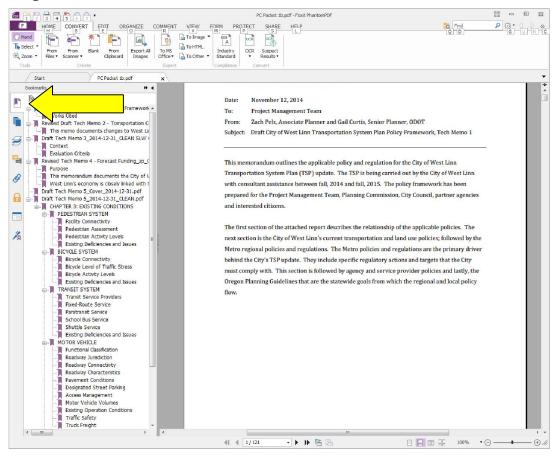


## Memorandum

| Date:    | February 27, 2015                                                                                |
|----------|--------------------------------------------------------------------------------------------------|
| То:      | West Linn Planning Commission                                                                    |
| From:    | Zach Pelz AICP, Associate Planner                                                                |
| Subject: | Materials for March 4, 2015, discussion regarding West Linn Transportation System Plan<br>Update |

The purpose of this memorandum is to introduce the documents that will be the subject of our Transportation System Plan (TSP) review and discussion on March 4, 2015, and to provide direction on what feedback we'd like from the Planning Commission at this meeting.

At our meeting on March 4<sup>th</sup>, staff will provide a summary of the following attached memoranda prepared for the TSP Update:


- 1. Draft Technical Memorandum No. 6: Safe Routes to Schools;
- 2. Draft Technical Memorandum No. 7: Needs Analysis;
- 3. Draft Technical Memorandum No. 8: 10th Street Interchange Area Analysis; and
- 4. Draft Technical Memorandum No. 9: Regulatory Solutions.

*Draft Technical Memorandum 6* provides an analysis of safety and operational characteristics near the five primary schools in West Linn to recommend solutions to improve safety for students walking and bicycling to these schools. <u>Staff would like feedback from the Planning Commission as to</u> whether additional issues should be considered as part of the analysis and whether additional projects and programs are warranted.

*Draft Technical Memorandum 7* provides an analysis of the transportation needs in West Linn based on existing conditions and future population and employment trends. This document is provided for informational purposes only and <u>your feedback is not requested on this document</u>.

*Draft Technical Memorandum 8* provides an analysis of the 10<sup>th</sup> Street Area Interchange, with improvement alternatives, in light of projected traffic volumes and funding availability. *This document is for information purposes only; your feedback is not requested on this document.* 

*Draft Technical Memorandum 9* provides an analysis of existing deficiencies within adopted West Linn plans relative to policy requirements contained in the Regional Transportation Functional Plan (implementing arm of the Regional Transportation Plan). <u>Staff would like feedback from the</u> <u>Planning Commission regarding the recommendations suggested in this memo to achieve compliance</u> <u>with Regional objectives</u>. The attached memos are fully bookmarked and allow for convenient navigation between documents from your electronic device. To use the bookmarks in your .pdf document, simply click the bookmark icon shown to the left of the arrow in Image 1, below.



#### Image 1 Bookmarked Attachments



| Date:    | February 27, 2015                                               |
|----------|-----------------------------------------------------------------|
| То:      | West Linn Planning Commission; TSP Citizen Advisory Committee   |
| From:    | Zach Pelz, City of West Linn                                    |
| Subject: | Draft Technical Memorandum No. 6: Safe Routes to Schools Update |

## Background

As part of the City's efforts to promote walking and bicycling as safe and attractive means of transportation, this TSP Update plans to formalize the City's desire to improve safe routes to local schools. Safe Routes to Schools (SRTS) is a collaborative program between schools and local agencies that combines ongoing educational and outreach efforts with pedestrian and bicycle infrastructure improvements along routes used by school children to make walking and bicycling safer and to remove motor vehicles and reduce congestion from the morning commute.

Oregon school districts are not required to provide bus service for elementary school students that reside within one-mile of their school, and for secondary school students that live within one-and-one-half mile of their school (ORS 327.043). An SRTS program is important to the City of West Linn and benefits the City's transportation systems as it provides a key opportunity to improve public health, improve pedestrian and bicycle safety, and to improve the performance of its transportation systems.

SRTS can promote healthy lifestyles. Since 1970, childhood obesity in the United States has tripled; today, more than one-third of youth are either overweight or obese<sup>1</sup>. While the causes of childhood and adult obesity can be attributed to many factors, the City plays a part in the health of its residents through its authority to govern the development of land and the arrangement of uses upon land.

West Linn, like many suburban communities in the United States, is characterized by segregated and homogenous land use districts. Residential land uses in particular, exist as relatively large districts that are separate from commercial and employment uses, with a very limited mix of these different types of uses. This form of development typically results in a reliance on private automobiles for nearly all trip purposes because the distance between home and work,

<sup>&</sup>lt;sup>1</sup> Safe Routes to School National Partnership, 2015

<sup>(</sup>http://saferoutespartnership.org/sites/default/files/pdf/Lib\_of\_Res/Addressing-Childhood-Obesity-Through-Shared-Recreational-Facilities.pdf)

entertainment and cultural venues, and shopping, is typically too far to reasonably accomplish on foot or by bicycle. This reliance on the automobile subsequently reduces opportunities for physical activity which is increasingly linked to rising rates of obesity among children and adults in the U.S.

An SRTS program can also improve safety for pedestrians and bicyclists. A comprehensive SRTS program is designed around the five E's:

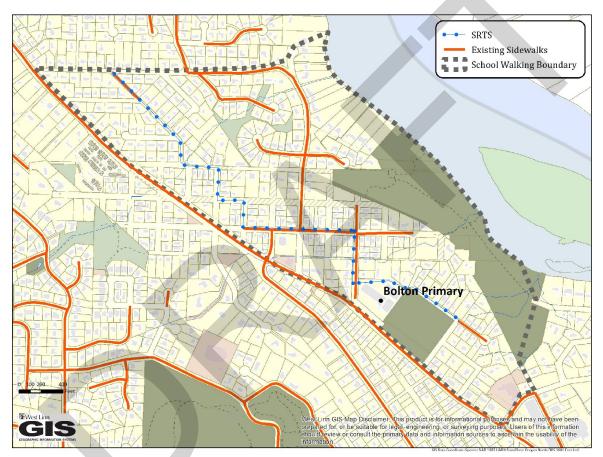
- <u>Education</u>: teaching children and families about the range of transportation choices, instructing them in important lifelong bicycling and walking safety skills, including road sharing and safety campaigns in school neighborhoods;
- <u>Enforcement:</u> partnering with local law enforcement to ensure that traffic laws are obeyed in the vicinity of schools for all road users and enhancing enforcement such as crossing guard programs and student safety patrols;
- <u>Engineering</u>: creating operational and physical improvements to the infrastructure surrounding schools that reduces speed and potential conflicts with motor vehicle traffic and makes walking and bicycling trips safer and more convenient;
- <u>Encouragement:</u> using events and activities to promote walking and bicycling and to generate enthusiasm for the program with students, parents, staff and the surrounding community; and,
- <u>Evaluation</u>: monitoring and documenting outcomes, attitudes and trends through the collection of data before and after activities and projects so modifications can be made if needed.

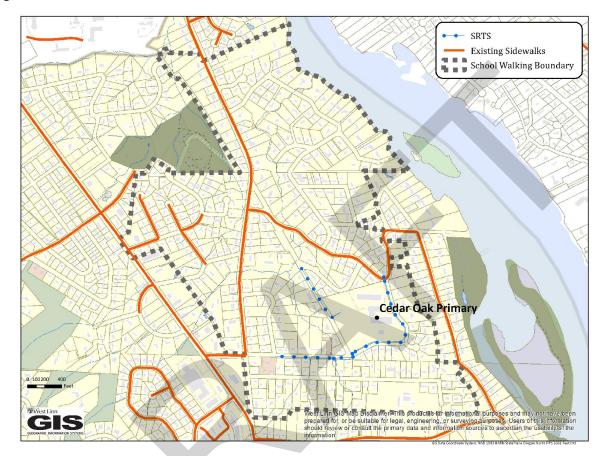
Unsafe road conditions and lack of parent confidence in their children's ability to safety navigate and understand the transportation system is an important barrier preventing many children from walking and bicycling in West Linn. Better enforcement, pedestrian and bicycle safety education built into classroom curricula, and safer infrastructure, can improve safety and encourage more children to walk and bike.

SRTS can also improve the performance of the City's motor-vehicle network. According to the Safe Routes to School National Partnership, between 20 and 30 percent of the morning rush hour traffic can be attributed to parents driving their children to school. Encouraging more kids to walk and bike to school through an SRTS program has the ability to eliminate a significant number of vehicles from the morning commute, reduce congestion and improve the performance and safety of local roadways.

### **Existing Conditions**

The West Linn-Wilsonville School District (WLWV) operates five primary, one middle, one high, and one charter school in West Linn. WLWV has developed safe routes to each of its five primary schools in West Linn. WLWV has not developed SRTS for the charter, middle or high schools in West Linn. This evaluation of existing conditions is constrained to the five primary schools in West Linn and focuses on the presence of sidewalks and street lighting in relation to identified SRTS. This analysis is intended to identify needed safety improvements along SRTS as part of the TSP's overall project development and prioritization.





Figure 1 Bolton Primary Safe Route and Existing Sidewalks

Source Metro RLIS, 2105 (sidewalks); West Linn GIS, 2015

<u>Bolton Primary</u>. Bolton Primary School is located in the southeast corner of West Linn, immediately adjacent Highway 43 (Willamette Drive) and Hammerle Park. Highway 43 carries nearly 21,000 vehicle trips near Bolton Primary School daily.

The map in Figure 1 above, shows sidewalks, the SRTS, and the boundary delineating where bus service is not provided to students attending Bolton Primary. The Safe Route identified by WLWV runs northwest to southeast beginning on Lowrey Drive at Dillow Drive. From here the route serpentines along a number of under-improved local streets until the route reaches Bolton Primary.

As shown in Figure 1, more than two-thirds of this route occurs along streets without sidewalks. Appendix A illustrates that street lights exist along the full extent of the SRTS with an average spacing of 200-feet.

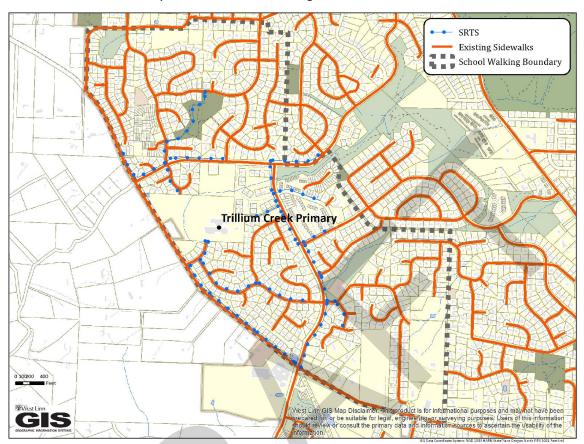


#### Figure 2 Cedar Oak Safe Routes

Source Metro RLIS, 2105 (sidewalks); West Linn GIS, 2015

<u>Cedar Oak Primary</u>. Cedar Oak Primary School is located near the north end of West Linn, east of Highway 43 and north of Mary S. Young State Park. Single-family residential development surrounds the area immediately adjacent the school, with a small-scale strip commercial development approximately one-third of a mile west along Highway 43.

The map in Figure 2 above shows sidewalks, the SRTS, and the boundary delineating where bus service is not provided to students attending Cedar Oak Primary. The Safe Route identified by WLWV runs along Cedar Oak Drive, from Old River Road to Elmran Drive and along a portion of Trillium Drive between Glen Terrace and Cedar Oak Drive. As illustrated in Figure 2, sidewalks are lacking along the full extent of the Cedar Oak Primary Safe Routes. Appendix A illustrates that streetlights are present along the entire SRTS with an average spacing of 400-feet on Cedar Oak Drive and 800-feet on Trillium Drive.






Source Metro RLIS, 2105 (sidewalks); West Linn GIS, 2015

<u>Sunset Primary</u>. Sunset Primary School is located near the geographic center of West Linn, between Wilderness Park and Sunset Park. Single-family residential development surrounds the area immediately adjacent the school.

The map in Figure 3 above shows sidewalks, the SRTS, and the boundary delineating where bus service is not provided to students attending Sunset Primary. The Safe Routes identified by WLWV pervade the residential neighborhoods on all sides of the school. Safe Routes extend nearly one-third of a mile south and east of Sunset Primary but extend less than one-sixth of a mile to the residential areas north and east. As shown in Figure 3, approximately 47 percent of the Sunset Primary Safe Routes, predominately in the newer subdivisions east of the school, include sidewalks. Appendix A illustrates that streetlights are present along most of the SRTS with an average spacing of 400-feet. Streetlights are not present along the pedestrian cut-through between Oregon City Loop and the school-owned properties north of Sunset Park.



#### Figure 4 Trillium Creek Primary Safe Routes and Existing Sidewalks

Source Metro RLIS, 2105 (sidewalks); West Linn GIS, 2015

<u>Trillium Creek Primary</u>. Trillium Creek Primary School is located in northwest West Linn, adjacent Rosemont Road and Hidden Springs Road - both of which are classified as collector roadways and carry significant motor vehicle traffic throughout the day. The school is flanked by single-family residential development on all sides.

The map in Figure 4 above shows sidewalks, the SRTS, and the boundary delineating where bus service is not provided to students attending Trillium Creek Primary. The Safe Routes identified by WLWV extend more than one-third of a mile into the residential areas north and east of the school and more than one-half of one-mile into the areas south of the school. As illustrated in Figure 4, more than 95 percent of the Trillium Creek Primary Safe Routes include sidewalks. Appendix A illustrates that streetlights are present along nearly all of the SRTS with an average spacing of 400-feet. Streetlights are not present through Sunburst Park.

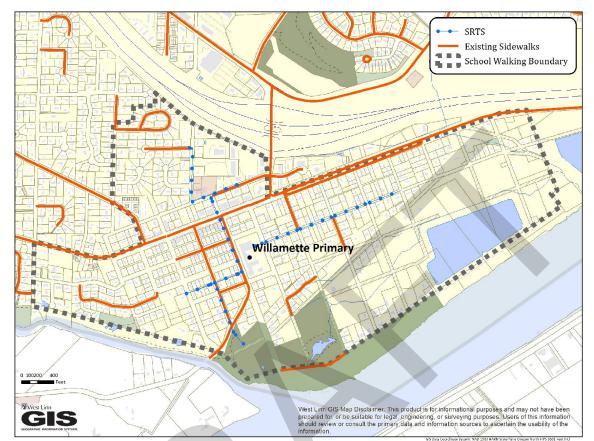



Figure 5 Willamette Primary Safe Routes (red lines) and Existing Sidewalks

<u>Willamette Primary</u>. Willamette Primary School is located in the south end of West Linn, less than one-third of a mile south of the I-205 interchange at 10<sup>th</sup> Street. The Willamette Commercial area sits north of the school, while residential areas border the school's west, south and east sides.

The map in Figure 5 above shows sidewalks, the SRTS, and the boundary delineating where bus service is not provided to students attending Trillium Creek Primary. The Safe Routes identified by WLWV extend about one-third of a mile in all directions from the school. As illustrated in Figure 5, only about 35 percent of the Trillium Creek Primary Safe Routes include sidewalks. Appendix A illustrates that streetlights are present along most of the SRTS with an average spacing of 400-feet.

Table 1, compares the presence of sidewalks along identified SRTS at the five primary schools in West Linn.

Source Metro RLIS, 2105 (sidewalks); West Linn GIS, 2015

 Table 1 Comparison of Sidewalks along Safe Routes to Schools, by Distance

| School Facility        | Pct. of SRTS (total distance) where sidewalks are present |
|------------------------|-----------------------------------------------------------|
| Bolton Primary         | 28                                                        |
| Cedar Oak Primary      | 0                                                         |
| Sunset Primary         | 47                                                        |
| Trillium Creek Primary | 95                                                        |
| Willamette Primary     | 35                                                        |

### **Findings and Recommendations**

The following recommendations to improve safe routes to schools in West Linn are organized by the five E's:

<u>Education</u>: teaching children and families about the range of transportation choices, instructing them in important lifelong bicycling and walking safety skills, including road sharing and safety campaigns in school neighborhoods.

The City should continue to work with the School District to educate students, parents, citizens and elected and appointed officials as to the benefits of SRTS. Additionally the City should be a member of the WLWV SRTS task force to ensure effective communication between these agencies. WLWV should communicate with the City regarding changes to the SRTS maps and the City should coordinate with WLWV regarding infrastructure improvements along SRTS. The WLWV should also consider expanding curriculum programs built around safe walking and bicycling.

Another effective way the WLWV can promote SRTS is to communicate directly with elected and appointed officials, parents and other residents, through in-person meetings, flyers and other media designed to educate as to the myriad benefits of SRTS.

Finally, in addition to closer collaboration with the WLWV regarding infrastructure improvements at or near SRTS, the City should reach out directly to students for input about project development and implementation.

<u>Enforcement</u>: partnering with local law enforcement to ensure that traffic laws are obeyed in the vicinity of schools for all road users and enhancing enforcement such as crossing guard programs and student safety patrols.

The West Linn Police Department conducts routine patrols near area schools and should continue this practice into the future. Additionally, the WLWV SRTS task force and other stakeholder teams should develop a list of high priority areas in need of enforcement and communicate that with local

law enforcement personnel. Signage, mobile speed radar trailers and other similar types of equipment should continue to be utilized around area schools and along SRTS to supplement officer patrols. Finally, the City of West Linn has established a traffic safety committee, for the purpose of reviewing traffic safety concerns presented by West Linn residents. The Traffic Safety Committee should do more to advertise this resource to local schools, SRTS task force, students and parents.

<u>Engineering</u>: creating operational and physical improvements to the infrastructure surrounding schools that reduces speed and potential conflicts with motor vehicle traffic and makes walking and bicycling trips safer and more convenient.

In 2013, the City of West Linn adopted its first ever Trails System Master Plan, which sought to identify funding priorities for the City's Parks and Recreation Department over the next 50 years. An important outcome of this Plan is that off-street trails are viewed not only as recreational facilities but also as facilities that can link with on-street bicycle lanes and sidewalks to create more, and more direct, transportation-related access between homes and points of interest throughout the community. Throughout the development of the Trails System Master Plan, linking off-street facilities with on-street facilities was seen as an important strategy in making efficient use of the City's transportation system and encouraging more people to walk and bicycle for transportation and recreational purposes.

During fall 2014, in anticipation of this TSP Update and the development of the City's 5-year streets Capital Improvement Program (CIP), the City of West Linn's Transportation Advisory Board, with help from City staff, prioritized the inventory of 90 on-street routes proposed in the Trails System Master Plan. The inventory of on-street routes was reviewed and evaluated based on the following seven criteria:

- <u>Safe routes</u>: is the on-street route part of an identified Safe Route to School as developed by the WLWV School District?
- <u>Walking primary</u>: is the on-street route within the walking boundary<sup>2</sup> for a primary school in West Linn identified by the WLWV school district?
- <u>Walking middle or high school:</u> is the on-street route within the walking boundary for a middle or high school in West Linn identified by the WLWV school district?
- <u>1/4 mile from transit</u>: is the on-street route within 1/4 mile of a transit stop?
- <u>1/4 mile from commercial:</u> is the on-street route within 1/4 mile of a commercial use in the City of West Linn?
- <u>Street collector or arterial</u>: is the on-street facility located on a roadway designated as a collector or arterial?

<sup>&</sup>lt;sup>2</sup>ORS 327.043 does not obligate school districts to provide bus service to elementary school students living within 1 mile or less of their school. The walking boundary delineates the geographic area that is not served by school buses.

- <u>One or more trail connections:</u> does the on-street facility connect to at least one off-street facility?
- <u>Three or more trail connections</u>: does the on-street facility connect to at least three offstreet facilities?

The TAB ranked the 90 on-street routes from high to low based on their ability to satisfy the abovementioned criteria. More than one-third of the top ranking projects recommended for inclusion in the Streets CIP occur along SRTS identified by the WLWV school district. These routes are included in Table 2 below. The map and route number in Table 2 correspond to the *Pathway Planning Map Book* (included in Appendix B of this document), prepared for the CIP analysis described above. Because this memo focuses on SRTS, the remaining CIP recommendations are not included here.

| Map<br>No. | Route<br>Number | Route Name from<br>Trails Master Plan | Location Description                                        | Sidewalk Need <sup>3</sup><br>(as pct.) |
|------------|-----------------|---------------------------------------|-------------------------------------------------------------|-----------------------------------------|
| 3          | 30              | Long St./Exeter St.                   | Long St. from Sunset Tennis Courts to Oxford<br>St.         | 100                                     |
| 1          | 33              | Cedaroak Dr./Elmran<br>Dr.            | Cedaroak Dr. northeast to 4450 Elmran Dr.                   | 100                                     |
| 6          | 52              | Tualatin/12th St.                     | Tualatin Ave. ending at Willamette Falls Dr.                | 50                                      |
| 3          | 29              | Oregon City<br>Blvd/Bonnet Dr.        | Oregon City Blvd to Oxford St.                              | 25                                      |
| 2          | 68              | Rosemont Rd. 3                        | Rosemont Rd. north of Hidden Springs Rd. to<br>Carriage Way | 0                                       |
| 2          | 36              | Santa Anita Dr.                       | All of Santa Anita Dr.                                      | 0                                       |
| 1 & 2      | 32              | Hidden Springs Rd.                    | Hidden Springs Rd from Willamette Dr. to<br>Rosemont Rd.    | 0                                       |

Table 2: SRTS-related Projects Recommended for Inclusion in 5-year CIP

Table 2 reveals that more than half of the CIP recommended SRTS projects (Route Numbers 29, 68, 36 and 32) currently have sidewalks along a majority of their length. Projects in these areas are therefore likely to include safety improvements such as, enhanced crossings, improved signage, wayfinding and possibly relatively minor sidewalk infill. Where funds allow, CIP improvements

<sup>&</sup>lt;sup>3</sup> Sidewalk need is that proportion of the CIP route in Table 2 where sidewalks currently do not exist along the portion that is also identified as a safe route to school, as a percent of the total distance.

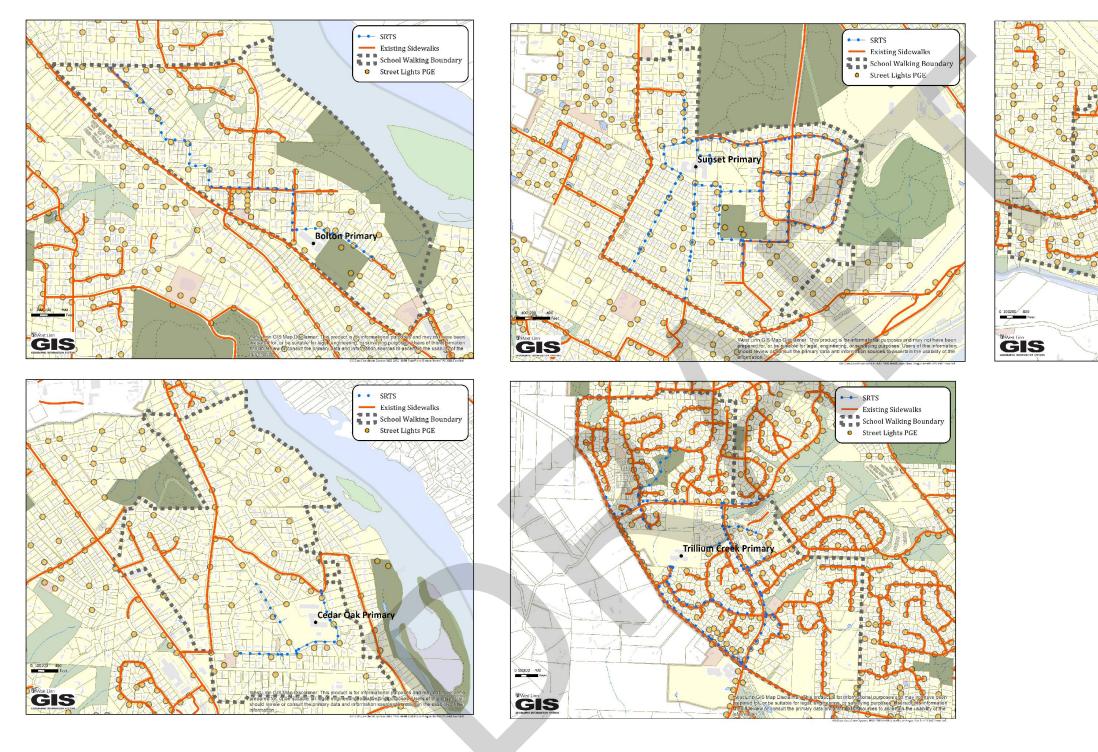
near Cedar Oak Primary should include the installation of sidewalks and complementary safety enhancements along the entire length of the route.

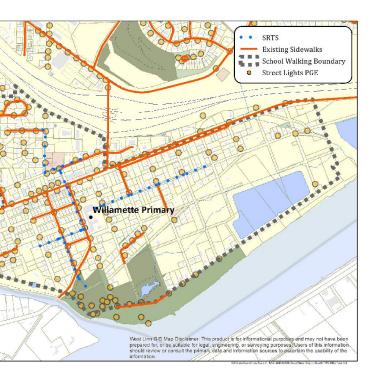
While the extent of each of the projects recommended in the CIP are not described, it is assumed that they will consist of necessary improvements over which the City has control (sidewalks, enhanced crossings, signage, etc.). Because sidewalk infill along the entire length of SRTS at all primary schools in West Linn is not needed, Table 3 compares the relative benefit of likely improvements the City could make, as a percentage of the total length of existing sidewalks, to provide a comparison of the relative benefit of potential future investments near each of these schools.

| School Facility        | Pct. of SRTS<br>with existing<br>sidewalks | Pct. of SRTS<br>recommended for CIP<br>improvements where<br>sidewalks currently do not<br>exist |  |  |
|------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Cedar Oak Primary      | 0                                          | 60                                                                                               |  |  |
| Bolton Primary         | 28                                         | 0                                                                                                |  |  |
| Willamette Primary     | 35                                         | 0                                                                                                |  |  |
| Sunset Primary         | 47                                         | 5                                                                                                |  |  |
| Trillium Creek Primary | 95                                         | 0                                                                                                |  |  |

 Table 3 Relative safety benefit from CIP recommended projects near West Linn Primary Schools

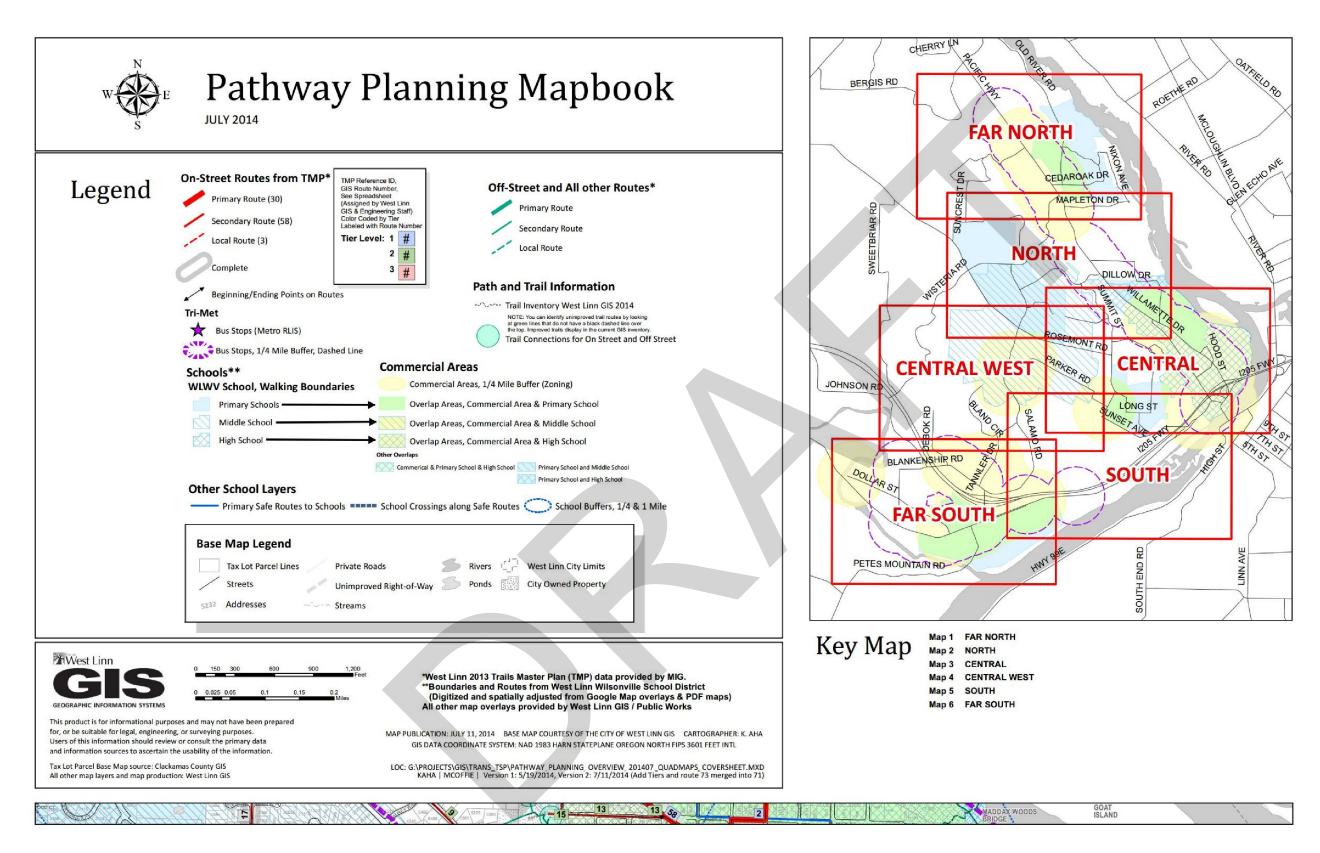
Based on the information included above, staff suggests that the TSP first consider SRTS improvements in the form of sidewalk infill and other safety enhancements (in the following order of priority), near Cedar Oak, Bolton, Willamette and Sunset Primary Schools. Staff also recommends completing gaps in the network of streetlights along SRTS - identified above as through Sunburst Park, north of Sunset Park and along Trillium Drive. Staff suggests the TSP also consider safety enhancements such as enhanced crossings, signage and wayfinding near Trillium Creek Primary.

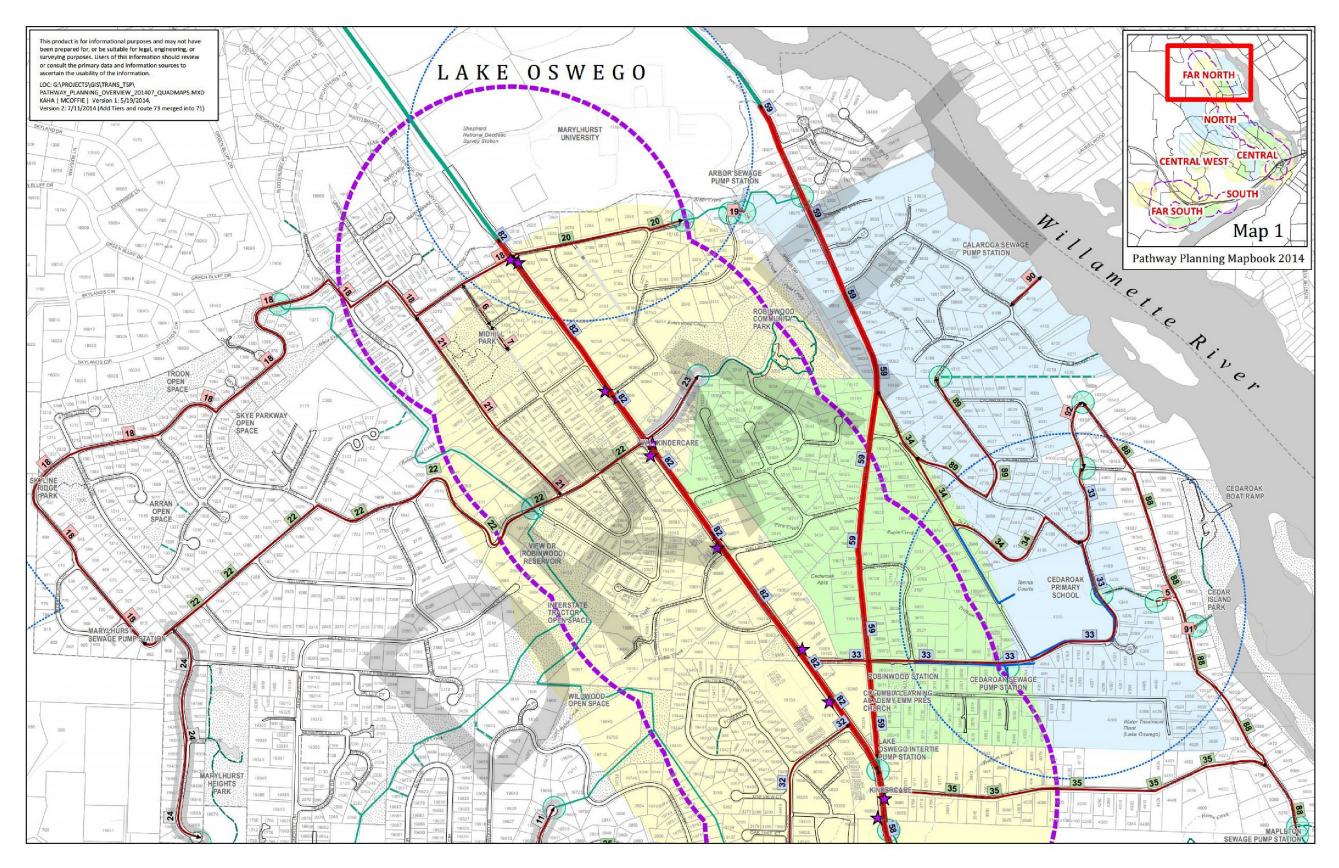

## <u>Encouragement</u>: using events and activities to promote walking and bicycling and to generate enthusiasm for the program with students, parents, staff and the surrounding community.

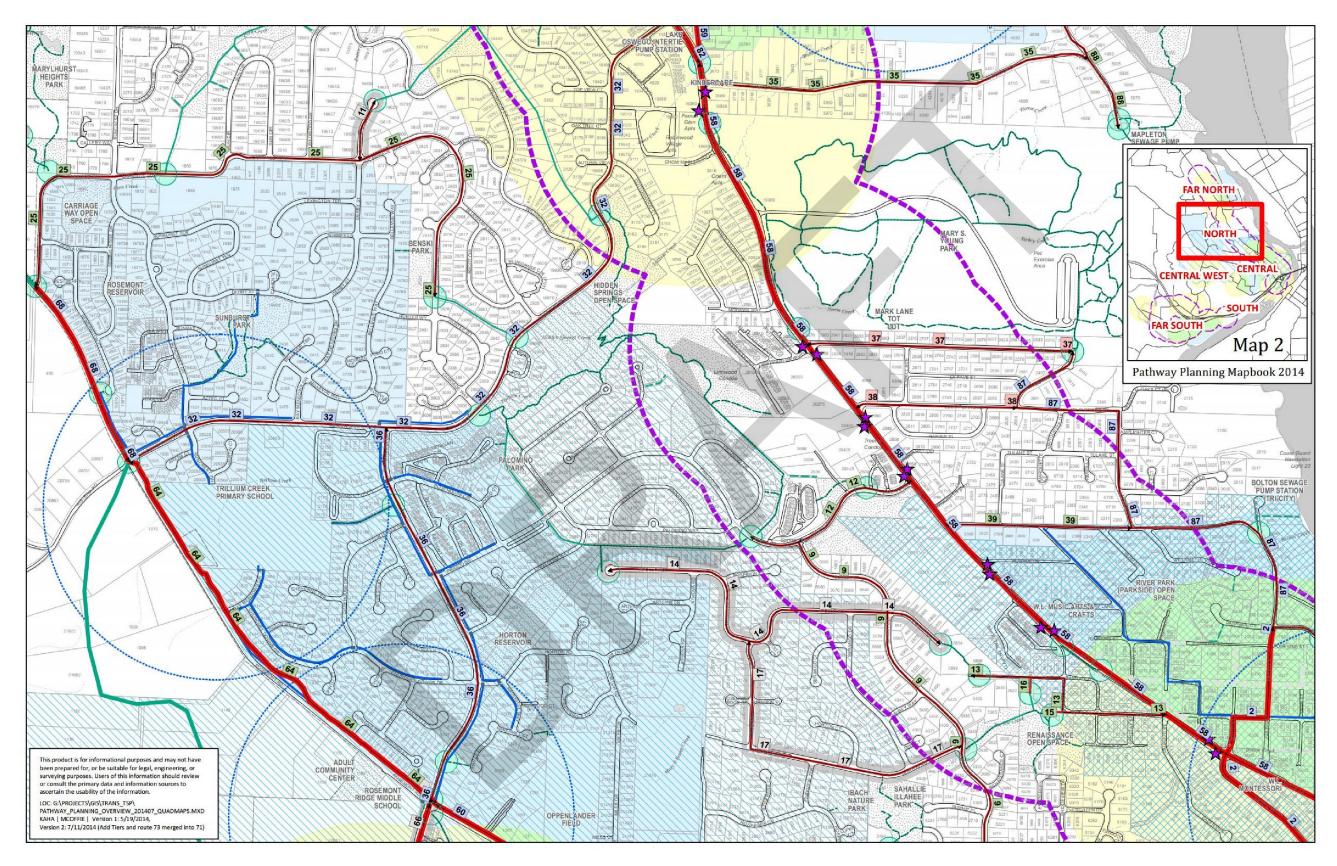

There are a number of events and activities the City and WLWV can use to promote walking and bicycling to school. In 2010 and 2011, the City of West Linn took part in the Bicycle Transportation Alliance's Bike Commute Challenge. The Bike Commute Challenge is a friendly competition among metro area employers to see who can log the highest rate of days where employees rode bike rather than drove to work during the month of September. Events like this raise awareness and encourage individuals who may otherwise choose a mode other than driving. The City and WLWV should consider developing similar events to encourage students to walk and bicycle to school.

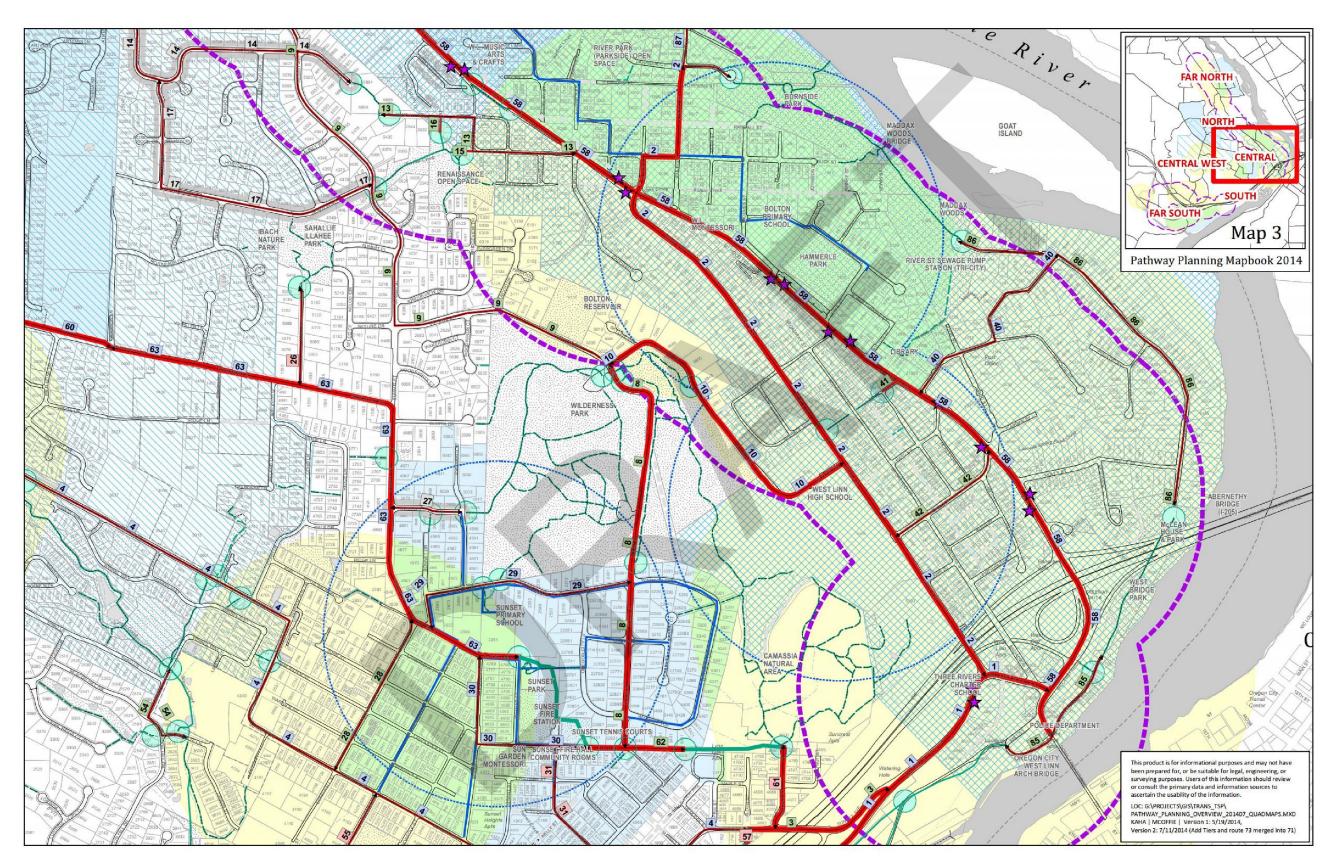
Another good way to promote walking and bicycling to school is by using what is termed a walking school bus. A walking school bus is where parents volunteer to accompany children on a walk or bike ride to school, making stops at designated locations to pick up students, similar to a traditional school bus.

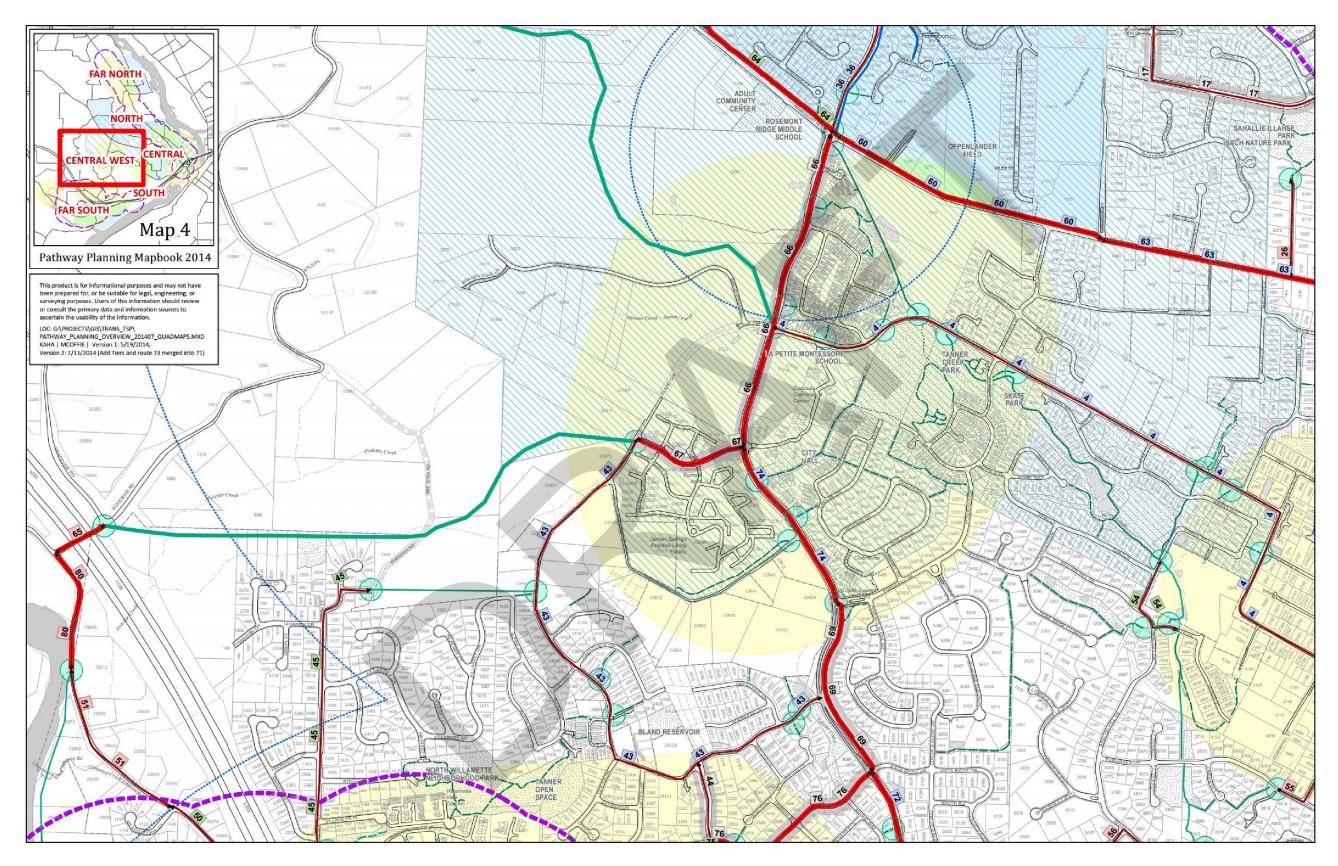
# Evaluation: monitoring and documenting outcomes, attitudes and trends through the collection of data before and after activities and projects so modifications can be made if needed.

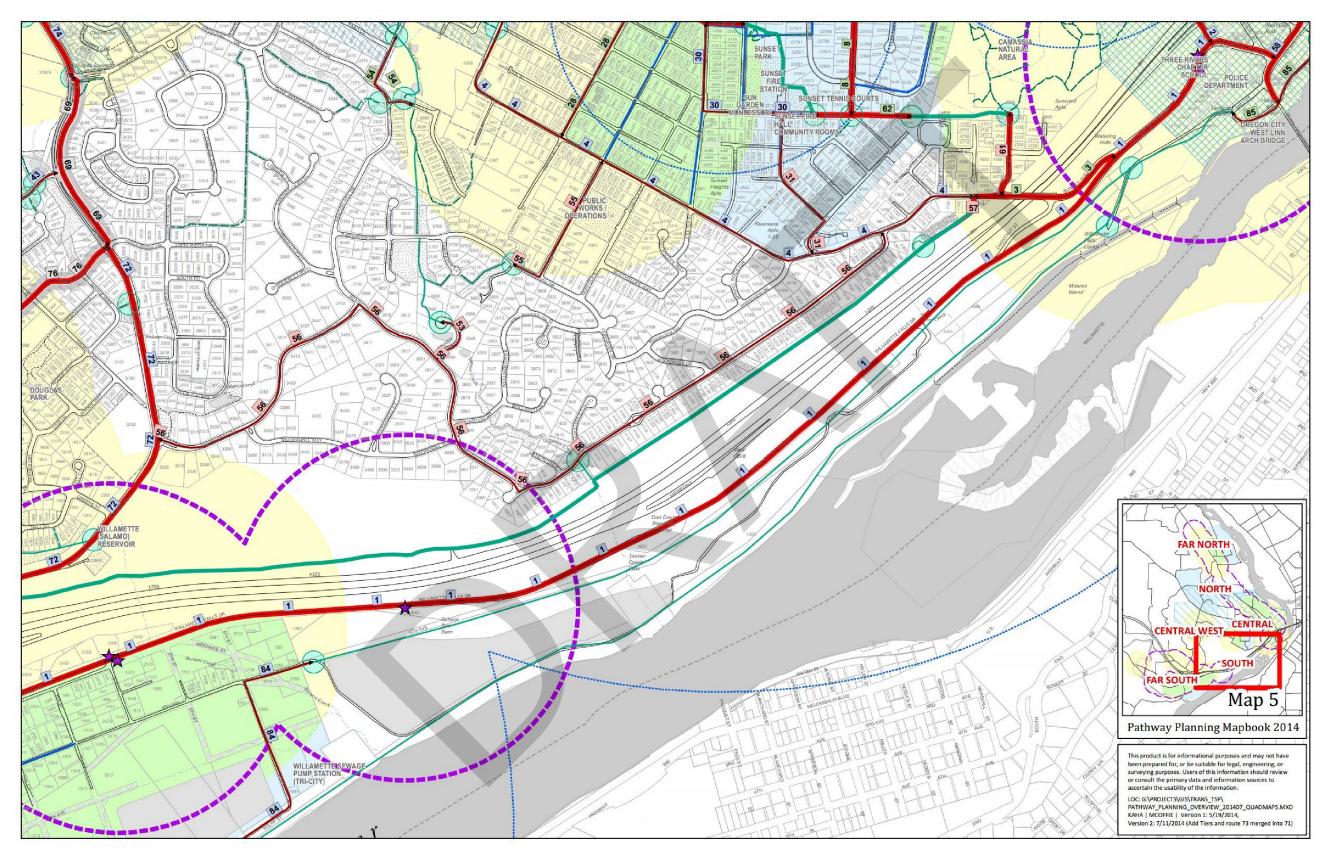

The City and WLWV should work together to collect and share data in order to better understand how students currently use the transportation system and ways it can be improved to encourage more students to safely walk and bicycle to school. The City should partner with the WLWV to collect data regarding the students that walk and bicycle to school; students that participate in walking and bicycling events; the effect of seasonal changes on walking and bicycling; and the type and location of any safety incidents involving students walking and bicycling. Appendix A: Lighting near Safe Routes to Schools

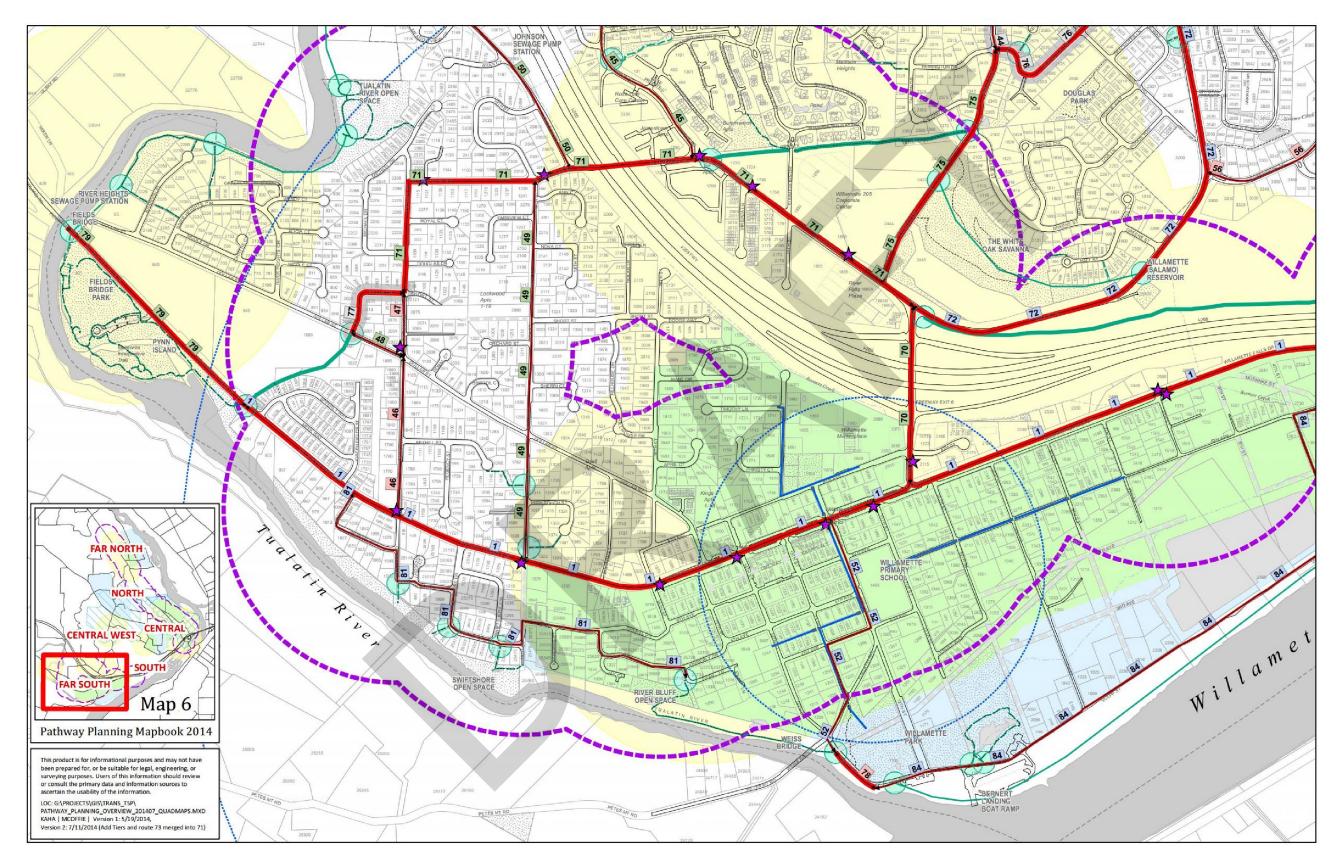




[This page intentionally left blank]













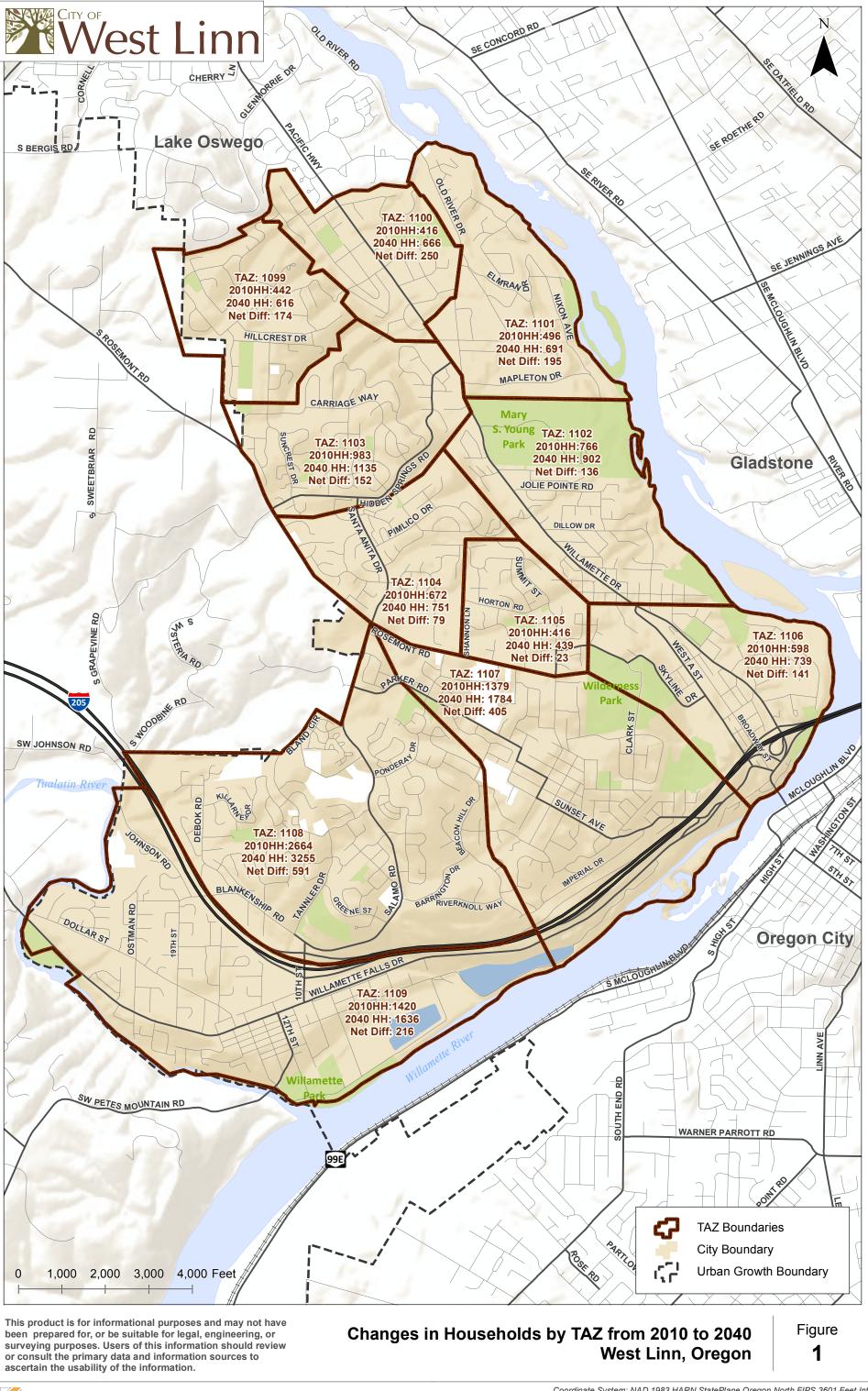



## MEMORANDUM

| Date:    | February 25, 2015 Project #: 17817                                               | '.0 |
|----------|----------------------------------------------------------------------------------|-----|
| To:      | Zach Pelz, City of West Linn<br>Gail Curtis, Oregon Department of Transportation |     |
| From:    | Susan Wright, Matthew Bell, and Ribeka Toda, Kittelson & Associates, Inc.        |     |
| Project: | West Linn Transportation System Plan (TSP) Update                                |     |
| Subject: | Draft Technical Memorandum #7: Draft Transportation System Needs                 |     |

This memorandum documents the existing and future transportation system needs within the City of West Linn. The information presented in this memorandum is intended to inform the development of the West Linn Transportation System Plan (TSP) which addresses existing system needs and additional facilities that are required to serve future growth. A menu or "toolbox" of solutions to address many of these needs is included in Attachment "A". Technical Memorandum 10 will include specific solutions to address the transportation system needs identified in this memorandum.

