON RED AFTER STOPPING

vehicle type code translation lis

CODE	SHORT DESC	LONG DESCRIPTION
01	PSNGR CAR	PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.
02	BOBTAIL	TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)
03	FARM TRCTR	FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT
04	SEMI TOW	TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW
05	TRUCK	TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.
06	MOPED	MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE
07	SCHL BUS	SCHOOL BUS (INCLUDES VAN)
08	OTH BUS	OTHER BUS
09	MTRCYCLE	MOTORCYCLE, DIRT BIKE
10	OTHER	OTHER: FORKLIFT, BACKHOE, ETC.
11	MOTRHOME	MOTORHOME
12	TROLLEY	MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)
13	ATV	ATV
14	MTRSCTR	MOTORIZED SCOOTER (STANDING)
15	SNOWMOBILE	SNOWMOBILE
99	UNKNOWN	UNKNOWN VEHICLE TYPE

WEATHER CONDITION CODE TRANSLATION LIST

CODE	SHORT	DESC
0	LONG DESCRIPTION	
1	CLR	UNKNOWN
2	CLD	CLEAR
3	RAIN	CLOUDY
4	RLT	RAIN
5	FOG	FOE
6	SNOW	SNOW
7	DUST	DUST
8	SMOK	SMOKE
9	ASH	ASH

Appendix E Year 2016 Background Traffic Conditions Worksheets

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	F		\uparrow	F	\%	个4	F	\%	个 \uparrow	7
Volume (vph)	1	0	6	2	0	1	3	1017	31	15	279	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	0.95	1.00	1.00	0.95	
Frpb, ped/bikes		1.00	0.99		1.00	1.00	1.00	1.00	0.98	1.00	1.00	
Flpb, ped/bikes		1.00	1.00		1.00	1.00	0.99	1.00	1.00	1.00	1.00	
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	
Flt Protected		0.95	1.00		0.95	1.00	0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)		1805	1594		1803	1615	1789	3438	1477	1687	3438	
Flt Permitted		1.00	1.00		1.00	1.00	0.57	1.00	1.00	0.25	1.00	
Satd. Flow (perm)		1900	1594		1898	1615	1074	3438	1477	445	3438	
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Adj. Flow (vph)	1	0	6	2	0	1	3	1082	33	16	297	0
RTOR Reduction (vph)	0	0	6	0	0	1	0	0	4	0	0	0
Lane Group Flow (vph)	0		0	0	2	0	3	1082	29	16	297	0
Confl. Peds. (\#/hr)			1	1			9					9
Confl. Bikes (\#/hr)									3			
Heavy Vehicles (\%)	0\%	0\%	0\%	0\%	0\%	0\%	0\%	5\%	7\%	7\%	5\%	0\%
Turn Type	Perm		Perm	Perm		Perm	pm+pt		Perm	pm+pt		Perm

Intersection Summary			
HCM Average Control Delay	1.3	HCM Level of Service	A
HCM Volume to Capacity ratio	0.37		13.5
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	A
Intersection Capacity Utilization	49.9%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow	「		$\hat{\uparrow}$	F	\％	性	F	\％	个 \uparrow	F
Volume（vph）	5	1		43	0	22	6	495	20	16	1032	4
Ideal Flow（vphpl）	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time（s）		4.5	4.5		4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
Lane Util．Factor		1.00	1.00		1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frpb，ped／bikes		1.00	1.00		1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.98
Flpb，ped／bikes		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		1.00	0.85		1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected		0.96	1.00		0.95	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd．Flow（prot）		1822	1615		1719	1594	1805	3505	1570	1803	3471	1576
Flt Permitted		0.78	1.00		0.75	1.00	0.23	1.00	1.00	0.44	1.00	1.00
Satd．Flow（perm）		1482	1615		1364	1594	446	3505	1570	841	3471	1576
Peak－hour factor，PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Adj．Flow（vph）	5	1	9	47	0	24	7	544	22	18	1134	4
RTOR Reduction（vph）	0	0	8	0	0	22	0	0	5	0	0	1
Lane Group Flow（vph）	0	6	1	0	47	2	7	544	17	18	1134	3
Confl．Peds．（\＃／hr）	1					1	1		2	2		1
Confl．Bikes（\＃hr）									4			3
Heavy Vehicles（\％）	0\％	0\％	0\％	5\％	0\％	0\％	0\％	3\％	0\％	0\％	4\％	0\％
Turn Type	Perm		Perm	Perm		Perm	pm＋pt		Perm	pm＋pt		Perm

Intersection Summary

HCM Average Control Delay	5.6	HCM Level of Service	A
HCM Volume to Capacity ratio	0.39		
Actuated Cycle Length（s）	110.0	Sum of lost time（s）	9.0
Intersection Capacity Utilization	50.4%	ICU Level of Service	A
Analysis Period（min）	15		

C Critical Lane Group

	4			7			4	4	7		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			¢			${ }_{\$}$	
Volume (veh/h)	13	0	11	4	0	7	5	508	11	17	1009	41
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	14	-	12	4	0	8	5	558	12	19	1109	45
Pedestrians		1			1							
Lane Width (tt)		12.0			12.0							
Walking Speed (fts)		4.0			4.0							
Percent Blockage		0			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								992			884	
pX , platoon unblocked	0.26	0.26	0.22	0.26	0.26	0.92	0.22			0.92		
vC , conflicting volume	1753	1752	1132	1757	1768	565	1155			571		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu , unblocked vol	1822	1820	0	1839	1884	489	0			495		
tC, single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.2		
tC, 2 stage (s)												
tF (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.3		
p0 queue free \%	0	100	95	68	100	99	98			98		
cM capacity (veh/h)	14	19	238	14	18	539	356			968		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	26	12	576	1173								
Volume Left	14	4	5	19								
Volume Right	12	8	12	45								
cSH	24	36	356	968								
Volume to Capacity	1.11	0.33	0.02	0.02								
Queue Length 95th (ft)	83	27	1	7								
Control Delay (s)	455.8	146.7	0.5	0.7								
Lane LOS	F	F	A	A								
Approach Delay (s)	455.8	146.7	0.5	0.7								
Approach LOS	F	F										
Intersection Summary												
Average Delay			8.3									
Intersection Capacity Utilization			76.3\%		CU Level	S Service			D			
Analysis Period (min)			15									

	\dagger			\checkmark			4	4	P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\uparrow		7	\uparrow		${ }^{7}$	$\hat{1}$	
Volume (vph)	25	1	49	54	3	4	65	496	18	19	969	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.98			1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.91			0.99		1.00	0.99		1.00	1.00	
FIt Protected		0.98			0.96		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1653			1763		1770	1852		1716	1821	
Flt Permitted		0.90			0.68		0.16	1.00		0.45	1.00	
Satd. Flow (perm)		1513			1254		301	1852		809	1821	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	26	1	51	56	3	4	68	517	19	20	1009	25
RTOR Reduction (vph)	0	47	0	0	3	0	0	1	0	0	1	0
Lane Group Flow (vph)	0	31	0	0	60	0	68	535	0	20	1033	0
Confl. Peds. (\#/hr)	1		2	2		1	1		3	3		1
Confl. Bikes (\#/hr)									5			3
Heavy Vehicles (\%)	0\%	0\%	2\%	2\%	0\%	0\%	2\%	2\%	0\%	5\%	4\%	0\%
Turn Type	Perm			Perm			pm+pt			pm+pt		
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8			4			2			6		
Actuated Green, G (s)		8.1			8.1		80.5	75.8		75.3	73.2	
Effective Green, g (s)		8.1			8.1		80.5	75.8		75.3	73.2	
Actuated g/C Ratio		0.08			0.08		0.80	0.76		0.75	0.73	
Clearance Time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Vehicle Extension (s)		2.5			2.5		2.3	5.2		2.3	5.2	
Lane Grp Cap (vph)		123			102		311	1404		628	1333	
v / s Ratio Prot							c0.01	0.29		0.00	c0.57	
v / s Ratio Perm		0.02			c0.05		0.17			0.02		
v/c Ratio		0.25			0.59		0.22	0.38		0.03	0.78	
Uniform Delay, d1		43.1			44.3		8.5	4.1		3.1	8.3	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.8			7.4		0.2	0.8		0.0	4.5	
Delay (s)		43.9			51.8		8.7	4.9		3.1	12.8	
Level of Service		D			D		A	A		A	B	
Approach Delay (s)		43.9			51.8			5.3			12.6	
Approach LOS		D			D			A			B	
Intersection Summary												
			12.9		HCM Level	of Service			B			
HCM Volume to Capacity ratio			0.77									
Actuated Cycle Length (s)			100.0		Sum of lost	time (s)			18.5			
Intersection Capacity Utilization			70.0\%		CU Level	Service			C			
Analysis Period (min)			15									
c Critical Lane Group												

c Critical Lane Group

	7	4	\uparrow	p			\downarrow	
Movement	WBL	WBR	NBT	NBR		SBL	SBT	
Lane Configurations	M		$\hat{\beta}$				\uparrow	
Sign Control	Stop		Stop				Stop	
Volume (vph)	12	32	5	3		19	10	
Peak Hour Factor	0.69	0.69	0.69	0.69		0.69	0.69	
Hourly flow rate (vph)	17	46	7	4		28	14	
Direction, Lane \#	WB 1	NB 1	SB 1					
Volume Total (vph)	64	12	42					
Volume Left (vph)	17	0	28					
Volume Right (vph)	46	4	0					
Hadj (s)	-0.34	-0.22	0.25					
Departure Headway (s)	3.7	3.8	4.3					
Degree Utilization, x	0.07	0.01	0.05					
Capacity (veh/h)	960	907	822					
Control Delay (s)	6.9	6.9	7.5					
Approach Delay (s)	6.9	6.9	7.5					
Approach LOS	A	A	A					
Intersection Summary								
Delay			7.1					
HCM Level of Service			A					
Intersection Capacity Utilization			18.2\%			Level of	Service	A
Analysis Period (min)			15					

	\rangle					4	4	\uparrow	p	\checkmark	\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (veh/h)	2	51	1	1	60	7	0	0	1	8	0	8
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Hourly flow rate (vph)	3	76	1	1	90	10	0	0	1	12	0	12
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					868							
pX , platoon unblocked												
vC, conflicting volume	100			78			193	186	77	182	181	95
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	100			78			193	186	77	182	181	95
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			100	100	100	98	100	99
cM capacity (veh/h)	1505			1534			760	710	990	781	714	967
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	81	101	1	24								
Volume Left	3	,	0	12								
Volume Right		10	1	12								
cSH	1505	1534	990	864								
Volume to Capacity	0.00	0.00	0.00	0.03								
Queue Length 95th (ft)	0	0	0	2								
Control Delay (s)	0.3	0.1	8.6	9.3								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.3	0.1	8.6	9.3								
Approach LOS			A	A								
Intersection Summary												
Average Delay			1.3									
Intersection Capacity Utilization			18.2\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix F Year 2016 Total Traffic Conditions Worksheets

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		${ }^{4}$	$\hat{}$		${ }^{*}$	\uparrow	
Volume (vph)	60	4	42	16		21	15	941	43	6	308	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		1.00			0.99		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.95			0.93		1.00	0.99		1.00	1.00	
Flt Protected		0.97			0.98		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1724			1701		1568	1801		1805	1812	
Flt Permitted		0.84			0.86		0.54	1.00		0.17	1.00	
Satd. Flow (perm)		1483			1489		892	1801		314	1812	
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	65	4	45	17	2	23	16	1012	46	6	331	6
RTOR Reduction (vph)	0	27	0	0	21	0	0	1	0	0	1	0
Lane Group Flow (vph)	0	87	0	0	21	0	16	1057	0	6	336	0
Confl. Peds. (\#/hr)	2					2	1					1
Heavy Vehicles (\%)	0\%	0\%	3\%	0\%	0\%	0\%	15\%	5\%	0\%	0\%	4\%	33\%
Turn Type	Perm			Perm			pm+pt			pm+pt		
Protected Phases		8			4		5	2		1	6	
Permitted Phases	8			4			2			6		
Actuated Green, G (s)		10.8			10.8		76.3	74.2		74.1	73.1	
Effective Green, g (s)		10.8			10.8		76.3	74.2		74.1	73.1	
Actuated g/C Ratio		0.11			0.11		0.76	0.74		0.74	0.73	
Clearance Time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Vehicle Extension (s)		2.5			2.5		2.3	5.2		2.3	5.2	
Lane Grp Cap (vph)		160			161		695	1336		248	1325	
v/s Ratio Prot							c0.00	c0.59		0.00	0.19	
v/s Ratio Perm		c0.06			0.01		0.02			0.02		
v / C Ratio		0.55			0.13		0.02	0.79		0.02	0.25	
Uniform Delay, d1		42.3			40.4		2.9	8.1		8.1	4.4	
Progression Factor		1.00			1.00		1.00	1.00		1.83	1.58	
Incremental Delay, d2		3.0			0.3		0.0	4.9		0.0	0.5	
Delay (s)		45.3			40.6		2.9	12.9		14.9	7.5	
Level of Service		D			D		A	B		B	A	
Approach Delay (s)		45.3			40.6			12.8			7.6	
Approach LOS		D			D			B			A	

Intersection Summary			
HCM Average Control Delay	14.7	HCM Level of Service	B
HCM Volume to Capacity ratio	0.71		9.0
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	C
Intersection Capacity Utilization	69.1%	ICU Level of Service	
Analysis Period (min)	15		

	\downarrow	4	\dagger	P			\downarrow	
Movement	WBL	WBR	NBT	NBR		SBL	SBT	
Lane Configurations	M		\uparrow				\uparrow	
Sign Control	Stop		Stop				Stop	
Volume (vph)	2	11	3	0		39	20	
Peak Hour Factor	0.66	0.66	0.66	0.66		0.66	0.66	
Hourly flow rate (vph)	3	17	5	0		59	30	
Direction, Lane \#	WB 1	NB 1	SB 1					
Volume Total (vph)	20	5	89					
Volume Left (vph)	3	0	59					
Volume Right (vph)	17	0	0					
Hadj (s)	-0.48	1.70	0.13					
Departure Headway (s)	3.6	5.7	4.1					
Degree Utilization, x	0.02	0.01	0.10					
Capacity (veh/h)	961	616	874					
Control Delay (s)	6.7	8.8	7.5					
Approach Delay (s)	6.7	8.8	7.5					
Approach LOS	A	A	A					
Intersection Summary								
Delay			7.4					
HCM Level of Service			A					
Intersection Capacity Utilization			19.9\%			Leve	Service	A
Analysis Period (min)			15					

	4	\rightarrow	\cdots	\checkmark		4	4	9	p		\dagger	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			*			\&	
Volume (veh/h)	1	66	0	1	15	3	0	0	5	25	0	1
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	1	74	0	1	17	3	0	0	6	28	0	1
Pedestrians		1			1							
Lane Width (ft)		12.0			12.0							
Walking Speed (ft/s)		4.0			4.0							
Percent Blockage$0$$0$												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					868							
pX, platoon unblocked												
vC , conflicting volume	20			74			99	99	75	104	97	20
$\mathrm{vC1}$, stage 1 conf vol												
vC 2 , stage 2 conf vol												
vCu , unblocked vol	20			74			99	99	75	104	97	20
tC, single (s)	5.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	3.1			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			100	100	99	97	100	100
cM capacity (veh/h)	1138			1538			884	794	991	874	795	1063
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	75	21	6	29								
Volume Left	1	1	0	28								
Volume Right	0	3	6	1								
cSH	1138	1538	991	880								
Volume to Capacity	0.00	0.00	0.01	0.03								
Queue Length 95th (ft)	0	0	0	3								
Control Delay (s)	0.1	0.4	8.7	9.2								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.1	0.4	8.7	9.2								
Approach LOS			A	A								
Intersection Summary												
Average Delay			2.6									
Intersection Capacity Utilization			18.7\%		CU Level	Service			A			
Analysis Period (min)			15									

c Critical Lane Group

	4			7			4	\uparrow	p	\downarrow	\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		¢			\$			¢			\$	
Volume (veh/h)	13	0	15	4	0	7	12	514	11	17	1009	52
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	14	0	16	4	0	8	13	565	12	19	1109	57
Pedestrians		1			1							
Lane Width (ft)		12.0			12.0							
Walking Speed (ft/s)		4.0			4.0							
Percent Blockage		0			0							
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)								992			884	
pX, platoon unblocked	0.26	0.26	0.22	0.26	0.26	0.92	0.22			0.92		
VC , conflicting volume	1781	1780	1138	1789	1803	572	1167			578		
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu, unblocked vol	1894	1891	0	1928	1979	491	0			498		
tC , single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.2		
$\mathrm{tC}, 2$ stage (s)												
tF (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.3		
p0 queue free \%	0	100	93	62	100	99	96			98		
cM capacity (veh/h)	12	17	237	12	15	534	355			961		
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	31	12	590	1185								
Volume Left	14	4	13	19								
Volume Right	16	8	12	57								
cSH	24	31	355	961								
Volume to Capacity	1.27	0.39	0.04	0.02								
Queue Length 95th (ft)	96	32	3	1								
Control Delay (s)	514.3	183.8	1.2	0.7								
Lane LOS	F	F	A	A								
Approach Delay (s)	514.3	183.8	1.2	0.7								
Approach LOS	F	F										
Intersection Summary												
Average Delay			10.8									
Intersection Capacity Utilization			74.5\%	ICU Level of Service					D			
Analysis Period (min)			15									