## PROJECTED LAND USES


Land use plays an important role in developing a comprehensive transportation system. The amount of land that is planned to be developed, the type of land uses, and how the land uses are mixed together have a direct impact on how the transportation system will be used in the future. Understanding land use is critical to taking actions to maintain or enhance the transportation system.

Land use data for West Linn was provided by Metro. The data includes base year 2010 and forecast year 2040 population, household, and employment (retail, service, and other) estimates for West Linn by Transportation Analysis Zone (TAZ). There are 11 TAZs within West Linn. Figures 1 and 2 illustrate the TAZs and the household and employment changes expected between base year 2010 and forecast year 2040. Table 1 summarizes the TAZ data for base year 2010 and forecast year 2040 conditions. As shown in Table 1, the percent change in population and households over 30 years is anticipated to be less than 1% per year and the growth in employment is anticipated to be approximately 2 % per year.

| Land Use   | 2010   | 2040   | Change | Percent Change |
|------------|--------|--------|--------|----------------|
| Population | 25,458 | 31,471 | +6,013 | +23.6%         |
| Households | 10,252 | 12,620 | +2,368 | +23.1%         |
| Employment | 4,253  | 6,913  | 2,660  | +62.5%         |

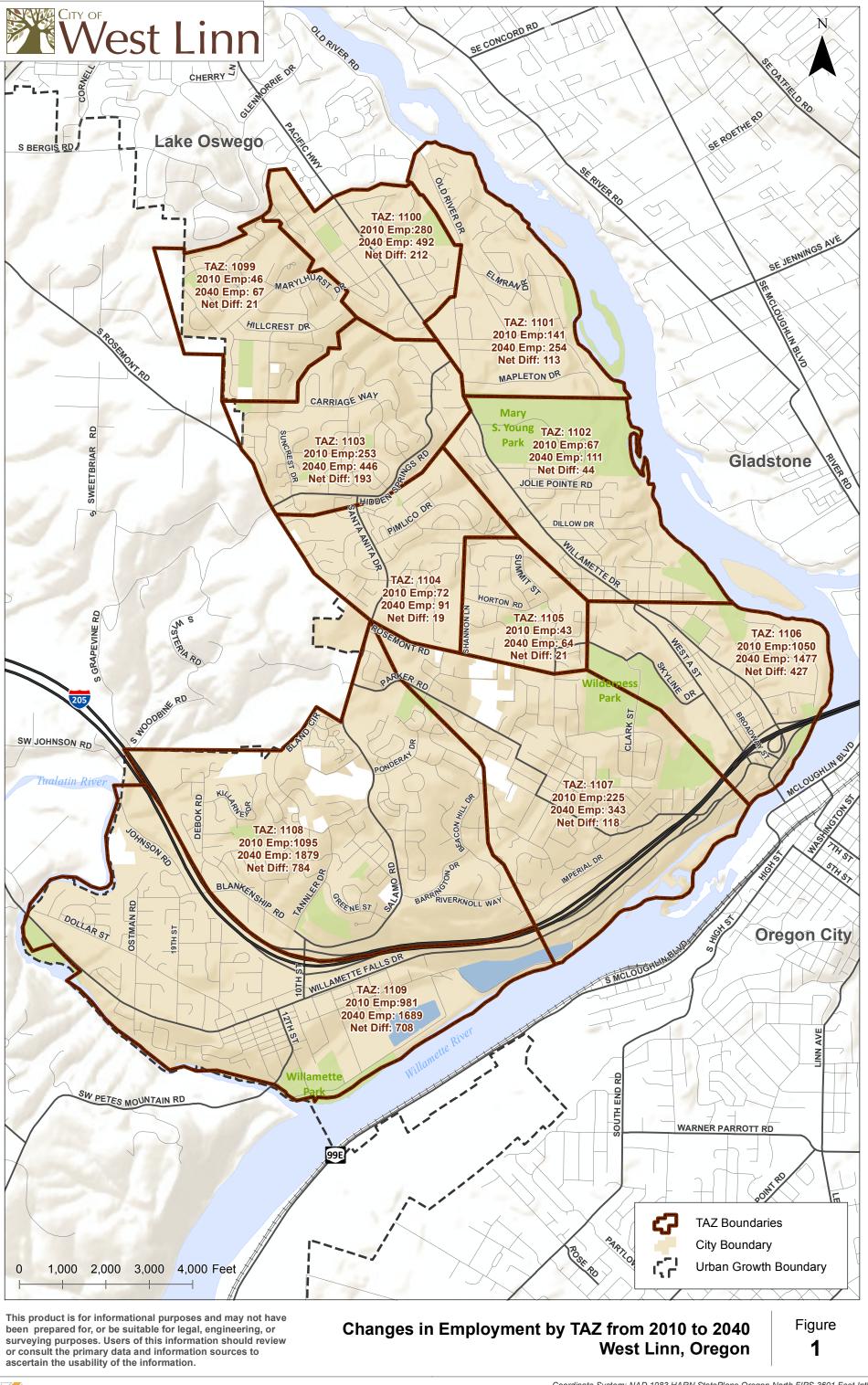
### Table 1: West Linn Land Use Summary

FILENAME: H:\PROJFILE\17817 - WEST LINN TRANSPORTATION SYSTEM PLAN\TASK 3 - TRANSPORTATION SYSTEM NEEDS\DRAFT TO CAC\DRAFT TECH MEMO 7\_02-25-2015.DOCX



KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

12:59 PM


n\gis\Task\_03\1 TAZ\_Households

-lan

West Linn

17817 -

Coordinate System: NAD 1983 HARN StatePlane Oregon North FIPS 3601 Feet Intl Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: Esri, USGS, NOAA



1:02 PM

ille

pxm

n\gis\Task\_03\2 TAZ\_Employee;

Plar

West Linn

17817 -

As land uses change in proportion to each other (i.e. there is a significant increase in employment relative to household growth), there will be a shift in the overall operation of the transportation system. Retail land uses generate a higher number of trips per acre of land than residential and other land uses. The location and design of retail land uses in a community can greatly affect transportation system operation. Additionally, if a community is homogeneous in land use character (i.e. all employment or all residential), the transportation system must support significant trips coming to or from the community rather than within the community. Typically, there should be a mix of residential, commercial, and employment type land uses so that some residents may work and shop locally, reducing the need for residents to travel long distances.

The data shown in Table 1 indicates that significant growth is expected in West Linn in the coming decades. The transportation system in West Linn should be monitored to make sure that land uses in the plan are balanced with transportation system capacity.

## ACCESS TO ESSENTIAL DESTINATIONS

The pedestrian and bicycle systems should provide access to essential destinations in the City, such as transit centers, park and rides, bus stops, schools, parks, public facilities, and commercial centers. They should also provide access to other networks, such as Metro's Regional Pedestrian and Bicycle Networks, Metro's Regional Trails and Greenways network, and Clackamas County's Principal Active Transportation (PAT) routes as documented in the County's Active Transportation Plan (ATP).

## Access to Essential Destinations

**Transit Center:** The Oregon City Transit Center is located across the Arch Bridge in downtown Oregon City between Mcloughlin Boulevard (99E) and Main Street on 11<sup>th</sup> Street. The Oregon City Transit Center is a major transit hub within the region serving TriMet's fixed-route bus lines 32, 33, 34, 35, 79, 99, and 154, TriMet's Lift service, and Canby Area Transit's (CAT) Orange Line. Continuous sidewalks along the Arch Bridge and through downtown Oregon City provide access to the transit center for pedestrians; however, cyclists must share the roadways with motor vehicles. TriMet's Line 35 and 154 also provide access to the Oregon City Transit Center from West Linn.

**Park and Ride:** The West Linn park and ride is located in the southeast corner of the Willamette Drive/Cedar Oak Drive intersection at the Emmanuel United Presbyterian Church. The park and ride is served by Line 35 with one stop along the east side of Willamette Drive north of Cedar Oak Drive and one stop along the west side of Willamette Drive approximately halfway between Cedar Oaks drive and Hidden Springs Road. Continuous sidewalks along Willamette Drive and Cedar Oaks Drive connect the park and ride with the transit and the Willamette Drive/Cedar Oak Drive intersection is signalized with pedestrian activation.

**Transit Stops**: The City is served by two transit lines – Line 35 along Willamette Drive and Line 154 along Willamette Falls Drive. There is limited pedestrian access to both lines as both Willamette Drive and Willamette Falls Drive have little to no sidewalks. Sidewalks are particularly important to transit

facilities as most bus riders need safe and comfortable walking routes to access the bus stop. Line 35 is accessible by bicycle as there are bicycle lanes along Willamette Drive. Line 154 is not accessible by bicycle as there are bicycle lanes along a small segment of Blankenship Road only.

**Schools:** Providing pedestrian and bicycle access to schools can offer multimodal commute options for students. Most of the schools in West Linn have limited or significant gaps in pedestrian access. The following schools have no access by bicycle facilities:

- Cedaroak Park Primary School, along Cedar Oak Drive
- SunGarden Montessori Children's Center
- Sunset Primary School
- Three Rivers Charter School
- Willamette Primary School

**Parks**: There are numerous parks in West Linn. The three main parks are Mary S. Young Park, Wilderness Park, and Willamette Park.

- Mary S. Young Park: Mary S. Young Park is a 128 acre park located along the east side of Willamette Drive, between Mapleton Drive and Jolie Pointe Road. It is accessible from Willamette Drive, Mark Lane, Munger Drive, and Mapleton Drive. There is an off-street pedestrian path on the east side of Willamette Drive, but no pedestrian facilities on the west side and no crosswalk to cross Willamette Drive. There are no sidewalk connections from the south side of the park, along Mark Lane and Munger Drive or from the north side of the park along Mapleton Drive. There are bicycle lanes on both sides of Willamette Drive. There are no bicycle connections from the south side of the park, along Mark Lane and Munger Drive.
- Wilderness Park: Wilderness Park is a 51.4 acre park located southwest of West A Street. It has
  access points on Clark Street, Oregon City Boulevard, Prospect Street, and Windsor Terrace.
  Clark Street is a collector street that lacks sidewalks and bike lanes between skyline drive and
  Windsor Terrance; however, it has continuous sidewalks and bike lanes between Windsor
  Terrace and Long Street. Oregon City Boulevard, Prospect Street, and Windsor Terrace are local
  streets with limited or no sidewalks, bicycle lanes or shared-use pavement markings.
- Willamette Park: Willamette Park is a 15 acre park located at the intersection of the Tualatin River and the Willamette River at the south end of the City. It is accessible from 12th Street and Volpp Street. 12th Street has sidewalks on the west side only and Volpp has inconsistent sidewalks along both the north and south sides. There are no bicycle lanes or shared bicycle pathways on either street.

**Public Facilities** (library, community center, city hall): There are several public facilities in West Linn, including City Hall, the adult community center, and the library.

- City Hall: The West Linn City Hall is located at the intersection of Salamo Road and Day Road. There are sidewalks on both sides of Salamo Road and Day Road and marked crosswalks at the intersection. There are bicycle lanes on both sides of Salamo Road and no bicycle facilities along Day Road.
- Adult Community Center: The West Linn Adult Community Center is directly adjacent to Rosemont Ridge Middle School, located at the intersection of Santa Anita Drive and Rosemont Road. There are sidewalks along both sides of Rosemont Road and while there is no crosswalk directly in front of the driveway to the community center, there is a crosswalk at the intersection approximately 400 feet to the east. There are bicycle lanes along both sides of Rosemont Road and there is also an off-street multi-use path along the north side of Rosemont Road.
- Library: The West Linn Public Library is located at the intersection of Hood Street and Burns Street in the east side of the City. There are sidewalks along a portion of Burns Street but no sidewalks along Hood Street. It is also located near Willamette Drive, and while the segments of Willamette Drive near the site have sidewalks, there are no crosswalks across Willamette Drive for library patrons walking from west of Willamette Drive. Hood Street and Burns Street are local streets and have no bicycle lanes or shared pathway markings. Willamette Drive has bicycle lanes in both directions.

**Commercial Centers**: There are four main commercial centers in West Linn located near the Willamette Drive/I-205 interchange, the 10<sup>th</sup> Street/I-205 interchange (Willamette Historic Commercial District), the Salamo Road/Parker Road intersection, and along Willamette Drive toward the north end of the City.

- Willamette Drive/I-205 Interchange: The commercial center along Hood Street, which runs parallel to Willamette Drive, is a collection of retail and restaurants in the area enclosed by Willamette Drive, Burns Street and Garden Street.
- Willamette Historic Commercial District: The commercial area along Willamette River Drive near the 10<sup>th</sup> Street/I-205 interchange includes various restaurants and stores along both sides of Willamette River Drive, and there is a separated frontage road on both sides with parking.
- Salamo Road/Parker Road Intersection: The commercial area located in the southeast corner of the Salamo Road/Parker Road intersection includes City Hall and a shopping center.
- Willamette Drive toward the north end of City: The commercial area along Willamette Drive toward the north end of the City includes a Walmart and other retail uses and restaurants.

## Access to Other Networks

## Metros Regional Pedestrian Network

Metro's Regional Pedestrian Network consists of pedestrian parkways, regional pedestrian corridors, local pedestrian corridors, and regional pedestrian districts. This network includes the trails identified in the Metro Regional Trails and Greenways network. The components of the Regional Pedestrian Network are defined below:

- Pedestrian parkways are high quality and high priority routes for pedestrian activity. They
  are generally major urban streets that provide frequent and/or almost frequent transit
  service. They can also be regional trails. The following are the existing and proposed
  pedestrian parkways within West Linn:
  - Existing pedestrian parkways: Willamette Drive
  - Proposed pedestrian parkways: I-205 Multi-Use Path, which is also identified in the Metro Regional Trails and Greenways network
  - Regional pedestrian corridors are any major or minor arterial or regional trail that is not designated as a pedestrian parkway. The following are the existing and proposed regional pedestrian corridors within West Linn: Existing regional pedestrian corridors: Old River Drive, which is also identified as the Willamette River Greenway in the Metro Regional Trails and Greenways network, and parts of the Salamo Trail
  - Proposed regional pedestrian corridors: the Rosemont Trail, which is also identified in the Metro Regional Trails and Greenways network, and filling gaps in the Salamo Trail and the Riverside Loop Trail
- Local pedestrian corridors include any street or trail that is not a regional pedestrian corridor.
- Pedestrian Districts are areas with a concentration of transit, commercial, cultural, educational, institutional, and/or recreational destinations where pedestrian travel is intended to be attractive, comfortable and safe. Within West Linn these areas include the four main commercial centers described above.

### Metros Regional Bicycle Network

Metro's Regional Bike Network consists of bicycle parkways, regional bikeways, local bikeways, and regional bicycle districts. This network includes the trails identified in the Metro Regional Trails and Greenways network. The components of the Regional Bicycle Network are defined below:

 Regional Bicycle Parkways connect to and through every urban center, many regional destinations, and to most employment and industrial areas, regional parks, and natural areas. Bicycle Parkways serve higher volumes of bicyclists and provide important connections to destinations. The following are the existing and proposed bicycle parkways within West Linn:

- Existing bicycle parkways: Willamette Drive, Pimlico Drive, Santa Anita Drive, parts of Salamo Trail and parts of 10<sup>th</sup> Street
- Proposed bicycle parkways: I-205 Multi-Use Trail
- Regional Bikeways provide for travel to and within the Central City, Regional Centers, and Town Centers. Regional Bikeways can be any type of facility, including multi-use paths, offstreet trails, separate on-street bike lanes, and bicycle boulevards. Within West Linn these routes include the Rosemont Trail (Rosemont Road, Skyline Drive, Summit Street, Cornwall Street, Sunset Avenue) and the Willamette River Greenway trail.
  - Existing regional bikeways: Old River Drive, Willamette River Drive, Blankenship Road, parts of the Willamette River Greenway, the Rosemont Trail, and 10<sup>th</sup> Street
  - Proposed regional bikeways: Filling gaps in the Willamette River Greenway, the Salamo Trail and the Rosemont Trail
- Local Bikeways include any street or trail that is not a regional bicycle corridor.
- Bicycle Districts are areas with a concentration of transit, commercial, cultural, educational, institutional, and/or recreational destinations where bicycle travel is intended to be attractive, comfortable and safe. Within West Linn these areas include the four main commercial centers described above.

Access to the Regional Pedestrian and Bicycle Networks is mostly made on local streets, which generally provide limited facilities within West Linn. As such, there is limited access to most of the corridors identified above. Access to these corridors is critical to providing regional pedestrian and bicycle systems that serve the needs of West Linn residents.

## Metro Regional Trails and Greenways Network

Metro's Regional Trails and Greenways network is the compilation of the trails that connect the parks and natural areas in the region. The trails in this network that are within West Linn are included in Metro's Regional Pedestrian and Bicycle Networks.

## Clackamas County Principal Active Transportation Routes

The Clackamas County Active Transportation Plan identifies principal active transportation (PAT) routes that connect key destinations for transit, shopping and employment centers within the County. Within West Linn, Route 6a (Willamette Drive/Old River Road) has been identified as a Visionary PAT (V-PAT) Route, which means that it is a long-term project for the County. Route 6a offers a scenic route along the Willamette River south of George Rogers Park. Combined with improved facilities on Willamette Drive, this route would provide a direct connection between Lake Oswego and West Linn as well as access to employment, parks and shopping.

## PEDESTRIAN SYSTEM NEEDS

Pedestrian facilities, such as sidewalks, multi-use paths and trails, marked and unmarked, signalized and unsignalized pedestrian crossings are essential elements of the City's pedestrian system. While these facilities are currently provided along many City streets, there are many more streets where these facilities are needed to improve pedestrian access to transit and essential destinations within the City, consistent with Section 3.08.130 of the RTFP. The following provides a summary of the pedestrian system needs within West Linn and is based on information provided in previous planning documents as well as a review of the transportation system.

As described below, the most common overall need is to provide a safe and interconnected system that affords the opportunity to consider the walking mode of travel, especially for trips less than one-half mile in length for residential trips, and less than one-mile for recreational trips.

## System Connectivity

A well-connected pedestrian system provides continuous sidewalks and other pedestrian facilities between essential destinations, such as residential neighborhoods, schools, parks, and retail/commercial centers. Strategies to improve pedestrian connectivity include identifying, prioritizing, and ultimately constructing new sidewalks, multi-use paths and trails, pedestrian crossings, and connections between neighborhoods. The following provides a summary of connectivity needs for the pedestrian system.

## Sidewalks

Several of the arterial and collector streets within West Linn need sidewalks and other pedestrian facilities to improve connectivity. Figure 3 illustrates the gaps in the pedestrian system. As shown, there is a lack for sidewalks along both sides of Willamette Drive, Rosemont Road, Skyline Drive, Parker Road, Sunset Avenue, and many other arterials streets, as well as a lack of sidewalks along both sides of Ostman Road, Blankenship Road, Tannler Drive, Pimlico Drive, Summit Street, and many other collector streets. While the lack of sidewalks is shown along both sides of all arterial and collector streets, it may not be feasible or cost effective to construct sidewalks along both sides of all streets. Marylhurst Drive, for example, has significant grade and topography issues that may limit the ability to construct sidewalks along one or both sides of the street. Further evaluation of these streets will be provided in Technical Memorandum 10: Transportation Solutions.

Many of the sidewalk projects identified in previous the TSP and other planning documents have not been constructed, and therefore are still needed. These projects along with several additional projects identified through a review of the transportation system as well as conversations with City staff, are shown in Table 2. The pedestrian system gaps (i.e. needs) in Table 2 are based on road standards that include sidewalks on both sides of the street; however, some locations may be determined to be adequate with a pedestrian facility on one side of the roadway only.

9:44 AM 2/27/20

mbell -

pxu


Veeds

vlgis\Task\_03\3 Pedestriar

Plan

West L

7817 -



Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: USGS, ESRI, TANA, AND

## Table 2: Pedestrian System Gaps

| Street Name            | From                                 | То                             | Side                                         | Need                      | SRTS –<br>Memo 6 | On-street<br>Connection –<br>Trails Master<br>Plan | SRTS – Trails<br>Master Plan |
|------------------------|--------------------------------------|--------------------------------|----------------------------------------------|---------------------------|------------------|----------------------------------------------------|------------------------------|
| 10th Street            | Blankenship<br>Road                  | 8th Avenue                     | One side only                                | Construct new sidewalk    | No               | Route 70                                           | No                           |
| 19th Street            | Blankenship<br>Road                  | Willamette Falls<br>Drive      | Some one side<br>only, largely<br>both       | Construct new sidewalk    | No               | Route 49                                           | No                           |
| Bland Circle           | Weatherhill<br>Road                  | Salamo Road                    | Some both<br>sides, largely<br>one side only | Construct new<br>sidewalk | No               | Route 43                                           | No                           |
| Bland Circle           | North Limits                         | Tannler Drive                  | Some both<br>sides, largely<br>one side only | Fill in sidewalk<br>gaps  | No               | Route 43                                           | No                           |
| Blankenship<br>Road    | Ostman Road                          | 19th Street                    | One side only                                | Construct new sidewalk    | No               | Route 71                                           | No                           |
| Blankenship<br>Road    | Johnson Road                         | Debok Road                     | One side only                                | Fill in sidewalk<br>gaps  | No               | Route 71                                           | No                           |
| Blankenship<br>Road    | 13th Street                          | 10th Street                    | One side only                                | Fill in sidewalk<br>gaps  | No               | Route 71                                           | No                           |
| Carriage Way           | Rosemont Road                        | 700' north of<br>Rosemont Road | One side only                                | Construct new sidewalk    | No               | Route 25                                           | No                           |
| Cedaroak Drive         | Old River Road                       | Elmran Avenue                  | Both sides                                   | Construct new sidewalk    | Yes              | Route 33                                           | Yes                          |
| Cornwall Street        | Sunset Avenue                        | Oxford Street                  | Both sides                                   | Construct new sidewalk    | No               | Route 28                                           | No                           |
| Debok Road             | 100' north of<br>Summerlinn<br>Drive | Rosemarie Drive                | One side only                                | Fill in sidewalk<br>gaps  | No               | Route 45                                           | No                           |
| Debok Road             | Rosemarie Drive                      | Farvista Drive                 | Both sides                                   | Construct new sidewalk    | No               | Route 45                                           | No                           |
| Dillow Drive           | Failing Street                       | Willamette<br>Drive            | Both sides                                   | Construct new sidewalk    | No               | Route 2                                            | Yes                          |
| Dollar Street          | West City Limits                     | Willamette Falls<br>Drive      | Some one side<br>only, largely<br>both       | Construct new<br>sidewalk | No               | No                                                 | No                           |
| Elmran Avenue          | Nixon Avenue                         | Old River Road                 | Both sides                                   | Construct new sidewalk    | No               | Routes 34,<br>89, 33, and<br>92                    | Yes (Route<br>33)            |
| Exeter Street          | Oxford Street                        | Sunset Street                  | Both sides                                   | Construct new sidewalk    | Yes              | Route 30                                           | Yes                          |
| Failing Street         | Willamette<br>Drive                  | Dillow Drive                   | Both sides                                   | Construct new sidewalk    | No               | Route 2                                            | Yes                          |
| Hidden Springs<br>Road | 300' east of<br>Suncrest Drive       | Santa Anita<br>Drive           | One side only                                | Construct new sidewalk    | Yes              | Route 32                                           | Yes                          |
| Hidden Springs<br>Road | Carriage Way                         | Wildwood Drive                 | One side only                                | Construct new sidewalk    | No               | Route 32                                           | Yes                          |
| Hidden Springs<br>Road | Wildwood Drive                       | Cottonwood<br>Court            | One side only                                | Fill in sidewalk<br>gaps  | No               | Route 32                                           | Yes                          |
| Hillcrest Drive        | Marylhurst<br>Drive (North)          | Marylhurst<br>Drive (South)    | Both sides                                   | Construct new sidewalk    | No               | No                                                 | No                           |
| Johnson Road           | Woodbine Road                        | Blankenship<br>Road            | Both sides                                   | Construct new sidewalk    | No               | Routes 50<br>and 51                                | No                           |

|                       |                        |                           |                                        |                                            |                  | On-street                             |                              |
|-----------------------|------------------------|---------------------------|----------------------------------------|--------------------------------------------|------------------|---------------------------------------|------------------------------|
| Street Name           | From                   | То                        | Side                                   | Need                                       | SRTS –<br>Memo 6 | Connection –<br>Trails Master<br>Plan | SRTS – Trails<br>Master Plan |
| Jolie Pointe<br>Drive | Larson Avenue          | Rainier Place             | Both sides                             | Construct new sidewalk                     | No               | Route 38                              | No                           |
| Larson Avenue         | Dillow Drive           | Tulane Street             | Both sides                             | Construct new sidewalk                     | No               | Route 87                              | No                           |
| Larson Avenue         | Tulane Street          | Jolie Pointe<br>Drive     | One side only                          | Construct new sidewalk                     | No               | Route 87                              | No                           |
| Mapleton Drive        | Willamette<br>Drive    | Nixon Avenue              | Both sides                             | Construct new sidewalk                     | No               | Route 38                              | No                           |
| Marylhurst<br>Drive   | Willamette<br>Drive    | Hillcrest Drive           | Both sides                             | Construct new sidewalk                     | No               | Route 22                              | No                           |
| McKillican            | West A Street          | Willamette Falls<br>Drive | Both sides                             | Construct new sidewalk                     | No               | Route 42                              | No                           |
| Nixon Avenue          | Mapleton Drive         | Elmran Avenue             | Both sides                             | Construct new sidewalk                     | No               | Route 88                              | No                           |
| Old River Road        | Willamette<br>Drive    | Cherokee Court            | Some one side<br>only, largely<br>both | Construct new<br>sidewalk                  | No               | Route 59                              | No                           |
| Ostman Road           | Blankenship<br>Road    | Willamette Falls<br>Drive | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | No               | Routes 46<br>and 47                   | No                           |
| Oxford Street         | Cornwall Street        | Exeter Street             | Both sides                             | Construct new sidewalk                     | Yes              | Route 63                              | No                           |
| Parker Road           | Noble Lane             | Sunset Avenue             | Some both,<br>largely one side<br>only | Construct new<br>sidewalk and fill<br>gaps | No               | Route 4                               | No                           |
| Pimlico Drive         | Willamette<br>Drive    | Palamino Way<br>(East)    | Both sides                             | Construct new<br>sidewalk                  | No               | Route 12                              | No                           |
| Pimlico Drive         | Santa Anita<br>Drive   | Palamino Way<br>(West)    | One side only                          | Construct new sidewalk                     | Yes              | No                                    | No                           |
| Riverview<br>Avenue   | Long Street            | Sunset Avenue             | Both sides                             | Construct new sidewalk                     | No               | No                                    | No                           |
| Rosemont Road         | Carriage Way           | Hidden Springs            | One side only                          | Construct new sidewalk                     | No               | Route 68                              | Yes                          |
| Rosemont Road         | Hidden Springs<br>Road | Santa Anita<br>Drive      | One side only                          | Construct new sidewalk                     | Yes              | Route 64                              | No                           |
| Rosemont Road         | Santa Anita<br>Drive   | Wild Rose Drive           | One side only                          | Construct new sidewalk                     | No               | Route 60                              | No                           |
| Rosemont Road         | Shannon Lane           | Summit Street             | Both sides                             | Construct new sidewalk                     | No               | Route 63                              | No                           |
| Salamo Drive          | 10th Street            | Crystal Terrace<br>Drive  | Some one side<br>only, largely<br>both | Construct new<br>sidewalk                  | No               | Route 72                              | No                           |
| Salamo Drive          | Vista Ridge<br>Drive   | Weatherhill<br>Road       | One side only                          | Construct new<br>sidewalk and fill<br>gaps | No               | Routes 72,<br>69, and 74              | No                           |
| Simpson Street        | Long Street            | Riverview<br>Avenue       | Both sides                             | Construct new sidewalk                     | No               | Route 31                              | No                           |
| Skyline Drive         | Summit Drive           | West A Street             | Some one side<br>only, largely<br>both | Construct new<br>sidewalk and fill<br>gaps | No               | Routes 9 and<br>10                    | No                           |
| Summit Street         | Skyline Drive          | Oxford Street             | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | No               | Routes 28<br>and 63                   | No                           |

| Street Name               | From                      | То                      | Side                                   | Need                                       | SRTS –<br>Memo 6 | On-street<br>Connection –<br>Trails Master<br>Plan | SRTS – Trails<br>Master Plan |
|---------------------------|---------------------------|-------------------------|----------------------------------------|--------------------------------------------|------------------|----------------------------------------------------|------------------------------|
| Summit Street             | Pimlico Drive             | Apollo Road             | Both sides                             | Fill in sidewalk<br>gaps                   | No               | Route 9                                            | No                           |
| Suncrest Drive            | Hillcrest Drive           | Carriage Way            | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | Yes              | No                                                 | No                           |
| Sunset Avenue             | Parker Road               | Walnut Street           | Both sides                             | Construct new sidewalk                     | No               | Route 4                                            | No                           |
| Sunset Avenue             | Willamette Falls<br>Drive | West A Street           | One side only                          | Construct new sidewalk                     | No               | Route 3                                            | No                           |
| Tannler Drive             | Blankenship<br>Road       | Greene St               | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | No               | Route 75                                           | No                           |
| Tualatin Avenue           | Volpp Street              | 12th Street             | Both sides                             | Construct new sidewalk                     | No               | Route 52                                           | Yes                          |
| West A Street             | Willamette<br>Drive       | Skyline Drive           | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | No               | Route 2                                            | Yes                          |
| Willamette<br>Drive       | Bolton Street             | Failing Street          | One side only                          | Construct new<br>sidewalk and fill<br>gaps | No               | Route 58                                           | No                           |
| Willamette<br>Drive       | Buck Street               | Barlow Street           | Both sides                             | Construct new sidewalks                    | No               | Route 58                                           | No                           |
| Willamette<br>Drive       | Barlow Street             | Pimlico Drive           | One side only                          | Construct new sidewalk                     | No               | Route 58                                           | No                           |
| Willamette<br>Drive       | Mark Lane                 | Cedaroak Drive          | Both sides                             | Construct new<br>sidewalk and fill<br>gaps | No               | Routes 58<br>and 82                                | No                           |
| Willamette<br>Drive       | Cedaroak Drive            | North City<br>Limits    | Some one side<br>only, largely<br>both | Construct new sidewalk and fill gaps       | No               | Route 82                                           | No                           |
| Willamette Falls<br>Drive | Dollar Street<br>(West)   | Dollar Street<br>(East) | Some one side<br>only, largely<br>both | Construct new<br>sidewalk and fill<br>gaps | No               | Route 1                                            | No                           |
| Willamette Falls<br>Drive | 10th Street               | West A Street           | Some one side<br>only, largely<br>both | Construct new sidewalk                     | No               | Route 1                                            | No                           |

The sidewalk projects shown in Table 2 will be evaluated based on the TSP goals, targets, and evaluation criteria, and input from City staff and local citizens, to determine the highest priority projects for the financially constrained plan. In addition to the gaps in pedestrian facilities along arterial and collector streets noted in Table 2, there are other deficiencies in sidewalk conditions, including sub-standard sidewalk widths and general poor conditions. The City is currently compiling an inventory of these sidewalk condition deficiencies, including key areas such as the sidewalks near Willamette Primary School and Bolton School.

In addition to the need related to gaps and conditions of pedestrian facilities along arterial and collector streets noted above, other pedestrian facilities, such as new pedestrian crossings, multi-use paths and trails, and neighborhood connections are identified below.

### **Pedestrian Crossings**

Pedestrian crossings along the City's arterial and collector streets are limited to major intersections and a few key mid-block crossing locations. There are currently eight pedestrian crossings along Willamette Drive at signalized intersections that include pedestrian push buttons and pedestrian signal heads. However, there are several additional locations along Willamette Drive as well as other arterial and collector streets within the City, where marked pedestrian crossing are needed to provide connectivity as well as access to schools, parks, the library, and other essential destinations within the City. The following provides a summary of the additional crossing needs:

- Willamette Drive at Mapleton Drive
- Willamette Drive at Mary S Young Park
- Willamette Drive at Pimlico Drive
- Willamette Drive at Burns Street
- Hidden Springs Road and Carriage Way
- Parker Road at Noble Lane

Marked pedestrian crossing at each of these locations would improve connectivity along the roadways as well as access to essential destinations. Any new pedestrian crossing located on Willamette Drive need to meet Oregon Department of Transportation (ODOT) crossing guidelines and be evaluated based on the criteria used by ODOT to ensure the crossing is warranted and safe.

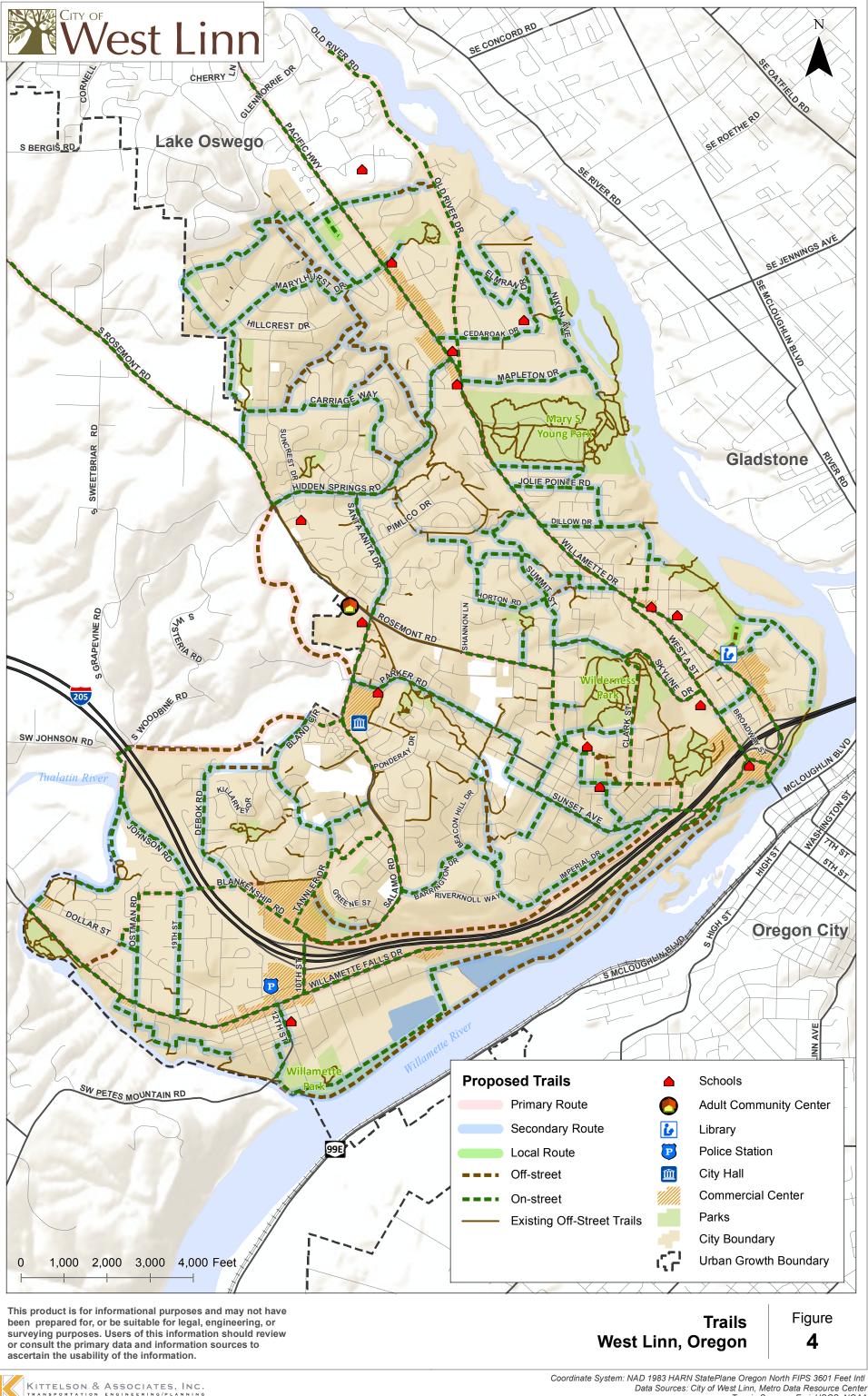
### Multi-Use Paths and Trails

Multi-use paths and trails are designated pathways for both bicyclists and pedestrians. There is currently a sparse network of regional and local multi-use paths in the City, shown in Figure 4, comprised of segments along Rosemont Road, Willamette Drive, Willamette Falls Drive, and within parks. Continuous multi-use paths are most comfortable for both pedestrians and bicyclists and increasing the lengths of these short segments would create a more robust network of multi-use paths and trails. The City has a Trails Master Plan that includes multi-use paths and trails as well as on-street facilities to provide connections to the trails. The on-street segments of the trails master plan should be considered in prioritizing the pedestrian system gaps.

## Neighborhood Connections

Connections between cul-de-sacs and adjacent roadways can significantly reduce travel distances for pedestrians, thereby encouraging more pedestrian trips. The identification of such connections in developed areas is required in Section 660-12-045(6) of the Transportation Planning Rule (TPR) as part of a locality's development of a bicycle and pedestrian circulation plan. Appropriate improvements should provide for more direct, convenient, and safe bicycle or pedestrian travel within and between residential areas and neighborhood activity centers.

1:03 PM 2/26


ville -

Vgis/Task\_03\4 Trails Network.mxd

-la

West L

ifile\17817



Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: Esri, USGS, NOAA Although there are many locations in West Linn where cul-de-sac lengths are excessive and routes from local roads to collectors are not very direct, short-cuts are not always possible due to terrain or length of the necessary trail. The following identifies four possible locations for the construction of new pedestrian accessways or shortcuts:

- Wisteria Road to Bland Circle: This connection would join two residential areas, creating a circular connection from Tannler Drive to Bland Circle, to Wisteria Road, and down to Blankenship Road. A road connection was shown in the Tannler Basin Master plan at this location, to be built when development occurs. Pedestrian and bicycle access should be part of that connection. This plan advocates that the completion of the connection wait until development occurs, as the length of the needed path makes it economically infeasible for the City to pursue in advance of development.
- Sinclair Street to Holly Street: Sinclair Street dead ends in two locations. In order to walk
  west to Willamette Drive one must walk east to River Road and then back to Willamette
  Drive. A connection at this location would be a mildly sloped trail, with right-of-way needed
  to be dedicated along lot lines. The construction of a trail at this location would be
  approximately 300 feet long.
- Rosepark Drive to Rosemont Road: Rosepark Drive is a long cul-de-sac. A connection from the end of the cul-de-sac to Rosemont Road would provide shorter, more direct access for travel southeast on Rosemont Road. Right-of-way is not available for this connection and would have to be dedicated along lot lines.
- Hillcrest Court to Marylhurst Drive: A connection from Hillcrest Court to Marylhurst Drive would reduce the walking distance to Willamette Drive for residents of Hillcrest Court and other residents west of Hillcrest. There is a significant slope at this location, and right-of way is not available.

## **Connectivity Analysis**

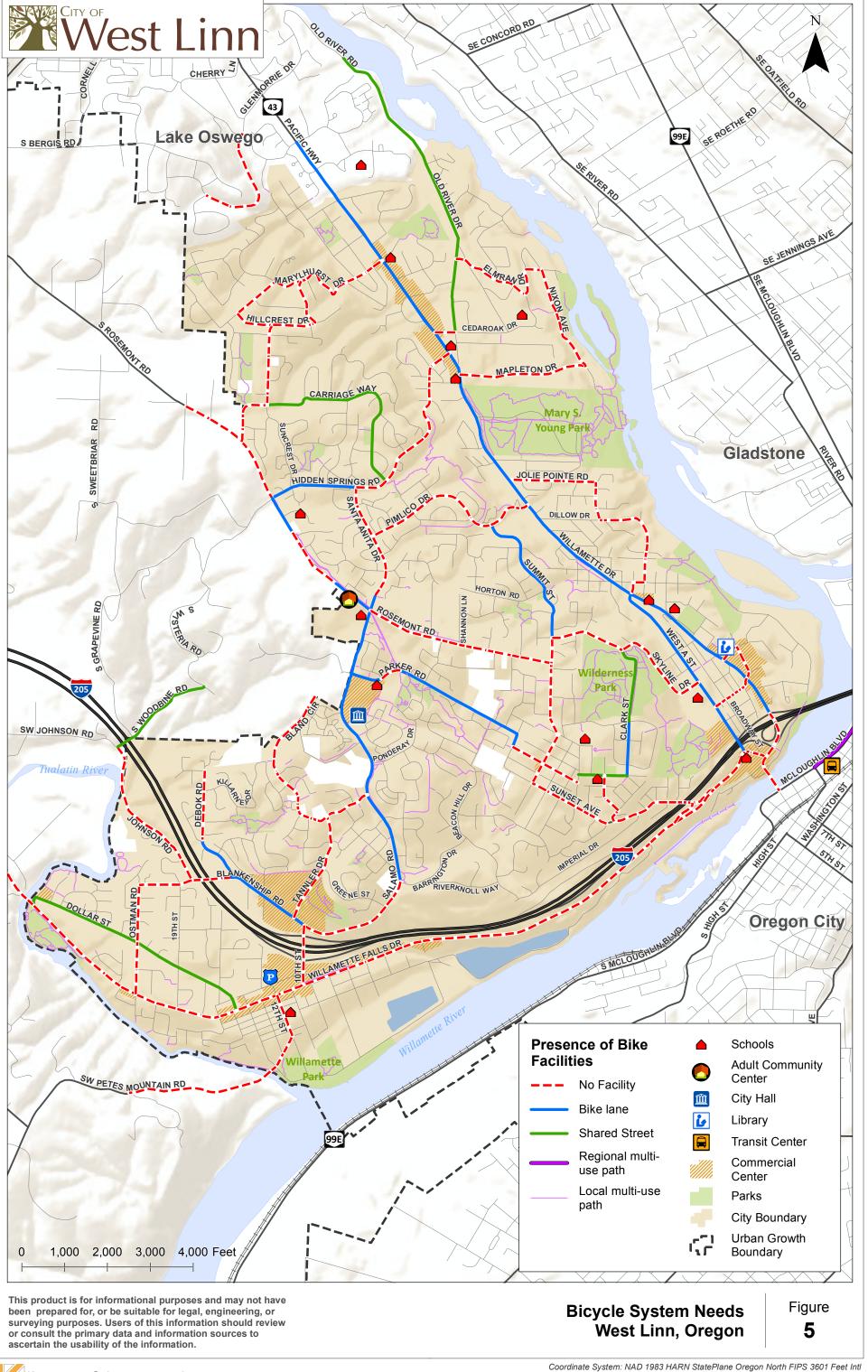
Technical Memorandum #5 identifies the "Excellent/Good/Fair/Poor" rating for pedestrian facilities based on the roadway characteristics. These ratings can be reviewed at a network level to identify the continuous network of "good" or "excellent" facilities and which essential destinations lack pedestrian access via a "fair" or better pedestrian facility. This analysis helps identify gaps in the pedestrian network that should be prioritized in order to create a more robust network of continuous high quality facilities. *The results of the Pedestrian Level of Traffic Stress will be presented upon receiving roadway information from the City.* 

# BICYCLE SYSTEM NEEDS

Bicycle facilities, such as on-street bike lanes, shared roadway pavement markings, multi-use paths and trails, bicycle crossings, bicycle parking, and wayfinding signage, are essential elements of the City's bicycle system. While these facilities are currently provided along many City streets, there are many

more streets where these facilities are needed to improve access to transit and essential destinations within the City, consistent with Section 3.08.140 of the RTFP. The following provides a summary of the bicycle system needs within West Linn and is based on information provided in previous planning documents as well as a review of the transportation system.

As described below, the most common overall need is to provide a safe and interconnected system that affords the opportunity to consider the bicycle mode of travel, especially for trips up to three miles in length. Because of the length of the trip, bicycle lanes and multi-use paths and trails both provide good accommodations for these trips. Many shorter bicycle trips can also be made on roadways with shared use pavement markings or local streets without additional accommodations for bicycles or via connections to arterials and collectors with bicycle facilities. The bicycle system needs can be categorized into two areas: Connectivity and Access. The Connectivity component creates a continuous web of on-street bicycle lanes and off-street facilities and amenities such as bicycle parking and wayfinding signs, while the Access component ensures that the bicycle network provides access to key destinations within the city, such as to transit facilities and to major bicycle generators and attractors such as schools and parks. Both of these categories are described in this section.


## System Connectivity

A well-connected bicycle system provides continuous bike lanes and other bicycle facilities between essential destinations, such as residential neighborhoods, schools, parks, libraries, and retail/commercial centers. Strategies to improve bicycle connectivity include identifying, prioritizing, and ultimately constructing new on-street bicycle lanes, shared-use pavement markings, bicycle crossings, multi-use paths and trails, and bicycle parking.

### **On-street Bicycle Lanes**

Several of the arterial and collector streets within West Linn need new on-street bike lanes and/or other bicycle facilities to improve connectivity. Figure 5 illustrates the bicycle system. As shown, there are two prominent north/south roadways that currently provide bicycle lanes in the city – Willamette Drive and Salamo Road. However, these facilities are not well connected by other facilities that could allow for travel to other areas within the city, particularly to the east and west. Also shown in Figure 5, there are no bike facilities on Rosemont Road, Skyline Drive, Sunset Avenue, and many other arterials streets, or on Ostman Road, Blankenship Road, Tannler Drive, Pimlico Drive, and many other collector streets.

While the City of West Linn street standards include bicycle lanes along both sides of arterial and select collector streets, it may not be feasible or cost effective to construct on-street bike lanes along both sides of all streets. Some streets may be suitable for bikes to share the roadway while others could have a parallel multi-use trail that could accommodate two directions of bicycle travel. Marylhurst Drive, for example, has significant grade and topography issues that may limit the ability to construct on-street bike lanes or other bicycle facilities. Further evaluation of these streets will be provided in Technical Memorandum 10: Transportation Solutions.



KITTELSON & ASSOCIATES, INC.

Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: Esri, USGS, NOAA Many of the bicycle projects identified in previous TSP's as well as other planning documents have not been constructed and are therefore still needed. These system gaps along with additional needs identified through a review of the transportation system are shown in Table 3. The gaps identified are based on the existing design standards that include bicycle lanes on all collectors and arterials.

#### Table 3: Bicycle System Gaps

| Street Name         | From                    | То                      | SRTS –<br>Memo 6 | On-street Connection –<br>Trails Master Plan | SRTS – Trails<br>Master Plan |
|---------------------|-------------------------|-------------------------|------------------|----------------------------------------------|------------------------------|
| 10th Street         | Blankenship Road        | 8th Avenue              | No               | Route 70                                     | No                           |
| 12th Street         | Tualatin Avenue         | Willamette Falls Drive  | Yes              | Route 52                                     | Yes                          |
| Blankenship Road    | Ostman Road             | Debok Road              | No               | Route 71                                     | No                           |
| Buck Street         | Elliot Street           | Failing Street          | No               | Route 2                                      | Yes                          |
| Carriage Way        | Rosemont Road           | Suncrest Drive          | No               | Route 25                                     | No                           |
| Cedar Oak Drive     | Willamette Drive        | Old River Drive         | No               | Route 33                                     | Yes                          |
| Cornwall Street     | Sunset Avenue           | Oxford Street           | No               | Route 28                                     | No                           |
| Debok Road          | Tamarisk Drive          | Margery Street          | No               | Route 45                                     | No                           |
| Dillow Drive        | Larson Avenue           | Failing Street          | No               | Route 2                                      | Yes                          |
| Elliot Street       | Buck Street             | Willamette Drive        | No               | Route 2                                      | Yes                          |
| Elmran Drive        | Old River Drive         | Nixon Avenue            | No               | Routes 34, 89, 33, and 92                    | Yes (Route 33)               |
| Failing Street      | Dillow Drive            | Buck Street             | No               | Route 2                                      | Yes                          |
| Hidden Springs Road | Santa Anita Drive       | Willamette Drive        | No               | Route 32                                     | Yes                          |
| Hillcrest Drive     | Marylhurst Drive (west) | Marylhurst Drive (east) | No               | No                                           | No                           |
| Hood Street         | Cascade Street          | Willamette Drive        | No               | No                                           | No                           |
| Johnson Road        | Woodbine Road           | Blankenship Road        | No               | Routes 50 and 51                             | No                           |
| Jolie Point Road    | Willamette Drive        | Larson Avenue           | No               | Route 38                                     | No                           |
| Lancaster Street    | Summer Run Drive        | Exeter Street           | No               | No                                           | No                           |
| Larson Avenue       | Jolie Pointe Road       | Dillow Drive            | No               | Route 87                                     | No                           |
| Mapleton Drive      | Willamette Drive        | Nixon Avenue            | No               | Route 38                                     | No                           |
| Marylhurst Drive    | Hillcrest Drive (west)  | Willamette Drive        | No               | Route 22                                     | No                           |
| McKillican Street   | West A Street           | Willamette Drive        | No               | Route 42                                     | No                           |
| Nixon Avenue        | Elmran Drive            | Mapleton Drive          | No               | Route 88                                     | No                           |
| Ostman Road         | Blankenship Road        | Dollar Street           | No               | Routes 46 and 47                             | No                           |
| Parker Road         | Noble Lane              | Dillon Lane             | No               | Route 4                                      | No                           |
| Pimlico Drive       | Santa Anita Drive       | Willamette Drive        | No               | Route 12                                     | No                           |
| Rosemont Road       | Carriage Way            | Hidden Springs Road     | Yes              | Route 68                                     | Yes                          |
| Rosemont Road       | Bay Meadows Drive       | Furlong Drive           | Yes              | Route 64                                     | No                           |
| Rosemont Road       | Santa Anita Drive       | Summit Street           | No               | Route 60 and 63                              | No                           |
| Salamo Drive        | 10th Street             | Barrington Drive        | No               | Route 72                                     | No                           |
| Santa Anita Drive   | Hidden Springs Road     | Rosemont Road           | Yes              | Route 36                                     | Yes                          |
| Simpson Street      | Long Street             | Sunset Avenue           | No               | Route 31                                     | No                           |
| Skyline Drive       | Summit Street           | West A Street           | No               | Routes 9 and 10                              | No                           |
| Summit Street       | Skyline Drive           | Oxford Street           | No               | Routes 28 and 63                             | No                           |
| Suncrest Drive      | Hillcrest Drive         | Carriage Way            | No               | No                                           | No                           |
| Sunset Avenue       | Cornwall Street         | Willamette Falls Drive  | No               | Route 3                                      | No                           |
| Tannler Drive       | Blankenship Road        | Bland Circle            | No               | Route 75                                     | No                           |
| Tualatin Avenue     | 14th Street             | 12th Street             | No               | Route 52                                     | Yes                          |

Kittelson & Associates, Inc.

| Street Name            | From                   | То                   | SRTS –<br>Memo 6 | On-street Connection –<br>Trails Master Plan | SRTS – Trails<br>Master Plan |
|------------------------|------------------------|----------------------|------------------|----------------------------------------------|------------------------------|
| Willamette Drive       | I-205 southbound ramps | McLoughlin Boulevard | No               | Route 58                                     | No                           |
| Willamette Falls Drive | Dollar Street (West)   | West A Street        | No               | Route 1                                      | No                           |

The bicycle network gaps shown in Table 3 will be evaluated based on the TSP goals, targets, and evaluation criteria, and input from City staff and local citizens, to determine the highest priority projects for the financially constrained plan.

#### Shared-Use Streets

Arterials and collectors designated to include bike facilities do not fully address bicycle travel needs in and around the city. Bicycle trips can and should be accommodated on lower traffic volume streets that offer parallel or alternative routes to collectors and arterials. Many trips occur on local streets that connect to parks, schools, and retail activity centers. There is a need for designated routes that accommodate these trips. These facilities could be considered a "shared" facility or could have a specific designation such as a "bike boulevard" where treatments area applied to the roadway to enhance the bicycle environment and/or make additional connections to bicycle destinations.