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\dagger			¢		\%	\hat{F}		${ }^{7}$	$\hat{\dagger}$	
Volume (vph)	31	1	53	54	3	4	71	503	18	19	973	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5		4.5	5.0		4.5	5.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frpb, ped/bikes		0.98			1.00		1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.92			0.99		1.00	0.99		1.00	1.00	
Flt Protected		0.98			0.96		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1660			1763		1770	1852		1716	1821	
Flt Permitted		0.89			0.64		0.16	1.00		0.44	1.00	
Satd. Flow (perm)		1508			1184		294	1852		802	1821	
Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Adj. Flow (vph)	32	1	55	56	3	4	74	524	19	20	1014	25
RTOR Reduction (vph)	0	50	0	0	3	0	0	1	0	0	1	0
Lane Group Flow (vph)	0	38	0	0	60	0	74	542	0	20	1038	0
Confl. Peds. (\#/hr)	1		2	2		1	1		3	3		1
Confl. Bikes (\#/hr)									5			3
Heavy Vehicles (\%)	0\%	0\%	2\%	2\%	0\%	0\%	2\%	2\%	0\%	5\%	4\%	0\%
Turn Type	Perm			Perm			pm+pt			pm+pt		

Protected Phases	8	4	5	2	1	6
Permitted Phases	8	4	2		6	
Actuated Green, G (s)	8.2	8.2	80.5	75.7	75.1	73.0
Effective Green, g (s)	8.2	8.2	80.5	75.7	75.1	73.0
Actuated g/C Ratio	0.08	0.08	0.80	0.76	0.75	0.73
Clearance Time (s)	4.5	4.5	4.5	5.0	4.5	5.0
Vehicle Extension (s)	2.5	2.5	2.3	5.2	2.3	5.2
Lane Grp Cap (vph)	124	97	308	1402	621	1329
v/s Ratio Prot			c0.01	0.29	0.00	c0.57
v/s Ratio Perm	0.02	c0.05	0.18		0.02	
v/c Ratio	0.30	0.62	0.24	0.39	0.03	0.78
Uniform Delay, d1	43.2	44.4	8.9	4.2	3.2	8.5
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	10.2	0.2	0.8	0.0	4.6
Delay (s)	44.2	54.6	9.1	5.0	3.2	13.1
Level of Service	D	D	A	A	A	B
Approach Delay (s)	44.2	54.6		5.5		12.9
Approach LOS	D	D		A		B

Intersection Summary			
HCM Average Control Delay	13.4	HCM Level of Service	
HCM Volume to Capacity ratio	0.78		18.5
Actuated Cycle Length (s)	100.0	Sum of lost time (s)	D
Intersection Capacity Utilization	74.5%	ICU Level of Service	
Analysis Period (min)	15		

c Critical Lane Group

	\rangle					4	4	4	p	\checkmark	\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Volume (veh/h)	3	51	1	1	60	13	0	0	1	18	0	9
Sign Control		Free			Free			Stop			Stop	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Hourly flow rate (vph)	4	76	1	1	90	19	0	0	1	27	0	13
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)					868							
pX , platoon unblocked												
vC, conflicting volume	109			78			201	198	77	190	189	99
$\mathrm{vC1}$, stage 1 conf vol												
$\mathrm{vC2}$, stage 2 conf vol												
vCu , unblocked vol	109			78			201	198	77	190	189	99
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free \%	100			100			100	100	100	97	100	99
cM capacity (veh/h)	1494			1534			748	699	990	771	707	962
Direction, Lane \#	EB 1	WB 1	NB 1	SB 1								
Volume Total	82	110	1	40								
Volume Left	4	,	0	27								
Volume Right	1	19	1	13								
cSH	1494	1534	990	826								
Volume to Capacity	0.00	0.00	0.00	0.05								
Queue Length 95th (ft)	0	0	0	4								
Control Delay (s)	0.4	0.1	8.6	9.6								
Lane LOS	A	A	A	A								
Approach Delay (s)	0.4	0.1	8.6	9.6								
Approach LOS			A	A								
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utilization			19.4\%		CU Level	Service			A			
Analysis Period (min)			15									

Appendix G Year 2016 Total Traffic Conditions Worksheets Mitigated

	4	\rightarrow		7			4	\dagger	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		\%	$\hat{\square}$			4	
Volume (veh/h)	32	0	15	11	0	12	7	1019	6	1	292	7
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	35		16	12	0	13	8	1108	7	1	317	8
Pedestrians		,						1				
Lane Width (tt)		12.0						12.0				
Walking Speed (ft/s)		4.0						4.0				
Percent Blockage		0						0				
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (ft)								992			883	
pX , platoon unblocked	0.31	0.31		0.31	0.31	0.31				0.31		
vC , conflicting volume	1460	1454	323	1467	1454	1111	326			1114		
vC1, stage 1 conf vol	324	324		1126	1126							
vC2, stage 2 conf vol	1136	1129		341	328							
vCu , unblocked vol	1372	1351	323	1393	1353	247	326			258		
tC, single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	6.2	5.5		6.1	5.5							
tF (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free \%	81	100	98	94	100	95	99			100		
cM capacity (veh/h)	185	191	721	204	194	247	1244			410		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	51	25	8	1114	326							
Volume Left	35	12	8	0	1							
Volume Right	16	13	0	7	8							
cSH	242	225	1244	1700	410							
Volume to Capacity	0.21	0.11	0.01	0.66	0.00							
Queue Length 95th (ft)	19	9	0	0	0							
Control Delay (s)	23.8	23.0	7.9	0.0	0.1							
Lane LOS	C	C	A		A							
Approach Delay (s)	23.8	23.0	0.1		0.1							
Approach LOS	C	C										
Intersection Summary												
Average Delay			1.2									
Intersection Capacity Utilization			65.0\%		CU Level	f Service			C			
Analysis Period (min)			15									

	4			7			4	4	p		\downarrow	\downarrow
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$		${ }^{*}$	\uparrow			\$	
Volume (veh/h)	13	0	15	4	0	7	12	514	11	17	1009	52
Sign Control		Stop			Stop			Free			Free	
Grade		0\%			0\%			0\%			0\%	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Hourly flow rate (vph)	14	-	16	4	0	8	13	565	12	19	1109	57
Pedestrians		,			1							
Lane Width (tt)		12.0			12.0							
Walking Speed (ft/s)		4.0			4.0							
Percent Blockage		0			0							
Right turn flare (veh)												
Median type								None			TWLTL	
Median storage veh)											2	
Upstream signal (ft)								992			883	
pX , platoon unblocked	0.26	0.26	0.21	0.26	0.26	0.91	0.21			0.91		
vC , conflicting volume	1775	1780	1138	1789	1803	572	1167			578		
vC1, stage 1 conf vol	1176	1176		598	598							
vC2, stage 2 conf vol	599	604		1191	1204							
vCu , unblocked vol	1800	1821	0	1857	1908	483	0			489		
tC, single (s)	7.2	6.5	6.2	7.1	6.5	6.2	4.1			4.2		
tC, 2 stage (s)	6.2	5.5		6.1	5.5							
tF (s)	3.6	4.0	3.3	3.5	4.0	3.3	2.2			2.3		
p0 queue free \%	92	100	93	97	100	99	96			98		
cM capacity (veh/h)	179	168	234	157	142	536	351			960		
Direction, Lane \#	EB 1	WB 1	NB 1	NB 2	SB 1							
Volume Total	31	12	9	581	1185							
Volume Left	14	4	9	4	19							
Volume Right	16	8	0	12	57							
cSH	205	285	351	351	960							
Volume to Capacity	0.15	0.04	0.04	0.04	0.02							
Queue Length 95th (ft)	13	3	3	3	1							
Control Delay (s)	25.7	18.2	15.7	1.0	0.7							
Lane LOS	D	C	C	A	A							
Approach Delay (s)	25.7	18.2	1.2		0.7							
Approach LOS	D	C										
Intersection Summary												
Average Delay			1.4									
Intersection Capacity Utilization			80.0\%		CU Level	f Service			D			
Analysis Period (min)			15									

PRELIMINARY
 STORMWATER REPORT

CHÊNE BLANC ESTATES

WEST LINN, OR

October 16, 2015

Prepared For:
18000 Midhill Drive, LLC
West Linn, OR

EXPIRES:

Prepared By:
3J Consulting, Inc.
5075 SW Griffith Drive, Suite 150
Beaverton, Oregon 97005
Project No: 15246
KEF
EXECUTIVE SUMMARY 1
PROJECT DESCRIPTION 2
EXISTING CONDITIONS 3
Site Geology 3
Existing Drainage 4
POST-DEVELOPED CONDITIONS 5
HYDROLOGIC ANALYSIS DESIGN GUIDELINES 5
Design Guidelines 5
Hydrograph Method 5
Design Storm 5
Basin Runoff 6
HYDRAULIC ANALYSIS AND DESIGN CHARACTERISTICS 6
WATER QUALITY/QUANTITY 6
Water Quality Guidelines 6
Water Quantity Guidelines 6
Wet detention Pond Volume 6
SUMMARY 7
TECHNICAL APPENDIX A
REFERENCES A
LIST OF FIGURES
Figure 1 - Vicinity Map 2
Figure 2 - Site Location 3
LIST OF TABLES
Table 1 - Soil Characteristics 3
Table 2 - Existing Basin Areas 4
Table 3 - Post-Developed Basin Areas 5
Table 4 - Design Storms 6
Table 5 - Basin Runoff Rates 6
Table 6 - Proposed Pond Volume 7

EXECUTIVE SUMMARY

The existing site is located on private property at 18000 Upper Midhill Drive in West Linn, Oregon (See Figure 1 \& Figure 2). The property (including offsite improvements) is approximately 6.84 acres and currently contains no structures, brush and several groves of mature trees. The proposed development will consist of subdividing the property to create 34 lots. Additionally, a $48-\mathrm{ft}$ right of way with 24 -ft street will be constructed and dedicated. The purpose of this storm water report is to describe the design of the stormwater management systems following the City of West Linn requirements.

Stormwater runoff from the proposed development will be conveyed to a detention pond for water quality treatment and detention. The pond has been sized to comply with the following requirements:

- Treat stormwater runoff using the City of Portland's requirement of 0.83 inches of precipitation for a 24 -hour storm event.
- Capture and detain the $2,5,10$ and 25 -year, 24 -hour post developed runoff rate to release at the 2,5, 10 and 25-year, 24-hour existing runoff rate.

A geotechnical investigation was completed in August 2015 showing that infiltration rates on the site $1.2 \mathrm{in} / \mathrm{hr}$ at 5 feet below ground surface.

The purpose of this report is to describe the facilities being proposed and to show that the design follows the City of West Linn's Public Works Design Standards.

PROIECT DESCRIPTION

The existing site is located on private property at 18000 Upper Midhill Drive in West Linn, Oregon (See Figure 1 and 2).

The purpose of this report is to describe the facilities being proposed and show that the design follows the City of West Linn Public Works Design Standards in effect at the time of this report.

Figure 1 - Vicinity Map

Figure 2 - Site Location

EXISTINGCONDITIONS

Site

The property slopes toward east at grades ranging from 9\% to 20%. Elevations range from a maximum of 350 feet on the southwest side of the property to a minimum of 238 feet on the southeast side. Currently no structures, brush and several groves of mature trees exist on the site.

Climate

The site is located in Clackamas County approximately 12 miles south of downtown Portland in the West Linn foothills. Average annual rainfall recorded in this area is 47 inches.

Flood Map

The flood plain map shows that the site resides in Zone X, where no base flood elevations have been determined (See Technical Appendix: Exhibits - FIRM Map Number 41005C0019D).

Site Geology

The soil type as classified by the United States Department of Agriculture Soil Survey of Clackamas County is identified in Table 1 (See Technical Appendix: Exhibits - Hydrologic Soil Group for Clackamas County Area, Oregon).

Soil Type	Hydrologic Group
Cascade Silt Loam	C

Table 1 - Soil Characteristics

A geotechnical investigation was completed in August 2015 showing that infiltration rates on the site are $1.2 \mathrm{in} / \mathrm{hr}$ at 5 feet below ground surface (See Technical Appendix: Geotechnical Report).

Existing Drainage

Existing Onsite

An existing drainage ditch is located on the north and east sides of the property. The ditch outfalls into a 12 inch storm line leaving the property and draining towards the southeast through College View Drive.

Existing Offsite

The developed area to the west of the project site slopes towards the site and appears to utilize the existing onsite drainage ditch. An existing storm line system intercepts runoff on the east side of the property and conveys it north into the existing drainage system (See Technical Appendix: Figures 3 and 4).

Basin Areas

Table 2 shows the current impervious and pervious areas for the project site (See Technical Appendix: Exhibits - Existing Site Conditions).

Existing Onsite Basin Area	sq. ft.	acres
Impervious Area	0	0.00
Pervious Area	265,716	6.10
Total Existing Basin Area	265,716	6.10
Existing Offsite Basin Area		sq. ft.
Impervious Area	0	0.00
Pervious Area	32,234	0.74
Total Existing Basin Area	32,234	0.74
Total Existing Project Site Area	$\mathbf{2 9 7 , 9 5 0}$	$\mathbf{6 . 8 4}$
Table 2 - Existing Basin Areas		

Curve Number

The major factors for determining the CN values are hydrologic soil group, cover type, treatment, hydrologic condition, and antecedent runoff condition. The curve number represents runoff potential from the ground. Tables 2-2a and 2-2c in the TR-55 manual were used to determine the appropriate curve numbers (See Technical Appendix: Exhibits - Table 2-2a and 2-2c Runoff Curve Numbers).

The existing site consists of woods and brush with a corresponding curve number of 77. The post-developed pervious area was considered to be open space in fair condition (grass cover 50% to 75%) with a corresponding curve number of 79 .

Time of Concentration

The time of concentration was calculated for the existing site using the TR-55 Method. The time of concentration of 18 minutes was calculated for the existing basin (See Technical Appendix: Calculations- Time of Concentration). The time of concentration for the post-developed conditions was assumed to be 5 minutes.

POST-DEVELOPED CONDITIONS

Post-Developed Site

Stormwater runoff from the site will be conveyed to a proposed water quality and detention pond in Tract C via catch basins and manholes. The outfall of the pond will be piped through Tract A in the southeastern corner of the site releasing into the existing drainage ditch.

Basin Areas

Table 3 shows the post-developed impervious and pervious areas (See Technical Appendix: Exhibits - Post-Developed Site Conditions). The project area will be approximately 45\% impervious.

Post-Developed Total Basin Area	sq. ft.	acres
${ }^{1}$ Impervious Area	133,294	3.06
Pervious Area	164,657	3.78
Total Basin Area	297,950	6.84

${ }^{1}$ Assumes 2,400 sf per lot and includes proposed roads and sidewalks

Table 3 - Post-Developed Basin Areas

HYDROLOGIC ANALYSIS DESIGN GUIDELINES

Design Guidelines

The site is located within the jurisdiction of the City of West Linn, which follows the City of Portland's Stormwater Management Manual for the design of stormwater facilities. Stormwater runoff from the proposed development will be conveyed to a wet detention pond for water quality treatment and detention. The pond has been sized to comply with the following requirements:

- Treat stormwater runoff for water quality storm event (0.83 inches);
- Capture and detain the 2, 5, 10 and 25-year, 24-hour post developed runoff rates to the existing $2,5,10$ and 25 -year, 24 -hour existing runoff rates.