There are several low volume collector roadways where shared roadway pavement markings could be used to improve access and circulation for bicyclists, including:

- Clark Street between Skyline Drive and Windsor Terrace;
- Dollar Street between the West City Limit and Willamette Falls Drive; and,
- Old River Road between the North City Limit and Willamette Drive

### **Bicycle Crossings**

Intersections can be potentially unsafe locations in the bicycle network, as there are more conflict points with right- and left-turning vehicles and cross street traffic. There are various configurations for right-turn lanes, and the desired configuration is to have the right-turn lane to the right of the bicycle lane, with right-turning vehicles yielding to through cyclists as they cross the bicycle lane. The following summarizes the intersections where there is a need for improvements to the crossing configurations for bicycle lanes approaching the intersection.

- Willamette Drive/I-205 ramp Southbound Right
- Santa Anita Drive/Hidden Springs Road

### **Bicycle Parking**

The availability of bicycle parking is an important component of a well-designed bicycle system. Lack of proper storage facilities discourages potential riders from traveling by bicycle. Bicycle racks should be located at significant activity generators including schools, parks, and commercial areas. Racks should

be placed in highly-visible locations and within convenient proximity to main building entrances. Bike racks should be designed to provide two points of contact to the bicycle (e.g., so the user can lock both the wheel and the frame to the rack). Bike lockers or other storage facilities would be helpful at locations where long-term parking is expected, such as major employment centers. The attractiveness of bike parking may also be improved by providing covered parking and/or secured facilities where bicycles may be locked away. The City currently does not require bicycle parking at commercial uses or near transit tops. However, Chapter 48.150 of the West Linn Community Development Code does include provisions for bicycle facilities and parking associated with private development, including a potential reduction in vehicle parking requirements based on the provision of bicycle parking.

### **Connectivity Analysis**

Bicyclists are a varied group of people with different skill levels, abilities, bicycling experience, and trip types. Their needs and comfort level with the City of West Linn's bicycle infrastructure vary as a result of these differences. Technical Memorandum #5 identifies the four levels of traffic stress that a bicyclist can experience on the roadway, ranging from LTS 1 (which represents little traffic stress) to LTS 4 (which represents high stress). Each LTS corresponds to a different bicyclist group, each with their own comfort levels for bicycling in the City. The City should accommodate these user types by providing adequate facilities for the majority of its users. There are multiple bicycle facility types available for the city to construct which appeal to the different user types (see Solutions section below). For instance, multi-use paths are often favored by less experienced or recreational users (LTS 1 or 2), while bike lanes on major roads tend to be used by commuters and other more experienced users (LTS 3 or 4). This analysis helps identify gaps in the bicycle network that should be prioritized in order to create a more robust network of continuous low stress facilities. The following summarizes the results of the LTS analysis for streets with LTS 3 or higher.

The results of the LTS analysis indicate that there are four street segments at LTS 3 within the City, including most of Parker Road, most of Salamo Drive, a segment of Willamette River Drive, and most of Willamette Drive. Parker Road, Salamo Drive, and Willamette Drive were identified as LTS 3 due to the 6-foot bike lane on a 35 mph roadway. In order to reduce these roadways to LTS 2 or below, the roadway speed could be reduced to 30 mph or lower, or the bike lane could be widened to 7 feet or wider. The bike lane could also be converted to a separated bike path. The segment of Willamette Falls Drive was identified as LTS 3 due to the mixed traffic conditions on a 30 mph roadway with no sharrows. In order to reduce this segment to a LTS 2 or below, the roadway speed could be reduced to 25 mph or lower, or a bike lane could be striped on the roadway.

The results of the LTS analysis also indicate that there are six street segments at LTS 4 within the City, including two segments of Rosemont Road, a segment of Parker Road, a segment of Salamo Drive, a segment of Willamette River Drive, and a segment of Willamette Drive. All of the segments with LTS 4 are mixed traffic roadways with speed limits ranging from 35 to 45 mph. In order to reduce these roadways to LTS 2 or below, the roadway speed could be lowered 5o 30 mph or lower, or a bike lane could be striped on the roadway.

# TRANSIT SYSTEM NEEDS

## Fixed-Routes

TriMet Lines 35 and 154 provide a basic level of transit service to West Linn. The locations of these routes are convenient for people with access to Willamette Drive and to Willamette Falls Drive, but are not located within a convenient walking distance (typically assumed to be up to one quarter-mile) for the majority of city residents such as those that live in Tanner Basin and neighborhoods along Rosemont Road.

Lines 35 and 154 both provide access to the Oregon City Transit Center. From the Oregon City Transit Center access is provided to six additional bus lines that provide connections to Milwaukie, southeast Portland, and downtown Portland as well as to the Clackamas Town Center and to Canby Transit. The MAX light rail system can be accessed in downtown Portland as well as at Clackamas Town Center to travel around the region including to Portland International Airport.

Line 35 also provides connections to the Lake Oswego Transit Center. From the Lake Oswego Transit Center access is provided to three additional bus lines that provide connections to downtown Portland, the Tigard Transit Center (which connects to the Beaverton to Wilsonville Commuter Rail line), and the Tualatin Park and Ride. To access the Tualatin City Center, Tualatin Transit Center, or Wilsonville, a transfer must be made at the Tualatin Park and Ride. Travel from West Linn to the Tualatin Transit Center requires either a 90 minute trip with one transfer in downtown Portland or a 70-80 minute trip with two transfers including Lake Oswego and one other location in either Beaverton or Tigard. More efficient services are needed to access major employment centers and transit centers in Tualatin and Wilsonville. In addition, many West Linn residents feel the City is not well served by public transit. With only one major trunk line and the access provided along Willamette Falls Drive, residents perceive that they are not able to easily move within or out of the City on public transit. Provision of service is hampered by topography and a lack of east-west routes.

## **Transit Stops**

Amenities at transit stops, such as bus benches and bus shelters, enhance a transit system and make it more user-friendly. Steps that can make this mode as comfortable and accommodating as possible may help encourage ridership. TriMet generally limits placement of bus shelters to locations with 35 or more weekday boardings. Ridership data was obtained from TriMet that reflects the average number of boardings and alightings that occurred at each stop in West Linn in Fall 2014. Based on a review of the data, West Linn has two stops that meet this threshold, but do not currently have shelters. These stops include:

- Stop 6319: Willamette Drive & Hidden Springs Road
- Stop 6339: Willamette Drive & McKillican Road

Due to low ridership levels at other stops, the City may need to directly fund the installation of bus benches, bus shelters and other amenities.

#### Transit Level-of-Service Analysis

The transit level-of-service analysis was performed in accordance with the methodology described in TCRP Report 100: Transit Capacity and Quality of Service Manual (TCQSM). Of the six available measures, three were selected for this analysis as being most relevant to a long-range planning effort, including service frequency, hours of service, and service coverage. Table 4 summarizes the TCQSM measures used and the ranges of values used to determine the LOS result for each measure.

Table 4: Transit Capacity and Quality of Service Manual - Level of Service (LOS) Measures

|                  | Transit Capacity and Quality of Service Measures |                  |                  |  |  |  |  |  |
|------------------|--------------------------------------------------|------------------|------------------|--|--|--|--|--|
| Level of Service | Service Frequency (minutes)                      | Hours of Service | Service Coverage |  |  |  |  |  |
| LOS A            | <10                                              | 19-24            | 90.0-100.0%      |  |  |  |  |  |
| LOS B            | 10-14                                            | 17-18            | 80.0-89.9%       |  |  |  |  |  |
| LOS C            | 15-20                                            | 14-16            | 70.0-79.9%       |  |  |  |  |  |
| LOS D            | 21-30                                            | 12-13            | 60.0-69.9%       |  |  |  |  |  |
| LOS E            | 31-60                                            | 4-11             | 50.0-59.9%       |  |  |  |  |  |
| LOS F            | >60                                              | 0-3              | <50.0%           |  |  |  |  |  |

It is important to note that high LOS values, such as LOS A or B, may not reflect optimal service from the transit agency's perspective, because the market may not support those service levels. The development of agency service standards helps to bridge the gap between the kind of service passengers would ideally want and the kind of service that is reasonable to provide, given available resources.

#### Service Frequency

From the user's perspective, service frequency determines how many times an hour a user has access to transit service, assuming that service is provided within acceptable walking distance and at the times the user wishes to travel. Service frequency also measures the convenience of transit service to choice riders and is one component of overall transit trip time. Table 5 summarizes the transit level-of-service analysis results for service frequency.

| Provider | Routes   | Peak/Off-Peak | Service Frequency | LOS |
|----------|----------|---------------|-------------------|-----|
| TriMet   | Line 35  | Peak          | 20-30 minutes     | C-D |
| Triviet  | Line 154 | Peak          | 70 minutes        | F   |

As shown, Line 35 currently operates at LOS C-D, while Line 154 operations at LOS F. At LOS C, service frequencies provide a reasonable choice of travel times, but the wait involved if a bus is missed becomes long. At LOS D, service is only available about twice per hour and requires passengers to adjust their routines to fit the transit service provided. At LOS F, service is provided frequencies greater than 1 hour, which entails creative planning or considerable wasted time on the part of passengers.

#### Hours of Service

Hours of service, also known as "service span," is the number of hours during the day when transit service is provided along a route, a segment of a route, or between two locations. It plays an important a role in determining the availability of transit service to potential users. If transit service is not provided at the time of day a potential passenger needs to take a trip, it does not matter where or how often transit service is provided the rest of the day. Table 6 summarizes the transit level-of-service analysis results for hours of service.

#### Table 6: Hours of Service Level-of-Service Analysis

| Provider | Routes                | Hours of Service | LOS |
|----------|-----------------------|------------------|-----|
| TriMet   | Line 35 <sup>1</sup>  | 19 hours         | А   |
| TriMet   | Line 154 <sup>2</sup> | 12 hours         | D   |

As shown, Line 35 currently operates at LOS A, while Lone 154 operates at LOS D. At LOS A service is available for most or all of the day. Workers who do not work traditional 8-to-5 jobs receive service and all riders are assured that they will not be stranded until the next morning if a late-evening bus is missed. At LOS D, service meets the needs of commuters who do not have to stay late and still provides service during the middle of the day for others.

### Service Coverage

Service Coverage is a measure of the area within walking distance of transit service. Areas must be within 1/4-mile of a bus stop or 1/2 mile of a transit station to be considered an area served by transit. As with the other availability measures, service coverage does not provide a complete picture of transit availability by itself, but when combined with frequency and hours of service, it helps identify the number of opportunities people have to access transit from different locations. Service coverage LOS evaluates the percentage of transit-supportive areas—areas that would typically produce the majority of a system's ridership—that are served by transit.

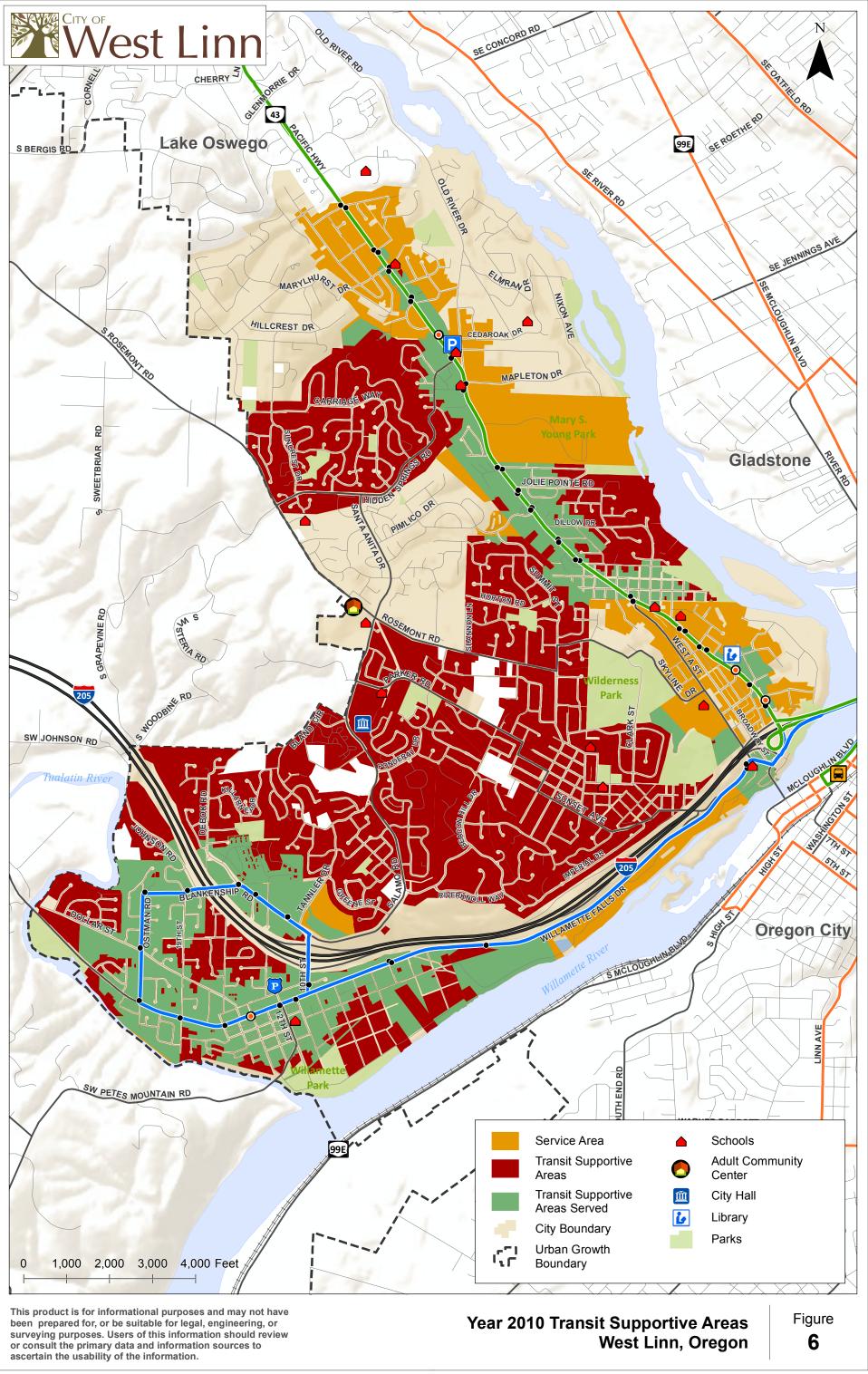
To qualify as a transit-supportive area (TSA) one of the following thresholds must be met:

- Minimum population density of 3 households/gross acre; or
- Minimum job density of 4 employees/gross acre.

Service coverage is an all-or-nothing issue for transit riders—either service is available for a particular trip or it is not. As a result, there is no direct correlation between service coverage LOS and what a passenger would experience for a given trip. Rather, service coverage LOS reflects the number of potential trip origins and destinations available to potential passengers.

Figure 6 displays the transit level-of-service analysis results for service coverage based on population and employment estimates by Transportation Analysis Zone (TAZ) in the Metro 2010 travel demand model. Areas defined as transit supportive that have service are shown in green. Areas defined as transit supportive that are lacking service are shown in red. Areas that have transit service, but do not qualify as a TSA, are shown in orange. A majority of the areas shown in red would require additional transit routes or the development of new pathway connections to existing transit routes in order to be served.

The percentage of TSA's served in West Linn and the corresponding level of service has been identified using the Transit Level of Service (TLOS) methodology. As shown in Table 7, the percent of transit supportive areas served is less than 50 percent in terms of both households and employment areas. The corresponding LOS is F.


| Area Type                                | Acres | Population | Households | Employment |
|------------------------------------------|-------|------------|------------|------------|
| Transit Supportive Area (TSA)            | 2,169 | 18,663     | 7,628      | 3,800      |
| Transit Supportive Areas Served          | 643   | 3,995      | 1,628      | 3,171      |
| Percent TSA Served by Transit            | 30%   | 21%        | 21%        | 83%        |
| Level of Service                         | LOS F | LOS F      | LOS F      | LOS B      |
| Transit Supportive Areas without service | 1,526 | 14,668     | 6,000      | 629        |

#### Table 7: Service Coverage Analysis

As shown in Table 7, approximately 6,000 households and 629 jobs are located within areas that do not have transit service. These areas currently have a household and/or employment density that can support transit service and therefore should be included in future efforts to improve service routes and stop locations. TriMet's Southwest region Service Enhancement Plan includes changes to Line 154 to include service along Salamo Road and Hidden Springs Road.

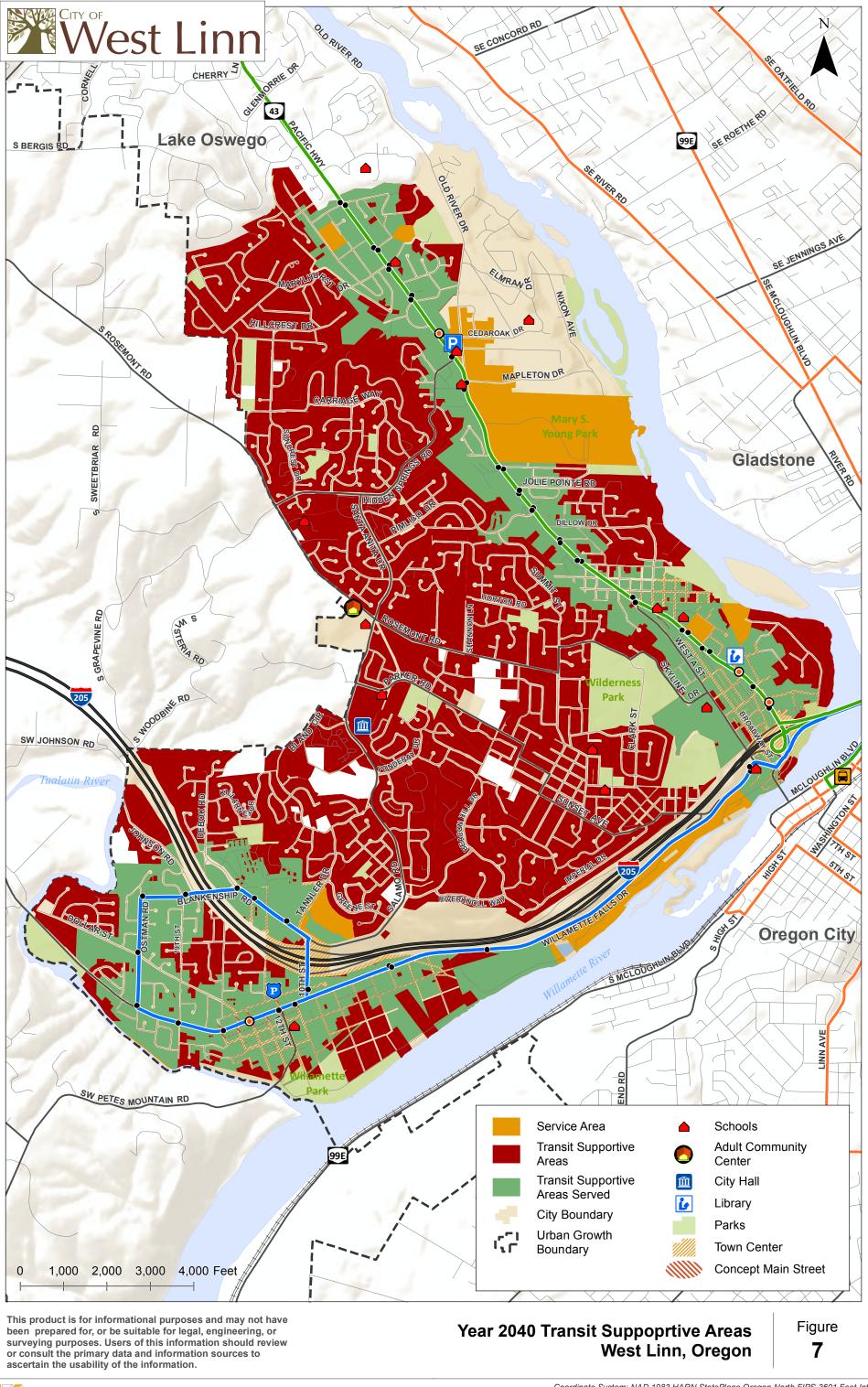
### Future Transit Service Coverage

The future transit level-of-service analysis assumes that existing service and service coverage is the same in the future. The only difference is the population and employment growth assumptions included in the 2040 regional traffic model and the resulting transit supportive areas. Figure 7 displays the transit level-of-service analysis results for service coverage. As shown, one additional transit supportive area (located north of Hidden Springs Road) is anticipated in the future. Additional service routes are needed in order to provide service to this area.



KITTELSON & ASSOCIATES, INC.

1:04 PM 2/26


ville -

Plan\gis\Task\_03\6 Transit\_TSA.mxd -

West Linn

\projfile\17817 -

Coordinate System: NAD 1983 HARN StatePlane Oregon North FIPS 3601 Feet Intl Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: Esri, USGS, NOAA



1:05 PM 2/26

ville

Plan\gis\Task\_03\7 Transit\_FTSA.mxd -

West Linn

\projfile\17817 -

KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING Coordinate System: NAD 1983 HARN StatePlane Oregon North FIPS 3601 Feet Intl Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: Esri, USGS, NOAA As noted above, TriMet's Southwest region Service Enhancement Plan includes changes to Line 154 to include service along Salamo Road and Hidden Springs Road. This change is proposed to eliminate Line 154's connection to the Oregon City Transit Center. Passengers on Line 154 would need to transfer to Line 35 on Willamette Drive to travel south to the Oregon City Transit Center or north to the Lake Oswego Transit Center.

## Transit Investment Priorities

The Transit Investment Priorities (TIP) process guides TriMet's investments in bus and rail service. TriMet develops the TIP with input from riders, jurisdictional and community partners, and the general public. The TIP addresses short-term issues as well as the region's long-term transportation and livability goals. The TIP process helps local governments to look for ways to get the most out of TriMet's investments in transit service with their own investments in such things as sidewalks and safe street crossings, and supports their visions for the future. It also shares TriMet's planning process and future plans so that local governments can know how to take advantage of the current and future service they provide. The priorities identified in TriMet's TIP for Fiscal Year 2015 include:

- Making transit better for riders by improving current service, improving the quality of the rider experience through technology information and amenities, enhancing safety, ensuring riders' security, and improving and expanding existing services.
- Planning for the future of transit through service enhancement plans, making new community connections, improving access to transit stops, making fares affordable, and building partners for priorities identified in the region's High Capacity Transit Plan.

The Service Enhancement Plans for the Southwest region include potential changes in the fixed-route services to West Linn, including:

- New Frequent Service between Downtown Portland, Southwest Portland, Lake Oswego, West Linn, and Oregon City on Line 35-Macadam.
- Change Line 154-Willamette route to serve Salamo Road connecting the Willamette Town Center with the West Linn City Hall and the Lake Oswego Transit Center. Serve weekday peak hours only.

The potential change in service to Line 154 would improve service to the Willamette, Savanna Oak, Parker Crest, Rosemont Summit, and Hidden Springs neighborhood in West Linn as well as several essential destinations, including City Hall, the Adult Community Center, and the retail/commercial center located in the southwest corner of the Salamo Road/Parker Road intersection but would require a transfer to Line 35 to get to Oregon City. According to the hierarchy, local service expansion routes in West Linn receive the lowest priority for regional transit funds. However, local transit needs could be met through alternatives to fixed route expansion such as local shuttle services, vanpools, or the phasing of local service capital projects within the West Linn service area in partnership with TriMet.

## Regional High Capacity Transit

High capacity transit is characterized by exclusive right-of-way and routes with fewer transit stops. In July 2009, Metro adopted the Regional High Capacity Transit (HCT) System Plan. The HCT Plan identifies corridors where new HCT is desired over the next 30 years and prioritizes corridors for implementation, based on a set of evaluation criteria consistent with the goals of the RTP and 2040 Concept. The location of any final HCT corridor is decided through a corridor refinement plan and/or alternatives analysis, and through a series of local and regional actions described in the plan.

The HCT plan identifies one Next Phase Regional Priority Corridor along the segment of I-205 that travels through West Linn. HCT Corridor 28 will provide service between the Clackamas Town Center, the Oregon City Transit Center, and Washington Square via I-205 and Highway 217. Other HCT Corridors within the area include two Next Phase Regional Priority Corridors in Oregon City. HCT Corridor 8 will provide service between the Clackamas Town Center and the Oregon City Transit Center via I-205 and HCT Corridor 9 will provide service between Park Avenue and the Oregon City Transit Center via McLoughlin Boulevard (OR 99E). Next Phase Regional Priority Corridors are corridors where future HCT investment may be viable if recommended planning and policy actions are implemented. The City of West Linn should work with TriMet to ensure that local transit service continues to provide access to the Oregon City Transit Center and other transit centers where HCT routes are planned.

## Transportation Disadvantaged

The primary transportation disadvantaged populations in West Linn are those too old or too young to drive. Therefore, access to schools and other essential destinations should be prioritized to serve these populations. As the population continues to age, the needs of the elderly and disabled are expected to increase.

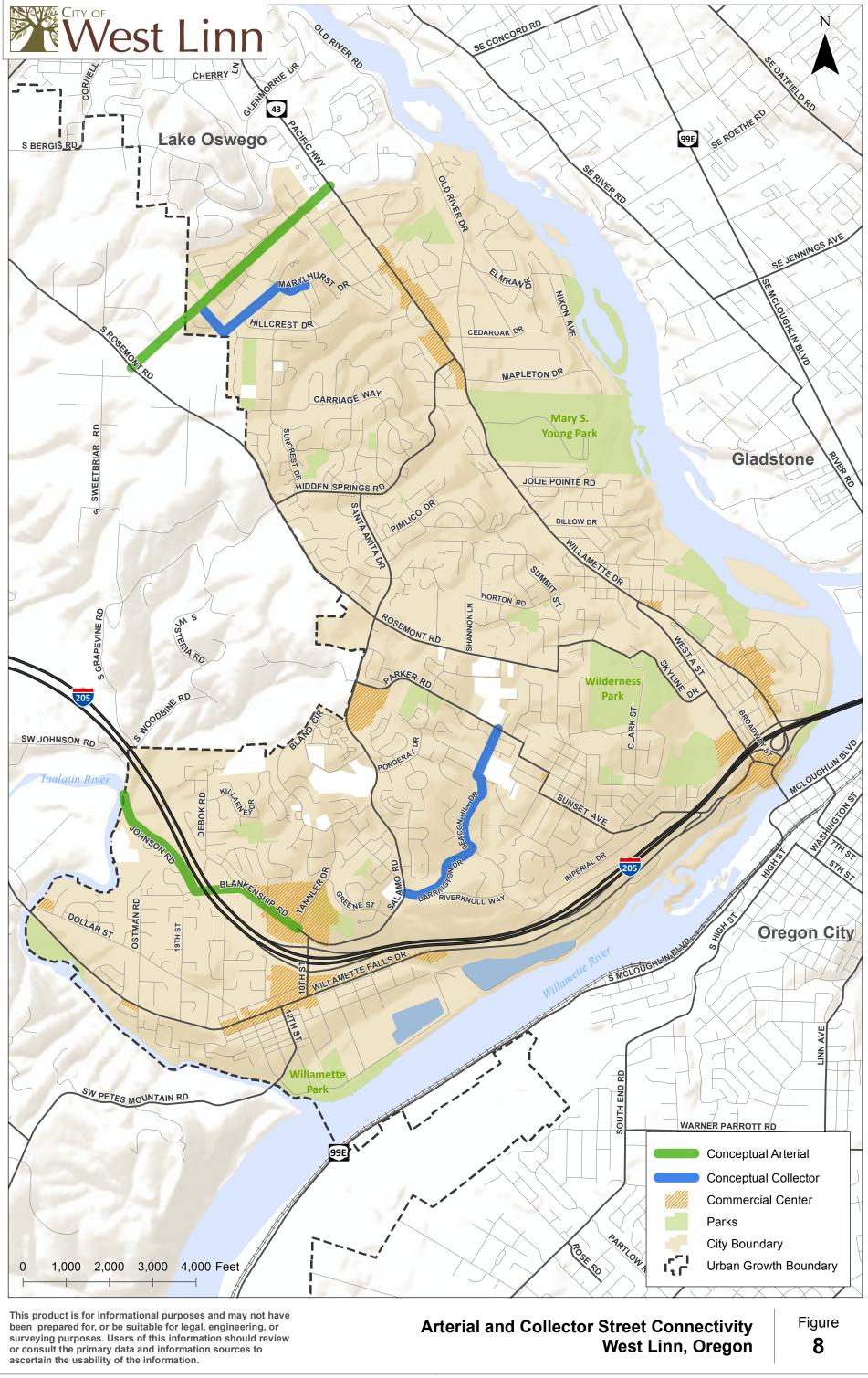
The Mary's Wood Shuttle serves the residents of the Mary's Woods at Marylhurst, a senior community to the north of West Linn. It is operated by Mary's Woods at Marylhurst in partnership with TriMet Ride Connection and consists of two lines- the Green Line to Oregon City and the Blue Line to Lake Oswego. The Green Line travels through West Linn along Willamette Drive between Mary's Woods and Oregon City, though there are no official stops aside from the occasional drop-off at key locations like supermarkets. TriMet Ride Connection may consider rerouting the service route to serve the residents of the Adult Community Center in West Linn at the intersection of Santa Anita Drive and Rosemont Road. The City of West Linn should continue to support the Clackamas County Transportation Consortium services to the elderly and ADA-eligible residents, and other services currently being provided. Also, because needs are expected to increase, West Linn should work with existing providers to assess the needs and develop ways to best meet them.

Some inexpensive ways in which the city of West Linn can assist in promoting the services currently offered to the elderly and disabled are to post notices on their public bulletin boards, and to use meetings with the public to make notices and fliers available.

# MOTOR VEHICLE SYSTEM NEEDS

## System Connectivity

A well-connected motor vehicle system minimizes the need for out-of-direction travel while supporting an efficient distribution of travel demand among multiple parallel roadways. The most common example of an efficient transportation network is the traditional grid system, with north-south and east-west streets spaced at generally equal distances. While most of West Linn does not have a traditional grid system, there are a number of north-south and east-west streets that provide connectivity on a regional level as well as access within West Linn. The following sections highlight the needs associated with street system connectivity within West Linn.


### Arterial Street Connectivity

Arterial streets within West Linn consist of major arterials and minor arterials. While there are several minor arterials located throughout the City, Willamette Drive is the only major arterial. Based on the RTP, arterials are intended to provide general mobility for travel within the region as well as connect major commercial, residential, industrial, and institutional centers. Arterials are usually spaced about 1-mile apart and are designed to accommodate motor vehicle and truck traffic as well as pedestrians, bicyclists, and transit riders. Figure 8 illustrates the needs associated with the arterials street system within West Linn.

As shown in Figure 8, few of the arterials streets meet the RTP's arterial spacing guidelines. Also, there appears to be the need for an additional arterial that connects Rosemont Road to Willamette Drive approximately 1-mile north of Hidden Springs Road and an additional arterial that connects West Linn to rural Clackamas County approximately 1-mile west of Rosemont Road – this potential arterial could follow existing segments of Blankenship Road and Johnson Road as shown in Figure 8. The other potential arterial, however, would have significant right-of-way and development costs as well as impacts to existing developments and the natural environment. Given the significant constraints associated with this connection, the TSP update should focus on opportunities to improve local street connectivity as well as maximize and improve the pedestrian, bicycle, and public transportation systems along existing arterials as described below.

## Collector Street Connectivity

The RTP identifies collector streets as general access streets for neighborhood circulation and as support streets for the regional transportation network. Connectivity at this level is especially important for pedestrian and bicycle trips. The RTP recommends a maximum spacing of 1/2 mile for collectors in order to encourage local traffic to use them instead of higher order facilities. Figure 8 illustrates the existing deficiencies in the collector street system.

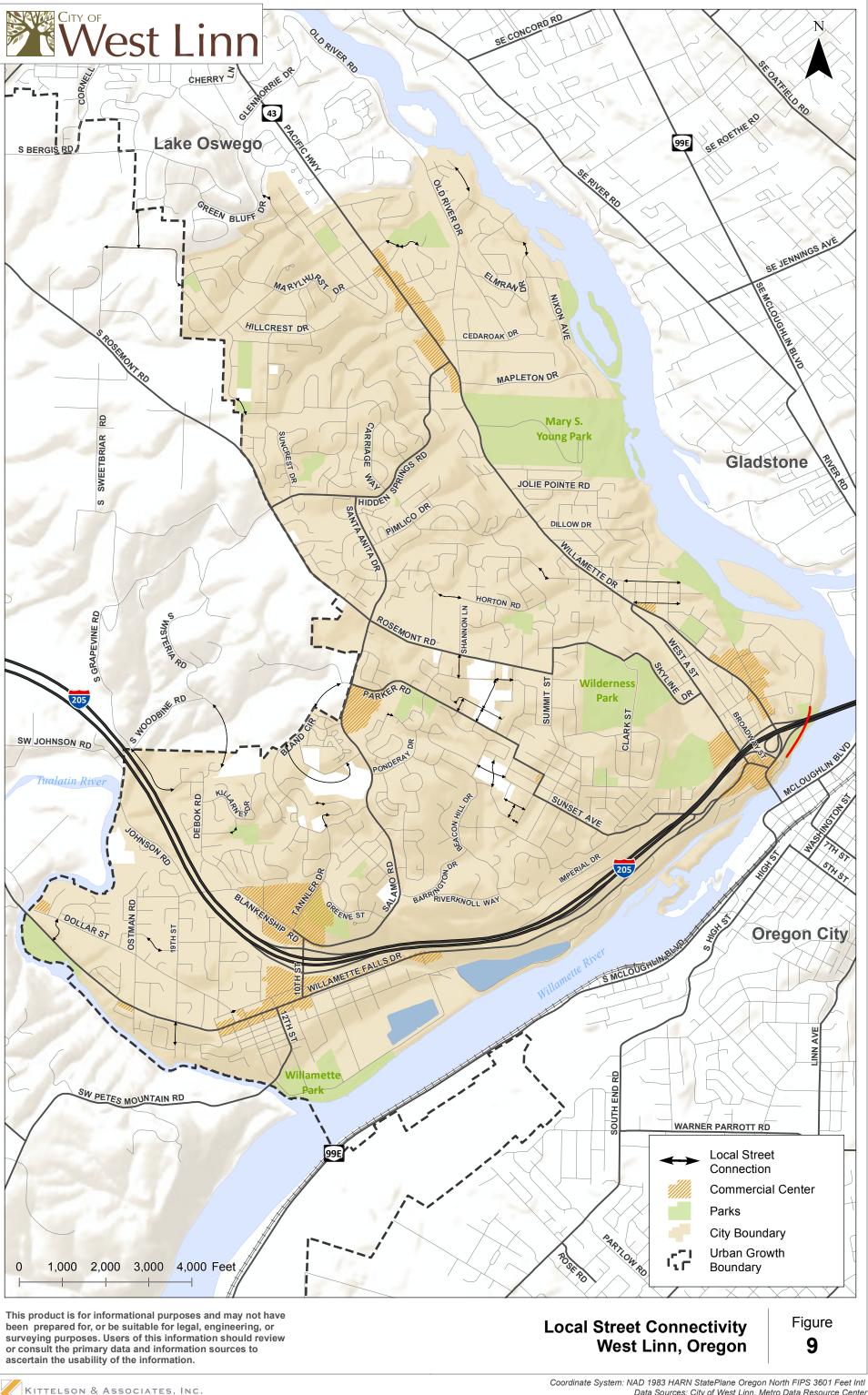




As shown in Figure 8, few of the collector streets meet the RTP's collector spacing guidelines. Also, there appears to be the need for an additional collector that extends north from Marylhurst Drive to the new arterial connection described above – this potential connection could follow existing segments of Marylhurst Drive – and one that connects Salamo Road to Parker Road – this potential connection could follow existing segments of Barrington Drive, Beacon Hill Drive, and Beacon Hill Court. Each of these potential connections would enhance the north-south and east-west connectivity within the city and reduce reliance on the arterial street system.

### Local Street Connectivity

The City of West Linn's many cul-de-sacs, steep topography, and major facilities such as Willamette Drive and I-205 limit intercity connectivity. Therefore, many intercity trips are forced to travel along the few through streets that do connect across these barriers. By providing connectivity between neighborhoods, out-of-direction travel and vehicle miles traveled (VMT) can be reduced, accessibility between various travel modes can be enhanced and traffic levels can be balanced among various streets. Additionally, public safety response time can be reduced.


Some of the congestion on roads such as Rosemont Road, Salamo Road, and Hidden Springs Road could be improved through improved local street connectivity. Improved connectivity in the area east of Willamette Drive and in the Tanner Basin area can provide circulation to existing or future traffic signals that will result in less delay and better safety for access to the highway. Several short roadway connections will be needed within neighborhood areas to connect disjointed local streets and to reduce out-of-direction travel for vehicles, pedestrians and bicyclists.

The local street connectivity needs are shown in Figure 9. In most cases, the improvements would involve the changing of a streets functional classification from local street to neighborhood route. In limited cases, a short length of new road would be necessary for improved connectivity. The arrows on Figure 9 represent recommended connections and the general direction for the placement of the connection in existing configurations. In each case, the specific alignments and design may be modified dependent upon future development review.

The criteria for providing local connections are based on the Metro RTP requirements for new residential or mixed-use developments.

- Every 330 feet, a grid for pedestrians and bicycles (may include paved roadway or trails)
- Every 530 feet, a grid for automobiles (local street or higher classification)

The arrows shown on Figure 9 indicate local and neighborhood connections only, some of which are currently underway. Local connections for existing stub end streets, cul-de-sacs, or extended cul-de-sacs in the road network are, for the most part, not identified on this figure. Pedestrian connections from any cul-de-sac should be considered mandatory as future development and redevelopment occurs. The goal is to continue to improve connectivity for all modes of transportation.



Data Sources: City of West Linn, Metro Data Resource Center Terrain Sources: USGS, ESRI, TANA, AND As new development occurs, the opportunities identified in Figure 9 should be considered to create a more efficient network consistent with the RTP guidelines. It should be noted that the primary constraint associated with each of the opportunities shown in Figure 9 is that they are located on private property and will likely only occur as part of new development.

### Intersection Performance and Capacity Needs

The intersection performance and capacity needs described below are based on the analysis prepared as part of the 2008 TSP update. This section identifies study area intersection deficiencies resulting from increases in vehicle volumes as forecasted by the 2040 financially constrained Metro RTP model for the 2040 base case scenario.

#### Intersection Capacity Analysis

The traffic operations analysis prepared as part of the previous TSP update found that many of the study intersections did not meet or were not expected to meet their respective mobility standards under existing (2015) and/or future (2040) traffic conditions. Based on the analysis, motorists are expected to experience high levels of congestion and delay at these intersections without additional improvements to the existing transportation system. The results of the analysis are summarized in Table 8.

### Traffic Signal Warrants

Traffic signal warrants were conducted as part of the 2008 TSP update for the unsignalized study intersections that were not expected to meet operational standards in the 2040 base case. The intersections that were found to meet the traffic volume warrant for signalization under existing (2015) and base case (2040) are listed in Table 9.

On arterial streets, signals should generally be spaced at least 1,000 feet apart for efficient operation, but signalizing some of the intersections that meet signal warrant would result in shorter spacing. A detailed traffic engineering evaluation must be conducted to evaluate site conditions, signal spacing, and all warrants before the installation of any traffic signal. ODOT signal design and signal phasing guidelines should be followed for all new traffic signal installations. ODOT typically requires an 8-hour warrant to be met. ODOT also requires other improvements, such as channelization to be considered prior to installing a signal.

### Table 8: Weekday PM Peak Hour Intersection Level of Service

|           |                                                 | Existing (2015) <sup>1</sup> |                        | 5) <sup>1</sup>           | Future Base Case (2040) <sup>1</sup> |                        |                           | Mobility Standard |          |                  |
|-----------|-------------------------------------------------|------------------------------|------------------------|---------------------------|--------------------------------------|------------------------|---------------------------|-------------------|----------|------------------|
| Map<br>ID | Intersection                                    | LOS                          | Average<br>Delay (Sec) | Volume/<br>Capacity (v/c) | LOS                                  | Average<br>Delay (Sec) | Volume/<br>Capacity (v/c) | Agency            | Minimum  | Standard<br>Met? |
|           |                                                 |                              |                        | Signalized Inters         | ections                              |                        |                           |                   |          |                  |
| 2         | Highway 43/Marylhurst Drive-Lazy River Drive    | В                            | 16.3                   | 0.8                       | С                                    | 26.7                   | 0.94                      | ODOT              | v/c 0.99 | Yes              |
| 4         | Highway 43/Cedaroak Drive                       | В                            | 10.4                   | 0.65                      | В                                    | 18.3                   | 0.82                      | ODOT              | v/c 0.99 | Yes              |
| 5         | Highway 43/Hidden Springs Road                  | С                            | 25                     | 0.83                      | D                                    | 42.8                   | 1                         | ODOT              | v/c 0.99 | No               |
| 8         | Highway 43/West A Street                        | В                            | 12.5                   | 0.74                      | С                                    | 31.1                   | 0.97                      | ODOT              | v/c 1.1  | Yes              |
| 12        | Highway 43/Hood Street-McKillican Street        | С                            | 23.6                   | 0.76                      | E                                    | 62.7                   | 1.07                      | ODOT              | v/c 1.1  | Yes              |
| 13        | Highway 43/I-205 SB Ramp                        | С                            | 26.5                   | 0.85                      | E                                    | 69.1                   | >1.0                      | ODOT              | v/c 0.85 | No               |
| 14        | Highway 43/I-205 NB Ramp                        | А                            | 8                      | 0.3                       | В                                    | 10.2                   | 0.41                      | ODOT              | v/c 0.85 | Yes              |
| 19        | Salamo Road/Rosemont Road <sup>2</sup>          |                              |                        |                           |                                      |                        |                           |                   | LOS D    |                  |
| 25        | 10 <sup>th</sup> Street/Blankenship-Salamo Road | В                            | 18.2                   | 0.53                      | CF                                   | 21.50                  | 0.59                      | ODOT              | v/c 0.85 | Yes              |
| 26        | 10 <sup>th</sup> Street/I-205 SB Ramp           | С                            | 30.9                   | 0.53                      | D                                    | 36.3                   | 0.65                      | ODOT              | v/c 0.85 | Yes              |
| 27        | 10 <sup>th</sup> Street/I-205 NB Ramp           | В                            | 13.6                   | 0.53                      | В                                    | 18.6                   | 0.63                      | ODOT              | v/c 0.85 | Yes              |
|           |                                                 |                              | All-M                  | Vay Stop Controlled       | d Intersections                      | 5                      | <b>!</b>                  |                   | <u>I</u> |                  |
| 20        | Rosemont Road/Summit Street                     | Α                            | 9.2                    | 0.37                      | В                                    | 12.2                   | 0.57                      | City              | LOS D    | Yes              |
| 21        | Sunset Avenue/Cornwall Street                   | А                            | 7.6                    | 0.15                      | А                                    | 7.8                    | 0.16                      | City              | LOS D    | Yes              |
| 29        | Willamette Falls Drive/10 <sup>th</sup> Street  | D                            | 29.7                   | 0.84                      | F                                    | >80.0                  | >1.0                      | City              | LOS D    | No               |
|           |                                                 |                              | 1                      | Unsignalized Inter        | rsections                            |                        |                           |                   |          |                  |
| 1         | Highway 43/Arbor Drive                          | B/F                          | >50.0                  | 0.03/0.37                 | B/F                                  | >50.0                  | 0.04/>1.0                 | ODOT              | v/c 0.99 | No               |
| 3         | Highway 43/Walling Way                          | B/E                          | 42.2                   | 0.04/0.21                 | B/F                                  | >50.0                  | 0.00/0.92                 | ODOT              | v/c 0.99 | Yes              |
| 6         | Highway 43/Jolie Pointe Road                    | A/E                          | 47.3                   | 0.03/0.22                 | B/F                                  | >50.0                  | 0.12/>1.0                 | ODOT              | v/c 0.99 | No               |
| 7         | Highway 43/Pimlico Drive                        | B/F                          | >50.0                  | 0.16/>1.0                 | C/F                                  | >50.0                  | 0.37/>1.0                 | ODOT              | v/c 0.99 | No               |
| 9         | Highway 43/Holmes Street                        | B/F                          | >50.0                  | 0.02/0.65                 | B/F                                  | >50.0                  | 0.03/>1.0                 | ODOT              | v/c 0.99 | No               |
| 10        | Highway 43/Lewis Street                         | B/E                          | 40                     | 0.01/0.15                 | B/F                                  | >50.0                  | 0.01/0.54                 | ODOT              | v/c 0.99 | Yes              |
| 11        | Highway 43/Burns Street                         | B/F                          | >50.0                  | 0.23/>1.0                 | D/F                                  | >50.0                  | 0.49/>1.0                 | ODOT              | v/c 1.1  | No               |
| 15        | Highway 43/Willamette Falls Drive               | A/F                          | >50.0                  | 0.21/>1.0                 | D/F                                  | >50.0                  | 0.77/>1.0                 | ODOT              | v/c 0.99 | No               |
| 16        | Willamette Falls Drive/Sunset Avenue            | A/B                          | 13.6                   | 0.29/0.31                 | A/E                                  | 47.6                   | 0.67/0.74                 | City              | LOS D    | No               |
| 17        | Rosemont Road/Carriage Way                      | A/C                          | 21.9                   | 0.09/0.21                 | A/F                                  | >50.0                  | 0.12/0.51                 | City              | LOS D    | No               |
| 18        | Rosemont Road/Hidden Springs Road               | A/C                          | 18.6                   | 0.10/0.14                 | B/F                                  | >50.0                  | 0.07/>1.0                 | City              | LOS D    | No               |
| 22        | Salamo Road/Bland Circle                        | A/B                          | 38.3                   | 0.00/0.09                 | A/D                                  | 34.6                   | 0.02/0.60                 | City              | LOS D    | Yes              |

| 23 | Salamo Road/Barrington Drive                   | A/C | 15.8  | 0.04/0.20 | A/C | 21.8  | 0.05/0.93 | City | LOS D    | Yes |
|----|------------------------------------------------|-----|-------|-----------|-----|-------|-----------|------|----------|-----|
| 35 | Salamo Road/Parker Road                        | A/C | 17.0  | 0.05/0.13 | A/F | >50.0 | 0.13/0.79 | City | LOS D    | No  |
| 24 | Blankenship Road/Tannler Drive                 | A/F | >50.0 | 0.13/0.52 | B/F | >50.0 | 0.19/>1.0 | City | LOS D    | No  |
| 28 | 10 <sup>th</sup> Street/8 <sup>th</sup> Avenue | A/F | >50.0 | 0.13/>1.0 | B/F | >50.0 | 0.18/>1.0 | ODOT | v/c 0.99 | No  |
| 30 | Willamette Falls Drive/12 <sup>th</sup> Street | A/C | 22.7  | 0.17/0.23 | B/F | >50.0 | 0.44/>1.0 | City | LOS D    | No  |
| 31 | Willamette Falls Drive/Dollar Street (East)    | A/C | 20.6  | 0.01/0.21 | A/F | >50.0 | 0.15/0.74 | City | LOS D    | No  |
| 32 | Willamette Falls Drive/19 <sup>th</sup> Street | A/B | 13.0  | 0.01/0.04 | A/C | 17.6  | 0.01/0.06 | City | LOS D    | Yes |
| 33 | Willamette Falls Drive/Ostman Road             | A/C | 23.6  | 0.03/0.06 | B/F | >50.0 | 0.01/0.23 | City | LOS D    | No  |
| 34 | Willamette Falls Drive/Dollar Street (West)    | A/B | 12.1  | 0.03/0.07 | A/F | >50.0 | 0.13/0.71 | City | LOS D    | No  |

1. As described in the existing conditions memo, traffic volumes within West Linn are generally lower today than they were in 2006 and are projected to be lower in 2040 than they were projected to be 2030. Therefore, use of the existing and projected future traffic volumes from the 2008 TSP to evaluate existing (2015) and future (2040) traffic conditions is a conservative.

2. A traffic signal was recently installed at the Salamo Road/Rosemont Road intersection, and therefore the intersection operations from the 2008 TSP are no longer current.

Notes:

LOS = Level of Service

Delay = Average vehicle delay in the peak hour for entire intersection in seconds.

MOE = Measure of Effectiveness

#### **Table 9: Signal Warrant Analysis Results**

| Intersection                                         | Warrant Met for Existing (2015) <sup>1</sup> ? | Warrant Met for Future Base Case (2040) <sup>2</sup> ? |
|------------------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| Willamette Drive/Arbor Drive                         | No                                             | No                                                     |
| Willamette Drive/Jolie Pointe Road                   | No                                             | No                                                     |
| Willamette Drive/Pimlico Drive                       | No                                             | Yes                                                    |
| Willamette Drive/Holmes Street                       | No                                             | No                                                     |
| Willamette Drive/Burns Street                        | Yes                                            | Yes                                                    |
| Willamette Drive/Willamette Falls Drive              | Yes                                            | Yes                                                    |
| Willamette Falls Drive/Sunset Avenue/Chestnut Street | No                                             | Yes                                                    |
| Rosemont Road/Carriage Way                           | No                                             | No                                                     |
| Rosemont Road/Hidden Springs Road                    | No                                             | Yes                                                    |
| 10 <sup>th</sup> Street/8 <sup>th</sup> Avenue-Court | No                                             | Yes                                                    |
| Willamette Falls Drive / 10 <sup>th</sup> Street     | Yes                                            | Yes                                                    |
| Salamo Road/Parker Road                              | No                                             | No                                                     |
| Blankenship Road/Tannler Drive                       | No                                             | Yes                                                    |
| Willamette Falls Drive/12 <sup>th</sup> Street       | No                                             | Yes                                                    |
| Willamette Falls Drive/Dollar Street East            | No                                             | No                                                     |
| Willamette Falls Drive/Ostman Road                   | No                                             | No                                                     |
| Willamette Falls Drive/Dollar Street West            | No                                             | No                                                     |


1. As described in the existing conditions memo, traffic volumes within West Linn are generally lower today than they were in 2006 and are projected to be lower in 2040 than they were projected to be 2030. Therefore, use of the existing and projected future traffic volumes from the 2008 TSP to evaluate existing (2015) and future (2040) traffic conditions is a conservative.

### Highway 43

As described throughout this memorandum, Highway 43 has a number of transportation-related issues, including a general lack of pedestrian, bicycle, and transit facilities and several intersections and roadway segments that currently operate at or below their respective operating standards. The Highway 43 Conceptual Design Plan, developed by the City of West Linn in coordination with ODOT as part of the 200 TSP update, identifies the needs, deficiencies, and solutions for the portion of Highway 43 between the north City limits and McMillican Street that are assumed for the TSP update, such as pedestrian crossings, street trees, landscaping, transit stops, and lighting to better support the needs of all roadway users as well as adjacent land uses.

### Safety

The analysis in the Tech Memo 5: Existing Conditions revealed that there are currently no major safety issues at any of the intersections studied for this TSP. Figure 10 shows the locations of the crashes in West Linn over a five-year period from 2009 to 2013. ODOT uses the safety priority index system (SPIS) to prioritize safety improvements based on crash frequency and severity on state facilities. A potential southbound climbing lane for trucks traveling on I-205 out of West Linn is the only location in West Linn identified in the Top 5% Report. No locations along Willamette Drive were listed.



n\gis\Task\_03\10 Crash Locations Plar West Linn 17817

PM 1:01

ville -

KITTELSON & ASSOCIATES, INC.

Data Sources: City of West Linn, Metro Data Resource Center, ODOT Terrain Sources: Esri, USGS, NOAA There were a total of 19 crashes involving pedestrians and/or bicyclists over the five year period, 5 involved pedestrians and 14 involved bicyclists. One resulted in a fatal crash. The pedestrian and bicycle crash locations are denoted with pedestrian and bicycle symbols in Figure 10.

- Six of the 19 crashes occurred along Willamette Drive
- One of the 19 crashes occurred at a I-205 ramp
- Five of the 19 crashes occurred along Willamette Falls Drive
- Seven of the 19 crashes occurred at various other intersections in the City

There were a total of three fatal crashes that occurred over the five year period. Two occurred along Willamette Drive and one occurred along I-205. The fatal crash locations are denoted in red in Figure 10.

- One occurred at the intersection of Willamette Drive and Pimlico Drive and involved a bicyclist.
- One occurred as a vehicle hit a pole along Willamette Drive just south of the entrance to Mary S. Young Park, and was alcohol-related.
- One occurred as a vehicle hit the median along I-205 while speeding and changing lanes, and was alcohol-related.

While the last two fatal crashes were alcohol-related and more challenging to propose infrastructure safety improvements, the crash that occurred at Pimlico Drive and involved the bicyclist may warrant additional investigation. The vehicle approached the intersection eastbound on Pimlico Drive and it is possible that a combination of vertical and horizontal curves provided insufficient sight distance for the vehicle to slow down enough before seeing the bicyclist along Willamette Drive. There may also be consideration for placing sidewalks at this intersection. There is currently no sidewalk on any leg of the three-legged intersection and with bus stops on both sides of Willamette Drive, this location could benefit from improved pedestrian facilities.

Critical crash rates (CCRs) were calculated for each of the study intersections following the analysis methodology presented in ODOT's *SPR 667 Assessment of Statewide Intersection Safety Performance*. SPR 667 provided average crash rates at a variety of intersection configurations in Oregon based on the number of approaches and traffic control types. The average crash rate represents the approximate number of crashes that are "expected" at a study intersection. Additionally, this average crash rate was used to calculate the critical crash rate for each study intersection, based on the *Highway Safety Manual* methodology. The critical crash rate is calculated for each intersection based on the average crash rate for each facility and serves as a threshold for further analysis.

Table 10 summarizes the critical crash rate for each intersection and compares those values to the observed crash rate. Per ODOT, if the observed crash rate at the study location exceeds the critical rate, it is a possible indication that the location is exceeding average crash rates. The data used by ODOT in establishing the critical crash rates excluded interstate highway on-ramps and off-ramps, as well as

local streets, and as such the critical crash rates were not calculated for six of the safety study intersections.