An infiltration rate of $1.2 \mathrm{in} / \mathrm{hr}$ with a factor of safety of 4 was used for the bottom surface area of the pond.

Hydrograph Method

Naturally occurring rainstorms dissipate over long periods of time. An effective way of estimating storm rainfall is by using the hydrograph method. The Santa Barbara Unit Hydrograph (SBUH) method was used to develop runoff rates. The computer software Hydraflow was used to compute runoff rates and volumes.

Design Storm

The rainfall distribution to be used for this area is the design storm of 24-hour duration based on the standard Type 1A rainfall distribution. Table 4 shows total precipitation depths for the various storm events, which were used as a multiplier for the Type 1A 24-hour rainfall distribution.

Recurrence Interval (years)	Total Precipitation Depth (in.)
Water Quality	0.83
2	2.50
5	3.00
10	3.40
25	3.90
100	4.50

Table 4 - Design Storms

Basin Runoff

Table 5 shows the runoff rates for the existing and post-developed conditions and the allowable release rates after construction (See Technical Appendix: Hydrographs - Hydrograph Report: Existing and Post-Developed).

Recurrence Interval (years)	Existing Runoff Rate (cfs)	Post-Developed Runoff Rate (cfs)	Allowable Release Rate (cfs)
$W Q$	N/A	0.10	0.05
2	0.66	2.26	0.66
5	1.12	3.06	1.12
10	1.53	3.72	1.53
25	2.07	4.56	2.07

Table 5 - Basin Runoff Rates

HYDRAULIC ANALYSIS AND DESIGN CHARACTERISTICS

The stormwater conveyance system and flow control structure will be sized in the final design phase of the project.

WATER QWALITY/QUANTITY

Water Quality Guidelines

The stormwater facility design follows West Linn's design standards and the City of Portland's Stormwater Management Manual guidelines. The stormwater facility will be designed for flow control and pollution reduction. The City of Portland's performance approach was used to size an extended wet pond. The pond will detain the water quality volume for a minimum of 24 hours. The water quality volume (based on preliminary analysis) for the post-developed condition is $4,014 \mathrm{ft}^{3}$.

Water Quantity Guidelines

The pond has been designed to release flows at or below the required release rates (as described on the previous page) based on the Existing Runoff Rates shown in Table 5.

Wet detention Pond Volume

Table 6 shows the available storage capacity of the proposed pond. The table does not include the 0.5 feet of dead storage. The flow control structure and details will be provided in the final Stormwater Report.

Elevation (ft.)	Surface Area (ft	Average Surface Area (ft		
262	2,894		Sectional Volume (ft	
		Total Volume (ft		
		3,330	3,330	
263	3,766			$\mathbf{3 , 3 3 0}$
		4,233	4,233	
264	4,701			$\mathbf{7 , 5 6 3}$
		5,031	5,031	
265	5,360			$\mathbf{1 2 , 5 9 3}$
		5,531	5,531	
266	5,702			$\mathbf{1 8 , 1 2 4}$
		6,423	6,423	
267	7,145			$\mathbf{2 4 , 5 4 8}$

Table 6 - Proposed Pond Volume

SUMMARY

The stormwater design for the proposed Chêne Blanc Estates will meet or exceed the City of West Linn's requirements. All sizing of water quality/quantity facilities followed the City of Portland's Stormwater Management Manual.

TECHNICAL APPENDIX

Exhibits

- FIRM Map Number 41005C0019D
- Hydrologic Soil Group-Clackamas County Area, Oregon
- Table 2-2a and 2-2c Runoff Curve Numbers
- Figure 3
- Figure 4
- Existing Site Conditions
- Post-Developed Site Conditions

Hydrographs

- 2-Year through 25-Year Existing Runoff Hydrograph
- Water Quality through 25-YearPost Developed Runoff Hydrograph

Calculations

- Time of Concentration

Geotechnical Reports

- Geotechnical Engineering Report, GeoPacific Engineering, Inc, August 6, 2015

Operations and Maintenance

- Operations and Maintenance Plan for Stormwater Facilities - To be Completed with the Final Design

REFERENCES

1. City of West Linn's Public Works Design Standards Issued in 2010
2. \quad City of Portland's Stormwater Management Manual Issued in January 2014
3. Soil Survey of Clackamas County Area. National Resource Conservation Service
4. Urban Hydrology for Small Watersheds - TR-55 Issued in June 1986 - U.S. Department of Agriculture, Natural Resources Conservation Service, Conservation Engineering Division
5. http://westlinnoregon.gov/publicworks/stormwater-fact-sheet

EXHIBITS

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.
Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Clackamas County Area, Oregon Survey Area Data: Version 9, Sep 19, 2014

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Date(s) aerial images were photographed: Jul 26, 2014—Sep 5, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Hydrologic Soil Group—Summary by Map Unit — Clackamas County Area, Oregon (OR610)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
$13 C$	Cascade silt loam, 8 to 15 percent slopes	C	6.4	98.5%
$13 E$	Cascade silt loam, 30 to 60 percent slopes	C	0.1	1.5%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Natural Resources

Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Chapter 2

Estimating Runoff
Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2a Runoff curve numbers for urban areas $1 /$

[^2]
Chapter 2

Table 2-2c Runoff curve numbers for other agricultural lands $\frac{1 /}{}$

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

City of Lake Oswego Storm

Figure 4

HYDROGRAPHS

Hydrograph Report

Hyd. No. 1

Existing Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=0.662 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=8.17 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=18,382 \mathrm{cuft}$
Drainage area	$=6.840$ ac	Curve number	$=77^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=0$ User	$=2.50$ in	Time of conc. (Tc)
Total precip.	$=18.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=$ Type IA
		Shape factor	$=\mathrm{n} / \mathrm{a}$

* Composite $($ Area/CN $)=[(6.100 \times 77)+(0.740 \times 77)] / 6.840$

Hydrograph Report

Hyd. No. 1

Existing Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=1.122 \mathrm{cfs}$
Storm frequency	$=5$ yrs	Time to peak	$=8.17 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=26,593 \mathrm{cuft}$
Drainage area	$=6.840$ ac	Curve number	$=77^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	$=3.00$ in	Time of conc. (Tc)
Total precip.	$=18.00 \mathrm{~min}$		
Storm duration	$=24 \mathrm{hrs}$	Distribution	$=T y p \mathrm{IA}$
		Shape factor	$=\mathrm{n} / \mathrm{a}$

${ }^{*}$ Composite $($ Area/CN $)=[(6.100 \times 77)+(0.740 \times 77)] / 6.840$

Hydrograph Report

Hyd. No. 1

Existing Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=1.528 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=8.17 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=33,685 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=77^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U$ User	Time of conc. (Tc)	$=18.00 \mathrm{~min}$
Total precip.	$=3.40$ in	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

${ }^{*}$ Composite $($ Area/CN $)=[(6.100 \times 77)+(0.740 \times 77)] / 6.840$

Hydrograph Report

Hyd. No. 1

Existing Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=2.072 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=8.17 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=43,058 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=77^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=18.00 \mathrm{~min}$
Total precip.	$=3.90 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

${ }^{*}$ Composite $($ Area/CN $)=[(6.100 \times 77)+(0.740 \times 77)] / 6.840$

Hyd No. 1

Hydrograph Report

Hyd. No. 2

Post Developed Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff		Peak discharge	$=0.104 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$ Water Quality		Time to peak	$=8.17 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$		Hyd. volume	$=4,014 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$		Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$		Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$		Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=0.83 \mathrm{in}$		Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$		Shape factor	$=$ n/a

* Composite $($ Area/CN $)=[(3.060 \times 98)+(3.780 \times 79)] / 6.840$

Post Developed Runoff Hydrograph

Q (cfs)

Hydrograph Report

Hyd. No. 2

Post Developed Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=2.261 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=8.00 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=34,301 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.50 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

* Composite $($ Area/CN $)=[(3.060 \times 98)+(3.780 \times 79)] / 6.840$

Q (cfs)
H.00

Hydrograph Report

Hyd. No. 2

Post Developed Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=3.064 \mathrm{cfs}$
Storm frequency	$=5 \mathrm{yrs}$	Time to peak	$=8.00 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=45,144 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.00 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

* Composite $($ Area/CN $)=[(3.060 \times 98)+(3.780 \times 79)] / 6.840$

Hydrograph Report

Hyd. No. 2

Post Developed Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=3.724 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=8.00 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=54,070 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.40 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

* Composite $($ Area/CN $)=[(3.060 \times 98)+(3.780 \times 79)] / 6.840$

Hydrograph Report

Hyd. No. 2

Post Developed Runoff Hydrograph

Hydrograph type	$=$ SBUH Runoff	Peak discharge	$=4.563 \mathrm{cfs}$
Storm frequency	$=25 \mathrm{yrs}$	Time to peak	$=8.00 \mathrm{hrs}$
Time interval	$=10 \mathrm{~min}$	Hyd. volume	$=65,455 \mathrm{cuft}$
Drainage area	$=6.840 \mathrm{ac}$	Curve number	$=88^{*}$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.90 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{IA}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=\mathrm{n} / \mathrm{a}$

${ }^{*}$ Composite $($ Area/CN $)=[(3.060 \times 98)+(3.780 \times 79)] / 6.840$

Post Developed Runoff Hydrograph

CALCULATIONS

$3 \text { Time of }$?oncen		
PROJECT NO. 15266	BY kef	DATE	6/2015
	Existing Pre Dev		
SHEET FLOW			
INPUT	VALUE	VALUE	VALUE
Surface Description	Type $\quad 6$ Grass (dense)	Type $\quad 6$ Grass (dense)	Type $\quad 5$ Grass (short prairie)
Manning's "n"	0.24	0.24	0.15
Flow Length, L	300 ft	ft	0 ft
2-Yr 24 Hour Rainfall, P_{2}	2.5 in	2.5 in	2.5 in
Land Slope, s	$0.1558 \mathrm{ft} / \mathrm{ft}$	$0.02 \mathrm{ft} / \mathrm{ft}$	$0.0025 \mathrm{ft} / \mathrm{ft}$
OUTPUT			
Travel Time	0.29 hr	0.00 hr	0.00 hr
SHALLOW CONCENTRATED FLOW			
INPUT	VALUE	VALUE	VALUE
Surface Description	Unpaved	Paved	Unpaved
Flow Length, L	346 ft	ft	0 ft
Watercourse Slope*, s	$0.0987 \mathrm{ft} / \mathrm{ft}$	$0.11 \mathrm{ft} / \mathrm{ft}$	$0.027 \mathrm{ft} / \mathrm{ft}$
OUTPUT			
Average Velocity, V	$5.07 \mathrm{ft} / \mathrm{s}$	$6.74 \mathrm{ft} / \mathrm{s}$	$2.65 \mathrm{ft} / \mathrm{s}$
Travel Time	0.019 hr	0.000 hr	0.000 hr
CHANNEL FLOW			
INPUT	VALUE	VALUE	VALUE
Cross Sectional Flow Area, a	$0.0 \mathrm{ft}^{2}$	$1.77 \mathrm{ft}^{2}$	$15.05 \mathrm{ft}^{2}$
Wetted Perimeter, P_{w}	0.0 ft	4.741 ft	7.69 ft
Channel Slope, s	$0.0 \mathrm{ft} / \mathrm{ft}$	$0.09 \mathrm{ft} / \mathrm{ft}$	$0.00 \mathrm{ft} / \mathrm{ft}$
Manning's "n"	0.24	0.013	0.24
Flow Length, L	0 ft	ft	0 ft
OUTPUT			
Average Velocity	$0.03 \mathrm{ft} / \mathrm{s}$	$17.83 \mathrm{ft} / \mathrm{s}$	$0.53 \mathrm{ft} / \mathrm{s}$
Hydraulic Radius, $\mathrm{r}=\mathrm{a} / \mathrm{P}_{\mathrm{w}}$	1.00 ft	0.37 ft	1.96 ft
Travel Time	0.00 hr	0.00 hr	0.00 hr
Watershed or Subarea $\mathrm{T}_{\mathrm{c}}=$	0.30 hr	0.00 hr	0.00 hr
Watershed or Subarea $\mathrm{T}_{\mathrm{c}}=$	18 minutes	0 minutes	0 minutes

GEOTECHNICAL REPORTS

Real-World Geotechnical Solutions Investigation • Design • Construction Support

Preliminary Geotechnical Engineering Report \& Landslide Hazard Study

Reesman Property
Upper Midhill Drive - 2S1E14CA 00200
Portland, Oregon 97229

GeoPacific Engineering, Inc. Job No. 15-3849
August 6, 2015 Project No. 15-3849, Reesman Property, Portland, Oregon

TABLE OF CONTENTS

List of Appendices i
List of Figures i
PROJECT INFORMATION 1
SITE AND PROJECT DESCRIPTION 2
SITE GEOLOGY 2
REGIONAL SEISMIC SETTING 3
Portland Hills Fault Zone 3
Gales Creek-Newberg-Mt. Angel Structural Zone 3
Cascadia Subduction Zone 4
FIELD EXPLORATION AND SUBSURFACE CONDITIONS 4
Soils 5
Soil Moisture and Groundwater 7
INFILTRATION TESTING 7
CONCLUSIONS AND RECOMMENDATIONS 7
General Slope Stability and Mass Grading 8
Site Preparation Recommendations 9
Subsurface Drainage 10
Engineered Fill 10
Keyways, Benching, and Subdrains for Fill Slopes 11
Excavating Conditions and Utility Trench Backfill 11
New Pavement Sections for Proposed Streets 12
Wet Weather Construction Pavement Section 13
Spread Foundations 14
Footing and Roof Drains 14
Stormwater Management Facilities 15
Seismic Design 15
UNCERTAINTIES AND LIMITATIONS 17
REFERENCES 18
APPENDIX

List of Appendices

Figures
Exploration Logs
Laboratory Results
Site Research

List of Figures

1 Site Location Map

2 Site Plan and Exploration Locations
3 Site Topographic Map and Exploration Locations
4 Geologic Cross Section
5 Fill Slope Detail

August 6, 2015
Project No. 15-3849
Ryan Zygar
Upper Midhill Estates, LLC
931 SW King Avenue
Portland, Oregon 97205
Email: ryan@zygar.com
Cc: Andrew Tull, 3J Consulting Engineers, andrew.tull@3j-consulting.com

SUBJECT: PRELIMINARY GEOTECHNICAL ENGINEERING REPORT REESMAN PROPERTY
 UPPER MIDHILL DRIVE - 2S1E14CA 00200
 WEST LINN, OREGON

PROJECT INFORMATION

This report presents the results of a preliminary geotechnical engineering study conducted by GeoPacific Engineering, Inc. (GeoPacific) for the above-referenced project. The purpose of our investigation was to evaluate subsurface conditions at the site and to provide geotechnical recommendations for site development. This geotechnical study was performed in accordance with GeoPacific Proposal No. P-506, revised May 21, 2015, and your subsequent authorization of our proposal and General Conditions for Geotechnical Services. This report is considered preliminary because no grading or development plans have yet been finalized. GeoPacific should be consulted to review the proposed grading and development plans and to provide specific recommendations for the proposed plans prior to construction.

Location:	Upper Midhill Drive 2S1E14CA 00200 West Linn, Oregon (see Figure 1)
Property Owner:	Ryan Zygar Upper Midhill Estates, LLC 931 SW King Avenue Portland, Oregon 97205
Developer:	Same as Property Owner
Jurisdictional Agency:	City of West Linn, Oregon
Prepared By:	GeoPacific Engineering, Inc 14835 SW 72nd Avenue Portland, Oregon 97224 Tel (503) 598-8445 Fax (503) 941-9281

Preliminary Geotechnical Engineering Report
Project No. 15-3849, Reesman Property, West Linn, Oregon

SITE AND PROJECT DESCRIPTION

The subject site is an irregularly shaped parcel located at the northern terminus of Upper Midhill Drive in the City of West Linn, Clackamas County, Oregon. The property is approximately 6.1 acres in size. Topography in the northeast portion of the site slopes down to the northeast at an average grade of approximately 15 percent or less. Topography in the southwest portion of the site slopes down to the northeast at an average grade of approximately 25 percent or less. Small areas of the site, such as in the far southwest corner of the site, slope down to the east at grades of up to approximately 50 percent. The site is currently undeveloped and vegetation consists primarily of short grasses and dense to sparse trees.

Preliminary site plans indicate that the proposed development will consist of a 34 lot subdivision for single family home construction, new streets, driveways, stormwater management facilities, and associated underground utilities. A grading plan has not been provided for our review, but we anticipate maximum cuts and fills will be on the order of about 7 feet or less.

SITE GEOLOGY

Regionally, the subject site lies within the Willamette Valley/Puget Sound lowland, a broad structural depression situated between the Coast Range on the west and the Cascade Range on the east. A series of discontinuous faults subdivide the Willamette Valley into a mosaic of faultbounded, structural blocks (Yeats et al., 1996). Uplifted structural blocks form bedrock highlands, while down-warped structural blocks form sedimentary basins. Valley-fill sediment in the adjacent basin achieves a maximum thickness of 1,500 feet and overlies Miocene Columbia River Basalt at depth (Madin, 1990; Yeats et al., 1996).

Geologic mapping indicates that the near-surface soils in the northeastern half of the site consist of Willamette Formation soils. The Willamette Formation is a quaternary age (last 1.6 million years) catastrophic flood deposit associated with repeated glacial outburst flooding of the Willamette Valley (Yeats et al., 1996). The last of these outburst floods occurred about 10,000 years ago. These deposits typically consist of horizontally layered, micaceous, silt to coarse sand forming poorly-defined to distinct beds less than 3 feet thick. Regional studies indicate that the Willamette Formation soils on the subject site decreases in thickness to the southwest and taper out completely in the central portion of the site.

Underlying the Willamette Formation soils in the northeast portion of the site and directly underlying the ground surface in the southwest portion of the stie is the Columbia River Basalt Formation (Madin, 1990). The Miocene aged (about 14.5 to 16.5 million years ago) Columbia River Basalts are a thick sequence of lava flows which form the crystalline basement of the Tualatin Valley. The basalts are composed of dense, finely crystalline rock that is commonly fractured along blocky and columnar vertical joints. Individual basalt flow units typically range from 25 to 125 feet thick and interflow zones are typically vesicular, scoriaceous, brecciated, and sometimes include sedimentary rocks.

LIDAR images reviewed for this study show ancient debris flows which moved downslope to the northeast. During our field reconnaissance, we observed signs of two debris on the site, indicated by the presence of corresponding scarps, benches, and slightly bulged terrain. Groundwater
seepage was observed in test pit TP-11, indicating the presence of a seep or spring. The approximate extents of the two debris flows observed on the site are shown Figure 3.

REGIONAL SEISMIC SETTING

At least three major fault zones capable of generating damaging earthquakes are thought to exist in the vicinity of the subject site. These include the Portland Hills Fault Zone, the Gales Creek-Newberg-Mt. Angel Structural Zone, and the Cascadia Subduction Zone.

Portland Hills Fault Zone

The Portland Hills Fault Zone is a series of NW-trending faults that include the central Portland Hills Fault, the western Oatfield Fault, and the eastern East Bank Fault. These faults occur in a northwest-trending zone that varies in width between 3.5 and 5.0 miles. The combined three faults reportedly vertically displace the Columbia River Basalt by 1,130 feet and appear to control thickness changes in late Pleistocene (approx. 780,000 years) sediment (Madin, 1990). The Portland Hills Fault occurs along the Willamette River at the base of the Portland Hills, and is located approximately 1.5 miles northeast of the site. The Oatfield Fault occurs along the western side of the Portland Hills, and is located approximately 0.67 miles southwest of the site. The East Bank Fault occurs along the eastern margin of the Willamette River, and is located approximately 3.25 miles northeast of the site. The accuracy of the fault mapping is stated to be within 500 meters (Wong, et al., 2000).

According to the USGS Earthquake Hazards Program, the fault was originally mapped as a down-to-the-northeast normal fault, but has also been mapped as part of a regional-scale zone of rightlateral, oblique slip faults, and as a steep escarpment caused by asymmetrical folding above a south-west dipping, blind thrust fault. The Portland Hills fault offsets Miocene Columbia River Basalts, and Miocene to Pliocene sedimentary rocks of the Troutdale Formation. No fault scarps on surficial Quaternary deposits have been described along the fault trace, and the fault is mapped as buried by the Pleistocene aged Missoula flood deposits. No historical seismicity is correlated with the mapped portion of the Portland Hills Fault Zone, but in 1991 a M3.5 earthquake occurred on a NW-trending shear plane located 1.3 miles east of the fault (Yelin, 1992). Although there is no definitive evidence of recent activity, the Portland Hills Fault Zone is assumed to be potentially active (Geomatrix Consultants, 1995).

Gales Creek-Newberg-Mt. Angel Structural Zone

The Gales Creek-Newberg-Mt. Angel Structural Zone is a 50 -mile-long zone of discontinuous, NWtrending faults that lies about 19 miles southwest of the subject site. These faults are recognized in the subsurface by vertical separation of the Columbia River Basalt and offset seismic reflectors in the overlying basin sediment (Yeats et al., 1996; Werner et al., 1992). A geologic reconnaissance and photogeologic analysis study conducted for the Scoggins Dam site in the Tualatin Basin revealed no evidence of deformed geomorphic surfaces along the structural zone (Unruh et al., 1994). No seismicity has been recorded on the Gales Creek Fault or Newberg Fault (the fault closest to the subject site); however, these faults are considered to be potentially active because they may connect with the seismically active Mount Angel Fault and the rupture plane of the 1993 M5.6 Scotts Mills earthquake (Werner et al. 1992; Geomatrix Consultants, 1995).

Preliminary Geotechnical Engineering Report
Project No. 15-3849, Reesman Property, West Linn, Oregon

According to the USGS Earthquake Hazards Program, the Mount Angel fault is mapped as a highangle, reverse-oblique fault, which offsets Miocene rocks of the Columbia River Basalts, and Miocene and Pliocene sedimentary rocks. The fault appears to have controlled emplacement of the Frenchman Spring Member of the Wanapum Basalts, and thus must have a history that predates the Miocene age of these rocks. No unequivocal evidence of deformation of Quaternary deposits has been described, but a thick sequence of sediments deposited by the Missoula floods covers much of the southern part of the fault trace.

Cascadia Subduction Zone

The Cascadia Subduction Zone is a 680-mile-long zone of active tectonic convergence where oceanic crust of the Juan de Fuca Plate is subducting beneath the North American continent at a rate of 4 cm per year (Goldfinger et al., 1996). A growing body of geologic evidence suggests that prehistoric subduction zone earthquakes have occurred (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). This evidence includes: (1) buried tidal marshes recording episodic, sudden subsidence along the coast of northern California, Oregon, and Washington, (2) burial of subsided tidal marshes by tsunami wave deposits, (3) paleoliquefaction features, and (4) geodetic uplift patterns on the Oregon coast. Radiocarbon dates on buried tidal marshes indicate a recurrence interval for major subduction zone earthquakes of 250 to 650 years with the last event occurring 300 years ago (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). The inferred seismogenic portion of the plate interface lies approximately along the Oregon Coast at depths of between 20 and 40 kilometers below the surface.

FIELD EXPLORATION AND SUBSURFACE CONDITIONS

Our site-specific exploration for this report was conducted on June 10, 2015 and June 18, 2015. A total of 11 exploratory test pits (designated TP-1 through TP-11) were excavated to depths ranging from 10 to 17 feet at the locations shown on Figures 2 and 3. Test pit locations were determined in the field by pacing or taping distances from property corners and other site features discernible in aerial photographs. As such, the locations of the explorations should be considered approximate.

A representative of the GeoPacific engineering staff continuously monitored the field exploration program and logged the test pits. Soils observed in the explorations were classified in general accordance with the Unified Soil Classification System. Rock hardness was classified in accordance with the below table (Table 1), which was modified from the ODOT Rock Hardness Classification Chart.

Table 1 - Rock Hardness Classification Chart

ODOT Rock Hardness Rating	Field Criteria	Unconfined Compressive Strength	Typical Equipment Needed For Excavation
Extremely Soft (R0)	Indented by thumbnail	$<100 \mathrm{psi}$	Small excavator
Very Soft (R1)	Scratched by thumbnail, crumbled by rock hammer	$100-1,000 \mathrm{psi}$	Small excavator
Soft (R2)	Not scratched by thumbnail, indented by rock hammer	$1,000-4,000 \mathrm{psi}$	Medium excavator (slow digging with small excavator)
Medium Hard			
(R3)	Scratched or fractured by rock hammer	$4,000-8,000 \mathrm{psi}$	Medium to large excavator (slow to very slow digging), typically requires chipping with hydraulic hammer or mass excavation)
Hard (R4)	Scratched or fractured w/ difficulty	$8,000-16,000 \mathrm{psi}$	Slow chipping with hydraulic hammer and/or blasting
Very Hard (R5)	Sractured after many blows, hammer rebounds	$>16,000 \mathrm{psi}$	Blasting

During our explorations, geotechnical conditions such as soil consistency, moisture and groundwater conditions were also noted. For additional information pertaining to subsurface conditions at specific location, refer to the attached test pit logs. It should be noted that subsurface conditions can vary between exploration locations, as discussed in the Uncertainty and Limitations section of this report. The following sections discuss the subsurface conditions encountered in our test pit explorations.

Soils

The underlying soils encountered in our explorations consisted of topsoil, undocumented fill, buried topsoil, residual soil, and the Columbia River Basalt Formation:

Topsoil Horizon: Directly underlying the ground surface in all test pits except test pit TP-4, we low to moderately organic SIL T(ML-OL) with fine to medium roots throughout. The topsoil layer was generally soft and extended to depths of 8 to 14 inches, with an average depth of approximately 12 inches. However, in test pit TP-6 the topsoil layer extended to a depth of 30 inches.

Undocumented Fill: Directly underlying the ground surface in test pit TP-4, we observed undocumented fill material. The fill material generally consisted of boulders in a matrix of clayey silt and extended to a depth of approximately 4.5 feet, overlying buried topsoil. We observed boulders up to 3 feet in diameter.

Buried Topsoil: Underlying the undocumented fill material in test pit TP-4, we observed a layer of buried topsoil material. The layer of buried topsoil consisted of moderately organic SILT (ML-OL) with significant amounts of organic debris, including branches and roots. The layer of buried topsoil extended to a depth of 6 feet in test pit TP-4.

Ancient Debris Flow Materials: Underlying the topsoil in test pits TP-5, TP-7, TP-9, TP-10, and TP-11, we observed material derived from an ancient debris flow of native residual soil. The debris flow materials generally consisted of clayey SILT (ML) to silty CLAY (CL). However, the debris flow materials encountered in test pits TP-7 and TP-10 contained some angular gravel to cobble size angular basalt fragments. Also, at the bottom of the debris flow materials in test pits TP-5, TP9 , and TP-10, and underlying the topsoil layer in test pit TP-11, the debris flow materials consisted of highly plastic CLAY (CH). The ancient debris flow materials were generally stiff to very stiff.

Laboratory tests indicated that this material has a plasticity index of 56 and liquid limit of 83, which indicates a very high plasticity. We subcontracted Northwest Testing, Inc. to perform expansion index testing on this soil. A representative sample taken at a depth of 7 feet in test pit TP-5 exhibited an expansion index of 110, indicating a very high potential for shrinkage and swelling with changes in moisture. The layer of highly expansive clay may be the ancient slide plane for the debris flow. Debris flow materials extended to depths of 8 feet in test pits TP-5 and TP-7, and to depths of $13,3.5$, and 8 feet in test pits TP-9, TP-10, and TP-11, respectively.

Willamette Formation: Underlying the topsoil layer in test pits TP-1 and TP-2, and underyling debris flow materials in test pits TP-10 and TP-11, we observed material belonging to the Willamette Formation. These soils generally consisted of silty to sandy GRAVEL and COBBLES, but varied from gravelly SILT (ML) to sandy GRAVEL (GP). Slight to moderately cemented sandstone was observed from 5 to 6 feet in test pit TP-10. Also, large boulders up to 2.5 feet in diameter were encountered in test pit TP-2

Willamette Formation soils extended to a depth of 3.5 feet in test pit TP-1, beyond the maximum depth of exploration in test pit TP-2 (12 feet), beyond the maximum depth of exploration in test pit TP-10 (14 feet), and beyond the maximum depth of exploration in test pit TP-11 (10 feet).

Residual Soil: Underlying the Willamette Formation soils in test pit TP-1, the topsoil layer in test pit TP-3, TP-6, and TP-8, the buried topsoil layer in test pit TP-4, and debris flow materials in test pit TP-5, TP-7, and TP-9 we observed residual soil derived from the in-place weathering of the underlying Columbia River Basalt Formation without any lateral movement. The residual soil generally consisted of silty CLAY (CL) to clayey SILT (ML) and was characterized by a stiff to very stiff consistency. However, highly plastic CLAY (CH) was observed below a depth of 16 feet in test pit TP-8, and below 13 feet in test pit TP-9. Residual soil extended beyond the maximum depths of our explorations in test pits TP-1, TP-3, TP-4, TP-6, TP-7, TP-8, and TP-9. Residual soils extended to a depth of 11 feet in test pit TP-5, below which depth the residual soil transitioned to less weathered basalt bedrock as discussed below.

Columbia River Basalt: Underlying the residual soil in test pit TP-5, we observed gray basalt belonging to the Columbia River Basalt Formation. The basalt encountered in test pit TP-5 was extremely soft (R0) to very soft (R1) with trace reddish-brown silty clay to clayey silt. Extremely
soft to very soft basalt (R0-R1) extended beyond the maximum depth of exploration in test pit TP-5 (12 feet).

Soil Moisture and Groundwater

On June 10 and 18, 2015 the soil moisture conditions observed in test pits were damp to very moist. However, groundwater seepage was encountered in test pit TP-11 from 1 to 4 feet beneath the ground surface. The seepage rate in test pit TP-11 was visually estimated at less than 1 gallon per minute. Very slow groundwater seepage was also encountered in test pit TP-5 during infiltration testing at a depth of 5 feet. Experience has shown that temporary storm related perched groundwater within the near surface soils often occur over fine-grained native deposits such as those beneath the site during the wet season. It is anticipated that groundwater conditions will vary depending on the season, local subsurface conditions, changes in site utilization, and other factors. According to the Estimated Depth to Groundwater in the Portland, Oregon Area, (United States Geological Survey, Snyder, 2014 website), groundwater is present at an approximate depth of 100 feet below the ground surface, with a moderate level of uncertainty.

INFILTRATION TESTING

On June 10, 2015, a representative of GeoPacific Engineering, Inc. (GeoPacific) performed one pushed-pipe, falling head infiltration test at a depth of 11 feet in test pit TP-1 and one open hole, falling head infiltration test at a depth of 5 feet in test pit TP-2. The tests were conducted in native soils at the bottom of the test pits. During the tests, water levels were measured over regular intervals until three successive measurements showing a consistent infiltration rate were achieved. Descriptions of the soils encountered in the test locations are presented on the following table. Approximate test locations are shown in Figure 2. Table 2 presents a summary of our infiltration test measurement results.

Table 2 - Results of Infiltration Testing

Location	Depth (ft)	Soil Description	Infiltration Rate (in/hr)
TP-1	11	Silty CLAY (CL) - Residual Soil	Groundwater Seepage Observed
TP-2	5	Silty GRAVEL and COBBLES (GM) - Willamette Formation	1.2

Very slow groundwater seepage was observed in the infiltration test in TP-2 at a depth of 5 feet, indicating that subsurface infiltration of stormwater into the residual soils in the vicinity of test pit TP-5 is not feasible. The test results indicate that infiltration rates in the native Willamette Formation soils are low. The measured rates in test pit TP-2 reflect bother vertical and horizontal flow pathways.

PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS

Our site investigation indicates that the proposed construction is geotechnically feasible, provided that the recommendations of this report are incorporated into the design and construction phases

Preliminary Geotechnical Engineering Report
Project No. 15-3849, Reesman Property, West Linn, Oregon

of the project. In our opinion, there are three main geotechnical issues for project completion. The first main geotechnical issue is the presence of ancient debris flow materials on the site. Two ancient debris flows were identified on the site during our geologic reconnaissance and subsurface investigation. The ancient debris flow materials appear to be relatively shallow (generally less than 8 feet, but up to 13 feet deep in test pit TP-9). We recommend that site grading be planned in such a way as to reduce slope instability hazards by unloading the ancient debris flows or by completely removing them.

The second main geotechnical issue for project development is the presence of undocumented fill material and buried topsoil. Undocumented fill material was encountered to a depth of 4.5 feet in test pit TP-4 and consisted of loose boulders up to 2.5 feet in diameter. Buried topsoil extended to a depth of 6 feet in test pit TP-4.

The third main geotechnical issue is the presence of expansive clay on the site. Highly plastic, potentially expansive clay was observed in test pits TP-5, TP-8, TP-9, TP-10, and TP-11. Expansion index testing of clay material from test pit TP-5 indicates the highly plastic clay on the site has a high potential for expansion and shrinkage. This material should be removed from within 5 feet vertically beneath foundations and replaced with compacted, engineered fill as indicated in this report. The highly plastic clay material should also be removed 5 feet horizontally beyond the building envelopes. Other areas of potentially expansive clay may exist on the site outside our explorations. The proposed on site public streets are comprised of flexible pavements that are not significantly impacted by expansive soils, therefore no soil removal is recommended within the streets.

Other alternatives may be considered for addressing the presence of potentially expansive soils on the site, depending on the final grading plan. Alternatives may include placing at least 5 feet of engineered fill over the layer of potentially expansive soil or treating the potentially expansive soil with lime and recompacting it. It may also be possible to remove the potentially expansive soils from beneath foundations and use it as a pond liner in the stormwater quality facility. Additional measures may include installation of footing perimeter drains, elimination of deep-rooted plants and irrigation systems adjacent to structures, and placement of additional reinforcing steel in footings and floor slabs. GeoPacific should be contacted for further recommendations if deeper or more prevalent pockets of expansive soils are encountered near final grades during site grading.

The following report sections provide recommendations for site development and construction in accordance with the current applicable codes and local standards of practice. These recommendations are considered preliminary because no grading or development plans have yet been finalized. GeoPacific should be consulted to review the proposed grading and development plans and to provide specific recommendations for the proposed plans prior to construction.

General Slope Stability and Mass Grading

Based on the results of our geotechnical investigation, the site is generally underlain by stiff to hard residual soil and medium dense to dense Willamette Formation soils, with basalt bedrock at relatively shallow depths. However, we identified two ancient debris flows on the site, consisting of native residual soils which moved downslope. The approximate extents of the ancient debris flows observed on the site are shown on Figure 3. As observed in test pit TP-10 and TP-11, and shown
on the attached geologic cross sectional drawing (Figure 4), the ancient debris flow materials moved downslope over the Willamette Formation soils in the central portion of the site.

We recommend that mass grading of the site be planned in such a way as to improve slope stability in the vicinity of the ancient debris flows. In our opinion, this can be done by either completely removing the ancient debris flow material, or by unloading the top of the debris flow and buttressing the toe of the debris flow with engineered fill. GeoPacific should be consulted to review the proposed grading plan for the site prior to construction. Provided that the recommendations of this report are incorporated into the design and construction phases of the project, it is our opinion that potential for slope instability resulting in damage to the proposed development is considered to be low, and no further evaluation of the slope instability hazard will be necessary.

It should be noted that this evaluation is based on limited observation of surficial features, the backhoe test pits performed, and review of available geologic literature. Also, the presence of hillside springs has a potential to negatively affect slope stability if not address properly. Discussions pertaining to this issue follow in the Subsurface Drainage section of this report.

Site Preparation Recommendations

Areas of proposed buildings, streets, and areas to receive fill should be cleared of vegetation and any organic and inorganic debris. Inorganic debris should be removed from the site. Organic materials from clearing should either be removed from the site or placed as landscape fill (in areas not planned for structures, driving lanes, or parking areas).

Organic-rich topsoil should then be stripped from construction areas of the site or where engineered fill is to be placed. In general, the estimated necessary depth of removal in undisturbed areas for moderately organic soils is 10 to 12 inches. However, the topsoil layer extended to a depth of 30 inches in test pit TP-6 and it should be noted that the necessary depth of topsoil removal in treed areas of the site may be up to 12 to 18 inches. Large trees are present at the site and deeper stripping to remove large roots or other organics may be necessary in localized areas. The final depth of soil removal will be determined on the basis of a site inspection after the stripping/excavation has been performed. Stripped topsoil should be stockpiled only in designated areas and stripping operations should be observed and documented by the geotechnical engineer (or representative).

Any remaining disturbed native soils, undocumented fills, buried topsoil, potentially expansive clay soils, and subsurface structures (tile drains, basements, driveway and landscaping fill, old utility lines, septic leach fields, etc.) should be removed and the excavations backfilled with engineered fill. Undocumented fill material was encountered to a depth of 4.5 feet in test pit TP-4. Buried topsoil was encountered underlying the undocumented fill material in test pit TP-4 to a total depth of 6 feet beneath the ground surface. Highly plastic, potentially expansive clay soils were encountered in test pits TP-5, TP-8, TP-9, TP-10, and TP-11. Highly plastic clay soils may be reused as an impermeable clay liner for the stormwater management facility, if desired.

GeoPacific should be consulted during site preparation to determine whether or not the existing undocumented fill material may be used as engineered fill. Based on the results of our exploration, we anticipate that the fill material encountered in TP-4 will not be suitable for reuse as engineered
fill due to the significant amount of large boulders it contains. Reuse of the existing undocumented fill as engineered fill may require sorting operations.

Once stripping of a particular area is approved, the area must be ripped or tilled to a depth of 12 inches, moisture conditioned, root-picked, and compacted in-place prior to the placement of engineered fill or crushed aggregate base for pavement. Exposed subgrade soils should be evaluated by the geotechnical engineer. For large areas, this evaluation is normally performed by proof-rolling the exposed subgrade with a fully loaded scraper or dump truck. For smaller areas where access is restricted, the subgrade should be evaluated by probing the soil with a steel probe. Soft/loose soils identified during subgrade preparation should be compacted to a firm and unyielding condition, over-excavated and replaced with engineered fill (as described below), or stabilized with rock prior to placement of engineered fill. The depth of overexcavation, if required, should be evaluated by the geotechnical engineer at the time of construction.

Subsurface Drainage

Proposed cuts, particularly those above existing wetlands, are likely to expose seasonal or year round groundwater seeps. Some cuts will be supported by engineered retaining walls and additional drainage measures can be implemented in the wall design. Sloping cuts may require additional drainage measures such as shallow cutoff trench drains. The necessity and location of cutoff trench drains will depend on conditions encountered during site grading. GeoPacific should observe cut slope excavations and make specific recommendations for subsurface drains based on actual conditions exposed.

Engineered Fill

In general, we anticipate that nonexpansive soils from planned cuts and utility trench excavations will be suitable for use as engineered fill provided they are adequately moisture conditioned prior to compacting. All grading for the proposed construction should be performed as engineered grading in accordance with the applicable building code at time of construction with the exceptions and additions noted herein. Areas proposed for fill placement should be prepared as described in the site preparation section. Surface soils should then be scarified and recompacted prior to placement of structural fill. Proper test frequency and earthwork documentation usually requires daily observation and testing during stripping, rough grading, and placement of engineered fill. Imported fill material must be approved by the geotechnical engineer prior to being imported to the site. Oversize material greater than 6 inches in size should not be used within 3 feet of foundation footings, and material greater than 12 inches in diameter should not be used in engineered fill.

Engineered fill should be compacted in horizontal lifts not exceeding 8 inches using standard compaction equipment. We recommend that engineered fill be compacted to at least 90 percent of the maximum dry density determined by ASTM D1557 (Modified Proctor) or equivalent. Field density testing should conform to ASTM D2922 and D3017, or D1556. All engineered fill should be observed and tested by the project geotechnical engineer or his representative. Typically, one density test is performed for at least every 2 vertical feet of fill placed or every $500 \mathrm{yd}^{3}$, whichever requires more testing. Because testing is performed on an on-call basis, we recommend that the earthwork contractor be held contractually responsible for test scheduling and frequency. Site earthwork will be impacted by soil moisture and shallow groundwater conditions.

Keyways, Benching, and Subdrains for Fill Slopes

Engineered fill placed on existing sloped areas inclining steeper than an approximately twenty percent grade should be constructed on a keyway and benches in accordance with the typical designs shown in the attached Fill Slope Detail (Figure 5). Keyways should have a minimum depth of three feet, and a minimum width of eight feet. Additional removal of weakened or soft soils may be required depending on the conditions observed during construction. Benches and keyways should be roughly horizontal in the down slope direction, but may slope up to a 10 percent grade along a topographic contour. Keyways sloping more than a 20 percent grade along a topographic contour should be benched or configured as approved by the geotechnical engineer or his designated representative. Cut slopes should be no steeper than $2 \mathrm{H}: 1 \mathrm{~V}$.

If groundwater seepage is observed during excavation, keyways should include a subdrain consisting of a minimum 4-inch-diameter, ADS Heavy Duty Grade (or equivalent), perforated plastic pipe enveloped in a minimum of 4 cubic feet per lineal foot of $2^{\prime \prime}-1 / 2 "$, open-graded gravel drain rock wrapped with geotextile filter fabric (Mirafi 140N or equivalent). Figure 4 shows a typical keyway subdrain. A minimum 0.5 percent gradient should be maintained throughout all subdrain pipes and outlets. GeoPacific should inspect keyways, subdrains and benching prior to fill placement. Subdrains may be eliminated at the discretion of the geotechnical engineer.

Excavating Conditions and Utility Trench Backfill

We anticipate that on-site soils can be excavated using conventional heavy equipment. Maintenance of safe working conditions, including temporary excavation stability, is the responsibility of the contractor. Actual slope inclinations at the time of construction should be determined based on safety requirements and actual soil and groundwater conditions. All temporary cuts in excess of 4 feet in height should be sloped in accordance with U.S. Occupational Safety and Health Administration (OSHA) regulations (29 CFR Part 1926), or be shored. The existing native soils classify as Type B Soil and temporary excavation side slope inclinations as steep as $1 \mathrm{H}: 1 \mathrm{~V}$ may be assumed for planning purposes. This cut slope inclination is applicable to excavations above the water table only.

Shallow, perched groundwater may be encountered during the wet weather season and should be anticipated in excavations and utility trenches. Vibrations created by traffic and construction equipment may cause some caving and raveling of excavation walls. In such an event, lateral support for the excavation walls should be provided by the contractor to prevent loss of ground support and possible distress to existing or previously constructed structural improvements.

PVC pipe should be installed in accordance with the procedures specified in ASTM D2321 and the City of Portland standards. We recommend that structural trench backfill be compacted to at least 90 percent of the maximum dry density obtained by Modified Proctor (ASTM D1557) or equivalent. Initial backfill lift thicknesses for a $3 / 4$ " -0 crushed aggregate base may need to be as great as 4 feet to reduce the risk of flattening underlying flexible pipe. Subsequent lift thickness should not exceed 1 foot. If imported granular fill material is used, then the lifts for large vibrating platecompaction equipment (e.g. hoe compactor attachments) may be up to 2 feet, provided that proper compaction is being achieved and each lift is tested. Use of large vibrating compaction equipment
should be carefully monitored near existing structures and improvements due to the potential for vibration-induced damage.

Adequate density testing should be performed during construction to verify that the recommended relative compaction is achieved. Typically, at least one density test is taken for every 4 vertical feet of backfill on each 200-lineal-foot section of trench.

New Pavement Sections for Proposed Streets

We understand that the proposed development will consist of paved roadways that will be surfaced with asphalt pavement. Table 3 presents the recommended section thicknesses for the proposed pavement areas that are to be completed as part of the project, under dry weather construction conditions. In our opinion, this pavement section is suitable to support the anticipated levels of traffic.

Table 3 - Recommended Minimum Dry-Weather
Pavement Section for Light-Duty Roadways

Material Layer	Section Thickness (in)	Compaction Standard
Asphaltic Concrete (AC)	3	$91 \% / 92 \%$ of Rice Density AASHTO T-209
Crushed Aggregate Base $3 / 4^{n}-0$ (leveling course)	2	95% of Modified Proctor AASHTO T-180
Crushed Aggregate Base $11 / 2^{\prime \prime}-0$	8	95% of Modified Proctor AASHTO T-180
Competent Subgrade	12	Approved native or 90\% of Modified Proctor AASHTO T-180

Any pockets of organic debris or loose fill encountered during subgrade preparation should be removed and replaced with engineered fill (see Site Preparation Section). In order to verify subgrade strength, we recommend proof-rolling directly on subgrade with a loaded dump truck during dry weather and on top of base course in wet weather. Soft areas that pump, rut, or weave should be stabilized prior to paving.

If pavement areas are to be constructed during wet weather, the subgrade and construction plan should be reviewed by the project geotechnical engineer at the time of construction so that condition specific recommendations can be provided. The moisture sensitive subgrade soils make the site a difficult wet weather construction project. General recommendations for wet weather pavement sections are provided below.

During placement of pavement section materials, density testing should be performed to verify compliance with project specifications. Generally, one subgrade, one base course, and one asphalt compaction test is performed for every 100 to 200 linear feet of paving.

Wet Weather Construction Pavement Section

This section presents our recommendations for wet weather pavement sections, which are for construction of on-site driving lanes and parking areas. These wet weather pavement section recommendations are intended for use in situations where it is not feasible to compact the subgrade soils to Clackamas County requirements, due to wet subgrade soil conditions, and/or construction during wet weather.

Based on our site review, we recommend a wet weather section with a minimum subgrade deepening of 6 inches to accommodate a working subbase of additional $1 \frac{1}{2} 2^{\prime \prime}-0$ crushed rock. Geotextile fabric, Mirafi 500x or equivalent, should be placed on subgrade soils prior to placement of base rock.

In some instances it may be preferable to use Special Treated Base (STB) in combination with overexcavation and increasing the thickness of the rock section. GeoPacific should be consulted for additional recommendations regarding use of STB in wet weather pavement sections if it is desired to pursue this alternative. Cement treatment of the subgrade may also be considered instead of overexcavation. For planning purposes, we anticipate that treatment of the on-site soils would involve mixing cement powder to approximately 6 percent cement content and a mixing depth on the order of 12 inches.

With implementation of the above recommendations, it is our opinion that the resulting pavement sections will provide equivalent or greater structural strength than the dry weather pavement section currently planned. However, it should be noted that construction in wet weather is challenging, and the performance of pavement subgrade depend on a number of factors including the weather conditions, the contractor's methods, and the amount of traffic the areas are subjected to. There is a potential that soft spots may develop even with implementation of the wet weather provisions recommended in this letter. If soft spots in the subgrade are identified during roadway excavation, or develop prior to paving, the soft spots should be over-excavated and backfilled with additional crushed rock.

During subgrade excavation, care should be taken to avoid disturbing the subgrade soils. Removals should be performed using an excavator with a smooth-bladed bucket. Truck traffic should be limited until an adequate working surface has been established. We suggest that the crushed rock be spread using bulldozer equipment rather than dump trucks, to reduce the amount of traffic and potential disturbance of subgrade soils.

Care should be taken to avoid over-compaction of the base course materials, which could create pumping, unstable subgrade soil conditions. Heavy and/or vibratory compaction efforts should be applied with caution. Following placement and compaction of the crushed rock to project specifications (95% of AASHTO T-180), a finish proof-roll should be performed before paving.
The above recommendations are subject to field verification. GeoPacific should be on-site during construction to verify subgrade strength and to take density tests on the engineered fill, base rock and asphaltic pavement materials.

Spread Foundations

The proposed residential structures may be supported on shallow foundations bearing on competent undisturbed, native soils and/or engineered fill, appropriately designed and constructed as recommended in this report. Foundation design, construction, and setback requirements should conform to the applicable building code at the time of construction. For maximization of bearing strength and protection against frost heave, spread footings should be embedded at a minimum depth of 18 inches below exterior grade. Minimum footing widths should be determined by the project engineer/architect in accordance with applicable design codes.