#### Table 10: Critical Crash Rates

|                                                |                              |       | Critical Crash Rate |           |                        |                               |  |
|------------------------------------------------|------------------------------|-------|---------------------|-----------|------------------------|-------------------------------|--|
| Location                                       | Total PM Peak<br>Crashes TEV |       | By Intersection     | By Volume | Observed<br>Crash Rate | Observed Crash<br>Rate > CCR? |  |
| Willamette Drive/Cedar Oak Drive               | 4                            | 1,955 | 0.43                | 0.44      | 0.11                   | No                            |  |
| Willamette DriveHidden Springs Road            | 9                            | 2,080 | 0.43                | 1.06      | 0.24                   | No                            |  |
| Willamette Drivel-205 SB Ramps                 | 13                           | 2,120 | -                   | -         | 0.34                   | -                             |  |
| Willamette Falls Drive/10 <sup>th</sup> Street | 4                            | 1,545 | 0.26                | 0.46      | 0.14                   | No                            |  |
| 10 <sup>th</sup> Street/8th Avenue-Court       | 12                           | 1,375 | -                   | -         | 0.48                   | -                             |  |
| 10 <sup>th</sup> Street/Blankenship Road       | 1                            | 1,715 | 0.45                | 0.45      | 0.03                   | No                            |  |
| 10 <sup>th</sup> Street/I-205 NB Ramps         | 5                            | 1,700 | -                   | -         | 0.16                   | -                             |  |
| 10 <sup>th</sup> Street/I-205 SB Ramps         | 3                            | 1,775 | -                   | -         | 0.09                   | -                             |  |
| Blankenship Road/Tannler Drive                 | 5                            | 1,190 | -                   | -         | 0.23                   | -                             |  |
| Willamette Drive/I-205 NB Ramps                | 5                            | 1,795 | -                   | -         | 0.15                   | -                             |  |
| Willamette Drive/Willamette Falls Drive        | 5                            | 1,975 | 0.24                | 0.44      | 0.14                   | No                            |  |

As shown in Table 10, none of the observed crash rates exceed the critical crash rate. Based on the analysis presented herein, no safety-related mitigation measures are recommended. There are, however, several strategies for improving safety in the City of West Linn that are consistent with the 2008 TSP. These strategies are aimed at identifying priorities that meet the goals and policies of the city and should be carried forward with this TSP.

- Work with other agencies such as Clackamas County, ODOT, the school district, as well as local businesses and neighborhood groups to help prioritize and fund safety programs in a coordinated approach
- Develop a citywide safety priority system which identifies high accident locations, ranks the locations and identifies safety mitigation measures
- Consider installation of red light photo equipment where appropriate
- Provide safe crossings for pedestrians and bicyclists, particularly near key destinations such as schools and commercial areas. Locations for potential intersection improvements are listed in the Pedestrian Needs and Bicycle Needs sections of this memorandum.
- Address safety issues on an as needed basis

### Freight Needs

Freight movement within the City of West Linn consists of 1) the delivery of goods to commercial sites along Willamette Drive, 2) freight movement associated with the West Linn Paper plant, and 3) commercial freight traffic going through West Linn to other destinations on I-205 and Willamette Drive. The considerable truck traffic on I-205 combined with the lack of truck climbing lanes and short

merging distances between ramps, often results in conflicts between automobiles and truck traffic, and slows traffic flow near the Willamette Drive/I-205 interchange. The RTP identifies the segment of I-205 that travel through West Linn as a Main Roadway Route, which is intended to connect major activity centers in the region to other areas in Oregon or the United States, Mexico, and Canada. Within Oregon, these routes include I-5, I-84, I-205, US 26, Hwy 217, 99E, and 99W. The RTP identifies five policies to serve as the foundation for the regional freight network, including 1) Use a system approach to plan for and manage the freight network, 2) Reduce delay and increase reliability, 3) Protect industrial lands and freight transportation investments, 4) Look beyond the roadway network to address critical marine and rail needs, and 5) Pursue clean, green and smart technologies and practices.

# OTHER TRAVEL MODE NEEDS

There are no other modes of transportation within West Linn, with the exception of the Tualatin and Willamette Rivers, which are primarily used for recreation. All major rail, air, and natural gas pipelines are located north and south of West Linn in neighboring cities.

### Rail

There are no railroads located within the City of West Linn. The closest railroads include the Union Pacific Railroad located in Lake Oswego and the Southern Pacific Railroad located in Oregon City. The closest passenger rail service is provided by AMTRAK, with stops in Oregon City (ORC) and downtown Portland at Union Station (PDX). AMRRAK travels between ORC and PDX Monday through Friday at 7:24 a.m., 11:15 a.m., and 5:54 p.m. and between PDX and ORC at 6:00 a.m., 6:05 p.m., and 9:30 p.m. Travel times vary from 21 to 41 minutes depending on time of day and direction.

The Oregon Department of Transportation is currently studying ways to improve intercity passenger rail service between the Eugene-Springfield urban area and the Portland urban area. The study will help decide on a general passenger rail route and evaluate options for train frequency, trip time, and improving on-time performance. The preliminary alternatives include one route that follows the I-205 corridor through West Linn and the other route that follows the 99E corridor through Oregon City.

Travel time to Union Station on existing transit service can be long for the West Linn resident. If/when the new passenger rail service becomes a reality, West Linn residents will need access to the service by all appropriate travel modes.

### Air

There are no airports located within the City of West Linn. Domestic and international air passenger service is provided at the Portland International Airport. The General Aviation Airport in Aurora also serves the needs of West Linn residents. Some of the local airports open to the public for private aircraft in the area include Happy Valley, Oregon City, Mulino and Canby. Access to the Portland Airport can be a challenge for West Linn residents due to congestion on I-205, the most direct and commonly used route to the airport. Transit service, which involves transferring in Portland, is a time-

consuming and indirect way to access the Portland Airport. A typical trip from the West Linn park and ride to the Portland International Airport would take 30 minutes by vehicle (depending on traffic) or 90 minutes by public transit with a transfer in downtown Portland to the MAX Red Line.

## Water

West Linn lies along the west side of the Willamette River. The Willamette Falls Locks, operated by the U.S. Army Corps of Engineers, were part of the water-borne transportation system through West Linn. The locks are currently closed indefinitely by the U.S. Army Corps of Engineers due to needed gudgeon anchor repairs.

The locks and river do not currently provide transportation alternatives to West Linn residents. However, the potential for river taxis and ferries should be examined in the future.

### Pipeline

There are no pipelines transporting commodities in West Linn except those used in the West Linn Paper Company industrial complex, and pipelines from the Smurfit Paper Mill in Oregon City to settling ponds along the Willamette River in West Linn. A sewage force main that is part of the Tri-City Sewerage District facility crosses the Willamette River. Several Northwest Natural Gas mains run through West Linn. Also, the South Fork Water Board has a potable water pipeline across the Willamette River serving West Linn.

There are currently no needs associated with pipelines.



MEMORANDUM

| Date:    | February 25, 2015                                                                                 | Project #: 17817.3 |
|----------|---------------------------------------------------------------------------------------------------|--------------------|
| To:      | Zach Pelz, City of West Linn<br>Gail Curtis, Oregon Department of Transportation                  |                    |
| From:    | Susan Wright, P.E. and Matthew Bell, Kittelson & Associates, Inc.                                 |                    |
| Project: | West Linn Transportation System Plan (TSP) Update                                                 |                    |
| Subject: | Draft Technical Memorandum 8: 10 <sup>th</sup> Street Interchange Area Analysis a Recommendations | ind                |

This memorandum documents existing and projected future traffic conditions along the segment of 10<sup>th</sup> Street located between Blankenship-Salamo Road and Willamette Falls Drive in West Linn, Oregon. The information presented in this memorandum is based on a review of previous planning documents, including the City's current Transportation System Plan (2008 TSP - Reference 1), the 10<sup>th</sup> Street Willamette Falls Drive Intersection Traffic Control Study (10<sup>th</sup> Street Study - Reference 2); year 2040 traffic volume projections provided by Metro's travel demand model, and; an evaluation of recent traffic counts and field data collected along 10<sup>th</sup> Street as part of the ongoing West Linn TSP update.

The data shows that traffic volumes along 10<sup>th</sup> Street are lower today than they were in 2008 and they are projected to be lower in 2040 than previously projected for 2030 based on Metro's most recent travel demand model. As a result, vehicle improvements identified in the 2008 TSP and the 10<sup>th</sup> Street Study should be modified to meet current 2040 land-use and travel demand projections. This is consistent with findings in the recent Clackamas County TSP Update which also found lower traffic volume forecasts.

As described below, the types of improvements needed to meet current projections include widening along the 10<sup>th</sup> Street corridor, which could include retaining walls and/or modifications to the I-205 bridge footings, and modifications at each of the study intersections. Full reconstruction of the interchange as a Single Point Urban Interchange (SPUI) or some other alternative interchange form is not projected to be needed based on current 2040 projections. However, given the significant difference in the traffic volume projections used in the 2008 TSP and the 10<sup>th</sup> Street Study and those used in this analysis, several alternative interchange forms are evaluated in this memorandum at a qualitative level to provide the city and the Oregon Department of Transportation (ODOT) with a variety of potential long-term solutions to accommodate higher traffic volumes.

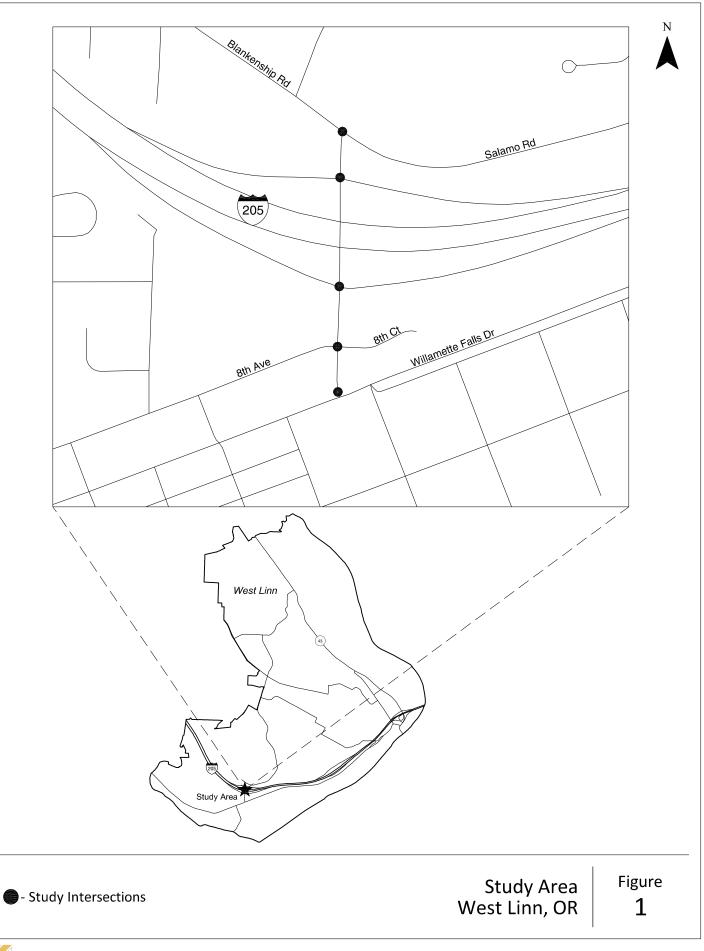
Additional information about the study methodology, findings, and recommendations is provided below.

# STUDY AREA

The study area and intersections included in this analysis were selected based on community needs and direction provided by City and ODOT staff in the scope of work for the West Linn TSP update. Figure 1 illustrates the study area. As shown, the study area consists of the segment of 10<sup>th</sup> Street from Blankenship-Salamo Road to Willamette Falls Drive with the following study intersections:

- 10<sup>th</sup> Street/Blankenship-Salamo Road
- 10<sup>th</sup> Street/I-205 Southbound (SB) Ramps
- 10<sup>th</sup> Street/I-205 Northbound (NB) Ramps
- 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court
- 10<sup>th</sup> street/Willamette Falls Drive

# ANALYSIS YEARS AND TIME PERIODS


Traffic conditions at the study intersections were analyzed during the weekday p.m. peak hour under year 2014 existing and year 2040 traffic conditions, which is consistent with the base and future traffic volume projections included in Metro's regional travel demand model.

# PERFORMANCE MEASURES AND OPERATING STANDARDS

Two performance measures were used to evaluate traffic operations, including level-of-service (LOS) and volume-to-capacity (v/c). A brief description of each performance measure is provided below:

- Level-of-service (LOS) ranks intersections from "A" to "F" based on the average control delay experienced by motorists. LOS "A" reflects relatively low vehicle delay times (10 seconds or less) while LOS "F" reflects relatively high vehicle delay times (over 50 seconds at unsignalized intersections), which is considered unacceptable to most motorists.
- Volume-to-capacity (v/c) is a ratio that compares the volume of traffic at a particular movement/approach to the theoretical capacity of that movement/approach to accommodate traffic. A v/c ratio of 1.0 indicates a movement/approach that is operating at capacity. A v/c ratio over 1.0 indicates that the capacity of the movement/approach has been (or will be) exceeded.

The 10<sup>th</sup> Street/Willamette Falls Drive intersection is controlled by the City of West Linn. The City requires all signalized and unsignalized intersections to maintain LOS D or better during peak time periods. The 10<sup>th</sup> Street/Blankenship-Salamo Road intersection is controlled by ODOT and operated as one signal with the 10<sup>th</sup> Street/I-205 SB Ramp. The 10<sup>th</sup> Street/I-205 NB Ramp and the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersections are also controlled by ODOT. Per Policy 1F of the Oregon Highway Plan (OHP – Reference 3), ODOT requires all ramp terminals to maintain a v/c ratio of 0.85 or up to 0.90 in the Metro area if the queuing does not encroach on the deceleration portion of the ramp and all unsignalized intersections to maintain a v/c ratio of 0.99 during peak time periods.



# TRAFFIC ANALYSIS METHODOLOGY

All LOS and v/c analyses described in this report were performed in accordance with the procedures stated in the 2000 Highway Capacity Manual (HCM – Reference 4). In order to ensure that the analyses were based on a reasonable worst-case scenario, the peak 15-minute flow rates that occur during the weekday p.m. peak hour were used in the evaluation of all intersections. For this reason, the analyses reflect conditions that are only likely to occur for 15 minutes out of each average peak hour. The transportation system will likely operate under conditions better than those described in this report during all other time periods. The analyses were performed using Synchro 8 modeling software, which implements the methods outlined in the 2010 HCM.

# BACKGROUND

The 2008 TSP and the 10<sup>th</sup> Street Study provide recommendations for improvements to the pedestrian, bicycle, transit, and motor vehicle systems within the study area as described below.

## West Linn Transportation System Plan

The 2008 TSP provides a general policy framework regarding transportation services, as well as a number of recommendations for improvements to the pedestrian, bicycle, transit and motor vehicle systems. The following provides a summary of the recommended improvements that are expected to improve traffic flow along 10<sup>th</sup> Street and increase access for all travel modes. None of these recommended improvements have been completed to date.

### Pedestrian Recommendations

- Provide sidewalks on the east side of 10<sup>th</sup> Street from I-205 to 8<sup>th</sup> Avenue-Court
- Provide sidewalks on the east side of 10<sup>th</sup> Street from Blankenship Road to I-205
- Provide sidewalks on both sides of Salamo Drive from 10<sup>th</sup> Street to 330-feet south of Bland Circle
- Provide sidewalks on both sides of Willamette Falls Drive from 6<sup>th</sup> Street to 10<sup>th</sup> Street

### Bicycle Recommendations

- Provide on-street bike lanes on Salamo Road from 10<sup>th</sup> Street to Barrington Drive
- Provide on-street bike lanes on 10<sup>th</sup> Street from Salamo Road to Willamette Falls Drive

### Transit Recommendations

While there are no specific transit improvements identified for the 10<sup>th</sup> Street corridor, many of the planned improvements will impact transit access and circulation, such as:

Improve service coordination for Route 154

- Provide Transit amenities at major transit stops
- Improve pedestrian connections to transit facilities
- Decrease headways
- Provide more local service

#### Motor Vehicle Recommendations

- Widen 10<sup>th</sup> Street from I-205 SB Ramps to 8<sup>th</sup> Avenue-Court to five-lane section with center turn lane and two travel lanes in each direction
- Add two through lanes on 10<sup>th</sup> Street from 8<sup>th</sup> Avenue-Court to Willamette Falls Drive for a total of two lanes in each direction. Prohibit northbound left turn movement and replaces left turn lane with pedestrian island
- Add a second east bound right turn lane at the 10<sup>th</sup> Street/Blankenship Road intersection and restripe the westbound approach to have exclusive left-turn and shared left-thru lane
- Change/upgrade the traffic control at the 10<sup>th</sup> Street/Willamette Falls Drive intersection to either signal or roundabout
  - further evaluation of this recommendation was a conducted as part of the 10<sup>th</sup>
     Street Study as described below
- Add right-in/right-out access at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection at the time of the 8<sup>th</sup> Court extension
- Add turns lanes at the 10<sup>th</sup> Street/I-205 NB Ramps, including northbound right turn lane, stripe southbound approach to have dual left turn lanes and one thru lane, add an exclusive NB off-ramp left turn lane, and widen NB on-ramp to have two receiving lanes to support dual SB left turn movement)
- Extend 8<sup>th</sup> Court to Willamette Falls Drive to provide additional access to 8th Court retail (concurrently restrict access to the 10th Street/8th Avenue-Court intersection to rightin/right-out
- Construct a long-term interchange improvement (SPUI or Split Diamond) at the 1-205/10<sup>th</sup> Street interchange to accommodate projected future demand.

# 10<sup>th</sup> Street at Willamette Falls Drive Intersection Traffic Control Study

The 10<sup>th</sup> Street Study evaluates three potential alternatives to improve traffic operations at the 10<sup>th</sup> Street/Willamette Falls Drive intersection. Two of the alternatives include a traffic signal at the intersection and one includes a single-lane roundabout. All three alternatives include near-term and long-term access restrictions at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection that are tied to the 8<sup>th</sup> Court Extension project identified in the 2008 TSP. Given the potential for coordination along the corridor, the traffic signal alternative with dual east-bound left-turn lanes (Alternative 2) was selected

as the preferred alternative. The following provides a summary of the recommended improvements that are expected to improve traffic flow along 10<sup>th</sup> Street. No specific recommendations for improvements to the pedestrian, bicycle, or transit systems were provided in the 10<sup>th</sup> Street Study.

#### Motor Vehicle Recommendations

- Install a traffic signal at the 10<sup>th</sup> Street/Willamette Falls Drive intersection when warranted.
- Install dual eastbound left-turn lanes at the 10<sup>th</sup> Street/Willamette Falls Drive intersection
  - The additional left-turn lane would require an additional receiving lane on 10<sup>th</sup> Street and modifications along the south side of Willamette Falls Drive.
- Short-term Access Restriction install a raised island at the west leg of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection that restricts eastbound left, eastbound through, northbound left and westbound through movements.
- Mid-Term Access Restriction (Right-in/Right-out/Left-in) install channelization at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection to restrict eastbound left, eastbound through, westbound left, westbound through, and northbound left movements.
  - As indicated in the 2008 TSP, extension of 8<sup>th</sup> Court to Willamette Falls Drive is necessary to restrict the westbound left-turn movement.
- Long-Term Access Restriction (Full Median) install a full median along 10<sup>th</sup> Street to restrict the eastbound and westbound approaches to the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection to right-in/right-out.

# EXISTING CONDITIONS

The existing pedestrian, bicycle, and transit facilities located along 10<sup>th</sup> Street were evaluated along with motor vehicle facilities in order to identify potential improvements to these facilities as well as to establish a baseline for future conditions. Kittelson & Associates, Inc. (KAI) staff visited and inventoried the study area in January 2015. At that time, KAI collected information regarding existing traffic operations and transportation facilities.

## Pedestrian Facilities

Continuous sidewalks are currently provided along the west side of 10<sup>th</sup> Street from Blankenship-Salamo Road to Willamette Falls Drive. The sidewalk located between the I-205 SB Ramps and 8<sup>th</sup> Avenue-Court is adjacent to the curb (i.e. curb tight with no landscape buffer between the road and the sidewalk) while the sidewalk north of the I-205 SB ramp and south of 8<sup>th</sup> Avenue-Court has landscape buffers. There is no sidewalk on the east side of 10<sup>th</sup> Street north of 8<sup>th</sup> Avenue-Court. There is sidewalk on the east side from 8<sup>th</sup> Avenue-Court to Willamette Falls Drive; however, it is not accessible per the American's with Disability Act (ADA) and there is a shoulder where pedestrians can walk and locations at each corner where they can wait to cross the street. There are marked pedestrian crossings at each of the major intersections located on 10<sup>th</sup> Street. The crossings at the Blankenship-Salamo Road, I-205 SB Ramp, and I-205 NB Ramp intersections are signalized with pedestrian actuation. The crossings at the north leg of the I-205 SB Ramp and I-205 NB Ramp intersections are closed. Pedestrian crossing volumes were obtained at the intersections in April 2014 during the weekday evening peak period (4:00 to 6:00 p.m.). The following provides a summary of pedestrian activity at the five intersections during the weekday evening peak hour:

- 10<sup>th</sup> Street/Blankenship-Salamo Road: No pedestrians were observed at the intersection
- 10<sup>th</sup> Street/I-205 SB Ramp: No pedestrians were observed at the intersection
- 10<sup>th</sup> Street/I-205 NB Ramp: Three pedestrians were observed at east/west crossing
- 10<sup>th</sup> Street/8th Avenue-Court: Eight pedestrians were observed at the north/south crossing and five pedestrians were observed at the east/west crossing
- 10<sup>th</sup> Street/Willamette Falls Drive: No pedestrians were observed at the intersection

### **Bicycle Facilities**

There are currently no marked bike lanes located along 10<sup>th</sup> Street from Blankenship-Salamo Road to Willamette Falls Drive. There are shoulders located on both sides of 10<sup>th</sup> Street from Blankenship-Salamo Road to the I-205 NB Ramps and along the east side of 10<sup>th</sup> Street from the I-205 NB Ramps to 8<sup>th</sup> Avenue-Court that could accommodate bicycle travel; however, the southbound right turn at the 10<sup>th</sup> Street/I-205 SB Ramp intersection and the northbound right turn lane at the 10<sup>th</sup> street/I-205 NB Ramp intersection conflict with potential bicycle movements.

The northbound approach to the 10<sup>th</sup> Street/Blankenship-Salamo Road intersection has a marked bike lane at the intersection for bicycles making a northbound left turn. Bicycle crossing volumes were obtained at the intersections in April 2014 during the weekday evening peak period (4:00 to 6:00 p.m.). The following provides a summary of bicycle activity at the five intersections during the evening peak hour:

- 10<sup>th</sup> Street/Blankenship Road: One bike was observed at the east/west crossing
- 10<sup>th</sup> Street/I-205 SB Ramp: One bike was observed at the north/south crossing
- 10<sup>th</sup> Street/I-205 NB Ramp: One bike was observed at the north/south crossing
- 10<sup>th</sup> Street/8<sup>th</sup> Avenue: One bike was observed at north/south crossing
- 10<sup>th</sup> Street/Willamette Falls Drive: One bike was observed at the east/west crossing

Pedestrian and bicycle activity along 10<sup>th</sup> Street is expected to increase with full build-out of the City's pedestrian and bicycle system plans and the Metro's regional pedestrian and bicycle networks.

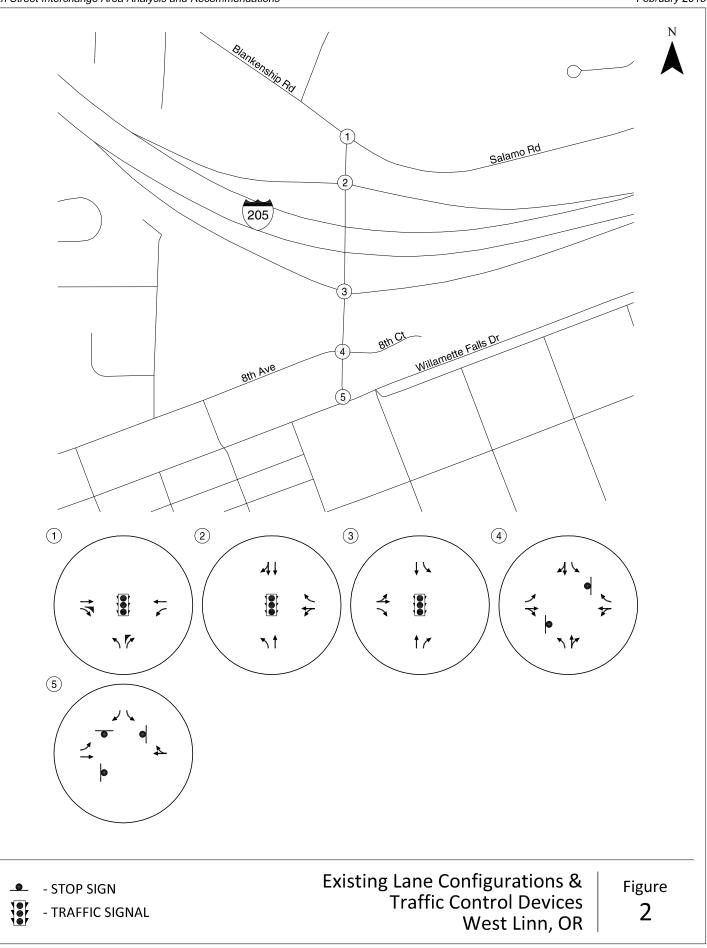
### **Transit Facilities**

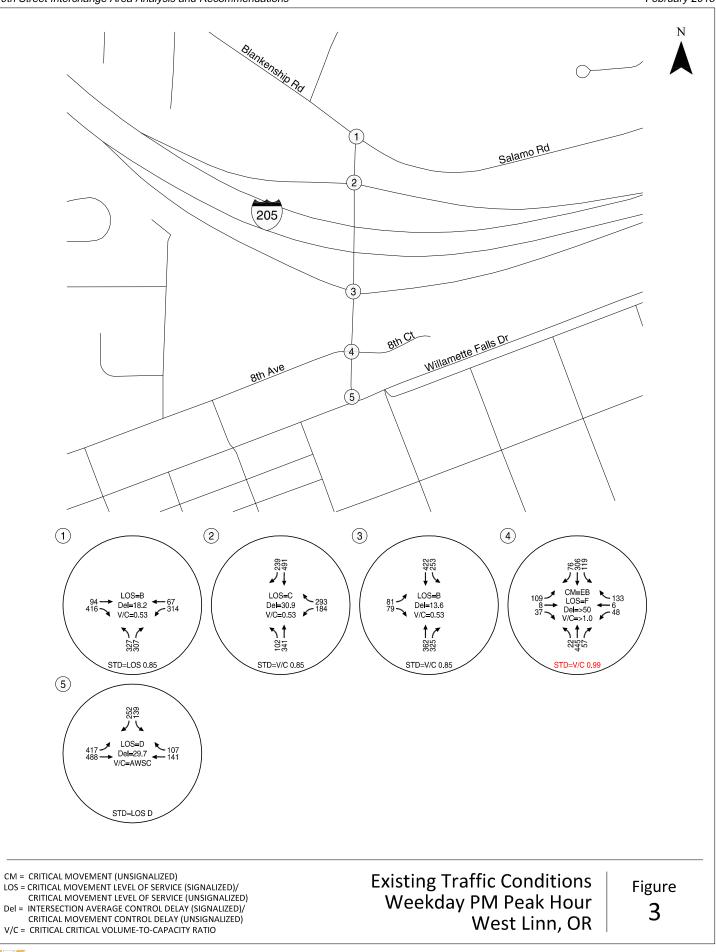
TriMet operates one fixed-route bus line along the east side of 10<sup>th</sup> Street. Line 154 (Willamette) travels west along Willamette Falls Drive, north along 10<sup>th</sup> Street, west along Blankenship Road, south along Ostman Road, and east along Willamette Falls Drive to the Oregon City Transit. Service is provided Monday through Friday from 6:00 a.m. to 7:00 p.m. on 30 to 60 minute headways. Service is not provided on Saturdays and Sundays.

There is one transit stop along 10<sup>th</sup> Street in the southeast corner of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection. Additional stops are located along Blankenship Road across from the main entrance to Albertsons and along Willamette Falls Drive in the southwest corner of the 11<sup>th</sup> Street/Willamette Falls Drive intersection. Table 1 summarizes the average daily ons and offs at all three transit stop locations.

| Stop Location           | Stop ID | Ons | Offs | Total |
|-------------------------|---------|-----|------|-------|
| 10 <sup>th</sup> Street | 9296    | 4   | 10   | 14    |
| Blankenship Road        | 9297    | 5   | 7    | 12    |
| Willamette Falls Drive  | 11766   | 3   | 0    | 3     |

#### Table 1: TriMet Route 154 Average Daily Ridership Fall 2014


TriMet's plans to reroute Line 154 will not impact the location of transit stops along the 10<sup>th</sup> Street, Blankenship Road, or Willamette Falls Drive – west of the 10<sup>th</sup> Street.


#### Motor Vehicle Facilities

10<sup>th</sup> Street generally has a three-lane cross section from Blankenship Road to Willamette Falls Drive with separate left-turn lanes at all major intersections and a separate right turn lane at the northbound approach to the I-205 NB Ramps – The northbound left-turn movement at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection is restricted during peak time periods. There is a second southbound through lane from Blankenship-Salamo Road to the I-205 SB bridge that tapers to one lane prior to the I-205 NB bridge. The 10<sup>th</sup> Street/Blankenship-Salamo Road, 10<sup>th</sup> Street/I-205 SB Ramp, and 10<sup>th</sup> Street/I-205 NB Ramp intersections are signalized with pedestrian actuation, while the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection is two-way stop controlled, and the 10<sup>th</sup> Street/Willamette Falls Drive intersection is all-way stop-controlled. Figure 2 illustrates the existing lane configurations and traffic control devices at the study intersections.

#### **Existing Traffic Volumes**

Manual turning-movement counts were conducted at the study intersections in April 2014. All of the counts were conducted on a typical mid-week day during the evening (4:00 to 6:00 p.m.) peak time period. The system-wide peak hour was found to occur from 4:15 to 5:15 p.m. Figure 3 summarizes the year 2014 turning-movement volumes at the study intersections. *Appendix "A" contains the traffic count data used in this study*.





KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

#### Intersection Operations

The turning-movement volumes shown in Figure 3 were used to conduct an operational analysis at the study intersections to determine existing traffic conditions along the corridor. As shown, all of the study intersections currently operate acceptably during the weekday p.m. peak hour, with the exception of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection. *Appendix "B" contains the year 2014 existing traffic conditions worksheets.* 

### *10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court*

The eastbound left-turn movements at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection currently operates at LOS F and above capacity during the weekday p.m. peak hour. This is primarily due to the relatively high number of eastbound left-turning vehicles conflicting with the relatively high number of north-south through vehicles along 10<sup>th</sup> Street.

It is important to note that while the other intersections operate acceptably per their respective standards, there are specific movements where the queues are longer than the available storage and impact operations along the corridor. Queuing is discussed further in the following section.

#### Intersection Queues

Synchro 8 was used to evaluate 95<sup>th</sup> percentile queues at the signalized study intersections under existing traffic conditions. Table 2 summarizes the 95<sup>th</sup> percentile queues by movement. The storage lengths shown in Table 2 reflect the striped portion of the turn lanes.

| Intersection                                    | Movement | Queue (feet) | Storage (feet) | Adequate? |
|-------------------------------------------------|----------|--------------|----------------|-----------|
|                                                 | EBT      | 108          | Cont.          | Yes       |
|                                                 | EBR      | 123          | 150            | Yes       |
| 10 <sup>th</sup> Street/Blankenship-Salamo Road | WBL      | 272          | 200            | No        |
| 10 Street/Blankenship-Salamo Koau               | WBT      | 47           | Cont.          | Yes       |
|                                                 | NBL      | 240          | 100            | No        |
|                                                 | NBR      | 18           | Cont.          | Yes       |
|                                                 | WBL      | 211          | 200            | No        |
|                                                 | WBR      | 76           | Cont.          | Yes       |
| 10 <sup>th</sup> Street/I-205 SB Ramp           | NBL      | 103          | 220            | Yes       |
|                                                 | NBT      | 134          | Cont.          | Yes       |
|                                                 | SBT      | 321          | Cont.          | Yes       |
|                                                 | EBL      | 78           | 200            | Yes       |
|                                                 | EBR      | 37           | Cont.          | Yes       |
| 10 <sup>th</sup> Street/I-205 NB Ramp           | NBT      | 221          | Cont.          | Yes       |
| TO SUPER/I-205 NB Rallip                        | NBR      | 109          | 100            | No        |
|                                                 | SBL      | 183          | 130            | No        |
|                                                 | SBT      | 98           | Cont.          | Yes       |

#### Table 2: Intersection Queues – Existing Traffic Conditions

As shown in Table 2, there are several movements where the existing 95<sup>th</sup> percentile queues currently exceed the available storage, including (most notably) the westbound and northbound left-turn movements at the 10<sup>th</sup> Street Blankenship-Salamo Road intersection and the southbound left-turn movement at the 10<sup>th</sup> Street/I-205 NB Ramp intersection. In each case, the movement currently spills into the adjacent lane and prevents other vehicles (through or turning) from continuing through the intersection. The results of the queuing analysis were compared to recent queuing information provided by ODOT and found to be consistent. *Appendix "B" also contains the queuing information provided by ODOT* 

### Traffic Safety

The crash history of the study intersections was reviewed in an effort to identify any potential safety issues. ODOT provided the five most recent years of crash data available for the study intersections, including January 1, 2008 through December 31, 2012. Table 3 summarizes the crash history of the study intersections over the five-year period.

|                                                      |       |      | Crash        | Туре          |                 |              | Sev  | erity  |       |
|------------------------------------------------------|-------|------|--------------|---------------|-----------------|--------------|------|--------|-------|
| Location                                             | Angle | Turn | Rear-<br>End | Side<br>Swipe | Fixed<br>Object | Ped/<br>Bike | PDO* | Injury | Total |
| 10 <sup>th</sup> Street/Blankenship-Salamo Road      |       |      | 1            |               |                 |              | 1    |        | 1     |
| 10 <sup>th</sup> Street/I-205 SB Ramps               |       | 1    | 2            |               |                 |              | 2    | 1      | 3     |
| 10 <sup>th</sup> Street/I-205 NB Ramps               |       | 1    | 4            |               |                 |              | 2    | 3      | 5     |
| 10 <sup>th</sup> Street/8 <sup>th</sup> Avenue-Court | 4     | 8    |              |               |                 |              | 9    | 3      | 12    |
| 10 <sup>th</sup> Street/Willamette Falls Drive       |       | 2    | 2            |               |                 |              | 4    | 0      | 4     |

#### Table 3: Study Intersection Crash Summary (January 1, 2008 – December 31, 2012)

\* PDO = Property Damage Only

As shown in Table 3, the highest number of crashes was reported at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection. The types of crashes reported at the intersection (Angle and Turn) are typical of two-way stop controlled intersections with side-street movements that are operating above capacity. Also shown in Table 3, two rear-end crashes were reported at the 10<sup>th</sup> Street/I-205 SB ramps and four rear-end crashes were reported at the 10<sup>th</sup> Street/I-205 SB ramps and four rear-end crashes were reported at the 10<sup>th</sup> Street/I-205 NB ramps. Given ODOT's concern for queues extending into the deceleration lane and/or the I-205 mainline, further review of the crashes was conducted; however, none of the crashes were related to queuing at the intersection. No other trends or patterns were identified in the data that require mitigation associated with the TSP update. *Appendix "C" contains the crash data obtained from ODOT*.

## YEAR 2040 (NO-BUILD) TRAFFIC CONDITIONS

#### Year 2040 Traffic Volumes

Forecast traffic volumes were developed for the study intersections based on the existing traffic counts and information provided in Metro's fiscally constrained travel demand model. The travel demand

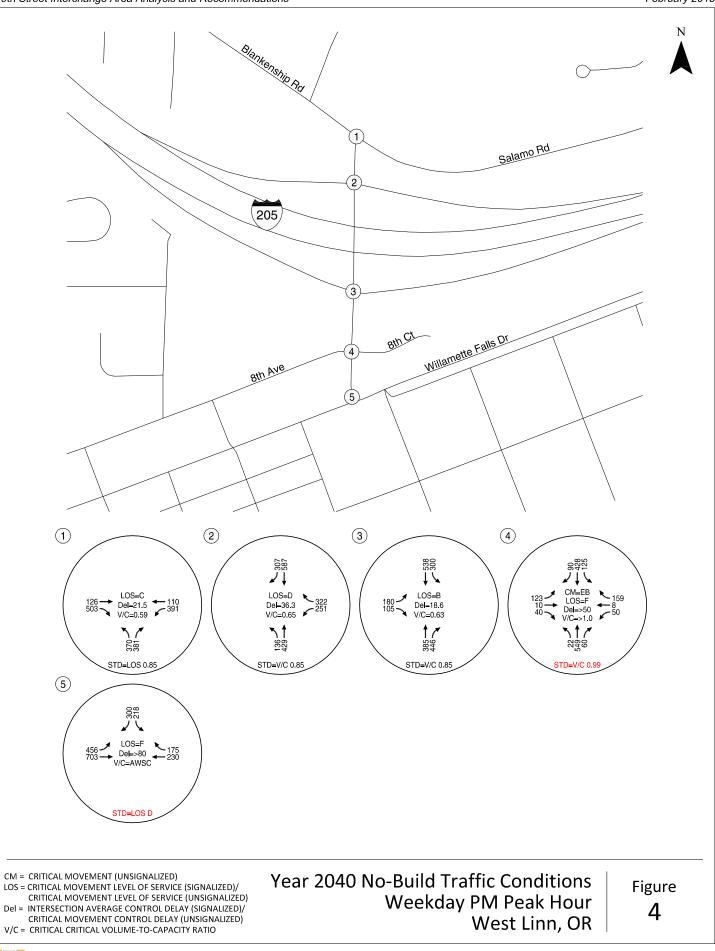
model provides calibrated base year 2010 and future year 2040 traffic volume projections that reflect anticipated land use changes and planned transportation improvements within the City and the greater region. The year 2040 traffic volumes were developed by applying the post-processing methodology presented in the National Cooperative Highway Research Program (NCHRP) Report 255 *Highway Traffic Data for Urbanized Area Project Planning and Design* (Reference 5), in conjunction with engineering judgment and knowledge of the study area. Figure 4 illustrates the anticipated year 2040 traffic volumes.

#### **Intersection Operations**

Figure 4 also summarizes the traffic analysis results for the study intersections under year 2040 (nobuild) traffic conditions with no improvements or modifications to the existing roadway or traffic signals. As shown, all of the study intersections are expected to operate acceptably during the weekday p.m. peak hour, with the exception of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court and the 10<sup>th</sup> Street/Willamette Falls Drive intersections. *Appendix "D" includes the year 2040 (no-build) traffic conditions worksheets.* 

### *10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court*

The eastbound left-turn movement at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection is expected to continue to operate at LOS F and above capacity during the weekday p.m. peak hour. This is primarily due to the relatively high number of eastbound left-turning vehicles conflicting with the relatively high number of north-south through vehicles along 10<sup>th</sup> Street.


#### 10<sup>th</sup> Street/Willamette Falls Drive

The eastbound left-turn movement at the 10<sup>th</sup> Street/Willamette Falls drive intersection is also expected to operate at LOS F and above capacity during the weekday p.m. peak hour. This is primarily due to the relatively high number of eastbound left-turning vehicles conflicting with all other movements at the intersection.

It is important to note that while the other intersections operate acceptably per their respective standards, there are specific movements where the queues are longer than the available storage or where the volumes exceed the capacity of the movement and impact operations along the corridor. Queuing is discussed further in the following section.

#### Intersection Queues

Synchro 8 was used to evaluate 95<sup>th</sup> percentile queues at the signalized study intersections under year 2040 (no-build) traffic conditions. Table 4 summarizes the 95<sup>th</sup> percentile queues by movement. The storage lengths shown in Table 4 reflect the striped portion of the turn lanes.



KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

| Intersection                                    | Movement | Queue | Storage | Adequate? |
|-------------------------------------------------|----------|-------|---------|-----------|
|                                                 | EBT      | 138   | Cont.   | Yes       |
|                                                 | EBR      | 214   | 150     | No        |
| 10 <sup>th</sup> Street/Blankenship-Salamo Road | WBL      | #390  | 200     | No        |
|                                                 | WBT      | 70    | Cont.   | Yes       |
|                                                 | NBL      | 287   | 100     | No        |
|                                                 | NBR      | 22    | Cont.   | Yes       |
|                                                 | WBL      | 287   | 200     | No        |
|                                                 | WBR      | 80    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 SB Ramp           | NBL      | 133   | 220     | Yes       |
|                                                 | NBT      | 177   | Cont.   | Yes       |
|                                                 | SBT      | #425  | Cont.   | Yes       |
|                                                 | EBL      | 159   | 200     | Yes       |
|                                                 | EBR      | 41    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 NB Ramp           | NBT      | 289   | Cont.   | Yes       |
| to succurzos NB Ramp                            | NBR      | 142   | 100     | No        |
|                                                 | SBL      | 241   | 130     | No        |
|                                                 | SBT      | 193   | Cont.   | Yes       |

#### Table 4: Intersection Queues – Year 2040 (No-Build) Traffic Conditions

# 95th percentile volume exceeds capacity, queue may be longer.

As shown in Table 4, there are several additional movements (compared to existing traffic conditions) where the 95<sup>th</sup> percentile queues are expected to exceed the available storage.

Based on the intersection operations and queuing analyses described above, improvements to the corridor are needed to improve existing and future year 2040 (no-build) traffic conditions.

### ALTERNATIVES ANALYSIS

Several alternatives were developed to improve existing and year 2040 traffic conditions along the 10<sup>th</sup> Street corridor that will meet the needs of the City and ODOT. These alternatives were developed based on the existing and year 2040 analyses described above, the improvements identified in the 2008 TSP and the 10<sup>th</sup> Street Study, and discussions with City and ODOT staff. Other considerations include limited right-of way along 10<sup>th</sup> Street, limited transportation funding, topography, and impacts to existing businesses and private residencies.

#### Corridor Improvements

The corridor improvement alternatives are intended to improve traffic operations along the 10<sup>th</sup> Street corridor for all travel modes without reconstruction of the interchange. These alternatives include widening along 10<sup>th</sup> Street and modifications at each of the study intersections, but maintain the existing I-205 ramps and ramp terminals. Two different corridor improvement alternatives were developed as part of the alternatives analysis as described below.

#### Alternative 1

Alternative 1 includes several of the motor vehicle improvements identified in the 2008 TSP and the 10<sup>th</sup> Street Study as well as a few new improvements not evaluated in any previous studies conducted by the City or ODOT. The improvements have been separated into near-term and long-term improvements based on an evaluation of existing and year 2040 operations.

#### Near-Term Improvements

The following near-term improvements are included in Alternative 1 to address issues identified under existing conditions:

- Restripe the westbound approach to the 10<sup>th</sup> Street/Blankenship-Salamo Road intersection to include an exclusive left-turn lane and shared left-through lane.
- Install a raised median island at the eastbound approach to the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection to restrict the eastbound left-turn movement.
  - This improvement would result in an increase in the east-bound left-turn volume at the 10<sup>th</sup> Street/Willamette Falls Drive intersection, where the eastbound left-turn movement would then operate at LOS F (delay = 83.1 seconds) and over capacity (v/c = 1.07); however, the delay would be less than the delay at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection and the overall intersection would operate at LOS E.

#### Long-Term Improvements

The following long-term improvements are included in Alternative 1 to address issues identified under year 2040 conditions:

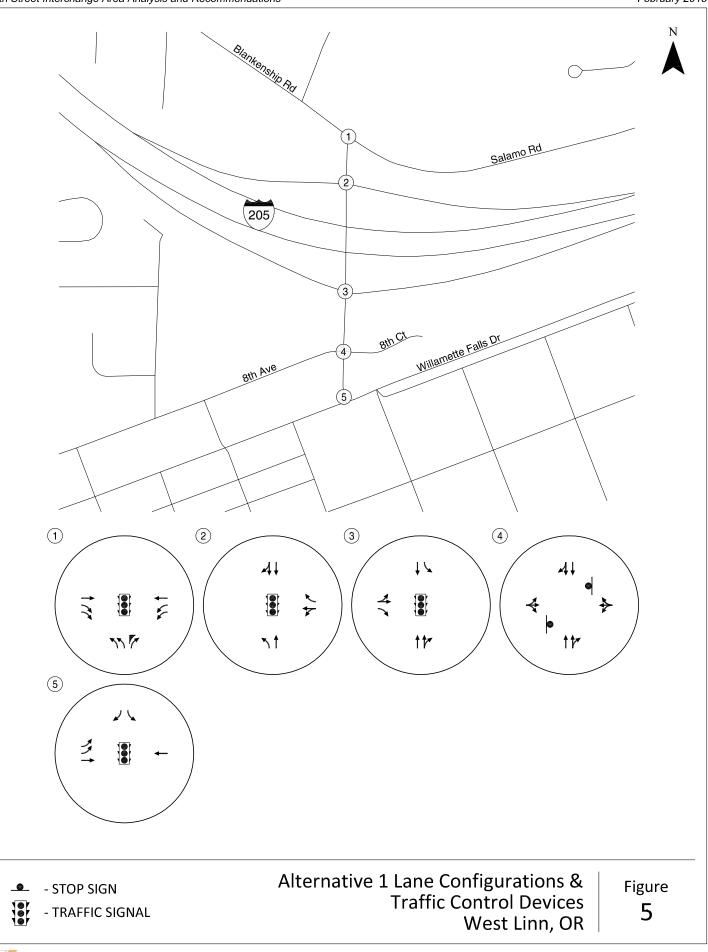
- Widen the eastbound and westbound Blankenship-Salamo Road approaches approximately 500 feet in each direction to provide dual westbound left-turn lanes, a single westbound through lane, and to accommodate dual northbound left-turn lanes.
- Add a second exclusive right turn lane to the eastbound approach to the 10<sup>th</sup> Street/Blankenship-Salamo Road intersection.
  - This improvement could increase the crossing distance located at the south leg of the 10<sup>th</sup> Street Blankenship-Salamo Road intersection.
  - The need for this improvement could be reduced by restricting access to the commercial property located in the southwest corner of the 10<sup>th</sup> Street Blankenship-Salamo Road intersection.
- Modify and/or widen 10<sup>th</sup> Street between the I-205 NB Ramps and the I-205 SB Ramps to two lanes in either direction. This allows for one continuous left turn lane and one continuous through-movement lane in either direction between the ramps (the left-turn

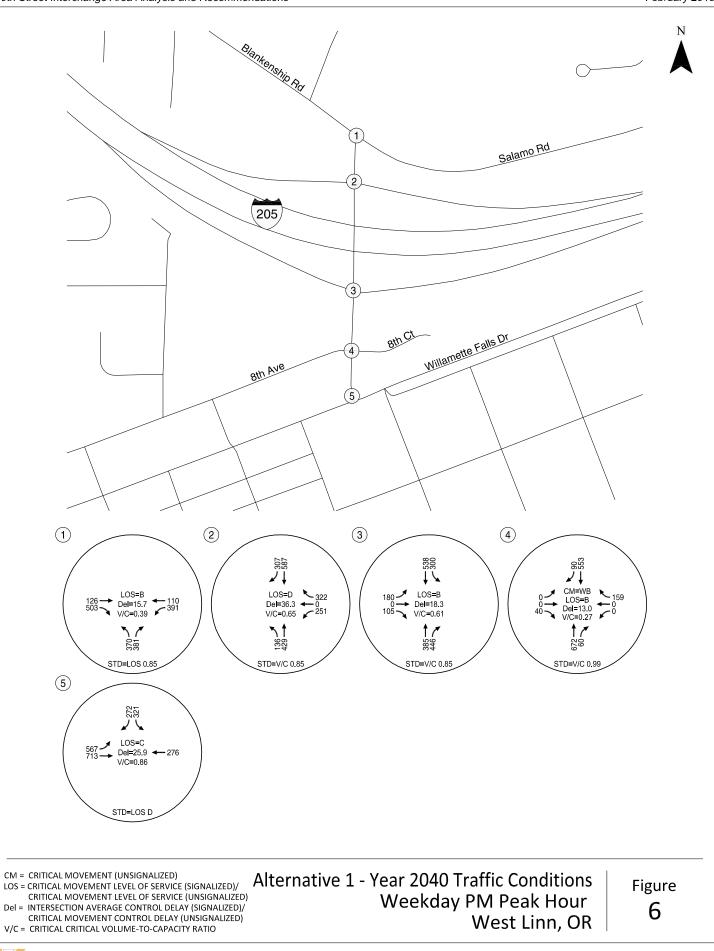
lanes between the ramps would be side-by-side instead of back-to-back allowing for twice the amount of queue storage)<sup>1</sup>.

- Widen 10<sup>th</sup> Street between the I-205 NB Ramps and Willamette Falls Drive to provide two lanes in each direction.
- Extend 8<sup>th</sup> Court to Willamette Falls Drive to provide additional access to 8<sup>th</sup> Court retail.
- Install a median along 10<sup>th</sup> Street to restrict the eastbound and westbound approaches to the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection to right-in/right-out.
- Install a traffic signal and dual eastbound left-turn lanes at the 10<sup>th</sup> Street/Willamette Falls Drive intersection.

Figure 5 illustrates the assumed lane configuration and traffic control devices with the Alternative 1 improvements. The costs associated with these improvements could range from 4-5 million depending on the need for modifications to the bridge structures and right-of way acquisition.

#### Intersection Operations


Figure 6 summarizes the traffic analysis results for the study intersections under year 2040 traffic conditions assuming all of the near-term and long-term improvements included in Alternative 1. As shown, all of the study intersections are expected to operate acceptably during the weekday p.m. peak hour. Appendix "E" contains the year 2040 traffic conditions worksheets for Alternative 1.


#### Intersection Queuing

Synchro 8 was used to evaluate 95<sup>th</sup> percentile queues at the signalized study intersections under year 2040 traffic conditions assuming all of the improvements included in Alternative 1. Table 5 summarizes the 95<sup>th</sup> percentile queues by movement.

Kittelson & Associates, Inc.

<sup>&</sup>lt;sup>1</sup> Widening of 10<sup>th</sup> Street under the I-205 bridges may be possible without complete bridge reconstruction through the use of retaining walls or minor modifications to the bridge structures.





KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

| Intersection                                    | Movement | Queue | Storage | Adequate? |
|-------------------------------------------------|----------|-------|---------|-----------|
|                                                 | EBT      | 125   | Cont.   | Yes       |
|                                                 | EBR      | 51    | 150     | Yes       |
| 10 <sup>th</sup> Street/Blankenship-Salamo Road | WBL      | 155   | 200     | Yes       |
| 10 Street/Blankensnip-Salamo Koau               | WBT      | 71    | Cont.   | Yes       |
|                                                 | NBL      | 101   | 100     | No        |
|                                                 | NBR      | 22    | Cont.   | Yes       |
|                                                 | WBL      | 287   | 200     | No        |
|                                                 | WBR      | 80    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 SB Ramp           | NBL      | 133   | Cont.   | Yes       |
|                                                 | NBT      | 177   | Cont.   | Yes       |
|                                                 | SBT      | #425  | Cont.   | Yes       |
|                                                 | EBL      | 159   | 200     | Yes       |
|                                                 | EBR      | 41    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 NB Ramp           | NBT      | 193   | Cont.   | Yes       |
|                                                 | SBL      | 241   | Cont.   | Yes       |
|                                                 | SBT      | 193   | Cont.   | Yes       |
|                                                 | EBL      | #197  | 220     | Yes       |
|                                                 | EBT      | 315   | Cont.   | Yes       |
| 10 <sup>th</sup> Street/Willamette Falls Drive  | WBT      | #313  | Cont.   | Yes       |
|                                                 | SBL      | #220  | Cont.   | Yes       |
|                                                 | SBR      | 49    | Cont.   | Yes       |

# 95th percentile volume exceeds capacity, queue may be longer.

As shown in Table 5, there continue to be a few movements where the 95<sup>th</sup> percentile queues are expected to exceed the available storage.

#### Alternative 2

Alternative 2 also includes several of the motor vehicle improvements identified in the 2008 TSP as well as a few new improvements not evaluated in any previous studies conducted by the City or ODOT. Similar to Alternative 1, the improvements have been separated into near-term and long-term improvements based on an evaluation of existing and year 2040 operations.

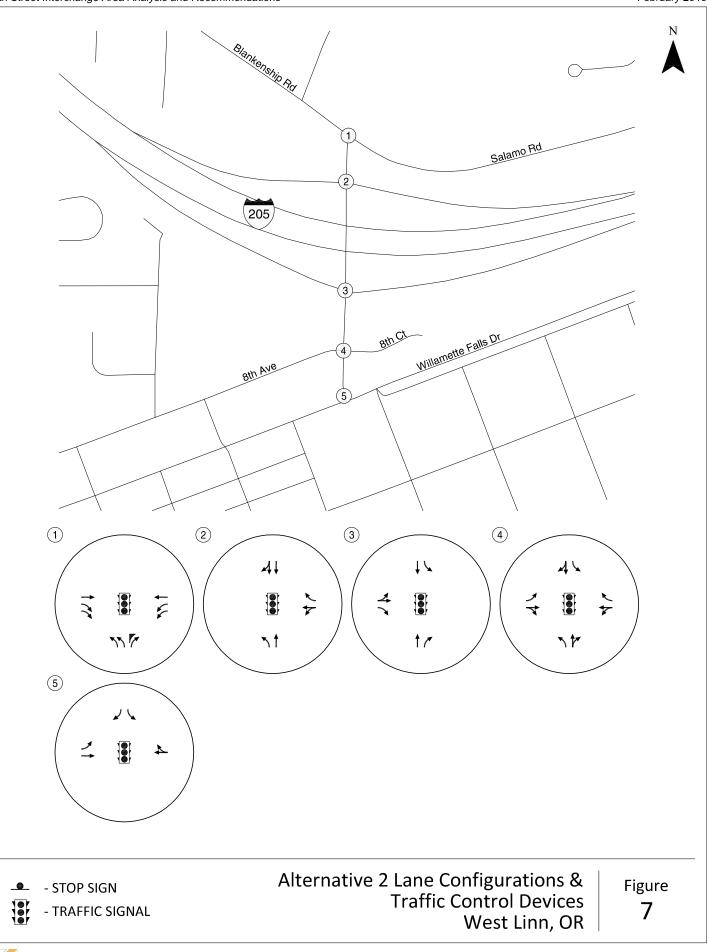
#### Near-Term Improvements

The following improvements are included in Alternative 2 (*Note: the improvements unique to Alternative 2 are identified in bold text):* 

 Restripe the westbound approach to the 10<sup>th</sup> Street/Blankenship-Salamo Road intersection to include an exclusive left-turn lane and shared left-through lane.