The anticipated allowable soil bearing pressure is $2,000 \mathrm{lbs} / \mathrm{ft}^{2}$ for footings bearing on competent, native soil and/or engineered fill. A maximum chimney and column load of 30 kips is preliminarily recommended for the site. The recommended maximum allowable bearing pressure may be increased by $1 / 3$ for short-term transient conditions such as wind and seismic loading. For heavier loads, the geotechnical engineer should be consulted. The coefficient of friction between on-site soil and poured-in-place concrete may be taken as 0.45 , which includes no factor of safety. The maximum anticipated total and differential footing movements (generally from soil expansion and/or settlement) are 1 inch and $3 / 4$ inch over a span of 20 feet, respectively. We anticipate that the majority of the estimated settlement will occur during construction, as loads are applied. Excavations near structural footings should not extend within a $1 \mathrm{H}: 1 \mathrm{~V}$ plane projected downward from the bottom edge of footings.

Footing excavations should penetrate through topsoil and any loose soil to competent subgrade that is suitable for bearing support. All footing excavations should be trimmed neat, and all loose or softened soil should be removed from the excavation bottom prior to placing reinforcing steel bars. Due to the moisture sensitivity of on-site native soils, foundations constructed during the wet weather season may require over-excavation of footings and backfill with compacted, crushed aggregate.

Footing and Roof Drains

If the proposed structures will have a raised floor, and no concrete slab-on-grade floors are used, perimeter footing drains would not be required based on soil conditions encountered at the site and experience with standard local construction practices. Where it is desired to reduce the potential for moist crawl spaces, footing drains may be installed. If concrete slab-on-grade floors are used, perimeter footing drains should be installed as recommended below.

Where used, perimeter footing drains should consist of 3 or 4-inch diameter, perforated plastic pipe embedded in a minimum of $1 \mathrm{ft}^{3}$ per lineal foot of clean, free-draining drain rock. The drain pipe and surrounding drain rock should be wrapped in non-woven geotextile (Mirafi 140N, or approved equivalent) to minimize the potential for clogging and/or ground loss due to piping. Water collected from the footing drains should be directed to the local storm drain system or other suitable outlet. A minimum 0.5 percent fall should be maintained throughout the drain and non-perforated pipe outlet. The footing drains should include clean-outs to allow periodic maintenance and inspection. In our opinion, footing drains may outlet at the curb, or on the back sides of lots where sufficient fall is not available to allow drainage to the street.

Construction should include typical measures for controlling subsurface water beneath the homes, including positive crawlspace drainage to an adequate low-point drain exiting the foundation, visqueen covering the exposed ground in the crawlspace, and crawlspace ventilation (foundation vents). The homebuyers should be informed and educated that some slow flowing water in the crawlspaces is considered normal and not necessarily detrimental to the home given these other design elements incorporated into its construction. Appropriate design professionals should be consulted regarding crawlspace ventilation, building material selection and mold prevention issues, which are outside GeoPacific's area of expertise.

Down spouts and roof drains should collect roof water in a system separate from the footing drains in order to reduce the potential for clogging. Roof drain water should be directed to an appropriate discharge point well away from structural foundations. Grades should be sloped downward and away from buildings to reduce the potential for ponded water near structures.

Stormwater Management Facilities

We understand that plans for project development may include stormwater management facilities, such as stormwater quality ponds in the northeast or southeast corners of the site. We also understand that it is desired to incorporate subsurface disposal of stormwater through infiltration. Groundwater seepage was observed during the infiltration test at a depth of 5 feet in test pit TP-1, indicating that subsurface infiltration is not feasible in the residual soils in the vicinity of test pit TP1. Infiltration rates in native silty GRAVEL and COBBLES (GM) encountered in test pit TP-2 are on the order of 1.2 inches per hour.

We typically suggest a factor of safety ranging from 2 to 4 depending on many factors including the type and location of the facility, regulatory stipulations, and the ability to safely convey potential overflow to an appropriate discharge point.

Systems should be constructed as specified by the designer and/or in accordance with jurisdictional design manuals. Stormwater exceeding storage capacities will need to be directed to a suitable surface discharge location. Stormwater management systems may need to include overflow outlets, surface water control measures and/or be connected to the street stormdrain system, if available.

Seismic Design

Structures should be designed to resist earthquake loading in accordance with the methodology described in the 2012 International Residential Code (IRC) for One- and Two-Family Dwellings, with applicable Oregon Structural Specialty Code (OSSC) revisions (current 2014). We recommend Site Class D be used for design per the OSSC, Table 1613.5.2 and as defined in ASCE 7, Chapter 20, Table 20.3-1. Design values determined for the site using the USGS (United States Geological Survey) 2014 Seismic Design Maps Summary Report are summarized in Table 4.

Table 4 - Recommended Earthquake Ground Motion Parameters (2015 USGS)

Parameter	Value
Location (Lat, Long), decimal	$45.397,-122.656$
Probabilistic Ground Motion Values, 2\% Probability of Exceedance in 50 yrs	
Short Period, S_{s}	
1.0 Sec Period, S_{1}	0.974 g
Soil Factors for Site Class D:	0.417 g
$\mathrm{~F}_{\mathrm{a}}$	1.110
$\mathrm{~F}_{\mathrm{v}}$	1.583
Residential Site Value $=2 / 3 \times \mathrm{Fa}_{\mathrm{a}} \times \mathrm{S}_{\mathrm{s}}$	0.721 g
Residential Seismic Design Category	D

Soil liquefaction is a phenomenon wherein saturated soil deposits temporarily lose strength and behave as a liquid in response to earthquake shaking. Soil liquefaction is generally limited to loose, granular soils located below the water table. After development, the on-site soils will consist predominantly of engineered fill, stiff to hard residual soil, medium dense to dense Willamette Formation soils, and hard rock, and are not considered susceptible to liquefaction. Therefore, it is our opinion that special design or construction measures are not required to mitigate the effects of liquefaction.

UNCERTAINTIES AND LIMITATIONS

We have prepared this report for the owner and his/her consultants for use in design of this project only. The conclusions and interpretations presented in this report should not be construed as a warranty of the subsurface conditions. Experience has shown that soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between explorations that may not be detected by a geotechnical study. If, during future site operations, subsurface conditions are encountered which vary appreciably from those described herein, GeoPacific should be notified for review of the recommendations of this report, and revision of such if necessary.

Within the limitations of scope, schedule and budget, GeoPacific executed these services in accordance with generally accepted professional principles and practices in the fields of geotechnical engineering and engineering geology at the time the report was prepared. No warranty, express or implied, is made. The scope of our work did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous or toxic substances in the soil, surface water, or groundwater at this site.

We appreciate this opportunity to be of service.
Sincerely,
GeoPacific Engineering, Inc.

Benjamin G. Anderson, P. E. Project Engineer

James D. Imbrie, G.E., C.E.G.
Principal Geotechnical Engineer

REFERENCES

Alder Geotechnical Services, Geotechnical Investigation Report, Proposed Edmondson/Thorne Residence, 2520 NW $83^{r d}$ Place, Portland, Oregon, dated April 26, 2012.

Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2,000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919.

Carver, G.A., 1992, Late Cenozoic tectonics of coastal northern California: American Association of Petroleum Geologists-SEPM Field Trip Guidebook, May, 1992.

Burns, W.J., Madin, I.P., Mickelson, K.A., and Drazba, M.C., 2011 Landslide Inventory Maps of the Linnton Quadrangle, Multnomah and Washington Counties, Oregon.

Geomatrix Consultants, 1995, Seismic Design Mapping, State of Oregon: unpublished report prepared for Oregon Department of Transportation, Personal Services Contract 11688, January 1995.

Goldfinger, C., Kulm, L.D., Yeats, R.S., Appelgate, B, MacKay, M.E., and Cochrane, G.R., 1996, Active strike-slip faulting and folding of the Cascadia Subduction-Zone plate boundary and forearc in central and northern Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 223-256.
Ma, L., Madin, I.P., Duplantis, S., and Williams, K.J., 2012, Lidar-based Surficial Geologic Map and Database of the Greater Portland, Oregon, Area, Clackamas, Columbia, Marion, Multnomah,Washington, and Yamhill Counties, Oregon, and Clark County, Washington, DOGAMI Open-File Report O-12-02

Mabey, M.A., Madin, I.P., and Black G.L., 1996, Relative Earthquake Hazard Map of the Lake Oswego Quadrangle, Clackamas, Multnomah and Washington Counties, Oregon: Oregon Department of Geology and Mineral Industries

Madin, I.P., 1990, Earthquake hazard geology maps of the Portland metropolitan area, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-90-2, scale 1:24,000, 22 p.
Open-file report 0-08-06, Preliminary Geologic Map of the Linnton 7.5' Quadrangle, Multnomah and Washington Counties, Oregon, (State of Oregon Department of Geology and Mineral Industries, (McConnell, Vicki S, 2008),

Oregon Department of Geology and Mineral Industries, Madin, Ian P., Ma, Lina, and Niewendorp, Clark A., Open-File Report 0-08-06, Preliminary Geologic Map of the Linnton 7.5' Quadrangle, Multnomah and Washington Counties, Oregon, 2008.

Oregon Department of Geology and Mineral Industries, Hull, Donald A., Relative Earthquake Hazard Map of the Linnton Quadrangle, Multnomah and Washington Counties, Oregon, 1996.

Peterson, C.D., Darioenzo, M.E., Burns, S.F., and Burris, W.K., 1993, Field trip guide to Cascadia paleoseismic evidence along the northern California coast: evidence of subduction zone seismicity in the central Cascadia margin: Oregon Geology, v. 55, p. 99-144.
United States Geological Survey, USGS Earthquake Hazards Program Website (earthquake.usgs.gov).
Unruh, J.R., Wong, I.G., Bott, J.D., Silva, W.J., and Lettis, W.R., 1994, Seismotectonic evaluation: Scoggins Dam, Tualatin Project, Northwest Oregon: unpublished report by William Lettis and Associates and Woodward Clyde Federal Services, Oakland, CA, for U. S. Bureau of Reclamation, Denver CO (in Geomatrix Consultants, 1995).

Washington Department of Natural Resources, Phillips, William M., Geologic Map of the Vancouver Quadrangle, Washington and Oregon, 1987.
Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture 2014 website.
(http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.).
Werner, K.S., Nabelek, J., Yeats, R.S., Malone, S., 1992, The Mount Angel fault: implications of seismic-reflection data and the Woodburn, Oregon, earthquake sequence of August, 1990: Oregon Geology, v. 54, p. 112-117.
Wong, I. Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li., S., Mabey, M., Sojourner, A., and Wang, Y., 2000, Earthquake Scenario and Probabilistic Ground Shaking Maps for the Portland, Oregon, Metropolitan Area; State of Oregon Department of Geology and Mineral Industries; Interpretative Map Series IMS-16

Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T., 1996, Tectonics of the Willamette Valley, Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 183-222, 5 plates, scale 1:100,000.
Yelin, T.S., 1992, An earthquake swarm in the north Portland Hills (Oregon): More speculations on the seismotectonics of the Portland Basin: Geological Society of America, Programs with Abstracts, v. 24, no. 5, p. 92.

Snyder, D.T., 2008, Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area: U.S. Geological Survey Scientific Investigations Report 2008-5059, 41 p., 3 plates. Investigation • Design • Construction Support

FIGURES

FILL SLOPE DETAIL

TYPICAL KEYWAY, BENCHING \& FILL SLOPE DETAIL

Recommended subdrain is minimum 3-inch-diameter ADS Heavy Duty grade (or equivalent), perforated plastic pipe enveloped in a minimum of 3 cubic feet per lineal foot of 2 " to $1 / 2^{\prime \prime}$ open-graded gravel drain rock wrapped with geotextile filter fabric (Mirafi 140 N or equivalent).

Real-World Geotechnical Solutions Investigation • Design • Construction Support

EXPLORATION LOGS

Ceopacific fn!inaerin!, line			14835 SW 72nd Avenue Portland, Oregon 97224 Tel: (503) 598-8445 Fax: (503) 941-9281						TEST PIT LOG	
Project: Reesman Property West Linn, Oregon									ct No. 15-3849	Test Pit No. TP-4
E 矿 矿 O						Material Description				
2						Loo fee Soft orga Stiff (Resid Incr	se BOU in diam nic deb to very sidual	JLDERS in a meter, damp (rately organic bris (branches stiff, clayey Soil)	matrix of reddish bro Undocumented Fill) SILT (ML-OL), dark and roots), moist (B ILT (ML) to silty CLA w.5 feet	n clayey silt, boulders up to 2.5 rown, with significant amounts of ried Topsoil) (CL), reddish brown, moist
$\begin{array}{r}12 \\ 13 \\ 13 \\ 14- \\ \\ 15 \\ \hline \\ 16 \\ \hline\end{array}$						Notes: No seepage or static groundwater encountered				
					$\underbrace{\circ}_{y \text { Tube Sa }}$		go Seepage		Water Level at Abandonmen	Date Excavated: 06/10/15 Logged By: BGA Surface Elevation:

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

LABORATORY TEST RESULTS

Northwest Testing, Inc.
A Division of Northwest Geotech، Inc.
9120 SW Pioneer Court, Suite B - Wilsonvilla, Oregon 97070 503/682.1880 FAX: 50E/682.2753

Report To:	Mr. Ben Anderson GeoPacific Engineering, Inc.	Date:	6/24/15
	14835 SW 72 Portland, Oregon 97224	Lab No.:	15-138
Project:	Laboratory Testing - Reesman Property (OR 15-3849)	Project No.:	2684.1.1

Report of: Expansion index of soil

Sample Identification

As requested, NTI completed expansion index testing on a sample delivered to our laboratory on June 19,2015 by a GeoPacific Engineering, Inc. representative. All testing was performed in general accordance with the methods indicated. Our laboratory's test results are summarized on the following table.

Laboratory Test Results

Expansion Index of Soils (ASTM D 4829)	
Test	Test Results TP-5 @ 7 ft.
Initial Moisture Content, (\%)	16.9
Initial Dry Unit Weight, (pcf)	88.7
Initial Height of Specimen, (inches)	1.00
Initial Degree of Saturation, (\%)	50.7
Final Moisture Content, (\%)	31.6
Expansion Index, El	110

[^3]This report shall not be reproduced except in full, without written approval of Northwest Testing, Inc. BKA

Tested By: SJC \qquad Checked By: MTB

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

SITE RESEARCH

LIDAR IMAGERY Obtained from Oregon Department of Geology and Mineral Industries

2USGS Design Maps Detailed Report

ASCE 7-10 Standard $\left(45.39686^{\circ} \mathrm{N}, 122.65579^{\circ} \mathrm{W}\right)$

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 - Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{s}) and 1.3 (to obtain S_{1}). Maps in the 2010 ASCE-7 Standard are provided for Site Class B.

Adjustments for other Site Classes are made, as needed, in Section 11.4.3.