#### Long-Term Improvements

The following long-term improvements are included in Alternative 1 to address issues identified under year 2040 conditions:


- Widen the eastbound and westbound Blankenship-Salamo Road approaches approximately 500 feet in each direction to provide dual westbound left-turn lanes, a single westbound through lane, and to accommodate dual northbound left-turn lanes.
- Add a second exclusive right turn lane to the eastbound approach to the 10<sup>th</sup> Street/Blankenship-Salamo Road intersection.
  - This improvement could increase the crossing distance located at the south leg of the 10<sup>th</sup> Street Blankenship-Salamo Road intersection.
  - The need for this improvement could be reduced by restricting access to the commercial property located in the southwest corner of the 10<sup>th</sup> Street Blankenship-Salamo Road intersection.
- Modify and/or widen 10<sup>th</sup> Street between the I-205 NB Ramps and the I-205 SB Ramps to two lanes in either direction. This allows for one continuous left turn lane and one continuous through-movement lane in either direction between the ramps (the left-turn lanes between the ramps would be side-by-side instead of back-to-back allowing for twice the amount of queue storage)<sup>2</sup>.
- Install a traffic signal at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection<sup>3</sup>.
- Install a traffic signal at the 10<sup>th</sup> Street/Willamette Falls Drive intersection.
- Coordinate all of the traffic signals along 10<sup>th</sup> Street to minimize queuing and delay at each approach to the I-205 Ramp terminals.

The installation of a traffic signal at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection eliminates the need to widen 10<sup>th</sup> Street between the I-205 NB Ramps and Willamette Falls Drive. It also eliminates the need for turn movement restrictions at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection, which in turn reduces the need for the 8<sup>th</sup> Court extension to Willamette Falls Drive and dual left-turn lanes at the 10<sup>th</sup> Street/Willamette Falls. Figure 7 illustrates the assumed lane configuration and traffic control devices with the Alternative 2 improvements. The costs associated with these improvements could range from 1-2 million depending on the need for modifications to the bridge structures and right-of way acquisition.

Kittelson & Associates, Inc.

<sup>&</sup>lt;sup>2</sup> Widening of 10<sup>th</sup> Street under the I-205 bridges may be possible without complete bridge reconstruction through the use of retaining walls or minor modifications to the bridge structures.

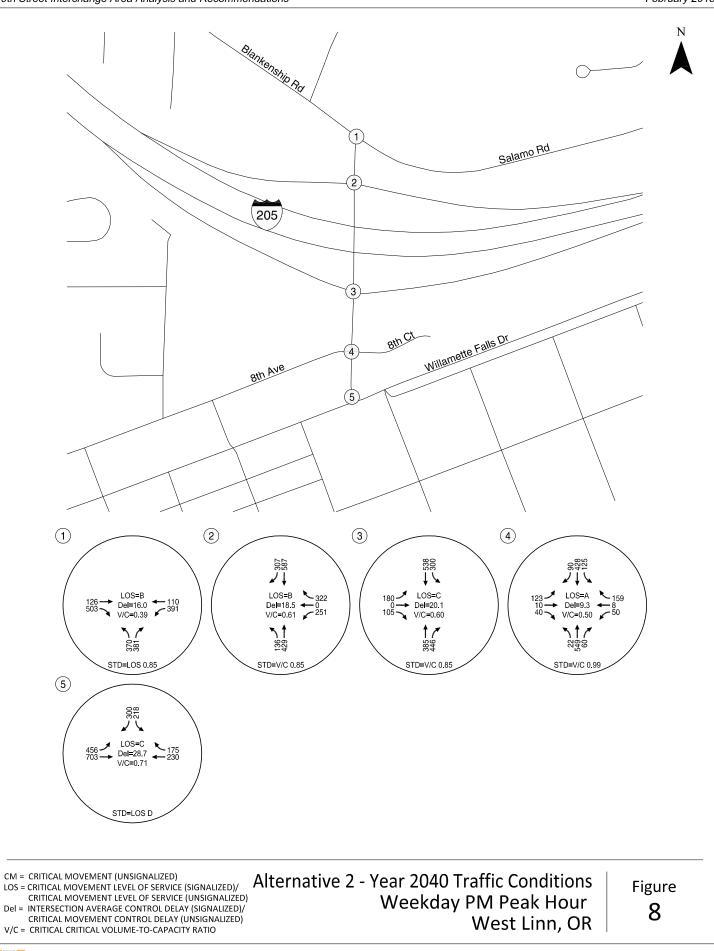
<sup>&</sup>lt;sup>3</sup> In lieu of access restrictions and the extension of 8<sup>th</sup> Court.



#### Intersection Operations

Figure 8 summarizes the traffic analysis results for the study intersections under year 2040 traffic conditions assuming all of the near-term and long-term improvements included in Alternative 2. As shown, all of the study intersections are expected to operate acceptably during the weekday p.m. peak hour. Appendix "F" contains the year 2040 traffic conditions worksheets for Alternative 2.

#### Intersection Queuing


Synchro 8 was used to evaluate 95<sup>th</sup> percentile queues at the signalized study intersections under year 2040 traffic conditions assuming all of the improvements included in Alternative 2. Table 6 summarizes the 95<sup>th</sup> percentile queues by movement.

| Intersection                                    | Movement | Queue | Storage | Adequate? |
|-------------------------------------------------|----------|-------|---------|-----------|
|                                                 | EBT      | 122   | Cont.   | Yes       |
|                                                 | EBR      | 58    | 150     | Yes       |
| 10 <sup>th</sup> Street/Blankenship-Salamo Road | WBL      | 151   | 200     | No        |
| 10 Street/Blankensing-Salario Road              | WBT      | 69    | Cont.   | Yes       |
|                                                 | NBL      | 84    | 100     | No        |
|                                                 | NBR      | 10    | Cont.   | Yes       |
|                                                 | WBL      | 213   | 200     | No        |
|                                                 | WBR      | 64    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 SB Ramp           | NBL      | 93    | Cont.   | Yes       |
|                                                 | NBT      | 8     | Cont.   | Yes       |
|                                                 | SBT      | 174   | Cont.   | Yes       |
|                                                 | EBL      | 167   | 200     | Yes       |
|                                                 | EBR      | 43    | Cont.   | Yes       |
| 10 <sup>th</sup> Street/I-205 NB Ramp           | NBT      | 283   | Cont.   | Yes       |
| 10 Street/I-205 NB Ramp                         | NBR      | 157   | 100     | No        |
|                                                 | SBL      | 181   | Cont.   | Yes       |
|                                                 | SBT      | 8     | Cont.   | Yes       |
|                                                 | EBL      | #352  | 225     | No        |
|                                                 | EBT      | 342   | Cont.   | Yes       |
| 10 <sup>th</sup> Street/Willamette Falls Drive  | WBT      | #323  | Cont.   | Yes       |
|                                                 | SBL      | 190   | 125     | No        |
|                                                 | SBR      | 40    | Cont.   | Yes       |
|                                                 | EBL      | #352  | 220     | No        |
|                                                 | EBT      | 342   | Cont.   | Yes       |
| 10 <sup>th</sup> Street/Willamette Falls Drive  | WBT      | #323  | Cont.   | Yes       |
|                                                 | SBL      | 190   | Cont.   | Yes       |
|                                                 | SBR      | 40    | Cont.   | Yes       |

#### Table 6: Alternative 2 Intersection Queues – Year 2040 Traffic Conditions

# 95th percentile volume exceeds capacity, queue may be longer.

As shown in Table 6, there continue to be a few movements where the 95<sup>th</sup> percentile queues are expected to exceed the available storage.



KITTELSON & ASSOCIATES, INC. TRANSPORTATION ENGINEERING/PLANNING

#### Interchange Improvements

Given the significant difference in the traffic volume projections used in the 2008 TSP and the 10<sup>th</sup> Street study versus those used in this analysis, improvements to the interchange are not anticipated to be necessary to accommodate the 2040 forecast traffic volumes; however, , alternatives that could potentially accommodate greater traffic demand than projected have been evaluated at a qualitative level. These alternatives include a Diverging Diamond Interchange (DDI), a Single Point Urban Interchange (SPUI –recommended in the 2008 TSP), a Raindrop/Dumbbell Interchange, and a Tight Diamond Interchange. The following provides a high level review of each type of interchange, including the advantages and disadvantages of each form, the feasibility for implementation at the 10<sup>th</sup> Street interchange, and planning level cost estimates. The cost estimates include the interchange ramps and termini only and do not account for the full set of improvements needed along 10<sup>th</sup> Street from Willamette Falls Drive to Blankenship-Salamo Road.

#### Diverging Diamond Interchange

The Diverging Diamond Interchange (DDI) is an emerging interchange form that is becoming more utilized as a method to retrofit conventional diamond interchanges with heavy left turns. The DDI works by crossing through-movement traffic over from the right side to the left side of the road on either side of the interchange where the ramp termini of a conventional diamond would normally exist. Figure 9 illustrates a DDI locate in Alcoa, TN.

The main benefit of the DDI over the conventional diamond interchange is the reduced number of required signal phases (two phases compared with three for a conventional diamond). The reduced number of phases results in a lower percentage of lost time at each signalized intersection, as well as reduced delay and queueing at the interchange. Like the conventional diamond, various signal coordination strategies can be used to progress certain turning movements through the interchange. Another major benefit of the DDI when compared with other interchange forms is that it usually can be constructed in place of a conventional diamond while mostly preserving the footprint of the interchange, and usually does not require major bridge reconstruction. While there are currently no comprehensive crash analyses of built DDIs in the United States, they are presumed to be safer than conventional diamond interchanges due to the reduced number of vehicle-to-vehicle conflict points (18 at a DDI compared to 26 at a conventional diamond). DDIs also contain fewer pedestrian-to-vehicle conflict points than conventional diamonds.

The main disadvantage of the DDI is that it is still relatively new as an interchange form, and most design and operations guidance is still emerging. Another disadvantage of the DDI is that it does not tend to work well with closely-spaced adjacent signalized intersections, since movements at those intersections must be coordinated with the movements of the DDI, and most intersections typically have more than two signal phases. Geometrically, it can be difficult to design a DDI crossover that is compact enough to fit between the freeway and a closely-spaced intersection. If traffic volumes (especially left turn volumes) are not high, then the DDI typically does not provide much benefit over the conventional diamond.

Ν



Source: Google

Diverging Diamond Interchange (DDI) Alcoa, TN Figure 9 At the I-205/10<sup>th</sup> Street interchange, a DDI would likely result in some operational and safety improvements compared with the existing diamond, especially at the northbound I-205 ramp terminus, but the geometric constraints of the site could make it challenging to fit the DDI within the existing footprint. The short distance (approximately 250 feet) between the southbound I-205 ramp terminus and the Blankenship/Salamo intersection would make it challenging to fit the DDI crossover and coordinate the signal timing between the two intersections. Retrofits of conventional diamond interchanges with a DDI have typically run in the range of \$3 million to \$8 million, according to the FHWA Diverging Diamond Interchange Informational Guide.

Using a high-level critical movement analysis with the projected 2040 volumes, the traffic operations at the interchange are not expected to improve significantly with the construction of a DDI, so the cost of the DDI will likely outweigh its benefits.

#### Single Point Urban Interchange

The Single-Point Urban Interchange (SPUI) is an interchange form that is used to retrofit a conventional diamond interchange with heavy traffic where right of way is limited. The SPUI works by bringing all four ramps to a single large intersection with the cross-street either below or above the freeway. This allows opposing left turns to run concurrently. Figure 10 illustrates a SPUI in Salem, OR.

The main benefit of the SPUI over the conventional diamond interchange is the consolidation of all traffic movements into one intersection, which typically allows for more efficient traffic operations. This results in large decreases in delay and travel time compared to a conventional diamond with the same lane configuration. A SPUI can also work well with adjacent signalized intersections or frontage roads, since the one intersection will typically be farther away from adjacent intersections than the two intersections of a conventional diamond.

The main disadvantage of the SPUI is the high cost associated with rebuilding the bridges over 10<sup>th</sup> Street. If the signal cycle length is low, then some of the operational benefits of the SPUI may also be counteracted with high lost times associated with the large intersection width, which may cause unnecessary delay and queuing during off-peak periods. The SPUI has a similar crash history to the conventional diamond, but pedestrians usually must cross a greater length of crosswalk, since the SPUI usually has a very wide intersection.

Due to the need to rebuild the bridges at the interchange, the SPUI can usually cost upward of \$15 million, making it the most expensive of the designs considered. The SPUI would likely result in the greatest operational improvement of any of the designs considered, but it may not be worth the high cost.



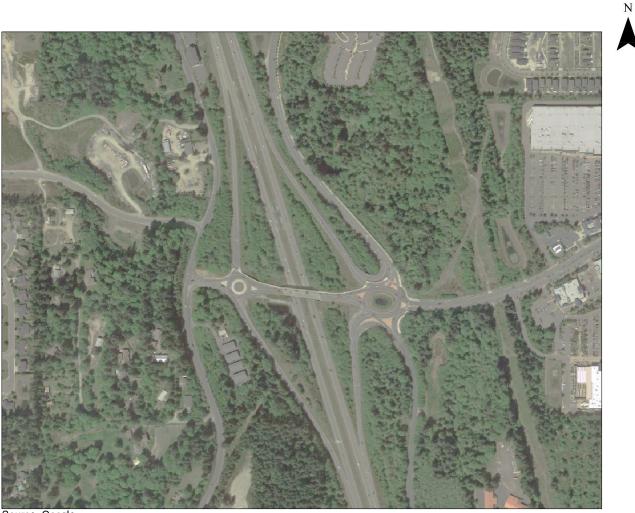
Source: Google

Single Point Urban Interchange (SPUI) Salem, OR Figure 10

#### Raindrop/Dumbbell Interchange

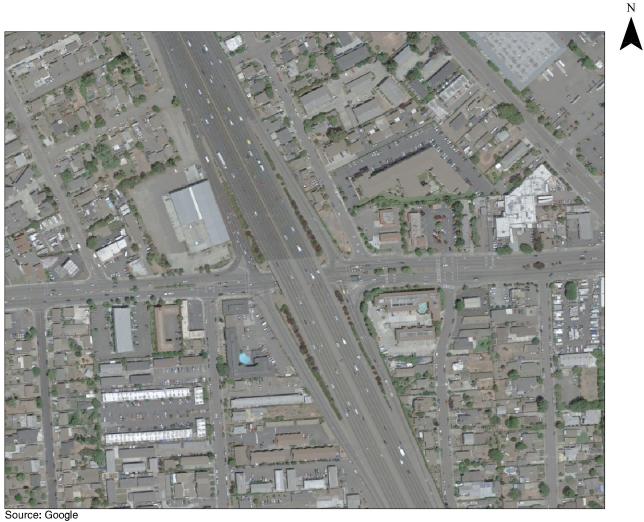
The raindrop interchange, also known as a dumbbell or diamond with roundabouts, is similar to a conventional diamond but replaces the intersections at the ramp termini with roundabouts. Figure 11 illustrates a raindrop interchange in Gig Harbor, WA.

Many of the advantages of the raindrop interchange correspond with the advantages of roundabouts over signalized or other unsignalized intersections. The main advantage is the reduced queueing and off-peak delay at the ramp termini due to the yield-control at entry. Other benefits include a reduced number of conflict points (eight at each roundabout, compared to 11 at each intersection within a conventional diamond), reduced crash severity associated with low vehicle speeds, reduced maintenance costs, and lower traffic noise and emissions associated with a lower number of stops. Usually, fewer approach lanes are needed to serve the same amount of traffic at a roundabout than at a conventional (signalized or unsignalized) ramp terminus.


The cost to install a raindrop interchange is typically greater than the cost of constructing two individual roundabouts because of increased complexity of maintaining traffic through the interchange and realigning the ramps. Typically, large arterial roundabouts can cost \$200,000 to \$400,000 to install, with the total cost of a raindrop interchange in the \$3 to 6 million range depending on the extent of modifications to the ramps.

#### Tight Diamond Interchange

The tight diamond interchange is a form of conventional signalized diamond interchange where the ramps are brought close enough to the over/underpass so that they can function off the same signal controller. Figure 12 illustrates a Tight Diamond Interchange in Hayward, CA.


The main advantage of the tight diamond is the ability to efficiently move traffic through the ramp termini with a single signal controller, resulting in reduced delay and number of stops at the intersections. Another advantage of the tight diamond is that it has a smaller footprint than a conventional diamond. The main disadvantage of a tight diamond is the potential for queue spillback between the ramp termini. Queue spillback can be mitigated through the use of additional storage lanes for turning movements, but this often requires a larger footprint for each ramp terminus, and thus a wider or longer over/underpass.

Using a high-level critical movement analysis with the projected 2040 volumes, the tight diamond would operate below capacity but with slightly worse operations at the northbound I-205 ramp terminus than at the conventional diamond. However, the increased spacing between the southbound I-205 ramp terminus and the Blankenship/Salamo intersection would result in substantially better operations between those two intersections. The cost to construct a tight diamond is highly variable but mainly depends on whether the over/underpass would need to be reconstructed. Given the width of 10<sup>th</sup> Street underneath I-205 is approximately 46 feet (excluding bicycle lanes), it may be possible to accommodate the necessary four lanes there. Thus, if relocating the ramp termini is the main cost, then the tight diamond would probably cost in the \$2 to \$4 million range.



Source: Google

Raindrop Interchange Gig Harbor, WA Figure



Tight Diamond Interchange Hayward, CA

Figure 12

### FINDINGS AND RECOMMENDATIONS

The results of this analysis indicate that full reconstruction of the interchange is not required to address existing and forecast year 2040 traffic operational issues along the 10<sup>th</sup> Street corridor and at the study intersection. Incremental improvements implemented over the next 25 years are sufficient to maintaining safe and acceptable traffic operations. The findings of this analysis and our recommendations are discussed below. The improvements identified under the Corridor Improvements are sufficient to address the issues, and therefore should be carried into the TSP update.

#### Findings

#### Existing Traffic Conditions

- All of the study intersections currently meet their respective mobility standards during the weekday p.m. peak hour, with the exception of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court intersection.
  - The eastbound left-turn movement at this intersection currently operations at LOS F and above capacity during the weekday p.m. peak hour.
- Several movements at the study intersections currently have 95<sup>th</sup> percentile queues that are longer than the available storage and impact operations along the corridor.
- A review of historical crash data did not reveal any trends or patterns that require mitigation associated with the TSP update.

#### Year 2040 (No-Build) Traffic Conditions

- All of the study intersections are expected to meet their respective mobility standards during the weekday p.m. peak hour, with the exception of the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court and 10<sup>th</sup> Street/Willamette Falls Drive intersections.
  - The eastbound left-turn movements at both intersections are expected to operate at LOS F and above capacity during the weekday p.m. peak hour.
- Several additional movements at the study intersections (relative to existing conditions) are expected to have 95<sup>th</sup> percentile queues that are longer than the available storage and impact operations along the corridor.

#### **Alternatives Analysis**

#### *Corridor Improvements Alternative 1*

 This alternative includes several of the improvement projects identified in the 2008 TSP and the 10<sup>th</sup> Street Study and includes access restrictions on 10<sup>th</sup> Street and the extension of 8<sup>th</sup> Court to Willamette Falls Drive.

- ODOT is currently evaluating the potential for the 8<sup>th</sup> Court extension to Willamette Falls Drive as well as the right-of-way acquisition costs associated with many of the other improvements identified in these previous planning documents.
- All of the study intersections are expected to meet their respective mobility standards during the weekday p.m. peak hour with the improvements
- Queuing at many of the study intersections is also expected to be reduced significantly relative to year 2040 (no-build) traffic conditions.
- This alternative would require significant right-of-way acquisition to be completed.

#### Corridor Improvements Alternative 2

- This alternative includes many of the improvement projects identified in the 2008 TSP for the area located between Blankenship-Salamo Road and the I-205 NB Ramps, but it includes a new traffic signal at the 10<sup>th</sup> Street/8<sup>th</sup> Avenue-Court and 10<sup>th</sup> Street/Willamette Fall Drive intersections that is coordinated with the other signals along the corridor.
  - The final design/timing/phasing of the traffic signals at 8<sup>th</sup> Avenue-Court and Willamette Falls Drive will need to minimize impacts to the I-205 NB Ramp terminal.
- All of the study intersections are expected to meet their respective mobility standards during the weekday p.m. peak hour with the improvements
- Queuing at many of the study intersections is also expected to be reduced significantly relative to year 2040 (no-build) traffic conditions.
- This alternative would not require significant right-of-way acquisition to be completed as compared to Alternative 1.

#### Interchange Improvements

- Full reconstruction of the interchange is not needed based on the current 2040 forecast; however, four alternative interchange forms that could potentially accommodate higher forecast volumes were evaluated at a qualitative level including:
  - Diverging Diamond Interchange (DDI),
  - Single Point Urban Interchange (SPUI recommended in the 2008 TSP),
  - Raindrop/Dumbbell Interchange, and
  - Tight Diamond Interchange.
- Each of these alternative interchange forms could potentially accommodate greater traffic volume than either of the corridor improvement alternatives described above; however, they have significantly higher costs.

#### Recommendations

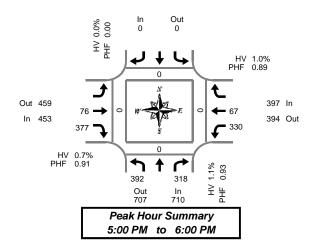
All of the pedestrian, bicycle, and transit improvement projects identified in the 2008 TSP should be carried into the TSP update as planning improvements. Similarly, all of the improvement projects identified under Corridor Improvements Alternative 1 and 2 for the segment of 10<sup>th</sup> Street located between Blankenship-Salamo Road and the I-205 NB Ramps should be carried into the TSP Update, while the remaining improvements at the 8<sup>th</sup> Avenue/8<sup>th</sup> Court and Willamette Falls Drive intersections should be evaluated further following ODOT's evaluation of the 8<sup>th</sup> Court extension feasibility.

#### REFERENCES

- 1. City of West Linn. West Linn Transportation System Plan. 2008
- 2. DKS Associates. 10<sup>th</sup> Street at Willamette Falls Drive Intersection Traffic Control Study. 2011
- 3. Oregon Department of Transportation. Oregon Highway Plan. 2012
- 4. Transportation Research Board. Highway Capacity Manual. 2000.
- 5. National Cooperative Highway Research Program. Report 255 Highway Traffic Data for Urbanized Area Project Planning and Design. 1982.

### APPENDIX

- A. Traffic Counts
- B. Existing Traffic Conditions and Queueing Worksheets
- C. Crash Data
- D. Year 2040 (No-Build) Traffic Conditions and Queuing Worksheets
- E. Year 2040 Traffic Conditions and Queuing Worksheets with Corridor Improvements Alternative 1
- F. Year 2040 Traffic Conditions and Queuing Worksheets with Corridor Improvements Alternative 2


Appendix A Traffic Counts

### **Total Vehicle Summary**



# 10th St & Salamo Rd

#### Wednesday, April 16, 2014 4:00 PM to 6:00 PM



# 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |     | Northb | ound |       | South | oound | Eastb | ound  |       |     | Westk | oound |          |       | Pedes | strians |      |
|-----------------|-----|--------|------|-------|-------|-------|-------|-------|-------|-----|-------|-------|----------|-------|-------|---------|------|
| Start           |     | 10th   | l St |       | 10th  | n St  | Salar | no Rd |       |     | Salan | no Rd | Interval |       | Cros  | swalk   |      |
| Time            | L   |        | R    | Bikes |       | Bikes | Т     | R     | Bikes | L   | Т     | Bikes | Total    | North | South | East    | West |
| 4:00 PM         | 98  |        | 84   | 0     |       | 0     | 32    | 113   | 0     | 80  | 11    | 0     | 418      | 0     | 0     | 0       | 0    |
| 4:15 PM         | 76  |        | 70   | 0     |       | 0     | 24    | 105   | 0     | 93  | 15    | 0     | 383      | 0     | 0     | 0       | 0    |
| 4:30 PM         | 73  |        | 74   | 0     |       | 0     | 25    | 100   | 1     | 61  | 19    | 0     | 352      | 0     | 0     | 0       | 0    |
| 4:45 PM         | 83  |        | 87   | 0     |       | 0     | 27    | 102   | 0     | 74  | 19    | 0     | 392      | 0     | 0     | 0       | 0    |
| 5:00 PM         | 88  |        | 70   | 0     |       | 0     | 18    | 104   | 0     | 83  | 14    | 0     | 377      | 0     | 0     | 0       | 0    |
| 5:15 PM         | 105 |        | 77   | 0     |       | 0     | 26    | 87    | 0     | 81  | 21    | 0     | 397      | 0     | 0     | 0       | 0    |
| 5:30 PM         | 90  |        | 89   | 0     |       | 0     | 12    | 82    | 0     | 91  | 20    | 0     | 384      | 0     | 0     | 0       | 0    |
| 5:45 PM         | 109 |        | 82   | 0     |       | 0     | 20    | 104   | 0     | 75  | 12    | 0     | 402      | 0     | 0     | 0       | 0    |
| Total<br>Survey | 722 |        | 633  | 0     |       | 0     | 184   | 797   | 1     | 638 | 131   | 0     | 3,105    | 0     | 0     | 0       | 0    |

#### Peak Hour Summary

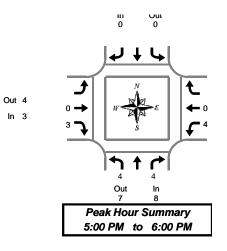
5:00 PM to 6:00 PM

| By       |     |     | <b>bound</b><br>h St |       |    | South<br>10th | <b>bound</b><br>h St |       |     | Eastb<br>Salan | ound<br>no Rd |       |     |     | no Rd |       | Total |       | Pedes<br>Cross | <b>trians</b><br>swalk |      |
|----------|-----|-----|----------------------|-------|----|---------------|----------------------|-------|-----|----------------|---------------|-------|-----|-----|-------|-------|-------|-------|----------------|------------------------|------|
| Approach | In  | Out | Total                | Bikes | In | Out           | Total                | Bikes | In  | Out            | Total         | Bikes | In  | Out | Total | Bikes |       | North | South          | East                   | West |
| Volume   | 710 | 707 | 1,417                | 0     | 0  | 0             | 0                    | 0     | 453 | 459            | 912           | 0     | 397 | 394 | 791   | 0     | 1,560 | 0     | 0              | 0                      | 0    |
| %HV      |     | 1.1 | 1%                   |       |    | 0.0           | )%                   |       |     | 0.7            | 7%            |       |     | 1.0 | )%    |       | 1.0%  |       |                |                        |      |
| PHF      |     | 0.  | 93                   |       |    | 0.0           | 00                   |       |     | 0.9            | 91            |       |     | 0.  | 89    |       | 0.97  |       |                |                        |      |

| Bv       |      |     | bound     |       |    |     | bound |       |    |            | ound       |       |      |            | oound |       |       |
|----------|------|-----|-----------|-------|----|-----|-------|-------|----|------------|------------|-------|------|------------|-------|-------|-------|
| Movement | L    | 10t | h St<br>R | Total |    | 10t | h St  | Total |    | Salar<br>T | no Rd<br>R | Total | L    | Salan<br>T | no Rd | Total | Total |
| Volume   | 392  |     | 318       | 710   |    |     |       | 0     |    | 76         | 377        | 453   | 330  | 67         |       | 397   | 1,560 |
| %HV      | 1.0% | NA  | 1.3%      | 1.1%  | NA | NA  | NA    | 0.0%  | NA | 0.0%       | 0.8%       | 0.7%  | 1.2% | 0.0%       | NA    | 1.0%  | 1.0%  |
| PHF      | 0.90 |     | 0.89      | 0.93  |    |     |       | 0.00  |    | 0.73       | 0.91       | 0.91  | 0.91 | 0.80       |       | 0.89  | 0.97  |

#### Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start |     | <b>bound</b><br>h St |       | South<br>10t | <b>bound</b><br>h St |       | Eastb<br>Salan |     |       |     | Westl<br>Salar | <b>bound</b><br>no Rd |       | Interval |       | Pedes<br>Cross | s <b>trians</b><br>Swalk |      |
|-------------------|-----|----------------------|-------|--------------|----------------------|-------|----------------|-----|-------|-----|----------------|-----------------------|-------|----------|-------|----------------|--------------------------|------|
| Time              | L   | R                    | Bikes |              |                      | Bikes | Н              | R   | Bikes | L   | Т              |                       | Bikes | Total    | North | South          | East                     | West |
| 4:00 PM           | 330 | 315                  | 0     |              |                      | 0     | 108            | 420 | 1     | 308 | 64             |                       | 0     | 1,545    | 0     | 0              | 0                        | 0    |
| 4:15 PM           | 320 | 301                  | 0     |              |                      | 0     | 94             | 411 | 1     | 311 | 67             |                       | 0     | 1,504    | 0     | 0              | 0                        | 0    |
| 4:30 PM           | 349 | 308                  | 0     |              |                      | 0     | 96             | 393 | 1     | 299 | 73             |                       | 0     | 1,518    | 0     | 0              | 0                        | 0    |
| 4:45 PM           | 366 | 323                  | 0     |              |                      | 0     | 83             | 375 | 0     | 329 | 74             |                       | 0     | 1,550    | 0     | 0              | 0                        | 0    |
| 5:00 PM           | 392 | 318                  | 0     |              |                      | 0     | 76             | 377 | 0     | 330 | 67             |                       | 0     | 1,560    | 0     | 0              | 0                        | 0    |


### **Heavy Vehicle Summary**



# 10th St & Salamo Rd

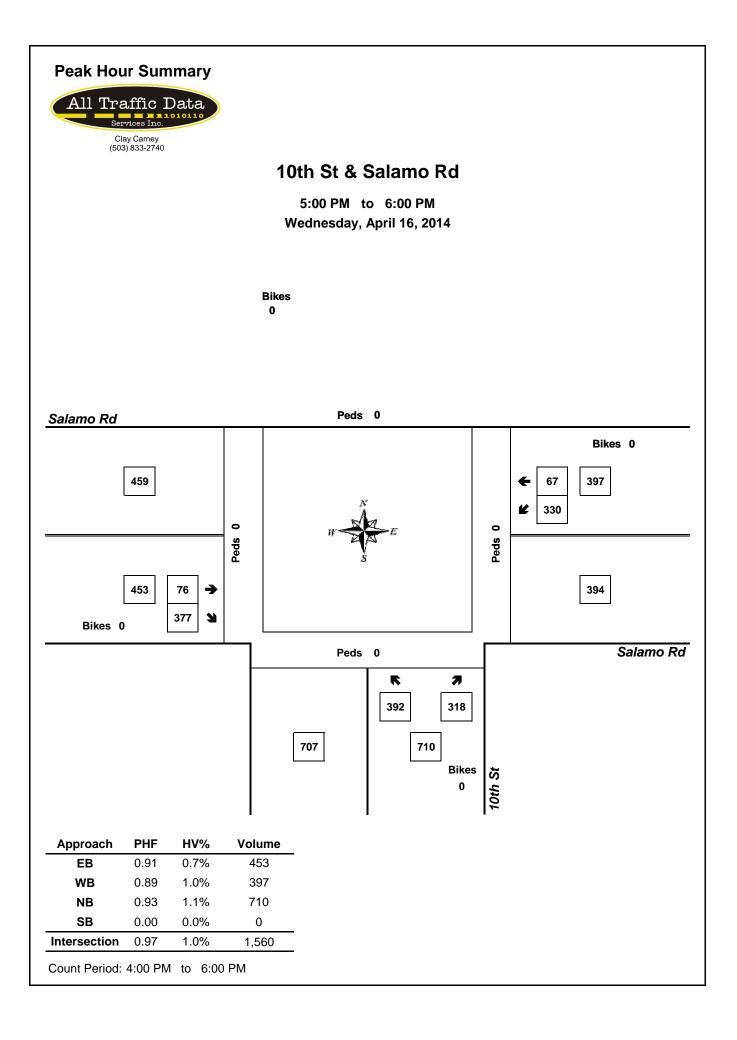
#### Wednesday, April 16, 2014 4:00 PM to 6:00 PM

# M to 6:00 PM



# Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |   | North | bound |       | South | bound |       | Eastb | ound  |       |    | West  | bound |       |          |
|-----------------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|----|-------|-------|-------|----------|
| Start           |   | 10t   | h St  |       | 10t   | h St  |       | Salar | no Rd |       |    | Salar | no Rd |       | Interval |
| Time            | L |       | R     | Total |       |       | Total | Т     | R     | Total | L  | Т     |       | Total | Total    |
| 4:00 PM         | 2 |       | 1     | 3     |       |       | 0     | 0     | 3     | 3     | 2  | 0     |       | 2     | 8        |
| 4:15 PM         | 1 |       | 0     | 1     |       |       | 0     | 0     | 4     | 4     | 4  | 0     |       | 4     | 9        |
| 4:30 PM         | 2 |       | 0     | 2     |       |       | 0     | 0     | 0     | 0     | 1  | 0     |       | 1     | 3        |
| 4:45 PM         | 0 |       | 2     | 2     |       |       | 0     | 0     | 1     | 1     | 0  | 0     |       | 0     | 3        |
| 5:00 PM         | 1 |       | 3     | 4     |       |       | 0     | 0     | 2     | 2     | 0  | 0     |       | 0     | 6        |
| 5:15 PM         | 0 |       | 1     | 1     |       |       | 0     | 0     | 0     | 0     | 2  | 0     |       | 2     | 3        |
| 5:30 PM         | 1 |       | 0     | 1     |       |       | 0     | 0     | 0     | 0     | 1  | 0     |       | 1     | 2        |
| 5:45 PM         | 2 |       | 0     | 2     |       |       | 0     | 0     | 1     | 1     | 1  | 0     |       | 1     | 4        |
| Total<br>Survey | 9 |       | 7     | 16    |       |       | 0     | 0     | 11    | 11    | 11 | 0     |       | 11    | 38       |

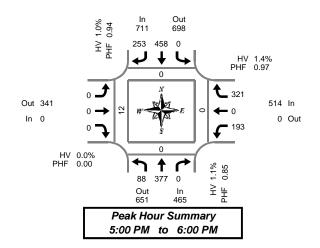

# Heavy Vehicle Peak Hour Summary 5:00 PM to 6:00 PM

| By       |      |     | <b>bound</b><br>h St |      |     | <b>bound</b><br>h St |      |     | no Rd |      |     | <b>bound</b><br>no Rd | Total |
|----------|------|-----|----------------------|------|-----|----------------------|------|-----|-------|------|-----|-----------------------|-------|
| Approach | In   | Out | Total                | In   | Out | Total                | In   | Out | Total | In   | Out | Total                 |       |
| Volume   | 8    | 7   | 15                   | 0    | 0   | 0                    | 3    | 4   | 7     | 4    | 4   | 8                     | 15    |
| PHF      | 0.25 |     |                      | 0.00 |     |                      | 0.11 |     |       | 0.14 |     |                       | 0.19  |

| By<br>Movement |      | North<br>10t | <b>bound</b><br>h St |       |  | <b>bound</b><br>h St |       | Eastb<br>Salan | ound<br>no Rd |       |      |      | <b>bound</b><br>no Rd |       | Total |
|----------------|------|--------------|----------------------|-------|--|----------------------|-------|----------------|---------------|-------|------|------|-----------------------|-------|-------|
| wovernerit     | _    |              | R                    | Total |  |                      | Total | Т              | R             | Total | L    | Т    |                       | Total |       |
| Volume         | 4    |              | 4                    | 8     |  |                      | 0     | 0              | 3             | 3     | 4    | 0    |                       | 4     | 15    |
| PHF            | 0.20 |              | 0.17                 | 0.25  |  |                      | 0.00  | 0.00           | 0.11          | 0.11  | 0.14 | 0.00 |                       | 0.14  | 0.19  |

#### Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval |   | North | bound |       | South | bound |       | Eastb | ound  |       |   | West  | oound |       |          |
|----------|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|-------|-------|-------|----------|
| Start    |   | 10ti  | h St  |       | 10tl  | h St  |       | Salan | no Rd |       |   | Salar | no Rd |       | Interval |
| Time     | L |       | R     | Total |       |       | Total | Т     | R     | Total | L | Т     |       | Total | Total    |
| 4:00 PM  | 5 |       | 3     | 8     |       |       | 0     | 0     | 8     | 8     | 7 | 0     |       | 7     | 23       |
| 4:15 PM  | 4 |       | 5     | 9     |       |       | 0     | 0     | 7     | 7     | 5 | 0     |       | 5     | 21       |
| 4:30 PM  | 3 |       | 6     | 9     |       |       | 0     | 0     | 3     | 3     | 3 | 0     |       | 3     | 15       |
| 4:45 PM  | 2 |       | 6     | 8     |       |       | 0     | 0     | 3     | 3     | 3 | 0     |       | 3     | 14       |
| 5:00 PM  | 4 |       | 4     | 8     |       |       | 0     | 0     | 3     | 3     | 4 | 0     |       | 4     | 15       |




### **Total Vehicle Summary**



# 10th St & I-205 SB Ramps

Wednesday, April 16, 2014 4:00 PM to 6:00 PM



# 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |     | North | bound |       |   | South | bound |       |   | Eastb    | ound   |       |     | Westl    | bound   |       |          |       | Pedes | trians |      |
|-----------------|-----|-------|-------|-------|---|-------|-------|-------|---|----------|--------|-------|-----|----------|---------|-------|----------|-------|-------|--------|------|
| Start           |     | 10t   | h St  |       |   | 10tł  | h St  |       |   | I-205 SE | 3 Ramp | S     |     | I-205 SE | 3 Ramps | 6     | Interval |       | Cross | swalk  |      |
| Time            | L   | Т     | R     | Bikes | L | Т     | R     | Bikes | L | Т        | R      | Bikes | L   | Т        | R       | Bikes | Total    | North | South | East   | West |
| 4:00 PM         | 18  | 107   | 0     | 0     | 0 | 136   | 56    | 0     | 0 | 0        | 0      | 0     | 42  | 0        | 71      | 0     | 430      | 0     | 0     | 0      | 0    |
| 4:15 PM         | 31  | 81    | 0     | 0     | 0 | 139   | 61    | 0     | 0 | 0        | 0      | 0     | 41  | 0        | 75      | 0     | 428      | 0     | 0     | 0      | 0    |
| 4:30 PM         | 23  | 80    | 0     | 0     | 0 | 109   | 53    | 1     | 0 | 0        | 0      | 0     | 43  | 0        | 56      | 0     | 364      | 0     | 0     | 0      | 0    |
| 4:45 PM         | 24  | 104   | 0     | 0     | 0 | 120   | 56    | 0     | 0 | 0        | 0      | 0     | 53  | 0        | 80      | 0     | 437      | 0     | 0     | 0      | 0    |
| 5:00 PM         | 23  | 72    | 0     | 0     | 0 | 121   | 69    | 0     | 0 | 0        | 0      | 0     | 46  | 0        | 82      | 0     | 413      | 0     | 0     | 0      | 0    |
| 5:15 PM         | 22  | 96    | 0     | 0     | 0 | 120   | 53    | 0     | 0 | 0        | 0      | 0     | 35  | 0        | 86      | 0     | 412      | 0     | 0     | 0      | 3    |
| 5:30 PM         | 18  | 97    | 0     | 0     | 0 | 101   | 65    | 0     | 0 | 0        | 0      | 0     | 52  | 0        | 80      | 0     | 413      | 0     | 0     | 0      | 5    |
| 5:45 PM         | 25  | 112   | 0     | 0     | 0 | 116   | 66    | 0     | 0 | 0        | 0      | 0     | 60  | 0        | 73      | 0     | 452      | 0     | 0     | 0      | 4    |
| Total<br>Survey | 184 | 749   | 0     | 0     | 0 | 962   | 479   | 1     | 0 | 0        | 0      | 0     | 372 | 0        | 603     | 0     | 3,349    | 0     | 0     | 0      | 12   |

#### Peak Hour Summary

5:00 PM to 6:00 PM

| By       |     |     | <b>bound</b><br>h St |       |     | South<br>10t | <b>bound</b><br>h St |       |    | Eastb<br>I-205 SE | ound<br>3 Ramps | 6     |     | Westb<br>I-205 SE |       | 6     | Total |       | Pedes<br>Cross | s <b>trians</b><br>Swalk |      |
|----------|-----|-----|----------------------|-------|-----|--------------|----------------------|-------|----|-------------------|-----------------|-------|-----|-------------------|-------|-------|-------|-------|----------------|--------------------------|------|
| Approach | In  | Out | Total                | Bikes | In  | Out          | Total                | Bikes | In | Out               | Total           | Bikes | In  | Out               | Total | Bikes |       | North | South          | East                     | West |
| Volume   | 465 | 651 | 1,116                | 0     | 711 | 698          | 1,409                | 0     | 0  | 341               | 341             | 0     | 514 | 0                 | 514   | 0     | 1,690 | 0     | 0              | 0                        | 12   |
| %HV      |     | 1.1 | 1%                   |       |     | 1.0%         |                      |       |    | 0.0               | )%              |       |     | 1.4               | 1%    |       | 1.1%  |       |                |                          |      |
| PHF      |     | 0.  | 85                   |       |     | 0.94         |                      |       |    | 0.                | 00              |       |     | 0.9               | 97    |       | 0.93  |       |                |                          |      |

| Bv             |      | North | bound |       |      | South | bound |       |      | Eastb    | ound   |       |      | West     | oound   |       |       |
|----------------|------|-------|-------|-------|------|-------|-------|-------|------|----------|--------|-------|------|----------|---------|-------|-------|
| Dy<br>Movement |      | 10ti  | n St  |       |      | 10tl  | h St  |       |      | I-205 SE | 8 Ramp | S     |      | I-205 SE | B Ramps | 6     | Total |
| Wovernerit     | L    | Т     | R     | Total |      | Т     | R     | Total | Ц    | Т        | R      | Total | L    | Т        | R       | Total |       |
| Volume         | 88   | 377   | 0     | 465   | 0    | 458   | 253   | 711   | 0    | 0        | 0      | 0     | 193  | 0        | 321     | 514   | 1,690 |
| %HV            | 2.3% | 0.8%  | 0.0%  | 1.1%  | 0.0% | 0.4%  | 2.0%  | 1.0%  | 0.0% | 0.0%     | 0.0%   | 0.0%  | 1.0% | 0.0%     | 1.6%    | 1.4%  | 1.1%  |
| PHF            | 0.88 | 0.84  | 0.00  | 0.85  | 0.00 | 0.95  | 0.92  | 0.94  | 0.00 | 0.00     | 0.00   | 0.00  | 0.80 | 0.00     | 0.93    | 0.97  | 0.93  |

### Rolling Hour Summary

#### 4:00 PM to 6:00 PM

| Interval<br>Start |     |     | <b>bound</b><br>h St |       |   | South<br>10th |     |       |   | Eastb<br>I-205 SE | ound<br>3 Ramps | 6     |     | Westl<br>I-205 SE | <b>bound</b><br>3 Ramps | s     | Interval |       | Pedes<br>Cross | s <b>trians</b><br>Swalk |      |
|-------------------|-----|-----|----------------------|-------|---|---------------|-----|-------|---|-------------------|-----------------|-------|-----|-------------------|-------------------------|-------|----------|-------|----------------|--------------------------|------|
| Time              | L   | Т   | R                    | Bikes | L | Т             | R   | Bikes | L | Т                 | R               | Bikes | L   | Т                 | R                       | Bikes | Total    | North | South          | East                     | West |
| 4:00 PM           | 96  | 372 | 0                    | 0     | 0 | 504           | 226 | 1     | 0 | 0                 | 0               | 0     | 179 | 0                 | 282                     | 0     | 1,659    | 0     | 0              | 0                        | 0    |
| 4:15 PM           | 101 | 337 | 0                    | 0     | 0 | 489           | 239 | 1     | 0 | 0                 | 0               | 0     | 183 | 0                 | 293                     | 0     | 1,642    | 0     | 0              | 0                        | 0    |
| 4:30 PM           | 92  | 352 | 0                    | 0     | 0 | 470           | 231 | 1     | 0 | 0                 | 0               | 0     | 177 | 0                 | 304                     | 0     | 1,626    | 0     | 0              | 0                        | 3    |
| 4:45 PM           | 87  | 369 | 0                    | 0     | 0 | 462           | 243 | 0     | 0 | 0                 | 0               | 0     | 186 | 0                 | 328                     | 0     | 1,675    | 0     | 0              | 0                        | 8    |
| 5:00 PM           | 88  | 377 | 0                    | 0     | 0 | 458           | 253 | 0     | 0 | 0                 | 0               | 0     | 193 | 0                 | 321                     | 0     | 1,690    | 0     | 0              | 0                        | 12   |

### **Heavy Vehicle Summary**

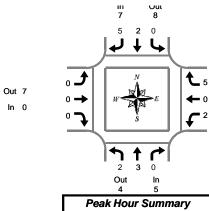


# 10th St & I-205 SB Ramps

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

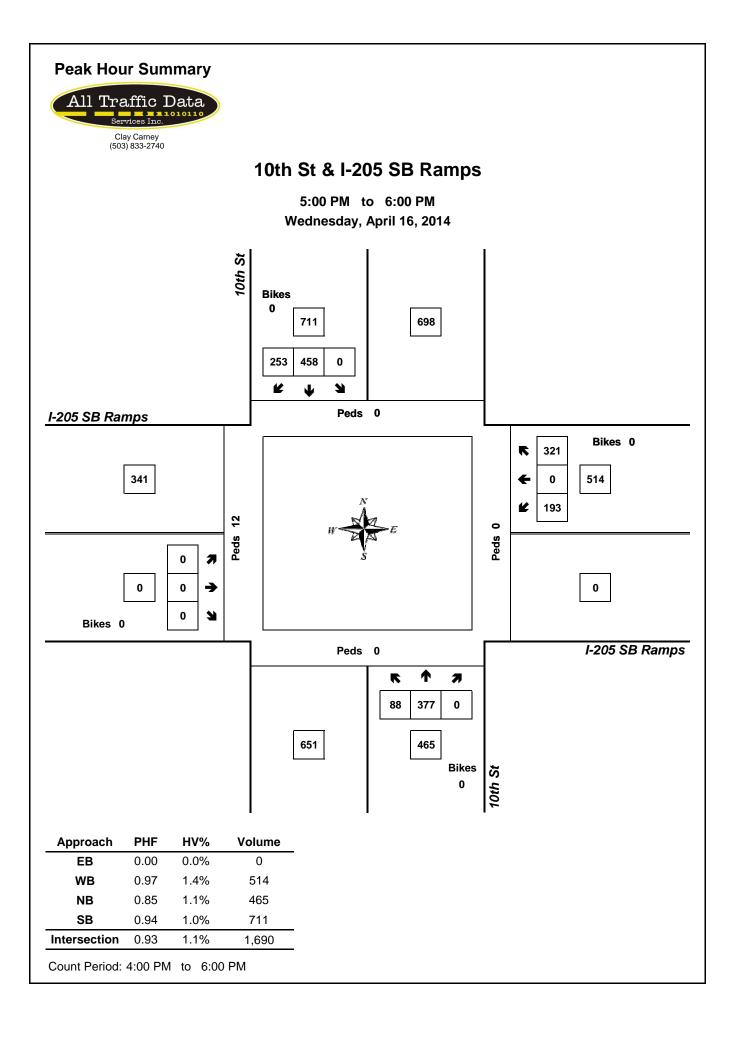
#### Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |   |     | bound |       |   |     | bound |       |   |          | oound  |       |   |          | bound  |       |          |
|-----------------|---|-----|-------|-------|---|-----|-------|-------|---|----------|--------|-------|---|----------|--------|-------|----------|
| Start           |   | 10t | h St  |       |   | 10t | h St  |       |   | I-205 SE | 3 Ramp | 3     |   | I-205 SE | 3 Ramp | S     | Interval |
| Time            | L | Т   | R     | Total | Ц | Т   | R     | Total | Ц | Т        | R      | Total | Ц | Т        | R      | Total | Total    |
| 4:00 PM         | 0 | 2   | 0     | 2     | 0 | 3   | 1     | 4     | 0 | 0        | 0      | 0     | 1 | 0        | 0      | 1     | 7        |
| 4:15 PM         | 2 | 0   | 0     | 2     | 0 | 3   | 5     | 8     | 0 | 0        | 0      | 0     | 0 | 0        | 1      | 1     | 11       |
| 4:30 PM         | 1 | 3   | 0     | 4     | 0 | 1   | 0     | 1     | 0 | 0        | 0      | 0     | 1 | 0        | 0      | 1     | 6        |
| 4:45 PM         | 1 | 1   | 0     | 2     | 0 | 0   | 1     | 1     | 0 | 0        | 0      | 0     | 1 | 0        | 1      | 2     | 5        |
| 5:00 PM         | 0 | 1   | 0     | 1     | 0 | 0   | 2     | 2     | 0 | 0        | 0      | 0     | 0 | 0        | 3      | 3     | 6        |
| 5:15 PM         | 0 | 0   | 0     | 0     | 0 | 0   | 2     | 2     | 0 | 0        | 0      | 0     | 0 | 0        | 1      | 1     | 3        |
| 5:30 PM         | 0 | 1   | 0     | 1     | 0 | 0   | 1     | 1     | 0 | 0        | 0      | 0     | 1 | 0        | 0      | 1     | 3        |
| 5:45 PM         | 2 | 1   | 0     | 3     | 0 | 2   | 0     | 2     | 0 | 0        | 0      | 0     | 1 | 0        | 1      | 2     | 7        |
| Total<br>Survey | 6 | 9   | 0     | 15    | 0 | 9   | 12    | 21    | 0 | 0        | 0      | 0     | 5 | 0        | 7      | 12    | 48       |


#### Heavy Vehicle Peak Hour Summary 5:00 PM to 6:00 PM

| By       |      |      | <b>bound</b><br>h St |    |     | <b>bound</b><br>h St |      |     | oound<br>3 Ramps |      |     | <b>bound</b><br>3 Ramps | Total |
|----------|------|------|----------------------|----|-----|----------------------|------|-----|------------------|------|-----|-------------------------|-------|
| Approach | In   | Out  | Total                | In | Out | Total                | In   | Out | Total            | In   | Out | Total                   |       |
| Volume   | 5    | 4    | 9                    | 7  | 8   | 15                   | 0    | 7   | 7                | 7    | 0   | 7                       | 19    |
| PHF      | 0.16 | 0.16 |                      |    |     |                      | 0.00 |     |                  | 0.29 |     |                         | 0.20  |

| Bv         |      |      | bound |       |      |      | bound |       |      |          | ound    |       |      | West     |         |       |       |
|------------|------|------|-------|-------|------|------|-------|-------|------|----------|---------|-------|------|----------|---------|-------|-------|
| Movement   |      | 10t  | h St  |       |      | 10tl | h St  |       |      | I-205 SE | 3 Ramps | 3     |      | I-205 SE | 3 Ramps | ;     | Total |
| wovernerit |      | Т    | R     | Total |      | Т    | R     | Total | L    | Т        | R       | Total |      | Т        | R       | Total |       |
| Volume     | 2    | 3    | 0     | 5     | 0    | 2    | 5     | 7     | 0    | 0        | 0       | 0     | 2    | 0        | 5       | 7     | 19    |
| PHF        | 0.13 | 0.15 | 0.00  | 0.16  | 0.00 | 0.07 | 0.21  | 0.13  | 0.00 | 0.00     | 0.00    | 0.00  | 0.25 | 0.00     | 0.25    | 0.29  | 0.20  |


#### Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start |   |   | <b>bound</b><br>h St |       |   |   | <b>bound</b><br>h St |       |   | Eastb<br>I-205 SE | ound<br>3 Ramps | 6     |   | Westi<br>I-205 SE |   | 6     | Interval |
|-------------------|---|---|----------------------|-------|---|---|----------------------|-------|---|-------------------|-----------------|-------|---|-------------------|---|-------|----------|
| Time              | L | Т | R                    | Total | L | Т | R                    | Total | L | Т                 | R               | Total | L | Т                 | R | Total | Total    |
| 4:00 PM           | 4 | 6 | 0                    | 10    | 0 | 7 | 7                    | 14    | 0 | 0                 | 0               | 0     | 3 | 0                 | 2 | 5     | 29       |
| 4:15 PM           | 4 | 5 | 0                    | 9     | 0 | 4 | 8                    | 12    | 0 | 0                 | 0               | 0     | 2 | 0                 | 5 | 7     | 28       |
| 4:30 PM           | 2 | 5 | 0                    | 7     | 0 | 1 | 5                    | 6     | 0 | 0                 | 0               | 0     | 2 | 0                 | 5 | 7     | 20       |
| 4:45 PM           | 1 | 3 | 0                    | 4     | 0 | 0 | 6                    | 6     | 0 | 0                 | 0               | 0     | 2 | 0                 | 5 | 7     | 17       |
| 5:00 PM           | 2 | 3 | 0                    | 5     | 0 | 2 | 5                    | 7     | 0 | 0                 | 0               | 0     | 2 | 0                 | 5 | 7     | 19       |



5:00 PM to 6:00 PM

**(**)



### **Total Vehicle Summary**



# 10th St & I-205 NB Ramps

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

#### Out 443 HV 1.2% PHF 0.92 In 675 0 422 253 ┛ ¥ 4 HV 0.0% PHF 0.00 0 81 32 €\_ ₀ Out 0 0 In 0 🔶 **—** 0 In 160 578 Out • 0 79 0 HV 1.3% PHF 0.75 1 1 1 1.5% 0.93 0 362 325 , PHF PHF Out 501 In 687 Peak Hour Summary 4:15 PM to 5:15 PM

15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |   | North | bound |       |     | South | bound |       |     | Easth    | ound   |       |   | West     | bound  |       |          |       | Pedes | trians |      |
|-----------------|---|-------|-------|-------|-----|-------|-------|-------|-----|----------|--------|-------|---|----------|--------|-------|----------|-------|-------|--------|------|
| Start           |   | 10t   | h St  |       |     | 10th  | n St  |       |     | I-205 NE | 3 Ramp | s     |   | I-205 NE | 3 Ramp | s     | Interval |       | Cross | swalk  |      |
| Time            | L | Т     | R     | Bikes | Ц   | Т     | R     | Bikes | Ц   | Т        | R      | Bikes | Ц | Т        | R      | Bikes | Total    | North | South | East   | West |
| 4:00 PM         | 0 | 94    | 46    | 0     | 73  | 100   | 0     | 0     | 30  | 0        | 18     | 0     | 0 | 0        | 0      | 0     | 361      | 0     | 0     | 0      | 1    |
| 4:15 PM         | 0 | 87    | 84    | 0     | 69  | 114   | 0     | 0     | 27  | 0        | 16     | 0     | 0 | 0        | 0      | 0     | 397      | 0     | 0     | 0      | 1    |
| 4:30 PM         | 0 | 83    | 77    | 0     | 56  | 99    | 0     | 1     | 23  | 0        | 30     | 0     | 0 | 0        | 0      | 0     | 368      | 0     | 0     | 0      | 1    |
| 4:45 PM         | 0 | 104   | 67    | 0     | 62  | 111   | 0     | 0     | 13  | 0        | 21     | 0     | 0 | 0        | 0      | 0     | 378      | 0     | 0     | 0      | 1    |
| 5:00 PM         | 0 | 88    | 97    | 0     | 66  | 98    | 0     | 0     | 18  | 0        | 12     | 0     | 0 | 0        | 0      | 0     | 379      | 0     | 0     | 0      | 0    |
| 5:15 PM         | 0 | 86    | 65    | 0     | 65  | 91    | 0     | 0     | 30  | 0        | 14     | 0     | 0 | 0        | 0      | 0     | 351      | 0     | 0     | 0      | 3    |
| 5:30 PM         | 0 | 82    | 94    | 0     | 43  | 112   | 0     | 0     | 31  | 0        | 25     | 0     | 0 | 0        | 0      | 0     | 387      | 0     | 0     | 0      | 5    |
| 5:45 PM         | 0 | 95    | 53    | 0     | 44  | 126   | 0     | 0     | 47  | 1        | 35     | 0     | 0 | 0        | 0      | 0     | 401      | 0     | 0     | 0      | 4    |
| Total<br>Survey | 0 | 719   | 583   | 0     | 478 | 851   | 0     | 1     | 219 | 1        | 171    | 0     | 0 | 0        | 0      | 0     | 3,022    | 0     | 0     | 0      | 16   |