From Figure 22-1 ${ }^{[1]} \quad \mathrm{S}_{\mathrm{S}}=0.974 \mathrm{~g}$

From Figure 22-2 ${ }^{[2]}$

$$
\mathrm{S}_{1}=0.417 \mathrm{~g}
$$

Section 11.4.2 - Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	$\overline{\boldsymbol{v}}_{\mathbf{s}}$	$\overline{\boldsymbol{N}}^{\text {or }} \overline{\boldsymbol{N}}_{\mathrm{ch}}$	$\overline{\boldsymbol{s}}_{\mathbf{u}}$
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{u}<500 \mathrm{psf}$
F. Soils requiring site response See Section 20.3.1
analysis in accordance with Section
21.1

$$
\text { For SI: } 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Section 11.4.3 - Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE ${ }_{R}$) Spectral Response Acceleration Parameters

Table 11.4-1: Site Coefficient $F_{\text {a }}$

Site Class	Mapped MCE ${ }_{\mathrm{R}}$ Spectral Response Acceleration Parameter at Short Period						
	$\mathrm{S}_{\mathrm{s}} \leq 0.25$	$\mathrm{~S}_{5}=0.50$	$\mathrm{~S}_{\mathrm{s}}=0.75$	$\mathrm{~S}_{\mathrm{s}}=1.00$	$\mathrm{~S}_{\mathrm{s}} \geq 1.25$		
A	0.8	0.8	0.8	0.8	0.8		
B	1.0	1.0	1.0	1.0	1.0		
C	1.2	1.2	1.1	1.0	1.0		
D	1.6	1.4	1.2	1.1	1.0		
E	2.5	1.7	1.2	0.9	0.9		
F		See Section 11.4 .7 of ASCE 7					

Note: Use straight-line interpolation for intermediate values of S_{s}

For Site Class $=D$ and $S_{s}=\mathbf{0 . 9 7 4} \mathbf{g}, F_{a}=1.110$
Table 11.4-2: Site Coefficient F_{v}

Site Class	Mapped MCE $_{\mathrm{R}}$ Spectral Response Acceleration Parameter at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{~S}_{1}=0.20$	$\mathrm{~S}_{1}=0.30$	$\mathrm{~S}_{1}=0.40$	$\mathrm{~S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Section 11.4.7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{1}

For Site Class $=D$ and $S_{1}=0.417$ g, $F_{v}=1.583$
http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal\&latitude=... 8/5/2015

Equation (11.4-1):

$$
\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{~S}_{\mathrm{S}}=1.110 \times 0.974=1.082 \mathrm{~g}
$$

Equation (11.4-2):

$$
S_{M 1}=F_{v} S_{1}=1.583 \times 0.417=0.660 \mathrm{~g}
$$

Section 11.4.4 - Design Spectral Acceleration Parameters

```
Equation (11.4-3):
\[
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 1.082=0.721 \mathrm{~g}
\]
```

Equation (11.4-4):

$$
S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 0.660=0.440 \mathrm{~g}
$$

Section 11.4.5 - Design Response Spectrum

From Figure 22-12 ${ }^{[3]} \quad T_{L}=16$ seconds

Section 11.4.6 - Risk-Targeted Maximum Considered Earthquake ($\mathrm{MCE}_{\mathrm{R}}$) Response Spectrum
The $M C E_{R}$ Response Spectrum is determined by multiplying the design response spectrum above by 1.5.

Section 11.8.3 - Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7 ${ }^{[4]}$

$$
\text { PGA }=0.421
$$

Equation (11.8-1):
$P_{G A}=F_{\text {PGA }} P G A=1.079 \times 0.421=0.454 \mathrm{~g}$

Table 11.8-1: Site Coefficient $\mathrm{F}_{\mathrm{PGA}}$

Site Class	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA				
	PGA \leq	PGA $=$	PGA $=$	PGA $=$	PGA \geq
	0.10	0.20	0.30	0.40	0.50
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of PGA
For Site Class $=\mathrm{D}$ and PGA $=\mathbf{0 . 4 2 1} \mathrm{g}, \mathrm{F}_{\text {PGA }}=1.079$
Section 21.2.1.1 - Method 1 (from Chapter 21 - Site-Specific Ground Motion Procedures for Seismic Design)

From Figure 22-17 ${ }^{[5]}$

From Figure 22-18 ${ }^{[6]}$

$$
C_{R 1}=0.873
$$

Section 11.6 - Seismic Design Category

Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

VALUE OF S	RS		
	I or II	III	IV
$\mathbf{S}_{\mathrm{DS}}<0.167 \mathrm{~g}$	A	A	A
$0.167 \mathrm{~g} \leq \mathbf{S}_{\mathrm{DS}}<0.33 \mathrm{~g}$	B	B	C
$\mathbf{0 . 3 3 \mathrm { g } \leq \mathbf { S } _ { \mathrm { DS } } < 0 . 5 0 \mathrm { g }}$	C	C	D
$\mathbf{0 . 5 0 \mathrm { g } \leq \mathbf { S } _ { \mathrm { DS } }}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{Ds}}=\mathbf{0 . 7 2 1} \mathrm{g}$, Seismic Design Category = D
Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S	RISK CATEGORY		
	I or II	III	IV
$\mathbf{S}_{\mathrm{D} 1}<\mathbf{0 . 0 6 7 g}$	A	A	A
$\mathbf{0 . 0 6 7} \mathbf{g} \leq \mathbf{S}_{\mathrm{D} 1}<\mathbf{0 . 1 3 3 g}$	B	B	C
$\mathbf{0 . 1 3 3 \mathrm { g }} \leq \mathbf{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$\mathbf{0 . 2 0 g} \leq \mathbf{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{D} 1}=\mathbf{0 . 4 4 0} \mathrm{g}$, Seismic Design Category = D
Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with
Table 11.6-1 or $11.6-2^{\prime \prime}=\mathrm{D}$

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1:
http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
2. Figure 22-2:
http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf
3. Figure 22-12: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_2212.pdf
4. Figure 22-7:
http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf
5. Figure 22-17: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_2217.pdf
6. Figure 22-18: http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_2218.pdf
http://ehp2-earthquake.wr.usgs.gov/designmaps/us/report.php?template=minimal\&latitude=... 8/5/2015

Real-World Geotechnical Solutions
Investigation • Design•Construction Support

PHOTOGRAPHIC LOG

En!ingering, inc.
Real-World Geotechnical Solutions Investigation • Design • Construction Support

REESMAN PROPERTY GEOTECHNICAL SITE INVESTIGATION PHOTOGRAPHIC LOG

Fill Material Consisting of Boulders in Test Pit TP-4

Engineering, Inc.
Real-World Geotechnical Solutions Investigation • Design • Construction Support

Subcontractor Excavating Test Pit TP-5, View to the South

Relatively Level Bench at Top of Debris Flow, View to the North

OPERATIONS AND MAINTENANCE

To be Completed with Final Design

WETLAND DELINEATION / DETERMINATION REPORT COVER FORM

This form must be included with any wetland delineation report submitted to the Department of State Lands for review and approval. A wetland delineation report submittal is not "complete" unless the fully completed and signed report cover form and the required fee are submitted. Attach this form to the front of an unbound report or include a hard copy of the completed form with a CD/DVD that includes a single PDF file of the report cover form and report (minimum 300 dpi resolution) and submit to: Oregon Department of State Lands, 775 Summer Street NE, Suite 100, Salem, OR 97301-1279. A single PDF attachment of the completed cover from and report may be e-mailed to Wetland_Delineation@dsl.state.or.us. For submittal of PDF files larger than 10 MB, e-mail instructions on how to access the file from your ftp or other file sharing website. Fees can be paid by check or credit card. Make the check payable to the Oregon Department of State Lands. To pay the fee by credit card, call 503-986-5200.

区 Applicant \boxtimes Owner Name, Firm and Address:	Business phone \# 360.798.4838 (Ryan Zygar-Rep)
David Chiddix	Mobile phone \# (optional)
18000 Midhill Drive LLC	E-mail: ryan@zygar.com
1235 North Dutton Ave, Suite E Santa Rosa CA 95401	
Q Authorized Legal Agent, Name and Address:	Business phone \# 503.678.6007
Schott and Associates	Mobile phone \#
PO Box 589	E-mail: caric@schottandassociates.com
Aurora, OR 97002 (
I either own the property described below or I have legal authority to allow access to the property. I authorize the Department to access the property for the purpose of confirming the information in the report, after prior notificationtepdsheppridyary contact.	
Typed/Printed Name:	ture: \longrightarrow.
Date: 8/12/2015 \|9:28 A\$pecial instructions regarding site access:	$7_{\text {FAD2788c720c410 }}$

Project and Site Information (using decimal degree format for lat/long.,enter centroid of site or start \& end points of linear project)

Project Name: Reesman Property	Latitude: 45.2347	Longitude: 122.3921
Proposed Use:	Tax Map \# 14 2S 1E	
Project Street Address (or other descriptive location): 18000/18001 Upper Midhill Drive	Township 2S Range 1E Tax Lot(s) 200	Section 14 QQ CA
City: West Linn County: Clackamas	Waterway: NWI Quad(s):	River Mile:

Wetland Delineation Information

For Office Use Only

DSL Review			DSL WD \#
De		DSL Project	DSL Site \#
Scanned: \square	Final Scan: \square	DSL WN \#	DSL App.\#

SCHOTT \& ASSOCIATES

Ecologists \& Wetlands Specialists

JURISIDICTIONAL WETLAND DELINEATION FOR

Reeseman Property
Located in West Limn, Oregon

Prepared for:
David Chiddix
18000 Midhill Drive LLC
1235 North Dutton Ave, Suite E Santa Rosa, CA 95401
Prepared by:
Schott and Associates

Date:

July 2015
Project \#: 2373

TABLE OF CONTENTS

DEPARTMENT OF STATE LANDS COVER FORM. 1
(A) Landscape Setting and Land Use 1
(B) Site Alterations 1
(C) Precipitation Data and Analysis 1
(D) Site Specific Methods 2
(E) Description of All Wetlands and Other Non-Wetland Waters 2
(F) DEVIATION FROM LWI OR NWI 3
(G) Mapping Method 3
(H) Additional Information 3
(I) Results and Conclusions 4
(J) DISCLAIMER 4
ApPENDIX A: MAPS 5
Appendix B: Data Forms 12
Appendix C: Ground Level Photographs 13
Appendix D: References 14
LIST OF FIGURES
FIGURE 1. LOCATION MAP 6
FIGURE 2. TAX MAP 7
FIGURE 3. LWI MAP 8
FIGURE 4. SOIL SURVEY MAP 9
FIGURE 5. AERIAL PHOTOGRAPH 10
FIGURE 6. WETLAND MAP 11

(A) Landscape Setting and Land Use

The approximate 6.12 acre subject property is located north of the dead end of Upper Midhill Drive, Clackamas County, West Linn, Oregon (T2S, R1E, Sec. 14CA, TL 200). The subject property is bordered by residential homes on all sides.

The property is gently east sloping and consisted of a large grove of Oregon white oak (Quercus garryana) mixed with Oregon ash (Fraxinus latifolia) with scattered Douglas fir trees (Pseudotsuga menziesii) and bigleaf maple (Acer macrophyllum). The understory was mainly facultative grasses with areas that contained large patches of Himalayan blackberry (Rubus armeniacus) or English ivy (Hedera helix). Also observed were scattered English hawthorn (Crataegus monogyna), vine maple (Acer circinatum) and clusters of snowberry (Symphoricarpos albus).

A drainage ditch borders the northern property boundary and a portion of the eastern property boundary. This area is thickly vegetated with English ivy. The ditch is connected to a water quality pond, which serves the development west of the site.

(B) Site Alterations

There were two culverts installed, one at the northwest corner of the property and one at the southeast corner of the property. A shallow ditch was dug along the northern property boundary as well as the east property boundary that dissipates approximately a third of the way down on the east side. The northern culvert exits a stormwater pond located just offsite to the west. The ditch appears to have been dug for the purpose of draining water away from the water quality facility.

(C) Precipitation Data and Analysis

The site was visited on June 10, 2015. Precipitation was recorded at 0.00 inches by the West Linn weather station that day (accuweather.com). Total precipitation recorded in the two weeks prior to the site visit was 0.00 inches. Precipitation for the month of May was 1.32 inches at 53% of average and just below WETS range. Precipitation for April was also below average at 56% of average. February and March were within normal range at 112% and 116% of average respectively according to the N Willamette Exp Stn WETS table. Between October $1^{\text {st }}, 2014$ and May 31, 2015 a total of 35.47 inches of precipitation was recorded. This is 95% percent of the water year average.

Table 1. Precipitation Summary and WETS Averages

Month	$2014-2015$ Precipitation	WETS Average	WETS Range	Percent of Average
February	5.69	5.07	$3.26-6.11$	112
March	4.96	4.28	$3.26-4.98$	116
April	1.77	3.14	$2.10-3.75$	56

May	1.32	2.50	$1.59-3.02$	53
Water Year	35.47	37.52		95

(D) Site Specific Methods

Prior to visiting, site information was gathered, including recent and historical aerial photographs provided by Google Earth, the soil survey (NRCS web soil survey), the Local Wetland Inventory and National Wetland Inventory. The USGS topography map was also reviewed prior to site visits.

This was the third visit to the site by Schott \& Associates. The first visit was about 10 years ago when Centex homes was considering acquiring the property. The second site visit was one years ago, when another developer was considering acquiring the site. The entire site was walked on both of the previous site visits. Prior to starting the delineation Schott and Associates initially walked the subject property to assess the presence or absence of onsite wetlands and waters, and to see if the conditions had changed since the previous site visits. The site was visited and sample plots established in May 2014. The site was visited again and wetland delineation field work was conducted on June 10, 2015. The 1987 Manual and Regional Supplement to the Corps of Engineers Delineation Manual: Western Mountains, Valleys, and Coast Region were used to determine presence or absence of State of Oregon wetland boundaries and the Federal jurisdictional wetlands.

Sample plots were placed where geomorphic location or vegetation indicated the possibility of wetlands. For each sample plot, data on vegetation, hydrology and soils was collected, recorded in the field and later transferred to data forms (Appendix B). Where a wetland was present paired plots were located in the adjacent upland to document the transition.

(E) Description of All Wetlands and Other Non-Wetland Waters

Based on soil, vegetation and hydrology data taken in the field two small PEM/sloped wetlands of 877 sf and 3,086 sf were delineated. Both wetlands were close together and located at the northwest end of the property, south of a drainage. Herbaceous vegetation in both the wetlands was dominated by velvet grass (Holcus lanatus) (sp2,4,6,8) and also consisted of some soft rush (Juncus effusus) (sp2), meadow foxtail (Alopecurus pratensis) (sp6), tall fescue (Schedonorus arundinaceus) (sp2), bentgrass (Agrostis sp.) (sp4,8), camas (Camassia quamash) (sp6) and a geranium species (sp4,6). Oregon ash and Himalayan blackberry ($\operatorname{sp2}, 4,8$) were also observed within the wetland sample plots. Soils met the Redox Dark Surface (F6) or Depleted Dark Surface (F7) hydric soil indicators throughout the wetland. Secondary hydrology indicators were present in all but one plot which had a sulfide odor (sp6). In May of 2014 hydrology was observed in sample plots 2,4 and 6 ranging from 6 " from the top to surface saturation.

The adjacent upland was also dominated by velvet grass in the herbaceous layer. Also observed was a geranium species, meadow foxtail, bentgrass and Himalayan blackberry. The overstory was mainly Oregon ash (sp5). Soils and hydrology criteria were not met.

A sample plot was taken at the very lowest part of the property in the northeast corner (sp1). The herbaceous layer was almost entirely English ivy. The overstory consisted of Oregon white oak, English hawthorn and bigleaf maple with some snowberry and vine maple observed in the understory. Soils were a 10YR $3 / 3$ and no hydrology was observed.

Two more sample plots were taken in flat areas on terraces. The overstory consisted of Douglas fir (sp10) and Himalayan blackberry (sp10,11) with an herbaceous layer made up of facultative grasses. Soils were a 10YR $3 / 3$ (sp11) or 10YR $3 / 20-10$ " and 10 YR $3 / 2$ with redox at 10-18" (sp 10). No hydrology was observed.

A ditch was located on the property starting in the northwest corner of the property. The ditch parallels the entire north property line, sometimes running just offsite, and a small portion of the east property boundary before the defined channel ends. Water entered the ditch thru a culvert in the northwest corner of the property. The culvert drained a water quality facility. Water was observed in the ditch May 5, 2014 and June 10, 2015. An additional site visit was made July 17, 2015 and the ditch was observed to be dry. Within the defined drainage channel it was mostly bare. Ivy mainly bordered it on each side and rooted within the drainage in sections of the ditch. Water flows in the ditch whenever water enters the water quality facility, and dries up soon after the water stops entering the water quality facility.

(F) Deviation from LWI or NWI

There is a West Linn Local Wetland Inventory (LWI) but no wetlands or waterways are mapped on it. There are no wetlands or waterways mapped for the subject property on the NWI. The onsite wetlands are very small and both the drainage and wetlands are under a canopy blocking out visibility. The drainage is also manmade. This is likely why they are not documented.

(G) Mapping Method

The wetland and sample plots were flagged by Schott and Associates and surveyed by Compass Land surveyors, Professional Land Surveyors (PLS).

(H) Additional Information

None.

(I) Results and Conclusions

Based on soil, vegetation and hydrology data taken in the field, two small PEM wetlands totaling 0.09 acres were delineated on site. Vegetation was dominated by facultative grasses, mainly velvet grass. Soils were found to be hydric and hydrology was observed by way of secondary indicators except one sample plot that had a sulfur odor. Soils were observed to be saturated in May of 2014.