#### Peak Hour Summary

4:15 PM to 5:15 PM

| By       |         |     | <b>bound</b><br>h St |       |      | South<br>10t |       |       |     | Eastb<br>I-205 NE |       | 6     |    | Westb<br>I-205 NE |       | 6     | Total |       | Pedes<br>Cross | <b>trians</b><br>swalk |      |
|----------|---------|-----|----------------------|-------|------|--------------|-------|-------|-----|-------------------|-------|-------|----|-------------------|-------|-------|-------|-------|----------------|------------------------|------|
| Approach | In      | Out | Total                | Bikes | In   | Out          | Total | Bikes | In  | Out               | Total | Bikes | In | Out               | Total | Bikes |       | North | South          | East                   | West |
| Volume   | 687     | 501 | 1,188                | 0     | 675  | 443          | 1,118 | 1     | 160 | 0                 | 160   | 0     | 0  | 578               | 578   | 0     | 1,522 | 0     | 0              | 0                      | 3    |
| %HV      |         | 1.  | 5%                   |       |      | 1.2          | 2%    |       |     | 1.3               | 3%    |       |    | 0.0               | )%    |       | 1.3%  |       |                |                        |      |
| PHF      | IF 0.93 |     |                      |       | 0.92 |              |       | 0.75  |     |                   | 0.00  |       |    |                   | 0.96  |       |       |       |                |                        |      |

| Bv        |         | North | bound |       |         | South | bound |       |          | Eastb  | ound |       |          | West    | oound |       |       |
|-----------|---------|-------|-------|-------|---------|-------|-------|-------|----------|--------|------|-------|----------|---------|-------|-------|-------|
| Movement  | 10th St |       |       |       | 10th St |       |       |       | I-205 NE | 8 Ramp | s    |       | I-205 NE | 3 Ramps | 5     | Total |       |
| wovernent | L       | Т     | R     | Total | L       | Т     | R     | Total | L        | Т      | R    | Total | L        | Т       | R     | Total |       |
| Volume    | 0       | 362   | 325   | 687   | 253     | 422   | 0     | 675   | 81       | 0      | 79   | 160   | 0        | 0       | 0     | 0     | 1,522 |
| %HV       | 0.0%    | 1.9%  | 0.9%  | 1.5%  | 0.8%    | 1.4%  | 0.0%  | 1.2%  | 2.5%     | 0.0%   | 0.0% | 1.3%  | 0.0%     | 0.0%    | 0.0%  | 0.0%  | 1.3%  |
| PHF       | 0.00    | 0.87  | 0.84  | 0.93  | 0.92    | 0.93  | 0.00  | 0.92  | 0.75     | 0.00   | 0.66 | 0.75  | 0.00     | 0.00    | 0.00  | 0.00  | 0.96  |

### Rolling Hour Summary

4:00 PM to 6:00 PM

| Interval<br>Start |   |     |     |       | Southbound<br>10th St |     |   |       |     | Eastb<br>I-205 NE | ound<br>3 Ramp | 5     |   | Westa<br>I-205 NE |   | 5     | Interval |       |       | s <b>trians</b><br>swalk |      |
|-------------------|---|-----|-----|-------|-----------------------|-----|---|-------|-----|-------------------|----------------|-------|---|-------------------|---|-------|----------|-------|-------|--------------------------|------|
| Time              | L | Т   | R   | Bikes | L                     | Т   | R | Bikes | L   | Т                 | R              | Bikes | L | Т                 | R | Bikes | Total    | North | South | East                     | West |
| 4:00 PM           | 0 | 368 | 274 | 0     | 260                   | 424 | 0 | 1     | 93  | 0                 | 85             | 0     | 0 | 0                 | 0 | 0     | 1,504    | 0     | 0     | 0                        | 4    |
| 4:15 PM           | 0 | 362 | 325 | 0     | 253                   | 422 | 0 | 1     | 81  | 0                 | 79             | 0     | 0 | 0                 | 0 | 0     | 1,522    | 0     | 0     | 0                        | 3    |
| 4:30 PM           | 0 | 361 | 306 | 0     | 249                   | 399 | 0 | 1     | 84  | 0                 | 77             | 0     | 0 | 0                 | 0 | 0     | 1,476    | 0     | 0     | 0                        | 5    |
| 4:45 PM           | 0 | 360 | 323 | 0     | 236                   | 412 | 0 | 0     | 92  | 0                 | 72             | 0     | 0 | 0                 | 0 | 0     | 1,495    | 0     | 0     | 0                        | 9    |
| 5:00 PM           | 0 | 351 | 309 | 0     | 218                   | 427 | 0 | 0     | 126 | 1                 | 86             | 0     | 0 | 0                 | 0 | 0     | 1,518    | 0     | 0     | 0                        | 12   |

### **Heavy Vehicle Summary**

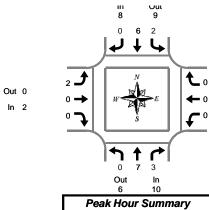


# 10th St & I-205 NB Ramps

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

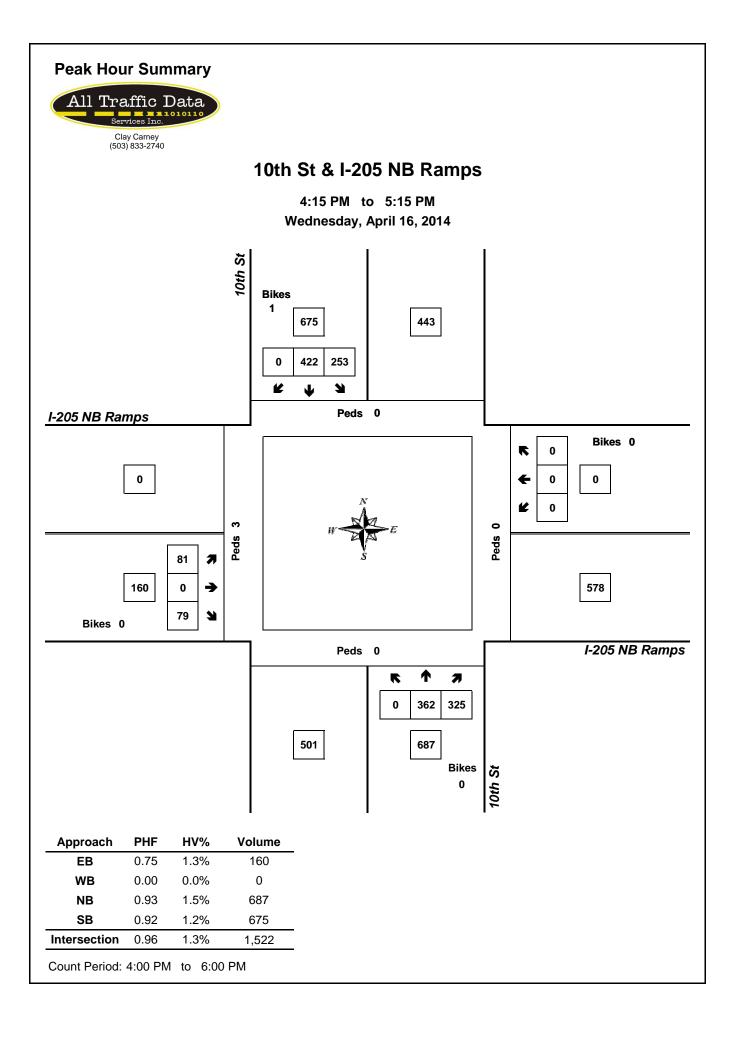
#### Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval<br>Start |   |     | <b>bound</b><br>h St |              |   |     | <b>bound</b><br>h St |              |   | Eastb<br>I-205 NE | ound<br>Romo | •     |   | Interval |   |       |       |
|-------------------|---|-----|----------------------|--------------|---|-----|----------------------|--------------|---|-------------------|--------------|-------|---|----------|---|-------|-------|
|                   |   | 101 |                      | <b>T</b> ( ) |   | 101 |                      | <b>T</b> ( ) |   | 1-205 N           | · · ·        |       |   | 1-205 N  |   |       |       |
| Time              | L |     | R                    | Total        | L | I   | R                    | Total        | L |                   | R            | Total | L | I        | R | Total | Total |
| 4:00 PM           | 0 | 3   | 0                    | 3            | 1 | 3   | 0                    | 4            | 0 | 0                 | 0            | 0     | 0 | 0        | 0 | 0     | 7     |
| 4:15 PM           | 0 | 2   | 2                    | 4            | 1 | 4   | 0                    | 5            | 0 | 0                 | 0            | 0     | 0 | 0        | 0 | 0     | 9     |
| 4:30 PM           | 0 | 2   | 1                    | 3            | 1 | 1   | 0                    | 2            | 1 | 0                 | 0            | 1     | 0 | 0        | 0 | 0     | 6     |
| 4:45 PM           | 0 | 3   | 0                    | 3            | 0 | 1   | 0                    | 1            | 0 | 0                 | 0            | 0     | 0 | 0        | 0 | 0     | 4     |
| 5:00 PM           | 0 | 0   | 0                    | 0            | 0 | 0   | 0                    | 0            | 1 | 0                 | 0            | 1     | 0 | 0        | 0 | 0     | 1     |
| 5:15 PM           | 0 | 0   | 1                    | 1            | 0 | 0   | 0                    | 0            | 0 | 0                 | 0            | 0     | 0 | 0        | 0 | 0     | 1     |
| 5:30 PM           | 0 | 0   | 0                    | 0            | 0 | 1   | 0                    | 1            | 1 | 0                 | 0            | 1     | 0 | 0        | 0 | 0     | 2     |
| 5:45 PM           | 0 | 2   | 0                    | 2            | 0 | 2   | 0                    | 2            | 0 | 0                 | 2            | 2     | 0 | 0        | 0 | 0     | 6     |
| Total<br>Survey   | 0 | 12  | 4                    | 16           | 3 | 12  | 0                    | 15           | 3 | 0                 | 2            | 5     | 0 | 0        | 0 | 0     | 36    |


#### Heavy Vehicle Peak Hour Summary 4:15 PM to 5:15 PM

| By<br>Approach |      |     | <b>bound</b><br>h St |      |     | <b>bound</b><br>h St |      |     | oound<br>3 Ramps |      | Total |       |      |
|----------------|------|-----|----------------------|------|-----|----------------------|------|-----|------------------|------|-------|-------|------|
| Approach       | In   | Out | Total                | In   | Out | Total                | In   | Out | Total            | In   | Out   | Total |      |
| Volume         | 10   | 6   | 16                   | 8    | 9   | 17                   | 2    | 0   | 2                | 0    | 5     | 5     | 20   |
| PHF            | 0.25 |     |                      | 0.18 |     |                      | 0.17 |     |                  | 0.00 |       |       | 0.23 |

| Ву       |      |      | <b>bound</b><br>h St |       |      |      | <b>bound</b><br>h St |       |      | Eastb<br>-205 NE | ound<br>3 Ramps |       |      | Total        |      |       |      |
|----------|------|------|----------------------|-------|------|------|----------------------|-------|------|------------------|-----------------|-------|------|--------------|------|-------|------|
| Movement | L    | T    | R                    | Total | L    | T    | R                    | Total | L    | T                | R               | Total | L    | -205 NE<br>T | R    | Total |      |
| Volume   | 0    | 7    | 3                    | 10    | 2    | 6    | 0                    | 8     | 2    | 0                | 0               | 2     | 0    | 0            | 0    | 0     | 20   |
| PHF      | 0.00 | 0.25 | 0.25                 | 0.25  | 0.17 | 0.19 | 0.00                 | 0.18  | 0.25 | 0.00             | 0.00            | 0.17  | 0.00 | 0.00         | 0.00 | 0.00  | 0.23 |


#### Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start |   |    | <b>bound</b><br>h St |       | Southbound<br>10th St |   |   |       |   | Eastb<br>I-205 NE | ound<br>3 Ramps | 6     |   | Interval |   |       |       |
|-------------------|---|----|----------------------|-------|-----------------------|---|---|-------|---|-------------------|-----------------|-------|---|----------|---|-------|-------|
| Time              | L | Т  | R                    | Total | L                     | Т | R | Total | L | Т                 | R               | Total | L | Т        | R | Total | Total |
| 4:00 PM           | 0 | 10 | 3                    | 13    | 3                     | 9 | 0 | 12    | 1 | 0                 | 0               | 1     | 0 | 0        | 0 | 0     | 26    |
| 4:15 PM           | 0 | 7  | 3                    | 10    | 2                     | 6 | 0 | 8     | 2 | 0                 | 0               | 2     | 0 | 0        | 0 | 0     | 20    |
| 4:30 PM           | 0 | 5  | 2                    | 7     | 1                     | 2 | 0 | 3     | 2 | 0                 | 0               | 2     | 0 | 0        | 0 | 0     | 12    |
| 4:45 PM           | 0 | 3  | 1                    | 4     | 0                     | 2 | 0 | 2     | 2 | 0                 | 0               | 2     | 0 | 0        | 0 | 0     | 8     |
| 5:00 PM           | 0 | 2  | 1                    | 3     | 0                     | 3 | 0 | 3     | 2 | 0                 | 2               | 4     | 0 | 0        | 0 | 0     | 10    |



4:15 PM to 5:15 PM

**(**)



# **Total Vehicle Summary**



# 10th St & 8th Ave

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

#### In 500 Out 686 HV 1.4% PHF 0.93 76 305 119 ┛ ¥ 4 HV 1.1% PHF 0.92 2 **t** 133 109 Out 104 187 In 8 🔶 **←** 6 ln 154 184 Out 37 7 48 6 HV 0.0% PHF 0.90 ٦ 1 1 1.3% 0.97 22 444 57 , PHF PHF Out 390 In 523 Peak Hour Summary 4:15 PM to 5:15 PM

# 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |    | North | bound |       |     | South | bound |       |     | Easth | ound |       |    | West | bound |       |          |       | Pedes | trians |      |
|-----------------|----|-------|-------|-------|-----|-------|-------|-------|-----|-------|------|-------|----|------|-------|-------|----------|-------|-------|--------|------|
| Start           |    | 10t   | h St  |       |     | 10tl  | h St  |       |     | 8th   | Ave  |       |    | 8th  | Ave   |       | Interval |       | Cross | swalk  |      |
| Time            | L  | Т     | R     | Bikes |     | Т     | R     | Bikes |     | Т     | R    | Bikes | Ц  | Т    | R     | Bikes | Total    | North | South | East   | West |
| 4:00 PM         | 3  | 76    | 9     | 0     | 32  | 70    | 18    | 0     | 27  | 1     | 5    | 0     | 6  | 1    | 36    | 0     | 284      | 0     | 0     | 0      | 0    |
| 4:15 PM         | 6  | 108   | 12    | 0     | 31  | 75    | 22    | 0     | 29  | 1     | 9    | 0     | 15 | 2    | 33    | 0     | 343      | 2     | 1     | 0      | 1    |
| 4:30 PM         | 4  | 109   | 17    | 0     | 33  | 76    | 14    | 1     | 20  | 3     | 11   | 0     | 10 | 1    | 33    | 0     | 331      | 0     | 1     | 0      | 0    |
| 4:45 PM         | 5  | 115   | 15    | 0     | 30  | 85    | 19    | 0     | 31  | 2     | 10   | 0     | 13 | 2    | 27    | 0     | 354      | 0     | 4     | 0      | 4    |
| 5:00 PM         | 7  | 112   | 13    | 0     | 25  | 69    | 21    | 0     | 29  | 2     | 7    | 0     | 10 | 1    | 40    | 0     | 336      | 0     | 0     | 0      | 0    |
| 5:15 PM         | 6  | 99    | 14    | 0     | 20  | 69    | 11    | 0     | 25  | 1     | 9    | 0     | 5  | 1    | 30    | 0     | 290      | 0     | 2     | 2      | 3    |
| 5:30 PM         | 5  | 122   | 19    | 0     | 29  | 77    | 27    | 0     | 22  | 5     | 3    | 0     | 13 | 1    | 35    | 0     | 358      | 0     | 1     | 0      | 2    |
| 5:45 PM         | 2  | 86    | 13    | 0     | 27  | 116   | 25    | 0     | 17  | 2     | 6    | 0     | 8  | 2    | 44    | 0     | 348      | 0     | 5     | 0      | 3    |
| Total<br>Survey | 38 | 827   | 112   | 0     | 227 | 637   | 157   | 1     | 200 | 17    | 60   | 0     | 80 | 11   | 278   | 0     | 2,644    | 2     | 14    | 2      | 13   |

# Peak Hour Summary

4:15 PM to 5:15 PM

| By       |     |     | <b>bound</b><br>h St |       |     | South<br>10t |       |       |     | Eastb<br>8th |       |       |     | Westa<br>8th |       |       | Total |       | Pedes<br>Cross | <b>trians</b><br>swalk |      |
|----------|-----|-----|----------------------|-------|-----|--------------|-------|-------|-----|--------------|-------|-------|-----|--------------|-------|-------|-------|-------|----------------|------------------------|------|
| Approach | In  | Out | Total                | Bikes | In  | Out          | Total | Bikes | In  | Out          | Total | Bikes | In  | Out          | Total | Bikes |       | North | South          | East                   | West |
| Volume   | 523 | 390 | 913                  | 0     | 500 | 686          | 1,186 | 1     | 154 | 104          | 258   | 0     | 187 | 184          | 371   | 0     | 1,364 | 2     | 6              | 0                      | 5    |
| %HV      |     | 1.3 | 3%                   |       | •   | 1.4%         |       |       |     | 0.0          | )%    |       |     | 1.1          | %     |       | 1.2%  |       |                |                        |      |
| PHF      |     | 0.  | 97                   |       |     | 0.           | 93    |       |     | 0.9          | 90    |       |     | 0.           | 92    | -     | 0.96  |       |                |                        |      |

| Bv       |      | North | bound |       |      | South | bound |       |      | Eastb | ound |       |      | West | ound |       |       |
|----------|------|-------|-------|-------|------|-------|-------|-------|------|-------|------|-------|------|------|------|-------|-------|
| Movement |      | 10t   | h St  |       |      | 10tl  | h St  |       |      | 8th   | Ave  |       |      | 8th  | Ave  |       | Total |
| wovement | L    | Т     | R     | Total | L    | Т     | R     | Total | L    | Т     | R    | Total | L    | Т    | R    | Total |       |
| Volume   | 22   | 444   | 57    | 523   | 119  | 305   | 76    | 500   | 109  | 8     | 37   | 154   | 48   | 6    | 133  | 187   | 1,364 |
| %HV      | 0.0% | 1.6%  | 0.0%  | 1.3%  | 1.7% | 1.6%  | 0.0%  | 1.4%  | 0.0% | 0.0%  | 0.0% | 0.0%  | 0.0% | 0.0% | 1.5% | 1.1%  | 1.2%  |
| PHF      | 0.79 | 0.97  | 0.84  | 0.97  | 0.90 | 0.90  | 0.86  | 0.93  | 0.88 | 0.67  | 0.84 | 0.90  | 0.80 | 0.75 | 0.83 | 0.92  | 0.96  |

# Rolling Hour Summary

## 4:00 PM to 6:00 PM

| Interval<br>Start |    | North<br>10t | bound<br>h St |       |     | South<br>10th | bound<br>h St |       |     |    | ound<br>Ave |       |    |   | bound<br>Ave |       | Interval |       | Pedes<br>Cross | s <b>trians</b><br>swalk |      |
|-------------------|----|--------------|---------------|-------|-----|---------------|---------------|-------|-----|----|-------------|-------|----|---|--------------|-------|----------|-------|----------------|--------------------------|------|
| Time              | L  | Т            | R             | Bikes | L   | Т             | R             | Bikes | L   | Т  | R           | Bikes | L  | Т | R            | Bikes | Total    | North | South          | East                     | West |
| 4:00 PM           | 18 | 408          | 53            | 0     | 126 | 306           | 73            | 1     | 107 | 7  | 35          | 0     | 44 | 6 | 129          | 0     | 1,312    | 2     | 6              | 0                        | 5    |
| 4:15 PM           | 22 | 444          | 57            | 0     | 119 | 305           | 76            | 1     | 109 | 8  | 37          | 0     | 48 | 6 | 133          | 0     | 1,364    | 2     | 6              | 0                        | 5    |
| 4:30 PM           | 22 | 435          | 59            | 0     | 108 | 299           | 65            | 1     | 105 | 8  | 37          | 0     | 38 | 5 | 130          | 0     | 1,311    | 0     | 7              | 2                        | 7    |
| 4:45 PM           | 23 | 448          | 61            | 0     | 104 | 300           | 78            | 0     | 107 | 10 | 29          | 0     | 41 | 5 | 132          | 0     | 1,338    | 0     | 7              | 2                        | 9    |
| 5:00 PM           | 20 | 419          | 59            | 0     | 101 | 331           | 84            | 0     | 93  | 10 | 25          | 0     | 36 | 5 | 149          | 0     | 1,332    | 0     | 8              | 2                        | 8    |

# **Heavy Vehicle Summary**

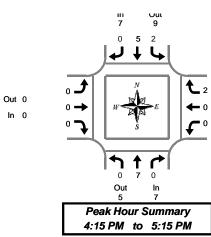


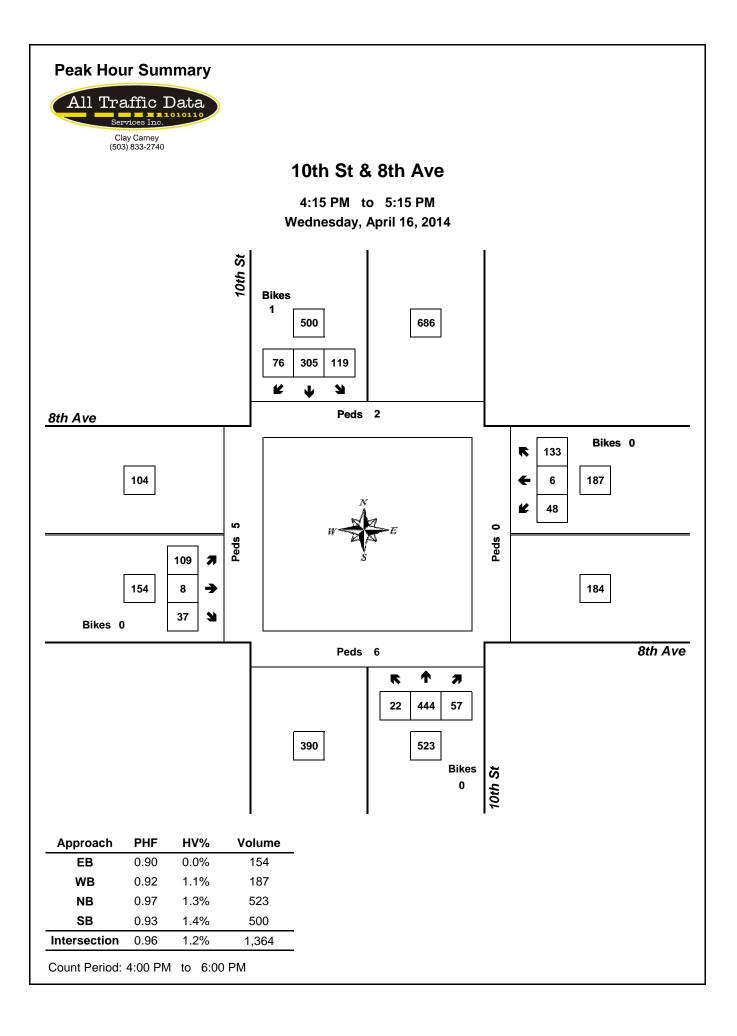
# 10th St & 8th Ave

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

### Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        |   |     | bound |       |   |     | bound |       |   |     | oound |       |   |     | oound |       |          |
|-----------------|---|-----|-------|-------|---|-----|-------|-------|---|-----|-------|-------|---|-----|-------|-------|----------|
| Start           |   | 10t | h St  |       |   | 10t | h St  |       |   | 8th | Ave   |       |   | 8th | Ave   |       | Interval |
| Time            | L | Т   | R     | Total | Ц | Т   | R     | Total | Ц | Т   | R     | Total | Ц | Т   | R     | Total | Total    |
| 4:00 PM         | 0 | 3   | 0     | 3     | 0 | 2   | 1     | 3     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 6        |
| 4:15 PM         | 0 | 3   | 0     | 3     | 1 | 4   | 0     | 5     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 8        |
| 4:30 PM         | 0 | 3   | 0     | 3     | 1 | 0   | 0     | 1     | 0 | 0   | 0     | 0     | 0 | 0   | 1     | 1     | 5        |
| 4:45 PM         | 0 | 1   | 0     | 1     | 0 | 1   | 0     | 1     | 0 | 0   | 0     | 0     | 0 | 0   | 1     | 1     | 3        |
| 5:00 PM         | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 0        |
| 5:15 PM         | 0 | 0   | 1     | 1     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 0 | 0   | 0     | 0     | 1        |
| 5:30 PM         | 0 | 0   | 0     | 0     | 0 | 0   | 1     | 1     | 0 | 0   | 0     | 0     | 1 | 0   | 0     | 1     | 2        |
| 5:45 PM         | 0 | 1   | 0     | 1     | 1 | 2   | 0     | 3     | 2 | 0   | 0     | 2     | 0 | 0   | 0     | 0     | 6        |
| Total<br>Survey | 0 | 11  | 1     | 12    | 3 | 9   | 2     | 14    | 2 | 0   | 0     | 2     | 1 | 0   | 2     | 3     | 31       |


## Heavy Vehicle Peak Hour Summary 4:15 PM to 5:15 PM

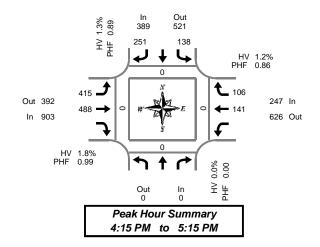

| By<br>Approach |      |     | <b>bound</b><br>h St |      |     | <b>bound</b><br>h St |      |     | oound<br>Ave |      |     | oound<br>Ave | Total |
|----------------|------|-----|----------------------|------|-----|----------------------|------|-----|--------------|------|-----|--------------|-------|
| Approach       | In   | Out | Total                | In   | Out | Total                | In   | Out | Total        | In   | Out | Total        |       |
| Volume         | 7    | 5   | 12                   | 7    | 9   | 16                   | 0    | 0   | 0            | 2    | 2   | 4            | 16    |
| PHF            | 0.19 |     |                      | 0.19 |     |                      | 0.00 |     |              | 0.25 |     |              | 0.21  |

| Bv         |      | North | bound |       |      |      | bound |       |      | Eastb | ound |       |      | West | oound |       |       |
|------------|------|-------|-------|-------|------|------|-------|-------|------|-------|------|-------|------|------|-------|-------|-------|
| Movement   |      | 10t   | h St  |       |      | 10t  | h St  |       |      | 8th   | Ave  |       |      | 8th  | Ave   |       | Total |
| wovernerit | L    | Т     | R     | Total | L    | Т    | R     | Total | Ц    | Т     | R    | Total |      | Т    | R     | Total |       |
| Volume     | 0    | 7     | 0     | 7     | 2    | 5    | 0     | 7     | 0    | 0     | 0    | 0     | 0    | 0    | 2     | 2     | 16    |
| PHF        | 0.00 | 0.19  | 0.00  | 0.19  | 0.25 | 0.21 | 0.00  | 0.19  | 0.00 | 0.00  | 0.00 | 0.00  | 0.00 | 0.00 | 0.25  | 0.25  | 0.21  |

## Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start |   |    | <b>bound</b><br>h St |       |   |   | <b>bound</b><br>h St |       |   |   | ound<br>Ave |       |   | Westl<br>8th |   |       | Interval |
|-------------------|---|----|----------------------|-------|---|---|----------------------|-------|---|---|-------------|-------|---|--------------|---|-------|----------|
| Time              | L | Т  | R                    | Total | L | Т | R                    | Total | L | Т | R           | Total | L | Т            | R | Total | Total    |
| 4:00 PM           | 0 | 10 | 0                    | 10    | 2 | 7 | 1                    | 10    | 0 | 0 | 0           | 0     | 0 | 0            | 2 | 2     | 22       |
| 4:15 PM           | 0 | 7  | 0                    | 7     | 2 | 5 | 0                    | 7     | 0 | 0 | 0           | 0     | 0 | 0            | 2 | 2     | 16       |
| 4:30 PM           | 0 | 4  | 1                    | 5     | 1 | 1 | 0                    | 2     | 0 | 0 | 0           | 0     | 0 | 0            | 2 | 2     | 9        |
| 4:45 PM           | 0 | 1  | 1                    | 2     | 0 | 1 | 1                    | 2     | 0 | 0 | 0           | 0     | 1 | 0            | 1 | 2     | 6        |
| 5:00 PM           | 0 | 1  | 1                    | 2     | 1 | 2 | 1                    | 4     | 2 | 0 | 0           | 2     | 1 | 0            | 0 | 1     | 9        |






# **Total Vehicle Summary**



# 10th St & Willamette Falls Dr

Wednesday, April 16, 2014 4:00 PM to 6:00 PM



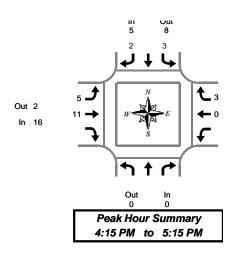
# 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        | Northbound |       |     | South | bound |       |     | Easth     | ound       |   | Westl     | bound   |       |          |       | Pedes | trians |      |
|-----------------|------------|-------|-----|-------|-------|-------|-----|-----------|------------|---|-----------|---------|-------|----------|-------|-------|--------|------|
| Start           | 10th St    |       |     | 10tl  | h St  |       | v   | Villamett | e Falls Dr | N | /illamett | e Falls | Dr    | Interval |       | Cross | swalk  |      |
| Time            |            | Bikes | L   |       | R     | Bikes | L   | Т         | Bikes      |   | Т         | R       | Bikes | Total    | North | South | East   | West |
| 4:00 PM         |            | 0     | 28  |       | 54    | 0     | 74  | 91        | 0          |   | 35        | 13      | 0     | 295      | 0     | 0     | 0      | 0    |
| 4:15 PM         |            | 0     | 37  |       | 62    | 0     | 101 | 121       | 0          |   | 33        | 24      | 0     | 378      | 0     | 0     | 0      | 0    |
| 4:30 PM         |            | 0     | 47  |       | 50    | 0     | 104 | 123       | 1          |   | 30        | 26      | 0     | 380      | 0     | 0     | 0      | 0    |
| 4:45 PM         |            | 0     | 28  |       | 81    | 0     | 102 | 127       | 0          |   | 40        | 32      | 0     | 410      | 0     | 0     | 0      | 0    |
| 5:00 PM         |            | 0     | 26  |       | 58    | 0     | 108 | 117       | 0          |   | 38        | 24      | 0     | 371      | 0     | 0     | 0      | 0    |
| 5:15 PM         |            | 0     | 34  |       | 50    | 0     | 90  | 108       | 0          |   | 32        | 30      | 0     | 344      | 2     | 0     | 0      | 0    |
| 5:30 PM         |            | 0     | 30  |       | 64    | 0     | 107 | 106       | 0          |   | 39        | 34      | 0     | 380      | 0     | 0     | 0      | 0    |
| 5:45 PM         |            | 0     | 46  |       | 84    | 0     | 81  | 76        | 0          |   | 23        | 23      | 0     | 333      | 0     | 0     | 0      | 0    |
| Total<br>Survey |            | 0     | 276 |       | 503   | 0     | 767 | 869       | 1          |   | 270       | 206     | 0     | 2,891    | 2     | 0     | 0      | 0    |

# Peak Hour Summary

4:15 PM to 5:15 PM

| Bv       |    |     | bound |       |     | South              |     |   |     |           | ound      |       |     | Westk     |           |       | _     |       |       | trians |      |
|----------|----|-----|-------|-------|-----|--------------------|-----|---|-----|-----------|-----------|-------|-----|-----------|-----------|-------|-------|-------|-------|--------|------|
| Approach |    | 10t | h St  |       |     | 10th St            |     |   |     | Villamett | e Falls [ | Dr    | V   | /illamett | e Falls [ | Dr    | Total |       | Cross | swalk  |      |
| Approach | In | Out | Total | Bikes | In  | In Out Total Bikes |     |   |     | Out       | Total     | Bikes | In  | Out       | Total     | Bikes |       | North | South | East   | West |
| Volume   | 0  | 0   | 0     | 0     | 389 | 521                | 910 | 0 | 903 | 392       | 1,295     | 1     | 247 | 626       | 873       | 0     | 1,539 | 0     | 0     | 0      | 0    |
| %HV      |    | 0.0 | 0%    |       |     | 1.3%               |     |   |     | 1.8       | 8%        |       |     | 1.2       | 2%        |       | 1.6%  |       |       |        |      |
| PHF      |    | 0.  | 00    |       |     | 1.3%<br>0.89       |     |   |     | 0.        | 99        | -     |     | 0.8       | 36        | -     | 0.94  |       |       |        |      |


| Bv         |    | North | bound |       |      | South | bound |       |      | Eastb     | ound    |       |    | West      | oound     |       |       |
|------------|----|-------|-------|-------|------|-------|-------|-------|------|-----------|---------|-------|----|-----------|-----------|-------|-------|
| Movement   |    | 10t   | h St  |       |      | 10t   | h St  |       | W    | /illamett | e Falls | Dr    | W  | /illamett | e Falls I | Dr    | Total |
| wovernerit |    |       |       | Total | L    |       | R     | Total | L    | Т         |         | Total |    | Т         | R         | Total |       |
| Volume     |    |       |       | 0     | 138  |       | 251   | 389   | 415  | 488       |         | 903   |    | 141       | 106       | 247   | 1,539 |
| %HV        | NA | NA    | NA    | 0.0%  | 2.2% | NA    | 0.8%  | 1.3%  | 1.2% | 2.3%      | NA      | 1.8%  | NA | 0.0%      | 2.8%      | 1.2%  | 1.6%  |
| PHF        |    |       |       | 0.00  | 0.73 |       | 0.77  | 0.89  | 0.96 | 0.96      |         | 0.99  |    | 0.88      | 0.83      | 0.86  | 0.94  |

### Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start | N | lorthbc<br>10th \$ |       |     | South<br>10th |     |   | v   |     | oound<br>e Falls [ | Dr    | W | Westk<br>/illamett |     | Dr    | Interval |       | Pedes<br>Cross | s <b>trians</b><br>swalk |      |
|-------------------|---|--------------------|-------|-----|---------------|-----|---|-----|-----|--------------------|-------|---|--------------------|-----|-------|----------|-------|----------------|--------------------------|------|
| Time              |   |                    | Bikes | L   | L R Bikes     |     |   |     | Т   |                    | Bikes |   | Т                  | R   | Bikes | Total    | North | South          | East                     | West |
| 4:00 PM           |   |                    | 0     | 140 |               | 247 | 0 | 381 | 462 |                    | 1     |   | 138                | 95  | 0     | 1,463    | 0     | 0              | 0                        | 0    |
| 4:15 PM           |   |                    | 0     | 138 |               | 251 | 0 | 415 | 488 |                    | 1     |   | 141                | 106 | 0     | 1,539    | 0     | 0              | 0                        | 0    |
| 4:30 PM           |   |                    | 0     | 135 |               | 239 | 0 | 404 | 475 |                    | 1     |   | 140                | 112 | 0     | 1,505    | 2     | 0              | 0                        | 0    |
| 4:45 PM           |   |                    | 0     | 118 |               | 253 | 0 | 407 | 458 |                    | 0     |   | 149                | 120 | 0     | 1,505    | 2     | 0              | 0                        | 0    |
| 5:00 PM           |   |                    | 0     | 136 |               | 256 | 0 | 386 | 407 |                    | 0     |   | 132                | 111 | 0     | 1,428    | 2     | 0              | 0                        | 0    |

# **Heavy Vehicle Summary**



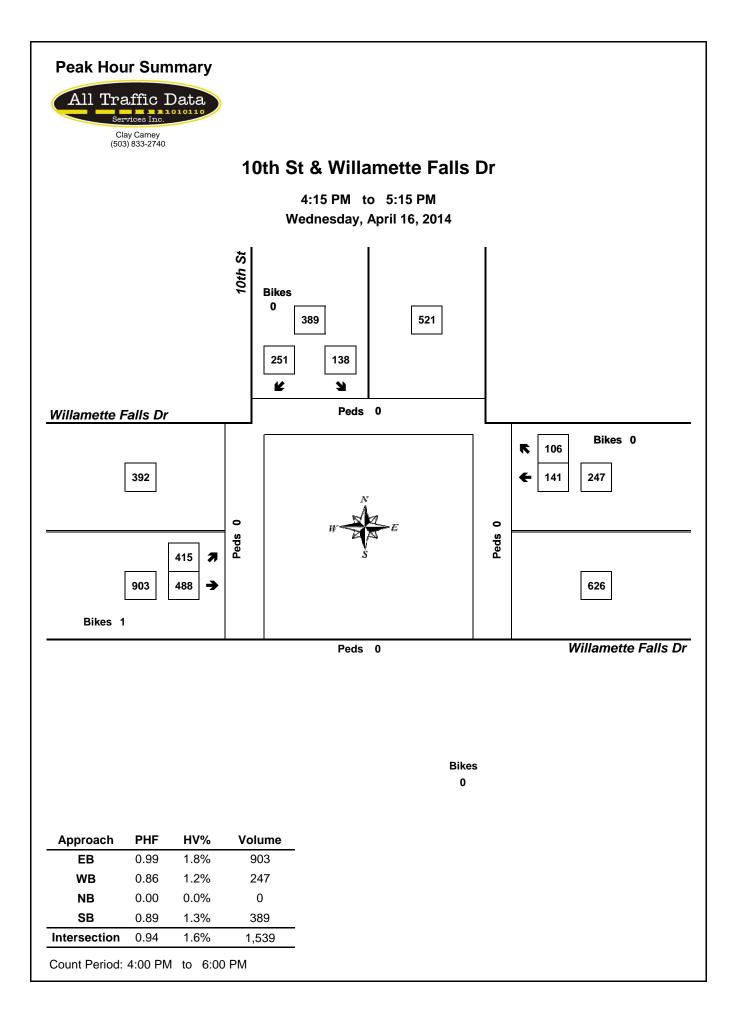


# 10th St & Willamette Falls Dr

Wednesday, April 16, 2014 4:00 PM to 6:00 PM

Heavy Vehicle 15-Minute Interval Summary 4:00 PM to 6:00 PM

| Interval        | North | bound |   | South | bound |       |   | Easth     | ound      |       |   | West      | oound     |       |          |
|-----------------|-------|-------|---|-------|-------|-------|---|-----------|-----------|-------|---|-----------|-----------|-------|----------|
| Start           | 10t   | h St  |   | 10t   | h St  |       | V | /illamett | e Falls D | r     | N | /illamett | e Falls I | Dr    | Interval |
| Time            |       | Total | L |       | R     | Total | Ц | Т         |           | Total |   | Т         | R         | Total | Total    |
| 4:00 PM         |       | 0     | 1 |       | 1     | 2     | 3 | 1         |           | 4     |   | 0         | 0         | 0     | 6        |
| 4:15 PM         |       | 0     | 3 |       | 1     | 4     | 3 | 3         |           | 6     |   | 0         | 1         | 1     | 11       |
| 4:30 PM         |       | 0     | 0 |       | 0     | 0     | 2 | 4         |           | 6     |   | 0         | 1         | 1     | 7        |
| 4:45 PM         |       | 0     | 0 |       | 1     | 1     | 0 | 3         |           | 3     |   | 0         | 1         | 1     | 5        |
| 5:00 PM         |       | 0     | 0 |       | 0     | 0     | 0 | 1         |           | 1     |   | 0         | 0         | 0     | 1        |
| 5:15 PM         |       | 0     | 0 |       | 0     | 0     | 1 | 2         |           | 3     |   | 0         | 0         | 0     | 3        |
| 5:30 PM         |       | 0     | 0 |       | 2     | 2     | 0 | 0         |           | 0     |   | 0         | 0         | 0     | 2        |
| 5:45 PM         |       | 0     | 2 |       | 0     | 2     | 0 | 1         |           | 1     |   | 0         | 1         | 1     | 4        |
| Total<br>Survey |       | 0     | 6 |       | 5     | 11    | 9 | 15        |           | 24    |   | 0         | 4         | 4     | 39       |


### Heavy Vehicle Peak Hour Summary 4:15 PM to 5:15 PM

| By       |      |     | <b>bound</b><br>h St |      |     | <b>bound</b><br>h St | W    |     | oound<br>e Falls Dr | W    |     | <b>bound</b><br>e Falls Dr | Total |
|----------|------|-----|----------------------|------|-----|----------------------|------|-----|---------------------|------|-----|----------------------------|-------|
| Approach | In   | Out | Total                | In   | Out | Total                | In   | Out | Total               | In   | Out | Total                      |       |
| Volume   | 0    | 0   | 0                    | 5    | 8   | 13                   | 16   | 2   | 18                  | 3    | 14  | 17                         | 24    |
| PHF      | 0.00 |     |                      | 0.21 |     |                      | 0.25 |     |                     | 0.25 |     |                            | 0.25  |

| Ву       |  | <b>bound</b><br>h St |       |      | <b>bound</b><br>h St |       | W    |      | ound<br>e Falls [ | Dr    | W | Westa<br>/illamett | <b>oound</b><br>e Falls [ | Dr    | Total |
|----------|--|----------------------|-------|------|----------------------|-------|------|------|-------------------|-------|---|--------------------|---------------------------|-------|-------|
| Movement |  |                      | Total | L    | R                    | Total | L    | Т    |                   | Total |   | Т                  | R                         | Total |       |
| Volume   |  |                      | 0     | 3    | 2                    | 5     | 5    | 11   |                   | 16    |   | 0                  | 3                         | 3     | 24    |
| PHF      |  |                      | 0.00  | 0.19 | 0.25                 | 0.21  | 0.16 | 0.28 |                   | 0.25  |   | 0.00               | 0.25                      | 0.25  | 0.25  |

### Heavy Vehicle Rolling Hour Summary 4:00 PM to 6:00 PM

| Interval<br>Start | nbound<br>th St |       |   | South<br>10t | <b>bound</b><br>h St |       | W |    | ound<br>e Falls I | Dr    | W | Westb<br>illamett/ |   | Dr    | Interval |
|-------------------|-----------------|-------|---|--------------|----------------------|-------|---|----|-------------------|-------|---|--------------------|---|-------|----------|
| Time              |                 | Total | L |              | R                    | Total | L | Т  |                   | Total |   | Т                  | R | Total | Total    |
| 4:00 PM           |                 | 0     | 4 |              | 3                    | 7     | 8 | 11 |                   | 19    |   | 0                  | 3 | 3     | 29       |
| 4:15 PM           |                 | 0     | 3 |              | 2                    | 5     | 5 | 11 |                   | 16    |   | 0                  | 3 | 3     | 24       |
| 4:30 PM           |                 | 0     | 0 |              | 1                    | 1     | 3 | 10 |                   | 13    |   | 0                  | 2 | 2     | 16       |
| 4:45 PM           |                 | 0     | 0 |              | 3                    | 3     | 1 | 6  |                   | 7     |   | 0                  | 1 | 1     | 11       |
| 5:00 PM           |                 | 0     | 2 |              | 2                    | 4     | 1 | 4  |                   | 5     |   | 0                  | 1 | 1     | 10       |



Appendix B Existing Traffic Operations and Queuing Worksheets

|                         | -    | $\mathbf{r}$ | 4    | -    | 1    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 98   | 433          | 327  | 70   | 341  | 320  |
| v/c Ratio               | 0.46 | 0.43         | 0.77 | 0.10 | 0.39 | 0.24 |
| Control Delay           | 45.5 | 5.9          | 43.9 | 15.5 | 18.6 | 0.8  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 2.6  | 0.5  |
| Total Delay             | 45.5 | 5.9          | 43.9 | 15.5 | 21.2 | 1.3  |
| Queue Length 50th (ft)  | 51   | 45           | 167  | 23   | 117  | 0    |
| Queue Length 95th (ft)  | 108  | 123          | 272  | 47   | 240  | 18   |
| Internal Link Dist (ft) | 590  |              |      | 679  | 177  |      |
| Turn Bay Length (ft)    |      | 150          | 200  |      | 100  |      |
| Base Capacity (vph)     | 648  | 1004         | 647  | 1454 | 870  | 1428 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 402  | 712  |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.15 | 0.43         | 0.51 | 0.05 | 0.73 | 0.45 |
| Intersection Summary    |      |              |      |      |      |      |

|                                   | -     | $\mathbf{r}$ | •        | -    | 1        | 1            |
|-----------------------------------|-------|--------------|----------|------|----------|--------------|
| Movement                          | EBT   | EBR          | WBL      | WBT  | NBL      | NBR          |
| Lane Configurations               | *     | 1            | <u> </u> | 1    | 5        | 1            |
| Volume (vph)                      | 94    | 416          | 314      | 67   | 327      | 307          |
| Ideal Flow (vphpl)                | 1900  | 1900         | 1900     | 1900 | 1900     | 1900         |
| Total Lost time (s)               | 5.5   | 5.5          | 5.5      | 6.0  | 5.5      | 5.5          |
| Lane Util. Factor                 | 1.00  | 1.00         | 1.00     | 1.00 | 1.00     | 1.00         |
| Frpb, ped/bikes                   | 1.00  | 1.00         | 1.00     | 1.00 | 1.00     | 1.00         |
| Flpb, ped/bikes                   | 1.00  | 1.00         | 1.00     | 1.00 | 1.00     | 1.00         |
| Frt                               | 1.00  | 0.85         | 1.00     | 1.00 | 1.00     | 0.85         |
| Flt Protected                     | 1.00  | 1.00         | 0.95     | 1.00 | 0.95     | 1.00         |
| Satd. Flow (prot)                 | 1900  | 1580         | 1770     | 1900 | 1787     | 1583         |
| Flt Permitted                     | 1.00  | 1.00         | 0.95     | 1.00 | 0.95     | 1.00         |
| Satd. Flow (perm)                 | 1900  | 1580         | 1770     | 1900 | 1787     | 1583         |
| Peak-hour factor, PHF             | 0.96  | 0.96         | 0.96     | 0.96 | 0.96     | 0.96         |
| Adj. Flow (vph)                   | 98    | 433          | 327      | 70   | 341      | 320          |
| RTOR Reduction (vph)              | 0     | 92           | 0        | 0    | 0        | 91           |
| Lane Group Flow (vph)             | 98    | 341          | 327      | 70   | 341      | 229          |
| Confl. Bikes (#/hr)               |       | 1            |          |      |          |              |
| Heavy Vehicles (%)                | 0%    | 2%           | 2%       | 0%   | 1%       | 2%           |
| Turn Type                         |       | pm+ov        | Prot     |      |          | pm+ov        |
| Protected Phases                  | 4     | 5            | 3        | 8    | 5        | 3            |
| Permitted Phases                  |       | 4            | -        | -    | 5        | 5            |
| Actuated Green, G (s)             | 7.7   | 48.7         | 20.1     | 32.8 | 41.0     | 61.1         |
| Effective Green, g (s)            | 7.7   | 48.7         | 20.1     | 32.8 | 41.0     | 61.1         |
| Actuated g/C Ratio                | 0.09  | 0.57         | 0.24     | 0.38 | 0.48     | 0.72         |
| Clearance Time (s)                | 5.5   | 5.5          | 5.5      | 6.0  | 5.5      | 5.5          |
| Vehicle Extension (s)             | 2.3   | 5.2          | 2.3      | 2.3  | 5.2      | 2.3          |
| Lane Grp Cap (vph)                | 172   | 1004         | 417      | 731  | 859      | 1236         |
| v/s Ratio Prot                    | c0.05 | 0.16         | c0.18    | 0.04 | c0.19    | 0.04         |
| v/s Ratio Perm                    |       | 0.05         |          |      |          | 0.10         |
| v/c Ratio                         | 0.57  | 0.34         | 0.78     | 0.10 | 0.40     | 0.19         |
| Uniform Delay, d1                 | 37.2  | 9.7          | 30.6     | 16.8 | 14.2     | 4.0          |
| Progression Factor                | 1.00  | 1.00         | 1.00     | 1.00 | 1.00     | 1.00         |
| Incremental Delay, d2             | 3.1   | 0.1          | 8.9      | 0.0  | 1.4      | 0.0          |
| Delay (s)                         | 40.3  | 9.9          | 39.4     | 16.8 | 15.6     | 4.0          |
| Level of Service                  | D     | A            | D        | В    | В        | A            |
| Approach Delay (s)                | 15.5  |              | -        | 35.4 | 10.0     |              |
| Approach LOS                      | В     |              |          | D    | A        |              |
| Intersection Summary              |       |              |          |      |          |              |
| HCM Average Control Delay         |       |              | 18.2     | Н    | CM Leve  | l of Service |
| HCM Volume to Capacity rational   | C     |              | 0.53     |      |          |              |
| Actuated Cycle Length (s)         |       |              | 85.3     |      |          | t time (s)   |
| Intersection Capacity Utilization | on    |              | 52.3%    | IC   | CU Level | of Service   |
| Analysis Period (min)             |       |              | 15       |      |          |              |
| c Critical Lane Group             |       |              |          |      |          |              |

# Existing Traffic Conditions 2: I-205 SB Ramps & 10th Street

|                         | ←    | •    | 1    | 1    | Ŧ    |
|-------------------------|------|------|------|------|------|
| Lane Group              | WBT  | WBR  | NBL  | NBT  | SBT  |
| Lane Group Flow (vph)   | 196  | 312  | 109  | 363  | 776  |
| v/c Ratio               | 0.69 | 0.61 | 0.16 | 0.26 | 0.81 |
| Control Delay           | 53.4 | 9.9  | 23.2 | 5.7  | 38.5 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 2.1  |
| Total Delay             | 53.4 | 9.9  | 23.2 | 5.7  | 40.6 |
| Queue Length 50th (ft)  | 119  | 0    | 43   | 65   | 218  |
| Queue Length 95th (ft)  | 211  | 76   | 103  | 134  | 321  |
| Internal Link Dist (ft) | 651  |      |      | 256  | 177  |
| Turn Bay Length (ft)    |      |      | 250  |      |      |
| Base Capacity (vph)     | 451  | 633  | 701  | 1567 | 1299 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 361  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.43 | 0.49 | 0.16 | 0.23 | 0.83 |
| Intersection Summary    |      |      |      |      |      |

# Existing Traffic Conditions 2: I-205 SB Ramps & 10th Street

|                                   | ۶    | +    | *     | 4     | ł          | •          | <        | 1        | 1    | ×    | ţ          | ∢    |
|-----------------------------------|------|------|-------|-------|------------|------------|----------|----------|------|------|------------|------|
| Movement                          | EBL  | EBT  | EBR   | WBL   | WBT        | WBR        | NBL      | NBT      | NBR  | SBL  | SBT        | SBR  |
| Lane Configurations               |      |      |       |       | र्भ        | 1          | <u>۲</u> | <b>↑</b> |      |      | <b>∱</b> ⊅ |      |
| Volume (vph)                      | 0    | 0    | 0     | 184   | 0          | 293        | 102      | 341      | 0    | 0    | 491        | 239  |
| Ideal Flow (vphpl)                | 1900 | 1900 | 1900  | 1900  | 1900       | 1900       | 1900     | 1900     | 1900 | 1900 | 1900       | 1900 |
| Total Lost time (s)               |      |      |       |       | 5.5        | 5.5        | 5.5      | 5.5      |      |      | 5.5        |      |
| Lane Util. Factor                 |      |      |       |       | 1.00       | 1.00       | 1.00     | 1.00     |      |      | 0.95       |      |
| Frpb, ped/bikes                   |      |      |       |       | 1.00       | 1.00       | 1.00     | 1.00     |      |      | 0.99       |      |
| Flpb, ped/bikes                   |      |      |       |       | 1.00       | 1.00       | 1.00     | 1.00     |      |      | 1.00       |      |
| Frt                               |      |      |       |       | 1.00       | 0.85       | 1.00     | 1.00     |      |      | 0.95       |      |
| Flt Protected                     |      |      |       |       | 0.95       | 1.00       | 0.95     | 1.00     |      |      | 1.00       |      |
| Satd. Flow (prot)                 |      |      |       |       | 1787       | 1583       | 1736     | 1881     |      |      | 3353       |      |
| Flt Permitted                     |      |      |       |       | 0.95       | 1.00       | 0.95     | 1.00     |      |      | 1.00       | _    |
| Satd. Flow (perm)                 |      |      |       |       | 1787       | 1583       | 1736     | 1881     |      |      | 3353       |      |
| Peak-hour factor, PHF             | 0.94 | 0.94 | 0.94  | 0.94  | 0.94       | 0.94       | 0.94     | 0.94     | 0.94 | 0.94 | 0.94       | 0.94 |
| Adj. Flow (vph)                   | 0    | 0    | 0     | 196   | 0          | 312        | 109      | 363      | 0    | 0    | 522        | 254  |
| RTOR Reduction (vph)              | 0    | 0    | 0     | 0     | 0          | 262        | 0        | 0        | 0    | 0    | 53         | 0    |
| Lane Group Flow (vph)             | 0    | 0    | 0     | 0     | 196        | 50         | 109      | 363      | 0    | 0    | 723        | 0    |
| Confl. Bikes (#/hr)               |      |      |       |       |            |            |          |          |      |      |            | 1    |
| Heavy Vehicles (%)                | 0%   | 0%   | 0%    | 1%    | 0%         | 2%         | 4%       | 1%       | 0%   | 0%   | 1%         | 3%   |
| Turn Type                         |      |      |       | Split |            | Perm       | Prot     |          |      |      |            |      |
| Protected Phases                  |      |      |       | 8     | 8          |            | 5        | 2        |      |      | 6          |      |
| Permitted Phases                  |      |      |       |       |            | 8          |          |          |      |      |            |      |
| Actuated Green, G (s)             |      |      |       |       | 16.1       | 16.1       | 40.6     | 73.2     |      |      | 27.1       |      |
| Effective Green, g (s)            |      |      |       |       | 16.1       | 16.1       | 40.6     | 73.2     |      |      | 27.1       |      |
| Actuated g/C Ratio                |      |      |       |       | 0.16       | 0.16       | 0.40     | 0.73     |      |      | 0.27       |      |
| Clearance Time (s)                |      |      |       |       | 5.5        | 5.5        | 5.5      | 5.5      |      |      | 5.5        |      |
| Vehicle Extension (s)             |      |      |       |       | 2.3        | 2.3        | 5.2      | 2.3      |      |      | 2.3        |      |
| Lane Grp Cap (vph)                |      |      |       |       | 287        | 254        | 703      | 1373     |      |      | 906        |      |
| v/s Ratio Prot                    |      |      |       |       | c0.11      |            | 0.06     | c0.19    |      |      | c0.22      |      |
| v/s Ratio Perm                    |      |      |       |       |            | 0.03       |          |          |      |      |            |      |
| v/c Ratio                         |      |      |       |       | 0.68       | 0.20       | 0.16     | 0.26     |      |      | 0.80       |      |
| Uniform Delay, d1                 |      |      |       |       | 39.7       | 36.5       | 19.0     | 4.5      |      |      | 34.0       |      |
| Progression Factor                |      |      |       |       | 1.00       | 1.00       | 1.00     | 1.00     |      |      | 1.00       |      |
| Incremental Delay, d2             |      |      |       |       | 5.7        | 0.2        | 0.5      | 0.1      |      |      | 4.7        |      |
| Delay (s)                         |      |      |       |       | 45.4       | 36.7       | 19.4     | 4.6      |      |      | 38.8       |      |
| Level of Service                  |      |      |       |       | D          | D          | В        | A        |      |      | D          |      |
| Approach Delay (s)                |      | 0.0  |       |       | 40.1       |            |          | 8.0      |      |      | 38.8       |      |
| Approach LOS                      |      | А    |       |       | D          |            |          | A        |      |      | D          |      |
| Intersection Summary              |      |      |       |       |            |            |          |          |      |      |            |      |
| HCM Average Control Delay         |      |      | 30.9  | Н     | CM Level   | of Servic  | е        |          | С    |      |            |      |
| HCM Volume to Capacity ratio      |      |      | 0.53  |       |            |            |          |          |      |      |            |      |
| Actuated Cycle Length (s)         |      |      | 100.3 |       | um of lost |            |          |          | 16.5 |      |            |      |
| Intersection Capacity Utilization |      |      | 72.8% | IC    | U Level o  | of Service |          |          | С    |      |            |      |
| Analysis Period (min)             |      |      | 15    |       |            |            |          |          |      |      |            |      |
| c Critical Lane Group             |      |      |       |       |            |            |          |          |      |      |            |      |

|                         | -    | $\mathbf{i}$ | 1    | 1    | 1    | Ļ    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | NBT  | NBR  | SBL  | SBT  |
| Lane Group Flow (vph)   | 84   | 82           | 377  | 339  | 264  | 440  |
| v/c Ratio               | 0.33 | 0.27         | 0.50 | 0.42 | 0.62 | 0.30 |
| Control Delay           | 31.4 | 10.4         | 18.0 | 5.8  | 29.5 | 4.0  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 31.4 | 10.4         | 18.0 | 5.8  | 29.5 | 4.0  |
| Queue Length 50th (ft)  | 29   | 0            | 103  | 16   | 88   | 48   |
| Queue Length 95th (ft)  | 78   | 37           | 221  | 78   | 183  | 98   |
| Internal Link Dist (ft) | 628  |              | 216  |      |      | 168  |
| Turn Bay Length (ft)    |      |              |      | 100  | 150  |      |
| Base Capacity (vph)     | 663  | 656          | 1047 | 1017 | 837  | 1725 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.13 | 0.13         | 0.36 | 0.33 | 0.32 | 0.26 |
| Intersection Summary    |      |              |      |      |      |      |