A defined ditch was observed on the site starting at the northwest corner, paralleling the northern property boundary and a portion of the eastern property boundary. Water was observed entering the drainage through a culvert from a water quality facility on two occasions and was observed to by dry on a third. The ditch was dug to carry water away from the water quality facility. It does not connect to another water body, and there is not a wetland at the lower end of the ditch.

The soil survey map for Clackamas County mapped Cascade silt loam on the property. Cascade silt loam is not considered hydric.

The West Linn LWI and NWI did not show any wetlands or waters on the subject property.

The topographic map showed a gently east sloping site.

(J) Disclaimer

This report documents the investigation, best professional judgment and the conclusions of the investigator. It is correct and complete to the best of my knowledge. It should be considered a Preliminary Jurisdictional Determination of wetlands and other waters and used at your own risk unless it has been reviewed and approved in writing by the Oregon Department of State lands in accordance with OAR 141-090-0005 through 141-090-005.

Appendix A: Maps

Schott \& Associates
Eeologists and Wethand Specialists
PO Box 589, Aurora, OR 97002 - (503)678-6007 • Fax (503)678-6011
Page 5 SckAlt. 2373

FIGURE 1. LOCATION MAP

Figure 1: Location Map

FIGURE 2. TAX MAP

FIGURE 3. LWI MAP

Schott \& Associates
Ecologists and Welland Specialists
PO Box 589, Aurom, OR. 97002 - (503) 678-6007 - Fax (503)678-6011

Figure 3: West Linn LWI

FIGURE 4. SOIL SURVEY MAP

Schott \& Associates
Ecologists and Wetland Specialists
PO Box 589, Aurom, OR. 97002 - (503)678-6007 - Fax (503)678-6011

Map Unit Legend

Clackamas County Area, Oregon (OR610)				
Map Unit Symbol		Map Unit Name	Acres in AOI	
13 C	Cascade silt loam, 8 to 15 percent slopes	7.5		Percent of AOI
13 E	Cascade silt loam, 30 to 60 percent slopes	98.2%		
Totals for Area of Interest		0.1		1.8%

Figure 4: Soils map
Schott \& Associates
P.O. Box 589

Reeseman Property
Aurora, OR. 97002
S\&A 2373
503.678.6007

FIGURE 5. AERIAL PHOTOGRAPH

Figure 5: Aerial Photograph
Schott \& Associates
P.O. Box 589

Reeseman Property
Aurora, OR. 97002
503.678.6007

FIGURE 6. WETLAND MAP

Schott \& Associates
Ecologists and Wetland Specialists
POBox 589, Auroma, OR. 97002 - (503)678-6007 \& Fax (503)678-6011
Page 11
SC\&A\#:2373

Appendix B: Data Forms

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks: northeast corner of site in low area

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)			Indicators for Problematic Hydric Soils ${ }^{\text {3 }}$:		
Histosol (A1) Histic Epipedon (A2) Black Histic (A3) Hydrogen Sulfide (A4) Depleted Below Dark Surface (A11) Thick Dark Surface (A12) Sandy Mucky Mineral (S1) Sandy Gleyed Matrix (S4)	Sandy Redox (S5) Stripped Matrix (S6) Loamy Mucky Mineral (F1) (except MLRA 1) Loamy Gleyed Matrix (F2) Depleted Matrix (F3) Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)		2 cm Muck (A10) Red Parent Material (TF2) Very Shallow Dark Surface (TF12) Other (Explain in Remarks) ${ }^{3}$ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic		
Restrictive Layer (if present):					
Type:		Hydric Soil Present?	Yes	No	x
Depth (inches):					

Remarks:

HYDROLOGY

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

VEGETATION - Use scientific names of plants.

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

Water-Stained Leaves (B9) (except

Surface Water (A1)
MLRA 1, 2, 4A, and 4B)
High Water Table (A2)
Salt Crust (B11)
Saturation (A3)
Water Marks (B1)
Sediment Deposits (B2)
Drift Deposits (B3)
Algal Mat or Crust (B4)
Iron Deposits (B5)

- Surface Soil Cracks (B6)

Surface Soil Cracks (B6) - Other (Explain in Remarks)

Aquatic Invertebrates (B13)

- Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3)
_ Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6)
Stunted or Stressed Plants (D1) (LRR A)

Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
x Drainage Patterns (B10) Dry-Season Water Table (C2)

- Saturation Visible on Aerial Imagery (C9)
\times Geomorphic Position (D2)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)
- Sparsely Vegetated Concave Surface (B8)

Field Observations:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: On May 5, 2014 the hydrology was checked at this sample point and it was saturated 6 " to the surface with water in the hole at $12^{\prime \prime}$

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

${ }^{1}$ Type: C=Concentration, $\mathrm{D}=$ Depletion, RM$=$ Reduced Matrix, $\mathrm{CS}=$ Covered or Coated Sand Grains. \quad ² Location: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
Histosol (A1)
_ Histic Epipedon (A2)
Black Histic (A3)
-_ Hydrogen Sulfide (A4)
Depleted Below Dark Surface (A11)
Thick Dark Surface (A12)
-_ Sandy Mucky Mineral (S1)
Sandy Gleyed Matrix (S4)

Restrictive Layer (if present):

Depth (inches):

Remarks:

HYDROLOGY

SUMMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth (inches)
Color (moist)

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

Surface Water (A1)
High Water Table (A2)
Saturation (A3)
Water Marks (B1)
Sediment Deposits (B2)
Drift Deposits (B3)
Algal Mat or Crust (B4)
Iron Deposits (B5) Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (B7)
Sparsely Vegetated Concave Surface (B8)

> Water-Stained Leaves (B9) (except

MLRA $1,2,4 \mathrm{~A}$, and 4B)

- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)

Oxidized Rhizospheres along Living Roots (C3)

- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Tilled

Soils (C6)
Stunted or Stressed Plants (D1)
(LRR A)
Other (Explain in Remarks)

Secondary Indicators (2 or more required)
Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
x Drainage Patterns (B10)
Dry-Season Water Table (C2)
Saturation Visible on Aerial Imagery (C9)
Geomorphic Position (D2)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)
\qquad
Field Observations:

Surface Water Present?	Yes	No	x	Depth (inches):					
Water Table Present?	Yes	No	x	Depth (inches):		Wetland Hydrology Present?	Yes	x	N
Saturation Present? (includes capillary fringe)	Yes	No	\times	Depth (inches):					

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: May 5, 2014 Hydrology was observed in this sample plot as saturation at 2 " from the top

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

VEGETATION - Use scientific names of plants.

SOIL

Remarks:

HYDROLOGY

Wetland Hydrology Indicators: Primary Indicators (minimum of one required;	k all that apply)
	Water-Stained Leaves (B9) (except MLRA 1, 2, 4A, and 4B) Salt Crust (B11) Aquatic Invertebrates (B13) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3) Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Stunted or Stressed Plants (D1) (LRR A) Other (Explain in Remarks)

Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Drainage Patterns (B10)
Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9)

Geomorphic Position (D2)
Shallow Aquitard (D3)
__ FAC-Neutral Test (D5)
__ Raised Ant Mounds (D6) (LRR A)

- Frost-Heave Hummocks (D7)
- Inundation Visibie on Aerial Imagery (B7)

Field Observations:

 Surface Water Present? Water Table Present? Saturation Present? (includes capillary fringe)Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.) Depth (inches)
Color (moist)

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (minimum of one required; check all that apply)

Secondary Indicators (2 or more required)
Water-Stained Leaves (B9) (MLRA 1, 2,

- 4A, and 4B)
- Drainage Patterns (B10)
_ Dry-Season Water Table (C2)
- Saturation Visible on Aerial Imagery (C9)
\times Geomorphic Position (D2)
Shallow Aquitard (D3)
__ FAC-Neutral Test (D5)
_ Raised Ant Mounds (D6) (LRR A)
- Frost-Heave Hummocks (D7)
- Inundation Visible on Aerial Imagery (B7)

Other (Explain in Remarks)

Field Observations:

Surface Water Present?
Water Table Present?
Saturation Present? (includes capillary fring
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: May 5, 2014 this sample plot was observed to have hydrology -surface saturation

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$		$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { No } \end{aligned}$	x	Is the Sampled Area within a Wetland?	Yes	No	x
Remarks:								

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Depth(inches)	Matrix		Redox Features				Texture	Remarks
	Color (moist)	\%	Color (moist)	\%	Type ${ }^{1}$	Loc ${ }^{2}$		
0-18	7.5YR 3/4	95	7.5YR 4/6	5	C	M	CL	

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (minimum of one required; check all that apply)
Secondary Indicators (2 or more required)

Water-Stained Leaves (B9) (MLRA 1, 2,
$4 A$, and $4 B$)
Drainage Patterns (B10)
Dry-Season Water Table (C2)Saturation Visible on Aerial Imagery (C9)
Geomorphic Position (D2)
Shallow Aquitard (D3)
__ FAC-Neutral Test (D5)
__ Raised Ant Mounds (D6) (LRR A)
__ Frost-Heave Hummocks (D7)
__ Inundation Visible on Aerial Imagery (B7)
__ Sparsely Vegetated Concave Surface (B8)

WETLTAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

Project/Site: Re	Reeseman Property		City/County:	West Linn/Clackamas S			Sampling Date:	6/10/15				
Applicant/Owner:	Upper Midhill Estates/Ryan Zygar			State:	OR	Sampling Point:	8					
Investigator(s):	CC, JT		Section, Township, Range:			$14251 E$						
Landform (hillslop	, terrace, etc.)	Terrace	Local relief (concave, convex, none):				concave	Slope (\%):	2			
Subregion (LRR):	A	Lat:	45.23		Long:	122.3921	Datum:					
Soil Map Unit Name: Cascade sill loamAre climatic / hydrologic conditions on the site typical			for this time of year? Yes			NWI classification:						
			\times No _ (If no, explain in Remarks.)									
Are Vegetation Are Vegetation	Soil \qquad , or Hydrology Soil \qquad , or Hydrology					Significantly disturbed?\qquad Naturally problematic?			Are "Normal Circumstances" present? Yes \qquad (If needed, explain any answers in Remarks.)			.) No

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants.

SOIL
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

| Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.) |
| :--- | :--- | :--- | :--- |
| Histosol (A1) |
| Sandy Redox (S5) |

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

Secondary Indicators (2 or more required)
Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Drainage Patterns (B10)
Dry-Season Water Table (C2)
Saturation Visible on Aerial Imagery (C9)
x Geomorphic Position (D2)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)

- Sparsely Vegetated Concave Surface (B8)

Field Observations:
Surface Water Present?
Water Table Present?
Saturation Present?
(includes capillary fring
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks: dry time of year, low end of wetland, secondary indicators, BPJ, other criteria met

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants.

HYDROLOGY

Wetland Hydrology Indicators:
Primary Indicators (minimum of one required; check all that apply)

Water-Stained Leaves (B9) (except
Surface Water (A1)

- High Water Table (A2)
- Saturation (A3)
— Water Marks (B1)
Sediment Deposits (B2)
Drift Deposits (B3)
Algal Mat or Crust (B4)
Iron Deposits (B5)
—. Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

MLRA 1, 2, 4A, and 4B)

- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres along Living Roots (C3)
—— Presence of Reduced Iron (C4)
Recent Iron Reduction in Tilled
Soils (C6)
Stunted or Stressed Plants (D1) (LRR A)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Drainage Patterns (B10)
Dry-Season Water Table (C2)
Saturation Visible on Aerial Imagery (C9)
Geomorphic Position (D2)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)

Field Observations:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks:

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

Remarks:

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

Surface Water (A1)

- High Water Table (A2)
- Saturation (A3)
— Water Marks (B1)
Sediment Deposits (B2)
Drift Deposits (B3)
_ Algal Mat or Crust (B4)
Iron Deposits (B5)
_ Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Sparsely Vegetated Concave Surface (B8)

Water-Stained Leaves (B9) (except
MLRA 1, 2, 4A, and 4B)
Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
Drainage Patterns (B10)

- Dry-Season Water Table (C2)

Saturation Visible on Aerial Imagery (C9)
Geomorphic Position (D2)
Shallow Aquitard (D3)
__ Presence of Reduced Iron (C4)
Recent Iron Reduction in Tilled
Soils (C6)
Stunted or Stressed Plants (D1)
(LRR A)

- Other (Explain in Remarks)

FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Hydric Soil Present? Yes x No Wetland Hydrology Present? Yes ___ No $\frac{x}{x}$ is the Sampled Area within a Wetland? Yes _ _
Remarks:

VEGETATION - Use scientific names of plants.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (minimum of one required; check all that apply)

Surface Water (A1)

High Water Table (A2)
Saturation (A3)
Water Marks (B1)
Sediment Deposits (B2)
Drift Deposits (B3)
-
Algal Mat or Crust (B4)
Iron Deposits (B5)
Surface Soil Cracks (B6)
Inundation Visible on Aerial Imagery (B7)
-
Sparsely Vegetated Concave Surface (B8)

Secondary Indicators (2 or more required)
Water-Stained Leaves (B9) (MLRA 1, 2, $4 A$, and 4B)
Drainage Patterns (B10)
Dry-Season Water Table (C2)
Saturation Visible on Aerial Imagery (C9)
Geomorphic Position (D2)
Shallow Aquitard (D3)
FAC-Neutral Test (D5)
Raised Ant Mounds (D6) (LRR A)
Frost-Heave Hummocks (D7)

Field Observations:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Appendix C: Ground Level Photographs

Photo Point 1 facing east, northeast

Photo point 2 facing northeast

Photo Point 2 facing northwest

Photo Point 3 facing north, northwest

Photo Point 4 facing northeast

Photo Point 4 facing southeast

Photo Point 5 at entrance to culvert in nw corner of property

Photo Point 6 showing drainage channel

Appendix D: References

Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

Environmental Laboratory, 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys and Coast Region (Version 2.0), Wetlands Regulatory Assistance Program ERDC/EL TR-10-3 U.S. Army Engineer Research and Development Center. Vicksburg, MS.

Federal Interagency Committee for Wetland Delineation, 1989. Federal Manual for Identifying and Delineating Jurisdictional Wetlands, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S.D.A. Soil Conservation Service, Washington, D.C. Cooperative technical publication. 138 pp .

Federal Register, 1980. 40 CFR Part 230: Section 404(b)(1), Guidelines for Specification of Disposal Sites of Dredged or Fill Material, Vol. 45, No. 249, pp. 85352-85353, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1982. Title 33, Navigation and Navigable Waters; Chapter II, Regulatory Programs of the Corps of Engineers. Vol. 47, No. 138, p. 31810, U.S. Govt. Printing Office, Washington, D.C.

Federal Register, 1986. 33 CFR Parts 320 through 330, Regulatory Programs of the Corps of Engineers; Final Rule, Vol. 51, No. 219 pp. 41206-41259, U.S. Govt. Printing Office, Washington, D.C.

Kollmorgen Corporation, 1975. Munsell Soil Color Charts. Macbeth Division of Kollmorgen Corporation, Baltimore, MD.
U.S. Army Corps of Engineers - Cold Regions Research and Engineering Laboratory (CRREL). 2012. State of Oregon NWPL - Final Draft Ratings
U.S. Department of Agriculture, Web Soil Survey Soil Survey of Clackamas County, Oregon. U.S.D.A. Soil Conservation Service, Washington, D.C.,

SECTION A-A: NEIGHBORHOOD ROUTE W/ CURB TIGHT SIDEWALK (LEFT)

SECTION b-B: NEIGHBORHOOD RUTE W/ DETATACHED SIDEWALK

$\xrightarrow[\text { SECTION C-C: COMMON LOT ACCESS DRIVE SECTION }]{ }$

[^0]: Applicant's This site is located north end of Upper Midhill Drive, a local street. The development will Finding: include the extension of Scenic Drive, also a local street. The development of this site

[^1]: 2. Article Number (Transfer from service label)
[^2]: ${ }^{1}$ Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$.
 ${ }^{2}$ The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98 , and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.
 ${ }^{3}$ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.
 ${ }^{4}$ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage $(C N=98)$ and the pervious area CN . The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.
 ${ }^{5}$ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

[^3]: Copies: Addressee