# Existing Traffic Conditions 3: I-205 NB Ramps & 10th Street

|                                   | ≯    | -    | $\rightarrow$ | ∢    | +          | *          | •    | Ť        | *    | 1        | ţ        | ~    |
|-----------------------------------|------|------|---------------|------|------------|------------|------|----------|------|----------|----------|------|
| Movement                          | EBL  | EBT  | EBR           | WBL  | WBT        | WBR        | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations               |      | - କ  | 1             |      |            |            |      | <b>↑</b> | 1    | <u> </u> | <b>↑</b> |      |
| Volume (vph)                      | 81   | 0    | 79            | 0    | 0          | 0          | 0    | 362      | 325  | 253      | 422      | 0    |
| Ideal Flow (vphpl)                | 1900 | 1900 | 1900          | 1900 | 1900       | 1900       | 1900 | 1900     | 1900 | 1900     | 1900     | 1900 |
| Total Lost time (s)               |      | 5.0  | 5.0           |      |            |            |      | 5.0      | 5.0  | 5.0      | 5.0      |      |
| Lane Util. Factor                 |      | 1.00 | 1.00          |      |            |            |      | 1.00     | 1.00 | 1.00     | 1.00     |      |
| Frpb, ped/bikes                   |      | 1.00 | 1.00          |      |            |            |      | 1.00     | 1.00 | 1.00     | 1.00     |      |
| Flpb, ped/bikes                   |      | 1.00 | 1.00          |      |            |            |      | 1.00     | 1.00 | 1.00     | 1.00     |      |
| Frt                               |      | 1.00 | 0.85          |      |            |            |      | 1.00     | 0.85 | 1.00     | 1.00     |      |
| Flt Protected                     |      | 0.95 | 1.00          |      |            |            |      | 1.00     | 1.00 | 0.95     | 1.00     |      |
| Satd. Flow (prot)                 |      | 1770 | 1615          |      |            |            |      | 1863     | 1599 | 1787     | 1881     |      |
| Flt Permitted                     |      | 0.95 | 1.00          |      |            |            |      | 1.00     | 1.00 | 0.95     | 1.00     |      |
| Satd. Flow (perm)                 |      | 1770 | 1615          |      |            |            |      | 1863     | 1599 | 1787     | 1881     |      |
| Peak-hour factor, PHF             | 0.96 | 0.96 | 0.96          | 0.96 | 0.96       | 0.96       | 0.96 | 0.96     | 0.96 | 0.96     | 0.96     | 0.96 |
| Adj. Flow (vph)                   | 84   | 0    | 82            | 0    | 0          | 0          | 0    | 377      | 339  | 264      | 440      | 0    |
| RTOR Reduction (vph)              | 0    | 0    | 73            | 0    | 0          | 0          | 0    | 0        | 160  | 0        | 0        | 0    |
| Lane Group Flow (vph)             | 0    | 84   | 9             | 0    | 0          | 0          | 0    | 377      | 179  | 264      | 440      | 0    |
| Confl. Bikes (#/hr)               |      |      |               |      |            |            |      |          |      |          |          | 1    |
| Heavy Vehicles (%)                | 2%   | 0%   | 0%            | 0%   | 0%         | 0%         | 0%   | 2%       | 1%   | 1%       | 1%       | 0%   |
| Turn Type                         | Perm |      | Perm          |      |            |            |      |          | Perm | Prot     |          |      |
| Protected Phases                  |      | 8    |               |      |            |            |      | 6        |      | 5        | 2        |      |
| Permitted Phases                  | 8    |      | 8             |      |            |            |      |          | 6    |          |          |      |
| Actuated Green, G (s)             |      | 6.3  | 6.3           |      |            |            |      | 24.5     | 24.5 | 14.1     | 43.6     |      |
| Effective Green, g (s)            |      | 6.3  | 6.3           |      |            |            |      | 24.5     | 24.5 | 14.1     | 43.6     |      |
| Actuated g/C Ratio                |      | 0.11 | 0.11          |      |            |            |      | 0.41     | 0.41 | 0.24     | 0.73     |      |
| Clearance Time (s)                |      | 5.0  | 5.0           |      |            |            |      | 5.0      | 5.0  | 5.0      | 5.0      |      |
| Vehicle Extension (s)             |      | 2.3  | 2.3           |      |            |            |      | 6.9      | 6.9  | 2.3      | 6.9      |      |
| Lane Grp Cap (vph)                |      | 186  | 170           |      |            |            |      | 762      | 654  | 421      | 1369     |      |
| v/s Ratio Prot                    |      |      |               |      |            |            |      | c0.20    |      | c0.15    | 0.23     |      |
| v/s Ratio Perm                    |      | 0.05 | 0.01          |      |            |            |      |          | 0.11 |          |          |      |
| v/c Ratio                         |      | 0.45 | 0.05          |      |            |            |      | 0.49     | 0.27 | 0.63     | 0.32     |      |
| Uniform Delay, d1                 |      | 25.2 | 24.1          |      |            |            |      | 13.1     | 11.8 | 20.5     | 2.9      |      |
| Progression Factor                |      | 1.00 | 1.00          |      |            |            |      | 1.00     | 1.00 | 1.00     | 1.00     |      |
| Incremental Delay, d2             |      | 1.0  | 0.1           |      |            |            |      | 1.8      | 0.8  | 2.4      | 0.5      |      |
| Delay (s)                         |      | 26.2 | 24.2          |      |            |            |      | 14.9     | 12.6 | 22.9     | 3.4      |      |
| Level of Service                  |      | С    | С             |      |            |            |      | В        | В    | С        | А        |      |
| Approach Delay (s)                |      | 25.2 |               |      | 0.0        |            |      | 13.8     |      |          | 10.7     |      |
| Approach LOS                      |      | С    |               |      | А          |            |      | В        |      |          | В        |      |
| Intersection Summary              |      |      |               |      |            |            |      |          |      |          |          |      |
| HCM Average Control Delay         |      |      | 13.6          | Н    | CM Level   | of Service | ;    |          | В    |          |          |      |
| HCM Volume to Capacity ratio      |      |      | 0.53          |      |            |            |      |          |      |          |          |      |
| Actuated Cycle Length (s)         |      |      | 59.9          |      | um of lost |            |      |          | 15.0 |          |          |      |
| Intersection Capacity Utilization | n    |      | 72.8%         | IC   | U Level o  | of Service |      |          | С    |          |          |      |
| Analysis Period (min)             |      |      | 15            |      |            |            |      |          |      |          |          |      |
| c Critical Lane Group             |      |      |               |      |            |            |      |          |      |          |          |      |

# Existing Traffic Conditions 4: 8th Avenue & 10th Street

|                               | ٦     | -    | $\mathbf{i}$ | 4    | -         | •          | 1    | Ť    | 1    | 1    | Ļ    | ~    |
|-------------------------------|-------|------|--------------|------|-----------|------------|------|------|------|------|------|------|
| Movement                      | EBL   | EBT  | EBR          | WBL  | WBT       | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations           | ሻ     | 4Î   |              |      | र्भ       | 1          | ሻ    | 4Î   |      | ሻ    | 4Î   |      |
| Volume (veh/h)                | 109   | 8    | 37           | 48   | 6         | 133        | 22   | 445  | 57   | 119  | 306  | 76   |
| Sign Control                  |       | Stop |              |      | Stop      |            |      | Free |      |      | Free |      |
| Grade                         |       | 0%   |              |      | 0%        |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor              | 0.96  | 0.96 | 0.96         | 0.96 | 0.96      | 0.96       | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Hourly flow rate (vph)        | 114   | 8    | 39           | 50   | 6         | 139        | 23   | 464  | 59   | 124  | 319  | 79   |
| Pedestrians                   |       |      |              |      |           |            |      |      |      |      |      |      |
| Lane Width (ft)               |       |      |              |      |           |            |      |      |      |      |      |      |
| Walking Speed (ft/s)          |       |      |              |      |           |            |      |      |      |      |      |      |
| Percent Blockage              |       |      |              |      |           |            |      |      |      |      |      |      |
| Right turn flare (veh)        |       |      |              |      |           | 4          |      |      |      |      |      |      |
| Median type                   |       |      |              |      |           |            |      | None |      |      | None |      |
| Median storage veh)           |       |      |              |      |           |            |      |      |      |      |      |      |
| Upstream signal (ft)          |       |      |              |      |           |            |      |      |      |      | 296  |      |
| pX, platoon unblocked         | 0.96  | 0.96 | 0.96         | 0.96 | 0.96      |            | 0.96 |      |      |      |      |      |
| vC, conflicting volume        | 1188  | 1175 | 358          | 1148 | 1185      | 493        | 398  |      |      | 523  |      |      |
| vC1, stage 1 conf vol         |       |      |              |      |           |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol         |       |      |              |      |           |            |      |      |      |      |      |      |
| vCu, unblocked vol            | 1176  | 1162 | 313          | 1135 | 1172      | 493        | 354  |      |      | 523  |      |      |
| tC, single (s)                | 7.1   | 6.5  | 6.2          | 7.1  | 6.5       | 6.2        | 4.1  |      |      | 4.1  |      |      |
| tC, 2 stage (s)               |       |      |              |      |           |            |      |      |      |      |      |      |
| tF (s)                        | 3.5   | 4.0  | 3.3          | 3.5  | 4.0       | 3.3        | 2.2  |      |      | 2.2  |      |      |
| p0 queue free %               | 0     | 95   | 95           | 65   | 96        | 76         | 98   |      |      | 88   |      |      |
| cM capacity (veh/h)           | 108   | 163  | 704          | 142  | 161       | 576        | 1169 |      |      | 1044 |      |      |
| Direction, Lane #             | EB 1  | EB 2 | WB 1         | NB 1 | NB 2      | SB 1       | SB 2 |      |      |      |      |      |
| Volume Total                  | 114   | 47   | 195          | 23   | 523       | 124        | 398  |      |      |      |      |      |
| Volume Left                   | 114   | 0    | 50           | 23   | 0         | 124        | 0    |      |      |      |      |      |
| Volume Right                  | 0     | 39   | 139          | 0    | 59        | 0          | 79   |      |      |      |      |      |
| cSH                           | 108   | 443  | 499          | 1169 | 1700      | 1044       | 1700 |      |      |      |      |      |
| Volume to Capacity            | 1.05  | 0.11 | 0.39         | 0.02 | 0.31      | 0.12       | 0.23 |      |      |      |      |      |
| Queue Length 95th (ft)        | 172   | 9    | 46           | 1    | 0         | 10         | 0    |      |      |      |      |      |
| Control Delay (s)             | 176.3 | 14.1 | 22.4         | 8.1  | 0.0       | 8.9        | 0.0  |      |      |      |      |      |
| Lane LOS                      | F     | В    | С            | А    |           | А          |      |      |      |      |      |      |
| Approach Delay (s)            | 128.9 |      | 22.4         | 0.3  |           | 2.1        |      |      |      |      |      |      |
| Approach LOS                  | F     |      | С            |      |           |            |      |      |      |      |      |      |
| Intersection Summary          |       |      |              |      |           |            |      |      |      |      |      |      |
| Average Delay                 |       |      | 18.5         |      |           |            |      |      |      |      |      |      |
| Intersection Capacity Utiliza | ation |      | 56.2%        | IC   | U Level o | of Service |      |      | В    |      |      |      |
| Analysis Period (min)         |       |      | 15           |      |           |            |      |      |      |      |      |      |

|                               | ≯     | -        | -     | •    | 1         | 1          |
|-------------------------------|-------|----------|-------|------|-----------|------------|
| Movement                      | EBL   | EBT      | WBT   | WBR  | SBL       | SBR        |
| Lane Configurations           | ۲     | <b>†</b> | eî 👘  |      | ٦         | 1          |
| Sign Control                  |       | Stop     | Stop  |      | Stop      |            |
| Volume (vph)                  | 417   | 488      | 141   | 107  | 139       | 252        |
| Peak Hour Factor              | 0.94  | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       |
| Hourly flow rate (vph)        | 444   | 519      | 150   | 114  | 148       | 268        |
| Direction, Lane #             | EB 1  | EB 2     | WB 1  | SB 1 | SB 2      |            |
| Volume Total (vph)            | 444   | 519      | 264   | 148  | 268       |            |
| Volume Left (vph)             | 444   | 0        | 0     | 148  | 0         |            |
| Volume Right (vph)            | 0     | 0        | 114   | 0    | 268       |            |
| Hadj (s)                      | 0.52  | 0.03     | -0.24 | 0.53 | -0.68     |            |
| Departure Headway (s)         | 6.9   | 6.4      | 6.4   | 7.9  | 6.7       |            |
| Degree Utilization, x         | 0.84  | 0.92     | 0.47  | 0.33 | 0.50      |            |
| Capacity (veh/h)              | 520   | 552      | 548   | 447  | 528       |            |
| Control Delay (s)             | 35.6  | 44.3     | 15.0  | 13.5 | 14.9      |            |
| Approach Delay (s)            | 40.3  |          | 15.0  | 14.4 |           |            |
| Approach LOS                  | Е     |          | С     | В    |           |            |
| Intersection Summary          |       |          |       |      |           |            |
| Delay                         |       |          | 29.7  |      |           |            |
| HCM Level of Service          |       |          | D     |      |           |            |
| Intersection Capacity Utiliza | ation |          | 54.8% | IC   | U Level c | of Service |
| Analysis Period (min)         |       |          | 15    |      |           |            |

Appendix C Crash Data

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

## Willamette Falls Drive & 10th Street January 1, 2009 through December 31, 2013

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2011        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| TURNING MOVEMENTS | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2011 TOTAL        | 0       | 0             | 2                  | 2       | 0      | 0       | 0      | 2    | 0    | 2   | 0    | 2       | 0                 | 0    |
| YEAR: 2010        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2010 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2009        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| TURNING MOVEMENTS | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2009 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| FINAL TOTAL       | 0       | 0             | 4                  | 4       | 0      | 0       | 0      | 4    | 0    | 4   | 0    | 4       | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

CDS380 12/8/2014

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

#### Willamette Falls Drive & 10th Street January 1, 2009 through December 31, 2013

|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | ,                                            |              |    |      |      |      |         |                  |            |       |
|-------|-------------------------------------------------------|-------------|-----------------------|----------------------------------------------|----------------------------|-----------------------------------------|------------------------|-----------------------------------|----------|----------------------------------------------|--------------|----|------|------|------|---------|------------------|------------|-------|
|       | S D<br>P R S W<br>E A U C O<br>E L G H R<br>D C S L K | DATE<br>DAY | CLASS<br>DIST<br>FROM | CITY STREET<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL OF<br>TRAF- RN | FF-RD WTH<br>IDBT SUR<br>RVWY LIG |          | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | MOVE<br>FROM |    | PRTC |      | G E  | E LICNS | PED<br>LOC ERROR | ACTN EVENT | CAUSE |
| 04581 | N N N                                                 | 11/30/2011  | 16                    | WILLAMETTE FALLS DR                          | INTER                      | 3-LEG                                   | N                      | N CLR                             | S-1STOP  | 01 NONE 0                                    | STRGHT       |    |      |      |      |         |                  |            | 07    |
| NONE  |                                                       | Wed         | 0                     | 10TH ST                                      | SW                         |                                         | STOP SIGN              | N DRY                             | REAR     | PRVTE                                        | SW NE        |    |      |      |      |         |                  | 000        | 00    |
|       |                                                       | 4 P         |                       |                                              | 06                         | 0                                       |                        | N DAY                             | PDO      | PSNGR CAR                                    |              | 01 | DRVR | NONE | 00 M | 4 UNK   | 026              | 000        | 07    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | UNK     |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | 02 NONE 0                                    | STOP         |    |      |      |      |         |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PRVTE                                        | SW NE        |    |      |      |      |         |                  | 011        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PSNGR CAR                                    |              | 01 | DRVR | NONE | 46 M | 4 OR-Y  | 000              | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
| 02637 | N N N                                                 | 07/23/2011  | 16                    | WILLAMETTE FALLS DR                          | INTER                      | 3-1.50                                  | N                      | N CLR                             | ANGL-OTH | 01 NONE 0                                    | TIRN-R       |    |      |      |      |         |                  |            | 02    |
| NONE  | 14 14 14                                              | Sat         | 0                     | 10TH ST                                      | CN                         | 5 110                                   | STOP SIGN              |                                   | TURN     | PRVTE                                        | N SW         |    |      |      |      |         |                  | 015        | 00    |
|       |                                                       | 7P          |                       |                                              | 01                         | 0                                       |                        | N DAY                             | PDO      | PSNGR CAR                                    |              | 01 | DRVR | NONE | 00 M | 4 OR-Y  | 028              | 000        | 02    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | 02 NONE 0                                    | 0 CTDCUT     |    |      |      |      |         |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PRVTE                                        | NE SW        |    |      |      |      |         |                  | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PSNGR CAR                                    |              |    | DRVR | NONE | 18 E | OR-Y    | 000              | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
| 02100 | NNN                                                   | 06/28/2010  | 16                    | WILLAMETTE FALLS DR                          | INTER                      | 2 1 2 0                                 | N                      | N CLR                             | S-1TURN  | 01 NONE 0                                    | CEDCIE       |    |      |      |      |         |                  | 004        | 07    |
| NONE  | IN IN IN                                              | Mon         | 10                    | 10TH ST                                      | CN                         | 2-756                                   | STOP SIGN              |                                   | REAR     | PRVTE 0                                      | NE SW        |    |      |      |      |         |                  | 000        | 00    |
|       |                                                       | 12P         | -                     |                                              | 02                         | 0                                       |                        | N DAY                             | PDO      | PSNGR CAR                                    |              |    | DRVR | NONE | 38 E | F OR-Y  | 026              | 000        | 07    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | 02 NONE 0                                    | CTOD         |    |      |      |      |         |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PRVTE 0                                      | NE N         |    |      |      |      |         |                  | 013 004    | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PSNGR CAR                                    | 112 11       | 01 | DRVR | NONE | 65 E | F OR-Y  | 000              | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              | 02 | PSNG | NO<5 | 04 M | 4       | 000              | 000        | 00    |
| 02098 | NNN                                                   | 06/09/2009  | 16                    | WILLAMETTE FALLS DR                          | INTER                      | 3-LEG                                   | N                      | N CLR                             | ANGL-OTH | 01 NONE 0                                    | STRCHT       |    |      |      |      |         |                  |            | 02    |
| NONE  | 14 14 14                                              | Tue         | 0                     | 10TH ST                                      | CN                         | 5 110                                   | UNKNOWN                | N DRY                             | TURN     | PRVTE                                        | W E          |    |      |      |      |         |                  | 000        | 00    |
|       |                                                       | 4 P         |                       |                                              | 03                         | 0                                       |                        | N DAY                             | PDO      | PSNGR CAR                                    |              | 01 | DRVR | NONE | 21 E | F OR-Y  | 028              | 000        | 02    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | 02 NONE 0                                    | TIRN-T       |    |      |      |      |         |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PRVTE 0                                      | E S          |    |      |      |      |         |                  | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          | PSNGR CAR                                    |              | 01 | DRVR | NONE | 43 E | OR-Y    | 000              | 000        | 00    |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      | OR<25   |                  |            |       |
|       |                                                       |             |                       |                                              |                            |                                         |                        |                                   |          |                                              |              |    |      |      |      |         |                  |            |       |

### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### 10th Street & 8th Avenue/8th Court January 1, 2009 through December 31, 2013

|                     | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE |         | PEOPLE |         | TRUCKS | DRY    | WET  | DAV |      | INTER-  | INTER-<br>SECTION | OFF- |
|---------------------|---------|---------------|--------------------|---------|--------|---------|--------|--------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE      | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF   | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2013<br>ANGLE | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1      | 0    | 1   | 0    | 1       | 0                 | 0    |
| TURNING MOVEMENTS   | 0       | 2             | 0                  | 2       | 0      | 3       | 0      | 2      | 0    | 1   | 1    | 2       | 0                 | 0    |
| 2013 TOTAL          | 0       | 2             | 1                  | 3       | 0      | 3       | 0      | 3      | 0    | 2   | 1    | 3       | 0                 | 0    |
| YEAR: 2012          |         |               |                    |         |        |         |        |        |      |     |      |         |                   |      |
| ANGLE               | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0      | 1    | 0   | 1    | 1       | 0                 | 0    |
| TURNING MOVEMENTS   | 0       | 0             | 2                  | 2<br>3  | 0      | 0       | 0      | 1      | 1    | 0   | 2    | 2       | 0                 | 0    |
| 2012 TOTAL          | 0       | 0             | 3                  | 3       | 0      | 0       | 0      | 1      | 2    | 0   | 3    | 3       | 0                 | 0    |
| YEAR: 2011          |         |               |                    |         |        |         |        |        |      |     |      |         |                   |      |
| ANGLE               | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1      | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2011 TOTAL          | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1      | 0    | 1   | 0    | 1       | 0                 | 0    |
| YEAR: 2010          |         |               |                    |         |        |         |        |        |      |     |      |         |                   |      |
| ANGLE               | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0      | 1    | 0   | 1    | 1       | 0                 | 0    |
| TURNING MOVEMENTS   | 0       | 0             | 2                  | 2<br>3  | 0      | 0       | 0      | 1      | 1    | 1   | 1    | 2       | 0                 | 0    |
| 2010 TOTAL          | 0       | 0             | 3                  | 3       | 0      | 0       | 0      | 1      | 2    | 1   | 2    | 3       | 0                 | 0    |
| YEAR: 2009          |         |               |                    |         |        |         |        |        |      |     |      |         |                   |      |
| TURNING MOVEMENTS   | 0       | 0             | 2<br>2             | 2<br>2  | 0      | 0       | 0      | 2<br>2 | 0    | 1   | 1    | 2       | 0                 | 0    |
| 2009 TOTAL          | 0       | 0             | 2                  | 2       | 0      | 0       | 0      | 2      | 0    | 1   | 1    | 2       | 0                 | 0    |
| FINAL TOTAL         | 0       | 3             | 9                  | 12      | 0      | 4       | 0      | 8      | 4    | 5   | 7    | 12      | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

064 EAST PORTLAND FREEWAY

CDS380 12/4/2014

#### 10th Street & 8th Avenue/8th Court January 1, 2009 through December 31, 2013

| S D<br>P R S<br>E A U C<br>SER# E L G H<br>INVEST D C S L | O DATE<br>R DAY           | COUNTY<br>CITY<br>URBAN AREA          | CONN #<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN |            | INT-REL OF<br>TRAF- RN | FFRD WTHR<br>NDBT SURF<br>RVWY LIGHT | COLL TYP | SPCL USE<br>TRLR QTY MOVE<br>OWNER FROM<br>V# VEH TYPE TO | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES |     | ACTN EVENT | CAUSE          |
|-----------------------------------------------------------|---------------------------|---------------------------------------|-----------------------------------------|----------------------------|------------|------------------------|--------------------------------------|----------|-----------------------------------------------------------|---------------------------|-----------------------------|-----|------------|----------------|
| 00143 NNN<br>NONE                                         | 01/12/2012<br>Thu<br>7P   | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8th Ave<br>10th st                 | INTER<br>N<br>05           | CROSS<br>0 | N<br>STOP SIGN         |                                      | TURN     | 01 NONE 0 TURN-L<br>PRVTE W N<br>PSNGR CAR                | 01 DRVR NONE              | 80 M OR-Y<br>OR<25          | 007 | 015<br>000 | 08<br>00<br>08 |
|                                                           |                           |                                       |                                         |                            |            |                        |                                      |          | 02 NONE 0 STRGHT<br>PRVTE S N<br>PSNGR CAR                | 01 DRVR NONE              | 20 M OR-Y<br>OR<25          | 000 | 000<br>000 | 00<br>00       |
| 00782 N N N<br>NONE                                       | 02/28/2009<br>Sat<br>11P  | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8th Ave<br>10th St                 | INTER<br>CN<br>01          | CROSS<br>0 | N<br>STOP SIGN         |                                      | TURN     | 01 NONE 0 TURN-L<br>PRVTE E S<br>PSNGR CAR                | 01 DRVR NONE              | 17 F OR-Y<br>OR<25          | 028 | 015<br>000 | 02<br>00<br>02 |
|                                                           |                           |                                       |                                         |                            |            |                        |                                      |          | 02 NONE 0 STRGHT<br>PRVTE N S<br>PSNGR CAR                | 01 DRVR NONE              | 62 F OR-Y<br>OR<25          | 000 | 000<br>000 | 00<br>00       |
| 01005 N N N N<br>CITY                                     | N 03/17/2009<br>Tue<br>3P | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8TH CT<br>10TH ST                  | INTER<br>CN<br>02          | CROSS<br>0 | N<br>STOP SIGN         | N CLD<br>N DRY<br>N DAY              | TURN     | 01 NONE 0 TURN-L<br>PRVTE E S<br>PSNGR CAR                | 01 DRVR NONE              | 47 M OR-Y<br>OR>25          | 028 | 000<br>000 | 02<br>00<br>02 |
|                                                           |                           |                                       |                                         |                            |            |                        |                                      |          | 02 NONE 0 STRGHT<br>PRVTE S N<br>PSNGR CAR                | 01 DRVR NONE              | 34 M OR-Y<br>OR<25          | 000 | 000<br>000 | 00<br>00       |
| 02649 NNN<br>NONE                                         | 07/29/2010<br>Thu<br>4P   | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8TH CT<br>10TH ST                  | INTER<br>CN<br>03          | CROSS<br>0 |                        | N CLR<br>N DRY<br>N DAY              | TURN     | 01 NONE 0 TURN-L<br>PRVTE NE SE<br>PSNGR CAR              | 01 DRVR NONE              | 00 F UNK<br>OR<25           | 028 | 000<br>000 | 02<br>00<br>02 |
|                                                           |                           |                                       |                                         |                            |            |                        |                                      |          | 02 NONE 0 STRGHT<br>PRVTE NW SE<br>PSNGR CAR              |                           | 38 M OR-Y<br>OR<25          | 000 | 000<br>000 | 00<br>00       |
| 03642 N N N<br>CITY                                       | 10/09/2010<br>Sat<br>9P   | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8TH CT<br>10TH ST                  | INTER<br>CN<br>04          | CROSS<br>0 | N<br>TRF SIGNAL        |                                      | TURN     | 01 NONE 0 STRGHT<br>PRVTE S N<br>PSNGR CAR                | 01 DRVR NONE              | 46 M OR-Y<br>OR<25          | 000 | 000<br>000 | 02<br>00<br>00 |
|                                                           |                           |                                       |                                         |                            |            |                        |                                      |          | 02 NONE 0 TURN-L<br>PRVTE E S<br>PSNGR CAR                | 01 DRVR NONE              | 20 F OR-Y<br>OR>25          | 028 | 015<br>000 | 00<br>02       |
| 04522 N N N N<br>CITY                                     | N 11/29/2010<br>Mon<br>5P | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 2<br>8th Ave<br>10th St                 | INTER<br>CN<br>04          | CROSS<br>0 |                        |                                      |          | 01 NONE STRGHT<br>PRVTE W E<br>PSNGR CAR                  | 01 DRVR NONE              | 60 F OR-Y<br>OR<25          | 028 | 015<br>000 | 02<br>00<br>02 |

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

064 EAST PORTLAND FREEWAY

CDS380 12/4/2014

#### 10th Street & 8th Avenue/8th Court January 1, 2009 through December 31, 2013

| S D<br>P R S W<br>E A U C O<br>SER# E L G H R<br>INVEST D C S L K | DAY | COUNTY<br>CITY<br>URBAN AREA          | RD# FC<br>COMPNT<br>MLG TYP<br>MILEPNT | CONN #<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN | LEGS       | TRAF-         | OFFRD WTHR<br>RNDBT SURF<br>DRVWY LIGH | COLL TYP | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM            | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES | PED<br>LOC ERROR | ACTN EVENT        | CAUSE          |
|-------------------------------------------------------------------|-----|---------------------------------------|----------------------------------------|-----------------------------------------|----------------------------|------------|---------------|----------------------------------------|----------|----------------------------------------------|-----------------|---------------------------|-----------------------------|------------------|-------------------|----------------|
|                                                                   |     |                                       |                                        |                                         |                            |            |               |                                        |          | 02 NONE<br>PRVTE<br>PSNGR CAR                | STRGHT<br>S N   | 01 DRVR NONE              | 43 F OR-Y<br>OR<25          | 000              | 000<br>000        | 00<br>00       |
|                                                                   | Tue | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 1 19<br>60<br>6.40                     | 2<br>8TH CT<br>10TH ST                  | INTER<br>CN<br>04          | CROSS<br>0 | N<br>STOP SIG |                                        |          |                                              | STRGHT<br>NW SE | 01 DRVR NONE              | 78 M OR-Y<br>OR<25          | 028              | 013<br>015<br>000 | 02<br>00<br>02 |
|                                                                   |     |                                       |                                        |                                         |                            |            |               |                                        |          | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | SW NE           | 01 DRVR NONE              | 19 M OR-Y<br>OR<25          | 000              | 000 013<br>000    | 0 0<br>0 0     |
|                                                                   |     |                                       |                                        |                                         |                            |            |               |                                        |          | 03 NONE 0<br>PRVTE<br>PSNGR CAR              | SE NW           | 01 DRVR INJC              | 30 M OR-Y<br>OR<25          | 000              | 011 013<br>000    | 0 0<br>0 0     |
|                                                                   |     |                                       |                                        |                                         |                            |            |               |                                        |          | 04 NONE 0<br>PRVTE<br>PSNGR CAR              | SE NW           | 01 DRVR NONE              | 43 M OR-Y<br>OR>25          | 000              | 022<br>000        | 00<br>00       |

CDS380 12/4/2014

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

#### 10th Street & 8th Avenue/8th Court January 1, 2009 through December 31, 2013

|               |                                                       |                          |                       |                                              |                            |            | January                               | · ⊥, 2009                | chirough becei          | WEI JI, 2013                                 |      |                           |             |         |            |                   |
|---------------|-------------------------------------------------------|--------------------------|-----------------------|----------------------------------------------|----------------------------|------------|---------------------------------------|--------------------------|-------------------------|----------------------------------------------|------|---------------------------|-------------|---------|------------|-------------------|
|               | S D<br>P R S W<br>E A U C O<br>E L G H R<br>D C S L K | DATE<br>DAY              | CLASS<br>DIST<br>FROM | CITY STREET<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN |            | INT-REL OFF<br>TRAF- RND<br>CONTL DRV |                          | COLL TYP                | SPCL USE<br>TRLR QTY<br>OWNER<br>V# VEH TYPE | FROM | PRTC INJ<br>P# TYPE SVRTY |             |         | ACTN EVENT | CAUSE             |
| 04173<br>CITY | N N N N N                                             | 11/06/2012<br>Tue<br>8A  | 17<br>0               | 8TH AVE<br>10TH ST                           | INTER<br>CN<br>03          | CROSS<br>0 | N<br>STOP SIGN                        | N CLD<br>N WET<br>N DAWN | ANGL-OTH<br>ANGL<br>PDO | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | W E  | 01 DRVR NONE              | R-У<br>R<25 | 028     | 015<br>000 | 02<br>00<br>02    |
|               |                                                       |                          |                       |                                              |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | N S  | 01 DRVR NONE              | R-Y<br>R<25 | 000     | 015<br>000 | 00000             |
| 01337<br>CITY | ΝΝΝΝΝ                                                 | 04/19/2013<br>Fri<br>4P  | 19<br>0               | 8TH CT<br>10TH ST                            | INTER<br>CN<br>01          | CROSS<br>0 | N<br>STOP SIGN                        | N CLR<br>N DRY<br>N DAY  | ANGL-OTH<br>ANGL<br>PDO | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | E W  | 01 DRVR NONE              | R-Y<br>R<25 | 028     | 015<br>000 | 02<br>00<br>02    |
|               |                                                       |                          |                       |                                              |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | N S  | 01 DRVR NONE              | R-Y<br>R<25 | 000     | 000        | 00000             |
| 01621<br>NONE | N N N                                                 | 05/10/2013<br>Fri<br>11A | 17<br>0               | 8TH CT<br>10TH ST                            | INTER<br>CN<br>01          | CROSS<br>0 | N<br>TRF SIGNAL                       | N CLR<br>N DRY<br>N DAY  | ANGL-OTH<br>TURN<br>INJ | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | E S  | 01 DRVR INJC              | R-У<br>R<25 | 028     | 015<br>000 | 02<br>00<br>02    |
|               |                                                       |                          |                       |                                              |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | N E  | 01 DRVR NONE              | R-Y<br>R<25 | 000     | 000        | 00<br>00          |
| 04201<br>NONE | N N N                                                 | 11/07/2012<br>Wed<br>6P  | 17<br>0               | 8TH CT<br>10TH ST                            | INTER<br>CN<br>03          | CROSS<br>0 | N<br>STOP SIGN                        | N UNK<br>N WET<br>N DUSK | ANGL-OTH<br>TURN<br>PDO | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | E S  | 01 DRVR NONE              | R-Y<br>R<25 | 028     | 000<br>000 | 02<br>00<br>02    |
|               |                                                       |                          |                       |                                              |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | N S  | 01 DRVR NONE              | R-Y<br>R<25 | 000     | 000        | 00000             |
| 04802<br>CITY | N N N N N                                             | 12/05/2013<br>Thu<br>7P  | 17<br>0               | 8TH CT<br>10TH ST                            | INTER<br>CN<br>04          | CROSS<br>0 | N<br>TRF SIGNAL                       | N CLR<br>N DRY<br>N DLIT | O-1TURN<br>TURN<br>INJ  | 01 NONE 0<br>PRVTE<br>PSNGR CAR              | S N  | 01 DRVR INJC              | R-У<br>R<25 | 000     | 000        | 02,08<br>00<br>00 |
|               |                                                       |                          |                       |                                              |                            |            |                                       |                          |                         | 02 NONE 0<br>PRVTE<br>PSNGR CAR              | N E  | 01 DRVR INJC              | R-Y<br>R<25 | 028,004 | 000<br>000 | 00<br>02,08       |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### 10th Street & Blankenship Road/Salamo Road January 1, 2009 through December 31, 2013

|                |         | NON-    | PROPERTY |         |        |         |        |      |      |     |      |         | INTER-  |      |
|----------------|---------|---------|----------|---------|--------|---------|--------|------|------|-----|------|---------|---------|------|
|                | FATAL   | FATAL   | DAMAGE   | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | SECTION | OFF- |
| COLLISION TYPE | CRASHES | CRASHES | ONLY     | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED | ROAD |
| YEAR: 2013     |         |         |          |         |        |         |        |      |      |     |      |         |         |      |
| REAR-END       | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |
| 2013 TOTAL     | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |
| FINAL TOTAL    | 0       | 0       | 1        | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0       | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### CDS380 12/4/2014

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT URBAN NON-SYSTEM CRASH LISTING

CITY OF WEST LINN, CLACKAMAS COUNTY

#### 10th Street & Blankenship Road/Salamo Road January 1, 2009 through December 31, 2013

| SER#<br>INVEST | S D<br>P R S W<br>E A U C O<br>E L G H R<br>D C S L K | DAY        | CLASS<br>DIST<br>FROM | CITY STREET<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | TRAF-   | OFF-RE<br>RNDBT<br>DRVWY | ) WTHR<br>SURF<br>LIGHT | CRASH TYP<br>COLL TYP<br>SVRTY | V# | SPCL USE<br>TRLR QTY<br>OWNER<br>VEH TYPE | MOVE<br>FROM<br>TO | P# |     | C INJ<br>E SVR |      |                 |   | ERROR | ACTN EVENT | CAUSE |
|----------------|-------------------------------------------------------|------------|-----------------------|----------------------------------------------|----------------------------|-----------------------------------------|---------|--------------------------|-------------------------|--------------------------------|----|-------------------------------------------|--------------------|----|-----|----------------|------|-----------------|---|-------|------------|-------|
| 05072          | N N N                                                 | 12/29/2013 | 17                    | BLANKENSHIP RD                               | INTER                      | 3-LEG                                   | Ν       | N                        | CLR                     | S-1STOP                        | 01 | NONE 0                                    | STRGHI             |    |     |                |      |                 |   |       |            | 07    |
| NONE           |                                                       | Sun        | 0                     | 10TH ST                                      | SW                         |                                         | TRF SIG | NAL N                    | DRY                     | REAR                           |    | PRVTE                                     | NW SE              |    |     |                |      |                 |   |       | 000        | 00    |
|                |                                                       | 5P         |                       |                                              | 0.9                        | 2                                       |         | N                        | DUSK                    | PDO                            |    | PSNGR CAR                                 |                    | 01 | DRV | R NONI         | E 00 | M UNK           |   | 026   | 000        | 07    |
|                |                                                       |            |                       |                                              |                            |                                         |         |                          |                         |                                |    |                                           |                    |    |     |                |      | OR<25           | 5 |       |            |       |
|                |                                                       |            |                       |                                              |                            |                                         |         |                          |                         |                                | 02 | NONE 0                                    | STOP               |    |     |                |      |                 |   |       |            |       |
|                |                                                       |            |                       |                                              |                            |                                         |         |                          |                         |                                |    | PRVTE                                     | NW SE              |    |     |                |      |                 |   |       | 011        | 00    |
|                |                                                       |            |                       |                                              |                            |                                         |         |                          |                         |                                |    | PSNGR CAR                                 |                    | 01 | DRV | r noni         | E 28 | M OR-Y<br>OR>25 |   | 000   | 000        | 00    |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### 10th Street & I-205 (Hwy 064) NB Ramps January 1, 2009 through December 31, 2013

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2013        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| TURNING MOVEMENTS | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0    | 1    | 0   | 1    | 1       | 0                 | 0    |
| 2013 TOTAL        | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 1    | 1    | 0   | 2    | 2       | 0                 | 0    |
| YEAR: 2010        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| 2010 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 0   | 1    | 1       | 0                 | 0    |
| YEAR: 2009        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 2             | 0                  | 2       | 0      | 2       | 0      | 1    | 1    | 1   | 1    | 2       | 0                 | 0    |
| 2009 TOTAL        | 0       | 2             | 0                  | 2       | 0      | 2       | 0      | 1    | 1    | 1   | 1    | 2       | 0                 | 0    |
| FINAL TOTAL       | 0       | 3             | 2                  | 5       | 0      | 3       | 0      | 3    | 2    | 1   | 4    | 5       | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

CDS380 12/4/2014 064 EAST PORTLAND FREEWAY

#### 10th Street & I-205 (Hwy 064) NB Ramps January 1, 2009 through December 31, 2013

|               | SD<br>PRST<br>EAUCO<br>ELGHI<br>FDCSLI | D DATE<br>R DAY          | COUNTY<br>CITY<br>URBAN AREA          | MLG TYP | CONN #<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL C<br>TRAF- F |         | COLL TYP | OWNER FROM                                 |                              | A S<br>G E LICNS<br>E X RES |             | ACTN E            | VENT | CAUSE                      |
|---------------|----------------------------------------|--------------------------|---------------------------------------|---------|-----------------------------------------|----------------------------|-----------------------------------------|----------------------|---------|----------|--------------------------------------------|------------------------------|-----------------------------|-------------|-------------------|------|----------------------------|
| 04883<br>NONE | ΝΝΝ                                    | 12/17/2013<br>Tue<br>6P  | CLACKAMAS<br>WEST LINN<br>PORTLAND UA |         | 1<br>10TH ST<br>EB EXTO 10TH            | INTER<br>CN<br>03          | CROSS<br>0                              | N<br>TRF SIGNAI      |         | REAR     | 01 NONE 0 STRGHT<br>PRVTE W E<br>PSNGR CAR | 01 DRVR NONE                 | 46 F OR-Y<br>OR<25          | 026         | 000               |      | 07<br>00<br>07             |
|               |                                        |                          |                                       |         |                                         |                            |                                         |                      |         |          | 02 NONE 0 STOP<br>PRVTE W E<br>PSNGR CAR   | 01 DRVR INJA                 | 41 F OR-Y<br>OR<25          | 000         | 013<br>000        |      | 0 0<br>0 0                 |
| 00124<br>CITY | YNNNI                                  | 01/07/2009<br>Wed<br>5P  | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 6 0     | 2<br>10TH ST<br>EB EXTO 10TH            | INTER<br>N<br>06           | CROSS<br>0                              | N<br>TRF SIGNAI      |         | REAR     | 01 NONE 0 STRGHT<br>PRVTE N S<br>PSNGR CAR | 01 DRVR NONE                 | 22 F OR-Y<br>OR<25          | 016,047,026 | 0<br>000<br>038   | 02   | 27,01,07<br>00<br>27,01,07 |
|               |                                        |                          |                                       |         |                                         |                            |                                         |                      |         |          | 02 NONE 0 STOP<br>PRVTE N S<br>PSNGR CAR   | 01 DRVR NONE<br>02 PSNG INJC | OR<25                       | 000         | 011<br>000<br>000 |      | 00<br>00<br>00             |
| 02595<br>CITY | ΝΝΝΝΙ                                  | 07/13/2009<br>Mon<br>12P | CLACKAMAS<br>WEST LINN<br>PORTLAND UA | 6 0     | 2<br>10TH ST<br>EB EXTO 10TH            | INTER<br>N<br>06           | CROSS<br>0                              | N<br>TRF SIGNAI      | L N DRY | REAR     | 01 NONE 0 STRGHT<br>PRVTE N S<br>PSNGR CAR |                              |                             | 026         | 0<br>000<br>000   | 13   | 07<br>00<br>07             |
|               |                                        |                          |                                       |         |                                         |                            |                                         |                      |         |          | 02 NONE 0 STOP<br>PRVTE N S<br>PSNGR CAR   | 01 DRVR NONE                 | 25 F OR-Y<br>OR<25          | 000         | 011 0<br>000      | 13   | 00000                      |
|               |                                        |                          |                                       |         |                                         |                            |                                         |                      |         |          | 03 NONE 0 STOP<br>PRVTE N S<br>PSNGR CAR   | 01 DRVR NONE<br>02 PSNG INJC | OR<25                       | 000         | 022<br>000<br>000 |      | 00<br>00<br>00             |
| 04320<br>NONE | ΝΝΝ                                    | 11/11/2010<br>Thu<br>8P  | CLACKAMAS<br>WEST LINN<br>PORTLAND UA |         | 2<br>10TH ST<br>EB ENFR 10TH            | INTER<br>S<br>06           | CROSS<br>0                              | N<br>TRF SIGNAI      |         | REAR     | 01 NONE 0 STRGHT<br>PRVTE S N<br>PSNGR CAR |                              |                             | 016         | 000               |      | 27<br>00<br>27             |
|               |                                        |                          |                                       |         |                                         |                            |                                         |                      |         |          | 02 NONE 0 STOP<br>PRVTE S N<br>PSNGR CAR   | 01 DRVR NONE                 | 91 M OR-Y<br>OR<25          | 000         | 011<br>000        |      | 00000                      |
| 00121<br>NONE | ΝΝΝ                                    | 01/10/2013<br>Thu<br>8P  | CLACKAMAS<br>WEST LINN<br>PORTLAND UA |         | 2<br>10TH ST<br>EB ENFR 10TH            | INTER<br>CN<br>03          | CROSS<br>0                              | N<br>TRF SIGNAI      |         | TURN     | 01 NONE 0 STRGHT<br>PRVTE S N<br>PSNGR CAR | 01 DRVR NONE                 | 45 F OR-Y<br>OR<25          | 000         | 000               |      | 04<br>00<br>00             |

#### CDS380 12/4/2014

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

064 EAST PORTLAND FREEWAY

#### 10th Street & I-205 (Hwy 064) NB Ramps January 1, 2009 through December 31, 2013

| S D                     |                 |                     |              |         |             |           |            |      |               |           |           |            |       |
|-------------------------|-----------------|---------------------|--------------|---------|-------------|-----------|------------|------|---------------|-----------|-----------|------------|-------|
| PRSW                    | RD# FC          |                     | INT-TYP      |         |             |           | SPCL USE   |      |               |           |           |            |       |
| E A U C O DATE COUN     | ITY COMPNT      | CONN # RD CH        | HAR (MEDIAN) | INT-REL | OFFRD WTHR  | CRASH TYP | TRLR QTY   | MOVE |               | A S       |           |            |       |
| SER# E L G H R DAY CITY |                 | FIRST STREET DIREC  | CT LEGS      | TRAF-   | RNDBT SURF  | COLL TYP  | OWNER      | FROM | PRTC INJ      | G E LICNS | 5 PED     |            |       |
|                         | AN AREA MILEPNT | SECOND STREET LOCTI | N (#LANES)   | CNTL    | DRVWY LIGHT | SVRTY V   | # VEH TYPE | TO   | P# TYPE SVRTY | E X RES   | LOC ERROR | ACTN EVENT | CAUSE |

| 02 NONE ( | TT C | JRN-L |    |      |      |    |   |       |         |     |   |    |
|-----------|------|-------|----|------|------|----|---|-------|---------|-----|---|----|
| PRVTE     | Ν    | Е     |    |      |      |    |   |       |         | 000 | ( | 00 |
| PSNGR CAF | 2    |       | 01 | DRVR | NONE | 00 | М | OR-Y  | 020,004 | 000 | ( | 04 |
|           |      |       |    |      |      |    |   | OR<25 |         |     |   |    |

## OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CRASH SUMMARIES BY YEAR BY COLLISION TYPE

### 10th Street & I-205 (Hwy 064) SB Ramps January 1, 2009 through December 31, 2013

|                   | FATAL   | NON-<br>FATAL | PROPERTY<br>DAMAGE | TOTAL   | PEOPLE | PEOPLE  |        | DRY  | WET  |     |      | INTER-  | INTER-<br>SECTION | OFF- |
|-------------------|---------|---------------|--------------------|---------|--------|---------|--------|------|------|-----|------|---------|-------------------|------|
| COLLISION TYPE    | CRASHES | CRASHES       | ONLY               | CRASHES | KILLED | INJURED | TRUCKS | SURF | SURF | DAY | DARK | SECTION | RELATED           | ROAD |
| YEAR: 2012        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| TURNING MOVEMENTS | 0       | 1             | 0                  | 1       | 0      | 1       | 0      | 1    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2012 TOTAL        | 0       | 1             | 1                  | 2       | 0      | 1       | 0      | 2    | 0    | 2   | 0    | 2       | 0                 | 0    |
| YEAR: 2010        |         |               |                    |         |        |         |        |      |      |     |      |         |                   |      |
| REAR-END          | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0    | 0    | 1   | 0    | 1       | 0                 | 0    |
| 2010 TOTAL        | 0       | 0             | 1                  | 1       | 0      | 0       | 0      | 0    | 0    | 1   | 0    | 1       | 0                 | 0    |
| FINAL TOTAL       | 0       | 1             | 2                  | 3       | 0      | 1       | 0      | 2    | 0    | 3   | 0    | 3       | 0                 | 0    |

Disclaimer: A higher number of crashes may be reported as of 2011 compared to prior years. This does not reflect an increase in annual crashes. The higher numbers result from a change to an internal departmental process that allows the Crash Analysis and Reporting Unit to add previously unavailable, non-fatal crash reports to the annual data file. Please be aware of this change when comparing pre-2011 crash statistics.

#### OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT CONTINUOUS SYSTEM CRASH LISTING

064 EAST PORTLAND FREEWAY

CDS380 12/4/2014

#### 10th Street & I-205 (Hwy 064) SB Ramps January 1, 2009 through December 31, 2013

| I<br>ER# I      | SD<br>RSW<br>EAUCO<br>ELGHR<br>DCSLK | DATE<br>DAY       | COUNTY<br>CITY<br>URBAN AREA |             | CONN #<br>FIRST STREET<br>SECOND STREET | RD CHAR<br>DIRECT<br>LOCTN | INT-TYP<br>(MEDIAN)<br>LEGS<br>(#LANES) | INT-REL<br>TRAF- |                  | CRASH TYI<br>COLL TYP<br>T SVRTY | -                               | PRTC INJ<br>P# TYPE SVRTY | A S<br>G E LICNS<br>E X RES |         | ACTN EVENT | CAUSE       |
|-----------------|--------------------------------------|-------------------|------------------------------|-------------|-----------------------------------------|----------------------------|-----------------------------------------|------------------|------------------|----------------------------------|---------------------------------|---------------------------|-----------------------------|---------|------------|-------------|
| )3096 1<br>JONE | NNN                                  | 08/21/2012        |                              | 1 17        |                                         | INTER                      | CROSS                                   |                  |                  | S-1STOP                          | 01 NONE 0 STRGHT                | ſ                         |                             |         | 013        | 07<br>00    |
| JNE             |                                      | Tue<br>2P         | WEST LINN<br>PORTLAND UA     | 6 0<br>6.57 | 10TH ST<br>WB EXTO 10TH                 | S<br>06                    | 0                                       | TRF SIGNA        | L N DRY<br>N DAY |                                  | PRVTE S N<br>PSNGR CAR          | 01 DRVR NONE              | 20 M OR-Y<br>OR<25          | 026     | 000<br>000 | 07          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | 02 NONE O STOP<br>PRVTE S N     |                           |                             |         | 011 013    | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | PSNGR CAR                       | 01 DRVR NONE              | 40 F OR-Y<br>OR<25          | 000     | 000        | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | 03 NONE 0 STOP<br>PRVTE S N     |                           |                             |         | 022        | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | PSNGR CAR                       | 01 DRVR NONE              | 67 M OR-Y<br>OR<25          | 000     | 000        | 00          |
| 3497 N<br>ITY   | имими                                | 09/20/2012        | CLACKAMAS<br>WEST LINN       | 1 17        |                                         | INTER                      | CROSS                                   |                  |                  | S-OTHER                          | 01 NONE 0 TURN-F                | 2                         |                             |         |            | 27,08<br>00 |
| 111             |                                      | Thu<br>7P         | PORTLAND UA                  |             | 10TH ST<br>WB ENFR 10TH                 | CN<br>01                   | 0                                       | IKF SIGNA        | L N DRY<br>N DAY |                                  | PRVTE N W<br>PSNGR CAR          | 01 DRVR NONE              | 42 F OTH-Y<br>OR<25         | 016,006 | 000<br>038 | 27,08       |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  |                                 | 02 PSNG INJC              | 65 F                        | 000     | 000        | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | 02 NONE 0 TURN-F<br>PRVTE N W   | ર                         |                             |         | 000        | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | PSNGR CAR                       | 01 DRVR NONE              | 52 F OR-Y<br>OR<25          | 000     | 000        | 00          |
| 2020 N<br>ONE   | NNN                                  | 06/12/2010<br>Sat | CLACKAMAS<br>WEST LINN       |             | 4<br>10TH ST                            | INTER<br>SE                | CROSS                                   |                  | N CLR            | S-1STOP                          | 01 NONE 0 STRGHT<br>PRVTE SE NW |                           |                             |         | 000        | 07<br>00    |
| ONL             |                                      |                   | PORTLAND UA                  |             | WB EXTO 10TH                            | 06                         | 0                                       | 110 01000        | N DAY            |                                  | PSNGR CAR                       | 01 DRVR NONE              | 00 M UNK<br>OR<25           | 026     | 000        | 07          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | 02 NONE 0 STOP<br>PRVTE SE NW   |                           |                             |         | 011        | 00          |
|                 |                                      |                   |                              |             |                                         |                            |                                         |                  |                  |                                  | PSNGR CAR                       | 01 DRVR NONE              | 58 F OR-Y<br>OR<25          | 000     | 000        | 00          |

#### ACTION CODE TRANSLATION LIST

| ACTION<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                                                          |
|----------------|----------------------|-------------------------------------------------------------------------------------------|
| 000            | NONE                 | NO ACTION OR NON-WARRANTED                                                                |
| 001            | SKIDDED              | SKIDDED                                                                                   |
| 002            | ON/OFF V             | GETTING ON OF STOPPED OR PARKED VEHICLE                                                   |
| 003            | LOAD OVR             | OVERHANGING LOAD STRUCK ANOTHER VEHICLE, ETC.                                             |
| 006            | SLOW DN              | SLOWED DOWN                                                                               |
| 007            | AVOIDING             | AVOIDING MANEUVER                                                                         |
| 800            | PAR PARK             | PARALLEL PARKING                                                                          |
| 009            | ANG PARK             | ANGLE PARKING                                                                             |
| 010            | INTERFERE            | PASSENGER INTERFERING WITH DRIVER                                                         |
| 011            | STOPPED              | STOPPED IN TRAFFIC NOT WAITING TO MAKE A LEFT TURN                                        |
| 012            | STP/L TRN            | STOPPED BECAUSE OF LEFT TURN SIGNAL OR WAITING, ETC.                                      |
| 013            | STP TURN             | STOPPED WHILE EXECUTING A TURN                                                            |
| 015            | GO A/STOP            | PROCEED AFTER STOPPING FOR A STOP SIGN/FLASHING RED.                                      |
| 016            | TRN A/RED            | TURNED ON RED AFTER STOPPING                                                              |
| 017            | LOSTCTRL             | LOST CONTROL OF VEHICLE                                                                   |
| 018            | EXIT DWY             | ENTERING STREET OR HIGHWAY FROM ALLEY OR DRIVEWAY                                         |
| 019            | ENTR DWY             | ENTERING ALLEY OR DRIVEWAY FROM STREET OR HIGHWAY                                         |
| 020            | STR ENTR             | BEFORE ENTERING ROADWAY, STRUCK PEDESTRIAN, ETC. ON SIDEWALK OR SHOULDER                  |
| 021            | NO DRVR              | CAR RAN AWAY - NO DRIVER                                                                  |
| 022            | PREV COL             | STRUCK, OR WAS STRUCK BY, VEHICLE OR PEDESTRIAN IN PRIOR COLLISION BEFORE ACC. STABILIZED |
| 023            | STALLED              | VEHICLE STALLED                                                                           |
| 024            | DRVR DEAD            | DEAD BY UNASSOCIATED CAUSE                                                                |
| 025            | FATIGUE              | FATIGUED, SLEEPY, ASLEEP                                                                  |
| 026            | SUN                  | DRIVER BLINDED BY SUN                                                                     |
| 027            | HDLGHTS              | DRIVER BLINDED BY HEADLIGHTS                                                              |
| 028            | ILLNESS              | PHYSICALLY ILL                                                                            |
| 029            | THRU MED             | VEHICLE CROSSED, PLUNGED OVER, OR THROUGH MEDIAN BARRIER                                  |
| 030            | PURSUIT              | PURSUING OR ATTEMPTING TO STOP A VEHICLE                                                  |
| 031            | PASSING              | PASSING SITUATION                                                                         |
| 032            | PRKOFFRD             | VEHICLE PARKED BEYOND CURB OR SHOULDER                                                    |
| 033            | CROS MED             | VEHICLE CROSSED EARTH OR GRASS MEDIAN                                                     |
| 034            | X N/SGNL             | CROSSING AT INTERSECTION - NO TRAFFIC SIGNAL PRESENT                                      |
| 035            | X W/ SGNL            | CROSSING AT INTERSECTION - TRAFFIC SIGNAL PRESENT                                         |
| 036            | DIAGONAL             | CROSSING AT INTERSECTION - DIAGONALLY                                                     |
| 037            | BTWN INT             | CROSSING BETWEEN INTERSECTIONS                                                            |
| 038            | DISTRACT             | DRIVER'S ATTENTION DISTRACTED                                                             |
| 039            | W/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC                                  |
| 040            | A/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC                                |
| 041            | W/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC                                  |
| 042            | A/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC                                |
| 043            | PLAYINRD             | PLAYING IN STREET OR ROAD                                                                 |
| 044            | PUSH MV              | PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER                                      |
| 045            | WORK ON              | WORKING IN ROADWAY OR ALONG SHOULDER                                                      |
| 046            | W/ TRAFIC            | NON-MOTORIST WALKING, RUNNING, RIDING, ETC. WITH TRAFFIC                                  |
| 047            | A/ TRAFIC            | NON-MOTORIST WALKING, RUNNING, RIDING, ETC. FACING TRAFFIC                                |
| 050            | LAY ON RD            | STANDING OR LYING IN ROADWAY                                                              |
| 051            | ENT OFFRD            | ENTERING / STARTING IN TRAFFIC LANE FROM OFF ROAD                                         |
| 052            | MERGING              | MERGING                                                                                   |
| 055            | SPRAY                | BLINDED BY WATER SPRAY                                                                    |
| 088            | OTHER                | OTHER ACTION                                                                              |

#### ACTION CODE TRANSLATION LIST

| ACTION<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION |
|----------------|----------------------|------------------|
| 099            | UNK                  | UNKNOWN ACTION   |

#### CAUSE CODE TRANSLATION LIST

| CAUSE<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                  |
|---------------|----------------------|---------------------------------------------------|
| 00            | NO CODE              | NO CAUSE ASSOCIATED AT THIS LEVEL                 |
| 01            | TOO-FAST             | TOO FAST FOR CONDITIONS (NOT EXCEED POSTED SPEED  |
| 02            | NO-YIELD             | DID NOT YIELD RIGHT-OF-WAY                        |
| 03            | PAS-STOP             | PASSED STOP SIGN OR RED FLASHER                   |
| 04            | DIS SIG              | DISREGARDED TRAFFIC SIGNAL                        |
| 05            | LEFT-CTR             | DROVE LEFT OF CENTER ON TWO-WAY ROAD; STRADDLING  |
| 06            | IMP-OVER             | IMPROPER OVERTAKING                               |
| 07            | TOO-CLOS             | FOLLOWED TOO CLOSELY                              |
| 08            | IMP-TURN             | MADE IMPROPER TURN                                |
| 09            | DRINKING             | ALCOHOL OR DRUG INVOLVED                          |
| 10            | OTHR-IMP             | OTHER IMPROPER DRIVING                            |
| 11            | MECH-DEF             | MECHANICAL DEFECT                                 |
| 12            | OTHER                | OTHER (NOT IMPROPER DRIVING)                      |
| 13            | IMP LN C             | IMPROPER CHANGE OF TRAFFIC LANES                  |
| 14            | DIS TCD              | DISREGARDED OTHER TRAFFIC CONTROL DEVICE          |
| 15            | WRNG WAY             | WRONG WAY ON ONE-WAY ROAD; WRONG SIDE DIVIDED RO. |
| 16            | FATIGUE              | DRIVER DROWSY/FATIGUED/SLEEPY                     |
| 17            | ILLNESS              | PHYSICAL ILLNESS                                  |
| 18            | IN RDWY              | NON-MOTORIST ILLEGALLY IN ROADWAY                 |
| 19            | NT VISBL             | NON-MOTORIST CLOTHING NOT VISIBLE                 |
| 20            | IMP PKNG             | VEHICLE IMPROPERLY PARKED                         |
| 21            | DEF STER             | DEFECTIVE STEERING MECHANISM                      |
| 22            | DEF BRKE             | INADEQUATE OR NO BRAKES                           |
| 24            | LOADSHFT             | VEHICLE LOST LOAD OR LOAD SHIFTED                 |
| 25            | TIREFAIL             | TIRE FAILURE                                      |
| 26            | PHANTOM              | PHANTOM / NON-CONTACT VEHICLE                     |
| 27            | INATTENT             | INATTENTION                                       |
| 28            | NM INATT             | NON-MOTORIST INATTENTION                          |
|               | F AVOID              | FAILED TO AVOID VEHICLE AHEAD                     |
| 30            | SPEED                | DRIVING IN EXCESS OF POSTED SPEED                 |
|               | RACING               | SPEED RACING (PER PAR)                            |
|               | CARELESS             | CARELESS DRIVING (PER PAR)                        |
|               | RECKLESS             |                                                   |
|               | AGGRESV              |                                                   |
|               | RD RAGE              | ROAD RAGE (PER PAR)                               |
| 40            | VIEW OBS             | VIEW OBSCURED                                     |
| 50            | USED MDN             | IMPROPER USE OF MEDIAN OR SHOULDER                |

#### COLLISION TYPE CODE TRANSLATION LIST

| COLL | SHORT       |                              |
|------|-------------|------------------------------|
| CODE | DESCRIPTION | LONG DESCRIPTION             |
| é    | OTH         | MISCELLANEOUS                |
| -    | BACK        | BACKING                      |
| 0    | PED         | PEDESTRIAN                   |
| 1    | ANGL        | ANGLE                        |
| 2    | HEAD        | HEAD-ON                      |
| 3    | REAR        | REAR-END                     |
| 4    | SS-M        | SIDESWIPE - MEETING          |
| 5    | SS-0        | SIDESWIPE - OVERTAKING       |
| 6    | TURN        | TURNING MOVEMENT             |
| 7    | PARK        | PARKING MANEUVER             |
| 8    | NCOL        | NON-COLLISION                |
| 9    | FIX         | FIXED OBJECT OR OTHER OBJECT |
|      |             |                              |

#### CRASH TYPE CODE TRANSLATION LIST

| CRASH | SHORT       |                                                   |
|-------|-------------|---------------------------------------------------|
| TYPE  | DESCRIPTION | LONG DESCRIPTION                                  |
| 8     | OVERTURN    | OVERTURNED                                        |
| 0     | NON-COLL    | OTHER NON-COLLISION                               |
| 1     | OTH RDWY    | MOTOR VEHICLE ON OTHER ROADWAY                    |
| 2     | PRKD MV     | PARKED MOTOR VEHICLE                              |
| 3     | PED         | PEDESTRIAN                                        |
| 4     | TRAIN       | RAILWAY TRAIN                                     |
| 6     | BIKE        | PEDALCYCLIST                                      |
| 7     | ANIMAL      | ANIMAL                                            |
| 8     | FIX OBJ     | FIXED OBJECT                                      |
| 9     | OTH OBJ     | OTHER OBJECT                                      |
| A     | ANGL-STP    | ENTERING AT ANGLE - ONE VEHICLE STOPPED           |
| В     | ANGL-OTH    | ENTERING AT ANGLE - ALL OTHERS                    |
| С     | S-STRGHT    | FROM SAME DIRECTION - BOTH GOING STRAIGHT         |
| D     | S-1TURN     | FROM SAME DIRECTION - ONE TURN, ONE STRAIGHT      |
| E     | S-1STOP     | FROM SAME DIRECTION - ONE STOPPED                 |
| F     | S-OTHER     | FROM SAME DIRECTION-ALL OTHERS, INCLUDING PARKING |
| G     | O-STRGHT    | FROM OPPOSITE DIRECTION - BOTH GOING STRAIGHT     |
| Н     | O-1TURN     | FROM OPPOSITE DIRECTION - ONE TURN, ONE STRAIGHT  |
| I     | O-1STOP     | FROM OPPOSITE DIRECTION - ONE STOPPED             |
| J     | O-OTHER     | FROM OPPOSITE DIRECTION-ALL OTHERS INCL. PARKING  |

#### DRIVER LICENSE CODE TRANSLATION LIST

#### DRIVER RESIDENCE CODE TRANSLATION LIST

| LIC  | SHORT |                                        | RES  | SHORT |                                              |
|------|-------|----------------------------------------|------|-------|----------------------------------------------|
| CODE | DESC  | LONG DESCRIPTION                       | CODE | DESC  | LONG DESCRIPTION                             |
| 0    | NONE  | NOT LICENSED (HAD NEVER BEEN LICENSED) | 1    | OR<25 | OREGON RESIDENT WITHIN 25 MILE OF HOME       |
| 1    | OR-Y  | VALID OREGON LICENSE                   | 2    | OR>25 | OREGON RESIDENT 25 OR MORE MILES FROM HOME   |
| 2    | OTH-Y | VALID LICENSE, OTHER STATE OR COUNTRY  | 3    | OR-?  | OREGON RESIDENT - UNKNOWN DISTANCE FROM HOME |
| -    |       |                                        | 4    | N-RES | NON-RESIDENT                                 |
| 3    | SUSP  | SUSPENDED/REVOKED                      | 9    | UNK   | UNKNOWN IF OREGON RESIDENT                   |

#### ERROR CODE TRANSLATION LIST

| ERROR<br>CODE | SHORT<br>DESCRIPTION | FULL DESCRIPTION                                                                            |
|---------------|----------------------|---------------------------------------------------------------------------------------------|
| 000           | NONE                 | NO ERROR                                                                                    |
| 001           | WIDE TRN             | WIDE TURN                                                                                   |
| 002           | CUT CORN             | CUT CORNER ON TURN                                                                          |
| 003           | FAIL TRN             | FAILED TO OBEY MANDATORY TRAFFIC TURN SIGNAL, SIGN OR LANE MARKINGS                         |
| 004           | L IN TRF             | LEFT TURN IN FRONT OF ONCOMING TRAFFIC                                                      |
| 005           | L PROHIB             | LEFT TURN WHERE PROHIBITED                                                                  |
| 006           | FRM WRNG             | TURNED FROM WRONG LANE                                                                      |
| 007           | TO WRONG             | TURNED INTO WRONG LANE                                                                      |
| 008           | ILLEG U              | U-TURNED ILLEGALLY                                                                          |
| 009           | IMP STOP             | IMPROPERLY STOPPED IN TRAFFIC LANE                                                          |
| 010           | IMP SIG              | IMPROPER SIGNAL OR FAILURE TO SIGNAL                                                        |
| 011           | IMP BACK             | BACKING IMPROPERLY (NOT PARKING)                                                            |
| 012           | IMP PARK             | IMPROPERLY PARKED                                                                           |
| 013           | UNPARK               | IMPROPER START LEAVING PARKED POSITION                                                      |
| 014           | IMP STRT             | IMPROPER START FROM STOPPED POSITION                                                        |
| 015           | IMP LGHT             | IMPROPER OR NO LIGHTS (VEHICLE IN TRAFFIC)                                                  |
| 016           | INATTENT             | INATTENTION (FAILURE TO DIM LIGHTS PRIOR TO 4/1/97)                                         |
| 017           | UNSF VEH             | DRIVING UNSAFE VEHICLE (NO OTHER ERROR APPARENT)                                            |
| 018           | OTH PARK             | ENTERING/EXITING PARKED POSITION W/ INSUFFICIENT CLEARANCE; OTHER IMPROPER PARKING MANEUVER |
| 019           | DIS DRIV             | DISREGARDED OTHER DRIVER'S SIGNAL                                                           |
| 020           | DIS SGNL             | DISREGARDED TRAFFIC SIGNAL                                                                  |
| 021           | RAN STOP             | DISREGARDED STOP SIGN OR FLASHING RED                                                       |
| 022           | DIS SIGN             | DISREGARDED WARNING SIGN, FLARES OR FLASHING AMBER                                          |
| 023           | DIS OFCR             | DISREGARDED POLICE OFFICER OR FLAGMAN                                                       |
| 024           | DIS EMER             | DISREGARDED SIREN OR WARNING OF EMERGENCY VEHICLE                                           |
| 025           | DIS RR               | DISREGARDED RR SIGNAL, RR SIGN, OR RR FLAGMAN                                               |
| 026           | REAR-END             | FALLED TO AVOID STOPPED OR PARKED VEHICLE AHEAD OTHER THAN SCHOOL BUS                       |
| 027<br>028    | BIKE ROW<br>NO ROW   | DID NOT HAVE RIGHT-OF-WAY OVER PEDALCYCLIST                                                 |
| 028           |                      | DID NOT HAVE RIGHT-OF-WAY                                                                   |
| 029           | PED ROW<br>PAS CURV  | FAILED TO YIELD RIGHT-OF-WAY TO PEDESTRIAN<br>PASSING ON A CURVE                            |
| 030           | PAS WRNG             | PASSING ON THE WRONG SIDE                                                                   |
| 031           | PAS TANG             | PASSING ON STRAIGHT ROAD UNDER UNSAFE CONDITIONS                                            |
| 032           | PAS X-WK             | PASSED VEHICLE STOPPED AT CROSSWALK FOR PEDESTRIAN                                          |
| 034           | PAS INTR             | PASSING AT INTERSECTION                                                                     |
| 035           | PAS HILL             | PASSING ON CREST OF HILL                                                                    |
| 036           | N/PAS ZN             | PASSING IN "NO PASSING" ZONE                                                                |
| 037           | PAS TRAF             | PASSING IN FRONT OF ONCOMING TRAFFIC                                                        |
| 038           | CUT-IN               | CUTTING IN (WO LANES - TWO WAY ONLY)                                                        |
| 039           | WRNGSIDE             | DRIVING ON WRONG SIDE OF THE ROAD (2-WAY UNDIVIDED ROADWAYS)                                |
| 040           | THRU MED             | DRIVING THROUGH SAFETY ZONE OR OVER ISLAND                                                  |
| 041           | F/ST BUS             | FAILED TO STOP FOR SCHOOL BUS                                                               |
|               |                      |                                                                                             |

#### ERROR CODE TRANSLATION LIST

| ERROR<br>CODE | SHORT<br>DESCRIPTION | FULL DESCRIPTION                                                                                       |
|---------------|----------------------|--------------------------------------------------------------------------------------------------------|
|               |                      |                                                                                                        |
| 042<br>043    | F/SLO MV<br>TO CLOSE | FAILED TO DECREASE SPEED FOR SLOWER MOVING VEHICLE                                                     |
| 043           |                      | FOLLOWING TOO CLOSELY (MUST BE ON OFFICER'S REPORT)                                                    |
|               | STRDL LN             | STRADULING OR DRIVING ON WRONG LANES                                                                   |
| 045<br>046    | IMP CHG              | IMPROPER CHANGE OF TRAFFIC LANES                                                                       |
| 046           | WRNG WAY             | WRONG WAY ON ONE-WAY ROADWAY; WRONG SIDE DIVIDED ROAD                                                  |
| 047           | BASCRULE<br>OPN DOOR | DRIVING TOO FAST FOR CONDITIONS (NOT EXCEEDING POSTED SPEED)<br>OPENED DOOR INTO ADJACENT TRAFFIC LANE |
| 048           | IMPEDING             | IMPEDING TRAFFIC LANE                                                                                  |
| 049           | SPEED                | INFEDING IN EXCESS OF POSTED SPEED                                                                     |
| 050           | RECKLESS             | RECKLESS DRIVING (PER PAR)                                                                             |
| 051           | CARELESS             | CARELESS DRIVING (PER FAR)<br>CARELESS DRIVING (PER FAR)                                               |
| 052           | RACING               | SPEED RACING (FER FAR)                                                                                 |
| 053           | X N/SGNL             | CROSSING AT INTERSECTION, NO TRAFFIC SIGNAL PRESENT                                                    |
| 055           | X W/SGNL             | CROSSING AT INTERSECTION, TRAFIC SIGNAL PRESENT                                                        |
| 056           | DIAGONAL             | CROSSING AT INTERSECTION - DIGONALIY                                                                   |
| 057           | BTWN INT             | CROSSING BETWEEN INTERSECTIONS                                                                         |
| 059           | W/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER WITH TRAFFIC                                               |
| 060           | A/TRAF-S             | WALKING, RUNNING, RIDING, ETC., ON SHOULDER FACING TRAFFIC                                             |
| 061           | W/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT WITH TRAFFIC                                               |
| 062           | A/TRAF-P             | WALKING, RUNNING, RIDING, ETC., ON PAVEMENT FACING TRAFFIC                                             |
| 063           | PLAYINRD             | PLAYING IN STREET OR ROAD                                                                              |
| 064           | PUSH MV              | PUSHING OR WORKING ON VEHICLE IN ROAD OR ON SHOULDER                                                   |
| 065           | WK IN RD             | WORKING IN ROADWAY OR ALONG SHOULDER                                                                   |
| 070           | LAYON RD             | STANDING OR LYING IN ROADWAY                                                                           |
| 071           | NM IMP USE           | IMPROPER USE OF TRAFFIC LANE BY NON-MOTORIST                                                           |
| 073           | ELUDING              | ELUDING / ATTEMPT TO ELUDE                                                                             |
| 079           | F NEG CURV           | FAILED TO NEGOTIATE A CURVE                                                                            |
| 080           | FAIL LN              | FAILED TO MAINTAIN LANE                                                                                |
| 081           | OFF RD               | RAN OFF ROAD                                                                                           |
| 082           | NO CLEAR             | DRIVER MISJUDGED CLEARANCE                                                                             |
| 083           | OVRSTEER             | OVER-CORRECTING                                                                                        |
| 084           | NOT USED             | CODE NOT IN USE                                                                                        |
| 085           | OVRLOAD              | OVERLOADING OR IMPROPER LOADING OF VEHICLE WITH CARGO OR PASSENGERS                                    |
| 097           | UNA DIS TC           | UNABLE TO DETERMINE WHICH DRIVER DISREGARDED TRAFFIC CONTROL DEVICE                                    |

#### EVENT CODE TRANSLATION LIST

| EVENT<br>CODE | SHORT<br>DESCRIPTION | LONG DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 001           | FEL/JUMP             | OCCUPANT FELL, JUMPED OR WAS EJECTED FROM MOVING VEHICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 002           | INTERFER             | PASSENGER INTERFERED WITH DRIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 003           | BUG INTF             | ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 004           | INDRCT PED           | ANIMAL OR INSECT IN VEHICLE INTERFERED WITH DRIVER<br>PEDESTRIAN INDIRECTLY INVOLVED (NOT STRUCK)<br>"SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.<br>PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)<br>HITCHHIKER (SOLICITING A RIDE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 005           | SUB-PED              | "SUB-PED": PEDESTRIAN INJURED SUBSEQUENT TO COLLISION, ETC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 006           | INDRCT BIK           | PEDALCYCLIST INDIRECTLY INVOLVED (NOT STRUCK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 007<br>008    | HITCHIKR             | HITCHHIKER (SOLICITING A RIDE)<br>Dassenced of non motorized deling toked of dugued on conveyance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 008           | ON/OFF V             | CONTINUE OR NON-MOIORISI BEING IUWED OR CONCEANNES ONLY. MICT HAVE DEVELOAL CONTACT M/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 010           | SUB OTRN             | OVERTIENED AFTER FIRST HARMFUL EVENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 011           | MV PUSHD             | VEHICLE BEING PUSHED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 012           | MV TOWED             | HITCHHIKER (SOLICITING A RIDE)<br>HATCHHIKER (SOLICITING A RIDE)<br>PASSENGER OR NON-MOTORIST BEING TOWED OR PUSHED ON CONVEYANCE<br>GETTING ON/OFF STOPPED/PARKED VEHICLE (OCCUPANTS ONLY; MUST HAVE PHYSICAL CONTACT W/<br>VEHICLE BEING PUSHED<br>VEHICLE BEING PUSHED<br>VEHICLE TOWED OR HAD BEEN TOWING ANOTHER VEHICLE<br>VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN<br>VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)<br>AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)<br>AT OR ON ALIGHT-RAIL RIGHT-OF-WAY<br>TRAIN STRUCK VEHICLE<br>VEHICLE STRUCK TRAIN<br>VEHICLE STRUCK TRAIN<br>VEHICLE STRUCK RAILROAD CAR ON ROADWAY<br>JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE<br>TRAILER CONNECTION BROKE<br>DETACHED TRAILING OBJECT STRUCK OTHER VEHICLE, NON-MOTORIST, OR OBJECT<br>VEHICLE DORR OPENED INTO ADJACENT TRAFFIC LANE<br>WHEEL CAME OFF<br>HOOD FLEW UP<br>LOST LOAD, LOAD MOVED OR SHIFTED<br>TIRE FAILURE<br>PET: CAT, DOG AND SIMILAR<br>ETOCK. COME OLLE SUML CEMEND THE |
| 013           | FORCED               | VEHICLE FORCED BY IMPACT INTO ANOTHER VEHICLE, PEDALCYCLIST OR PEDESTRIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 014           | SET MOTN             | VEHICLE SET IN MOTION BY NON-DRIVER (CHILD RELEASED BRAKES, ETC.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 015           | RR ROW               | AT OR ON RAILROAD RIGHT-OF-WAY (NOT LIGHT RAIL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 016           | LT RL ROW            | AT OR ON LIGHT-RAIL RIGHT-OF-WAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 017           | RR HIT V             | TRAIN STRUCK VEHICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 018           | V HIT RR             | VEHICLE STRUCK TRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 019           | HIT RR CAR           | VEHICLE STRUCK RAILROAD CAR ON ROADWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 020           | JACKNIFE             | JACKKNIFE; TRAILER OR TOWED VEHICLE STRUCK TOWING VEHICLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 021<br>022    | CN BROKE             | TRAILER OR TOWED VEHICLE OVERTURNED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 022           | DETACH TRL           | DETACHED FRALLING ORIECT STRUCK OTHER VEHICLE NON-MOTORIST OR ORIECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 024           | V DOOR OPN           | VEHICLE DOOR OPENED INTO ADJACENT TRAFFIC LANE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 025           | WHEELOFF             | WHEEL CAME OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 026           | HOOD UP              | HOOD FLEW UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 028           | LOAD SHIFT           | LOST LOAD, LOAD MOVED OR SHIFTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 029           | TIREFAIL             | TIRE FAILURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 030           | PET                  | TIRE FAILURE<br>PET: CAT, DOG AND SIMILAR<br>STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.<br>HORSE, MULE, OR DONKEY<br>HORSE AND RIDER<br>WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)<br>DEER OR ELK, WAPITI<br>ANIMAL-DRAWN VEHICLE<br>CULVERT, OPEN LOW OR HIGH MANHOLE<br>IMPACT ATTENUATOR<br>PARKING METER<br>CURB (ALSO NARROW SIDEWALKS ON BRIDGES)<br>JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION<br>LEADING EDGE OF GUARDRAIL<br>GUARD RAIL (NOT METAL MEDIAN BARRIER)<br>MEDIAN BARRIER (RAISED OR METAL)<br>RETAINING WALL OR TUNNEL WALL<br>BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 031           | LVSTOCK              | STOCK: COW, CALF, BULL, STEER, SHEEP, ETC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 032           | HORSE                | HORSE, MULE, OR DONKEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 033           | HRSE&RID             | HORSE AND RIDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 034<br>035    | GAME<br>DEED EIK     | WILD ANIMAL, GAME (INCLUDES BIRDS; NOT DEER OR ELK)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 035           | NIMT VEU             | DEER OK ELR, WAFIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 037           | CULVERT              | CULVERT, OPEN LOW OR HIGH MANHOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 038           | ATENUATN             | IMPACT ATTENIATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 039           | PK METER             | PARKING METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 040           | CURB                 | CURB (ALSO NARROW SIDEWALKS ON BRIDGES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 041           | JIGGLE               | JIGGLE BAR OR TRAFFIC SNAKE FOR CHANNELIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 042           | GDRL END             | LEADING EDGE OF GUARDRAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 043           | GARDRAIL             | GUARD RAIL (NOT METAL MEDIAN BARRIER)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 044           | BARRIER              | MEDIAN BARRIER (RAISED OR METAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 045           | WALL                 | RETAINING WALL OR TUNNEL WALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | BR RAIL              | BRIDGE RAILING OR PARAPET (ON BRIDGE OR APPROACH)<br>BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)<br>BRIDGE PILLAR OR COLUMN<br>BRIDGE GIRDER (HORIZONTAL BRIDGE STRUCTURE OVERHEAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 047           | BR ABUTMNT           | BRIDGE ABUTMENT (INCLUDED "APPROACH END" THRU 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 048<br>049    | BR GIRDR             | BRIDGE FILLAR OK COLUMIN<br>BRIDGE GIDDER (HODIZONTAL BRIDGE STRUCTURE OVERHEAD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 040           | ISLAND               | TRAFFIC RAISED ISLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 051           | CODE                 | CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 052           | POLE UNK             | POLE - TYPE UNKNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 053           | POLE UTL             | GORE - TYPE UNKNOWN<br>POLE - FOWER OR TELEPHONE<br>POLE - STREET LIGHT ONLY<br>POLE - STREFT LIGHT AND PED SIGNAL ONLY<br>POLE - SIGN BRIDGE<br>STOP OR YIELD SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 054           | ST LIGHT             | POLE - STREET LIGHT ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 055           | TRF SGNL             | POLE - TRAFFIC SIGNAL AND PED SIGNAL ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 056           | SGN BRDG             | POLE - SIGN BRIDGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 057           | STOPSIGN             | STOP OR YIELD SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 058           | OTH SIGN             | OTHER SIGN, INCLUDING STREET SIGNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 059           | HYDRANT              | HYDRANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

VEHIC

#### EVENT CODE TRANSLATION LIST

| EVENT<br>CODE | SHORT<br>DESCRIPTION   | LONG DESCRIPTION                                                                                     |
|---------------|------------------------|------------------------------------------------------------------------------------------------------|
| 060           | MARKER                 | DELINEATOR OR MARKER (REFLECTOR POSTS)                                                               |
| 061           | MAILBOX                | MAILBOX                                                                                              |
| 062           | TREE                   | TREE, STUMP OR SHRUBS                                                                                |
| 063           | VEG OHED               | TREE BRANCH OR OTHER VEGETATION OVERHEAD, ETC.                                                       |
| 064           | WIRE/CBL               | WIRE OR CABLE ACROSS OR OVER THE ROAD                                                                |
| 065           | TEMP SGN               | TEMPORARY SIGN OR BARRICADE IN ROAD, ETC.                                                            |
| 066           | PERM SGN               | PERMANENT SIGN OR BARRICADE IN/OFF ROAD                                                              |
| 067           | SLIDE                  | SLIDES, FALLEN OR FALLING ROCKS                                                                      |
| 068           | FRGN OBJ               | FOREIGN OBSTRUCTION/DEBRIS IN ROAD (NOT GRAVEL)                                                      |
| 069           | EQP WORK               | EQUIPMENT WORKING IN/OFF ROAD                                                                        |
| 070           | OTH EQP                | OTHER EQUIPMENT IN OR OFF ROAD (INCLUDES PARKED TRAILER, BOAT)                                       |
| 071           | MAIN EQP               | WRECKER, STREET SWEEPER, SNOW PLOW OR SANDING EQUIPMENT                                              |
| 072           | OTHER WALL             | ROCK, BRICK OR OTHER SOLID WALL                                                                      |
| 073           | IRRGL PVMT             | OTHER BUMP (NOT SPEED BUMP), POTHOLE OR PAVEMENT IRREGULARITY (PER PAR)                              |
| 074           | OVERHD OBJ             | OTHER OVERHEAD OBJECT (HIGHWAY SIGN, SIGNAL HEAD, ETC.); NOT BRIDGE                                  |
| 075           | CAVE IN                | BRIDGE OR ROAD CAVE IN                                                                               |
| 076           | HI WATER               | HIGH WATER                                                                                           |
| 077           | SNO BANK               | SNOW BANK                                                                                            |
| 078           | LO-HI EDGE             | LOW OR HIGH SHOULDER AT PAVEMENT EDGE                                                                |
| 079           | DITCH                  | CUT SLOPE OR DITCH EMBANKMENT                                                                        |
| 080           | OBJ FRM MV             | STRUCK BY ROCK OR OTHER OBJECT SET IN MOTION BY OTHER VEHICLE (INCL. LOST LOADS)                     |
| 081           | FLY-OBJ                | STRUCK BY ROCK OR OTHER MOVING OR FLYING OBJECT (NOT SET IN MOTION BY VEHICLE)                       |
| 082           | VEH HID                | VEHICLE OBSCURED VIEW                                                                                |
| 083           | VEG HID                | VEGETATION OBSCURED VIEW                                                                             |
| 084           | BLDG HID               | VIEW OBSCURED BY FENCE, SIGN, PHONE BOOTH, ETC.                                                      |
| 085           | WIND GUST              | WIND GUST                                                                                            |
| 086           | IMMERSED               | VEHICLE IMMERSED IN BODY OF WATER                                                                    |
| 087<br>088    | FIRE/EXP               | FIRE OR EXPLOSION                                                                                    |
| 088           | FENC/BLD<br>OTHR CRASH | FENCE OR BUILDING, ETC.                                                                              |
| 089           | TO 1 SIDE              | CRASH RELATED TO ANOTHER SEPARATE CRASH<br>TWO-WAY TRAFFIC ON DIVIDED ROADWAY ALL ROUTED TO ONE SIDE |
| 090           | BUILDING               | BUILDING OR OTHER STRUCTURE                                                                          |
| 092           | PHANTOM                | OTHER (PHANTOM) NON-CONTACT VEHICLE                                                                  |
|               | CELL PHONE             | CELL PHONE (ON PAR OR DRIVER IN USE)                                                                 |
| 093           | VIOL GDL               | TEENAGE DRIVER IN VIOLATION OF GRADUATED LICENSE PGM                                                 |
| 095           | GUY WIRE               | GUY WIRE                                                                                             |
| 096           | BERM                   | BERM (EARTHEN OR GRAVEL MOUND)                                                                       |
| 097           | GRAVEL                 | GRAVEL IN ROADWAY                                                                                    |
| 098           | ABR EDGE               | ABRUPT EDGE                                                                                          |
| 099           | CELL WTNSD             | CELL PHONE USE WITNESSED BY OTHER PARTICIPANT                                                        |
| 100           | UNK FIXD               | FIXED OBJECT, UNKNOWN TYPE.                                                                          |
| 101           | OTHER OBJ              | NON-FIXED OBJECT, OTHER OR UNKNOWN TYPE                                                              |
| 102           | TEXTING                | TEXTING                                                                                              |
| 103           | WZ WORKER              | WORK ZONE WORKER                                                                                     |
| 104           | ON VEHICLE             | PASSENGER RIDING ON VEHICLE EXTERIOR                                                                 |
| 105           | PEDAL PSGR             | PASSENGER RIDING ON PEDALCYCLE                                                                       |
| 106           | MAN WHLCHR             | PEDESTRIAN IN NON-MOTORIZED WHEELCHAIR                                                               |
| 107           | MTR WHLCHR             | PEDESTRIAN IN MOTORIZED WHEELCHAIR                                                                   |
| 108           | OFFICER                | LAW ENFORCEMENT / POLICE OFFICER                                                                     |
| 109           | SUB-BIKE               | "SUB-BIKE": PEDALCYCLIST INJURED SUBSEQUENT TO COLLISION, ETC.                                       |
| 110           | N-MTR                  | NON-MOTORIST STRUCK VEHICLE                                                                          |
| 111           | S CAR VS V             | STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM) STRUCK VEHICLE                                 |
| 112           | V VS S CAR             | VEHICLE STRUCK STREET CAR/TROLLEY (ON RAILS OR OVERHEAD WIRE SYSTEM)                                 |
| 113           | S CAR ROW              | AT OR ON STREET CAR OR TROLLEY RIGHT-OF-WAY                                                          |
| 114           | RR EQUIP               | VEHICLE STRUCK RAILROAD EQUIPMENT (NOT TRAIN) ON TRACKS                                              |
| 115           | DSTRCT GPS             | DISTRACTED BY NAVIGATION SYSTEM OR GPS DEVICE                                                        |
| 116           | DSTRCT OTH             | DISTRACTED BY OTHER ELECTRONIC DEVICE                                                                |
| 117           | RR GATE                | RAIL CROSSING DROP-ARM GATE                                                                          |

#### EVENT CODE TRANSLATION LIST

|            | LONG DESCRIPTION                                                                                                                                                          |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EXPNSN JNT | EXPANSION JOINT                                                                                                                                                           |
| JERSEY BAR | JERSEY BARRIER                                                                                                                                                            |
| WIRE BAR   | WIRE OR CABLE MEDIAN BARRIER                                                                                                                                              |
| FENCE      | FENCE                                                                                                                                                                     |
| OBJ IN VEH | LOOSE OBJECT IN VEHICLE STRUCK OCCUPANT                                                                                                                                   |
| SLIPPERY   | SLIDING OR SWERVING DUE TO WET, ICY, SLIPPERY OR LOOSE SURFACE (NOT GRAVEL)                                                                                               |
| SHLDR      | SHOULDER GAVE WAY                                                                                                                                                         |
| BOULDER    | ROCK(S), BOULDER (NOT GRAVEL; NOT ROCK SLIDE)                                                                                                                             |
| LAND SLIDE | ROCK SLIDE OR LAND SLIDE                                                                                                                                                  |
| CURVE INV  | CURVE PRESENT AT CRASH LOCATION                                                                                                                                           |
| HILL INV   | VERTICAL GRADE / HILL PRESENT AT CRASH LOCATION                                                                                                                           |
| CURVE HID  | VIEW OBSCURED BY CURVE                                                                                                                                                    |
| HILL HID   | VIEW OBSCURED BY VERTICAL GRADE / HILL                                                                                                                                    |
| WINDOW HID | VIEW OBSCURED BY VEHICLE WINDOW CONDITIONS                                                                                                                                |
| SPRAY HID  | VIEW OBSCURED BY WATER SPRAY                                                                                                                                              |
|            | EXPNSN JNT<br>JERSEY BAR<br>WIRE BAR<br>FENCE<br>OBJ IN VEH<br>SLIPPERY<br>SHLDR<br>BOULDER<br>LAND SLIDE<br>CURVE INV<br>HILL INV<br>CURVE HID<br>HILL HID<br>WINDOW HID |

#### FUNCTIONAL CLASSIFICATION TRANSLATION LIST

#### FUNC

#### CLASS DESCRIPTION

- 01 RURAL PRINCIPAL ARTERIAL INTERSTATE
- 02 RURAL PRINCIPAL ARTERIAL OTHER
- 06 RURAL MINOR ARTERIAL
- 07 RURAL MAJOR COLLECTOR
- 08 RURAL MINOR COLLECTOR
- 09 RURAL LOCAL
- 11 URBAN PRINCIPAL ARTERIAL INTERSTATE
- 12 URBAN PRINCIPAL ARTERIAL OTHER FREEWAYS AND EXP
- 14 URBAN PRINCIPAL ARTERIAL OTHER
- 16 URBAN MINOR ARTERIAL
- 17 URBAN COLLECTOR
- 19 URBAN LOCAL
- 78 UNKNOWN RURAL SYSTEM
- 79 UNKNOWN RURAL NON-SYSTEM
- 98 UNKNOWN URBAN SYSTEM
- 99 UNKNOWN URBAN NON-SYSTEM

#### HIGHWAY COMPONENT TRANSLATION LIST

#### CODE DESCRIPTION

- 0 MAINLINE STATE HIGHWAY
- 1 COUPLET
- 3 FRONTAGE ROAD
- 6 CONNECTION
- 8 HIGHWAY OTHER

INJURY SEVERITY CODE TRANSLATION LIST

#### SHORT CODE DESC LONG DESCRIPTION 1 KILL FATAL INJURY INJA INCAPACITATING INJURY - BLEEDING, BROKEN BONES 2 3 INJB NON-INCAPACITATING INJURY 4 INJC POSSIBLE INJURY - COMPLAINT OF PAIN 5 DIED PRIOR TO CRASH PRI NO<5 NO INJURY - 0 TO 4 YEARS OF AGE 7

#### LIGHT CONDITION CODE TRANSLATION LIST

MILEAGE TYPE CODE TRANSLATION LIST

| CODE | SHORT | LONG DESCRIPTION              |
|------|-------|-------------------------------|
| CODE | DESC  | BONG DEBENITION               |
| 0    | UNK   | UNKNOWN                       |
| 1    | DAY   | DAYLIGHT                      |
| 2    | DLIT  | DARKNESS - WITH STREET LIGHTS |
| 3    | DARK  | DARKNESS - NO STREET LIGHTS   |
| 4    | DAWN  | DAWN (TWILIGHT)               |
| 5    | DUSK  | DUSK (TWILIGHT)               |

#### MEDIAN TYPE CODE TRANSLATION LIST

|      | SHORT |                              |
|------|-------|------------------------------|
| CODE | DESC  | LONG DESCRIPTION             |
| 0    | NONE  | NO MEDIAN                    |
| 1    | RSDMD | SOLID MEDIAN BARRIER         |
| 2    | DIVMD | EARTH, GRASS OR PAVED MEDIAN |

#### CODE LONG DESCRIPTION

- 0 REGULAR MILEAGE
- T TEMPORARY
- Y SPUR
- Z OVERLAPPING

#### MOVEMENT TYPE CODE TRANSLATION LIST

|      | SHORT  |                     |
|------|--------|---------------------|
| CODE | DESC   | LONG DESCRIPTION    |
| 0    | UNK    | UNKNOWN             |
| 1    | STRGHT | STRAIGHT AHEAD      |
| 2    | TURN-R | TURNING RIGHT       |
| 3    | TURN-L | TURNING LEFT        |
| 4    | U-TURN | MAKING A U-TURN     |
| 5    | BACK   | BACKING             |
| 6    | STOP   | STOPPED IN TRAFFIC  |
| 7    | PRKD-P | PARKED - PROPERLY   |
| 8    | PRKD-I | PARKED - IMPROPERLY |

#### PARTICIPANT TYPE CODE TRANSLATION LIST

|      | SHORT |                                       |
|------|-------|---------------------------------------|
| CODE | DESC  | LONG DESCRIPTION                      |
| 0    | OCC   | UNKNOWN OCCUPANT TYPE                 |
| 1    | DRVR  | DRIVER                                |
| 2    | PSNG  | PASSENGER                             |
| 3    | PED   | PEDESTRIAN                            |
| 4    | CONV  | PEDESTRIAN USING A PEDESTRIAN CONVEYA |
| 5    | PTOW  | PEDESTRIAN TOWING OR TRAILERING AN OB |
| 6    | BIKE  | PEDALCYCLIST                          |
| 7    | BTOW  | PEDALCYCLIST TOWING OR TRAILERING AN  |
| 8    | PRKD  | OCCUPANT OF A PARKED MOTOR VEHICLE    |
| 9    | UNK   | UNKNOWN TYPE OF NON-MOTORIST          |

### PEDESTRIAN LOCATION CODE TRANSLATION LIST

#### CODE LONG DESCRIPTION

| 00 | AT INTERSECTION - NOT IN ROADWAY                  |
|----|---------------------------------------------------|
| 01 | AT INTERSECTION - INSIDE CROSSWALK                |
| 02 | AT INTERSECTION - IN ROADWAY, OUTSIDE CROSSWALK   |
| 03 | AT INTERSECTION - IN ROADWAY, XWALK AVAIL UNKNWN  |
| 04 | NOT AT INTERSECTION - IN ROADWAY                  |
| 05 | NOT AT INTERSECTION - ON SHOULDER                 |
| 06 | NOT AT INTERSECTION - ON MEDIAN                   |
| 07 | NOT AT INTERSECTION - WITHIN TRAFFIC RIGHT-OF-WAY |
| 08 | NOT AT INTERSECTION - IN BIKE PATH                |
| 09 | NOT-AT INTERSECTION - ON SIDEWALK                 |
| 10 | OUTSIDE TRAFFICWAY BOUNDARIES                     |
| 13 | AT INTERSECTION - IN BIKE LANE                    |
| 15 | NOT AT INTERSECTION - INSIDE MID-BLOCK CROSSWALK  |
| 18 | OTHER, NOT IN ROADWAY                             |
|    |                                                   |

99 UNKNOWN LOCATION

#### ROAD CHARACTER CODE TRANSLATION LIST

|      | SHORT  |                          |
|------|--------|--------------------------|
| CODE | DESC   | LONG DESCRIPTION         |
| 0    | UNK    | UNKNOWN                  |
| 1    | INTER  | INTERSECTION             |
| 2    | ALLEY  | DRIVEWAY OR ALLEY        |
| 3    | STRGHT | STRAIGHT ROADWAY         |
| 4    | TRANS  | TRANSITION               |
| 5    | CURVE  | CURVE (HORIZONTAL CURVE) |
| 6    | OPENAC | OPEN ACCESS OR TURNOUT   |
| 7    | GRADE  | GRADE (VERTICAL CURVE)   |
| 8    | BRIDGE | BRIDGE STRUCTURE         |
| 9    | TUNNEL | TUNNEL                   |
|      |        |                          |

#### TRAFFIC CONTROL DEVICE CODE TRANSLATION LIST

| CODE | SHORT DESC | LONG DESCRIPTION                                                                   |
|------|------------|------------------------------------------------------------------------------------|
| 000  | NONE       | NO CONTROL                                                                         |
| 001  | TRF SIGNAL | TRAFFIC SIGNALS                                                                    |
| 002  | FLASHBCN-R | FLASHING BEACON - RED (STOP)                                                       |
|      |            | FLASHING BEACON - AMBER (SLOW)                                                     |
| 004  | STOP SIGN  | STOP SIGN                                                                          |
| 005  | SLOW SIGN  | SLOW SIGN                                                                          |
| 006  | REG-SIGN   | REGULATORY SIGN                                                                    |
|      | YIELD      | YIELD SIGN                                                                         |
| 008  | WARNING    | WARNING SIGN                                                                       |
| 009  | CURVE      | CURVE SIGN                                                                         |
| 010  | SCHL X-ING | SCHOOL CROSSING SIGN OR SPECIAL SIGNAL                                             |
| 011  | OFCR/FLAG  | POLICE OFFICER, FLAGMAN - SCHOOL PATROL                                            |
| 012  | BRDG-GATE  | BRIDGE GATE - BARRIER                                                              |
| 013  | TEMP-BARR  | TEMPORARY BARRIER                                                                  |
|      |            | NO PASSING ZONE                                                                    |
| 015  | ONE-WAY    | ONE-WAY STREET                                                                     |
| 016  | CHANNEL    | CHANNELIZATION                                                                     |
|      | MEDIAN BAR |                                                                                    |
| 018  | PILOT CAR  | PILOT CAR                                                                          |
| 019  | SP PED SIG | SPECIAL PEDESTRIAN SIGNAL                                                          |
| 020  | X-BUCK     | CROSSBUCK                                                                          |
| 021  | THR-GN-SIG | THROUGH GREEN ARROW OR SIGNAL                                                      |
| 022  | L-GRN-SIG  | LEFT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL                                    |
| 023  | R-GRN-SIG  | RIGHT TURN GREEN ARROW, LANE MARKINGS, OR SIGNAL                                   |
| 024  | WIGWAG     | WIGWAG OR FLASHING LIGHTS W/O DROP-ARM GATE                                        |
| 025  | X-BUCK WRN | CROSSBUCK AND ADVANCE WARNING                                                      |
| 026  | WW W/ GATE | FLASHING LIGHTS WITH DROP-ARM GATES<br>SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY) |
| 027  | OVRHD SGNL | SUPPLEMENTAL OVERHEAD SIGNAL (RR XING ONLY)                                        |
| 028  | SP RR STOP | SPECIAL RR STOP SIGN                                                               |
| 029  | ILUM GRD X | ILLUMINATED GRADE CROSSING                                                         |
| 037  | RAMP METER | METERED RAMPS                                                                      |
| 038  | RUMBLE STR | RUMBLE STRIP                                                                       |
| 090  | L-TURN REF | LEFT TURN REFUGE (WHEN REFUGE IS INVOLVED)                                         |
| 091  | R-TURN ALL | RIGHT TURN AT ALL TIMES SIGN, ETC.                                                 |
| 092  | EMR SGN/FL | EMERGENCY SIGNS OR FLARES                                                          |
|      |            | ACCELERATION OR DECELERATION LANES                                                 |
|      |            | RIGHT TURN PROHIBITED ON RED AFTER STOPPING                                        |
|      |            |                                                                                    |

| 095 | BUS STPSGN | BUS STOP S | SIGN AND  | RED LIGHTS |
|-----|------------|------------|-----------|------------|
| 099 | UNKNOWN    | UNKNOWN OF | R NOT DEF | INITE      |

#### VEHICLE TYPE CODE TRANSLATION LIST

#### WEATHER CONDITION CODE TRANSLATION LIST

| CODE | SHORT DESC | LONG DESCRIPTION                                  |
|------|------------|---------------------------------------------------|
| 01   | PSNGR CAR  | PASSENGER CAR, PICKUP, LIGHT DELIVERY, ETC.       |
| 02   | BOBTAIL    | TRUCK TRACTOR WITH NO TRAILERS (BOBTAIL)          |
| 03   | FARM TRCTR | FARM TRACTOR OR SELF-PROPELLED FARM EQUIPMENT     |
| 04   | SEMI TOW   | TRUCK TRACTOR WITH TRAILER/MOBILE HOME IN TOW     |
| 05   | TRUCK      | TRUCK WITH NON-DETACHABLE BED, PANEL, ETC.        |
| 06   | MOPED      | MOPED, MINIBIKE, SEATED MOTOR SCOOTER, MOTOR BIKE |
| 07   | SCHL BUS   | SCHOOL BUS (INCLUDES VAN)                         |
| 08   | OTH BUS    | OTHER BUS                                         |
| 09   | MTRCYCLE   | MOTORCYCLE, DIRT BIKE                             |
| 10   | OTHER      | OTHER: FORKLIFT, BACKHOE, ETC.                    |
| 11   | MOTRHOME   | MOTORHOME                                         |
| 12   | TROLLEY    | MOTORIZED STREET CAR/TROLLEY (NO RAILS/WIRES)     |
| 13   | ATV        | ATV                                               |
| 14   | MTRSCTR    | MOTORIZED SCOOTER (STANDING)                      |
| 15   | SNOWMOBILE | SNOWMOBILE                                        |
| 99   | UNKNOWN    | UNKNOWN VEHICLE TYPE                              |

| _ | CODE | SHORT DESC | LONG DESCRIPTION |
|---|------|------------|------------------|
| - | 0    | UNK        | UNKNOWN          |
|   | 1    | CLR        | CLEAR            |
|   | 2    | CLD        | CLOUDY           |
|   | 3    | RAIN       | RAIN             |
|   | 4    | SLT        | SLEET            |
|   | 5    | FOG        | FOG              |
|   | 6    | SNOW       | SNOW             |
|   | 7    | DUST       | DUST             |
|   | 8    | SMOK       | SMOKE            |
|   | 9    | ASH        | ASH              |

Appendix D Year 2040 Traffic Operations and Queuing Worksheets

|                         | -    | $\mathbf{F}$ | 1    | -    | 1    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 131  | 524          | 407  | 115  | 385  | 397  |
| v/c Ratio               | 0.58 | 0.56         | 0.83 | 0.13 | 0.50 | 0.30 |
| Control Delay           | 50.5 | 11.4         | 48.2 | 15.0 | 24.0 | 1.0  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 13.5 | 0.9  |
| Total Delay             | 50.5 | 11.4         | 48.2 | 15.0 | 37.5 | 2.0  |
| Queue Length 50th (ft)  | 77   | 124          | 227  | 39   | 171  | 0    |
| Queue Length 95th (ft)  | 138  | 214          | #390 | 70   | 287  | 22   |
| Internal Link Dist (ft) | 590  |              |      | 679  | 177  |      |
| Turn Bay Length (ft)    |      | 150          | 200  |      | 100  |      |
| Base Capacity (vph)     | 570  | 928          | 569  | 1282 | 765  | 1356 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 357  | 677  |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.23 | 0.56         | 0.72 | 0.09 | 0.94 | 0.58 |
| Intersection Summary    |      |              |      |      |      |      |

# 95th percentile volume exceeds capacity, queue may be longer.

|                                   | -    | $\mathbf{r}$ | ∢     | ←    | •         | 1            |      |  |
|-----------------------------------|------|--------------|-------|------|-----------|--------------|------|--|
| Movement                          | EBT  | EBR          | WBL   | WBT  | NBL       | NBR          |      |  |
| Lane Configurations               | •    | 1            | ۲     | •    | ٦         | 1            |      |  |
| Volume (vph)                      | 126  | 503          | 391   | 110  | 370       | 381          |      |  |
| Ideal Flow (vphpl)                | 1900 | 1900         | 1900  | 1900 | 1900      | 1900         |      |  |
| Total Lost time (s)               | 5.5  | 5.5          | 5.5   | 6.0  | 5.5       | 5.5          |      |  |
| Lane Util. Factor                 | 1.00 | 1.00         | 1.00  | 1.00 | 1.00      | 1.00         |      |  |
| Frpb, ped/bikes                   | 1.00 | 1.00         | 1.00  | 1.00 | 1.00      | 1.00         |      |  |
| Flpb, ped/bikes                   | 1.00 | 1.00         | 1.00  | 1.00 | 1.00      | 1.00         |      |  |
| Frt                               | 1.00 | 0.85         | 1.00  | 1.00 | 1.00      | 0.85         |      |  |
| Flt Protected                     | 1.00 | 1.00         | 0.95  | 1.00 | 0.95      | 1.00         |      |  |
|                                   | 1900 | 1579         | 1770  | 1900 | 1787      | 1583         |      |  |
| Satd. Flow (prot)                 | 1.00 | 1.00         |       |      |           | 1.00         |      |  |
| Flt Permitted                     |      |              | 0.95  | 1.00 | 0.95      |              |      |  |
| Satd. Flow (perm)                 | 1900 | 1579         | 1770  | 1900 | 1787      | 1583         |      |  |
| Peak-hour factor, PHF             | 0.96 | 0.96         | 0.96  | 0.96 | 0.96      | 0.96         |      |  |
| Adj. Flow (vph)                   | 131  | 524          | 407   | 115  | 385       | 397          |      |  |
| RTOR Reduction (vph)              | 0    | 64           | 0     | 0    | 0         | 117          |      |  |
| Lane Group Flow (vph)             | 131  | 460          | 407   | 115  | 385       | 280          |      |  |
| Confl. Bikes (#/hr)               |      | 1            |       |      |           |              |      |  |
| Heavy Vehicles (%)                | 0%   | 2%           | 2%    | 0%   | 1%        | 2%           |      |  |
| Turn Type                         |      | pm+ov        | Prot  |      |           | pm+ov        |      |  |
| Protected Phases                  | 4    | . 5          | 3     | 8    | 5         | 3            |      |  |
| Permitted Phases                  |      | 4            |       |      |           | 5            |      |  |
| Actuated Green, G (s)             | 11.3 | 51.6         | 25.9  | 42.2 | 40.3      | 66.2         |      |  |
| Effective Green, g (s)            | 11.3 | 51.6         | 25.9  | 42.2 | 40.3      | 66.2         |      |  |
| Actuated g/C Ratio                | 0.12 | 0.55         | 0.28  | 0.45 | 0.43      | 0.70         |      |  |
| Clearance Time (s)                | 5.5  | 5.5          | 5.5   | 6.0  | 5.5       | 5.5          |      |  |
| Vehicle Extension (s)             | 2.3  | 5.2          | 2.3   | 2.3  | 5.2       | 2.3          |      |  |
|                                   | 2.3  |              | 488   |      | 766       | 1207         |      |  |
| Lane Grp Cap (vph)                |      | 959          |       | 853  |           |              |      |  |
| v/s Ratio Prot                    | 0.07 | c0.21        | c0.23 | 0.06 | 0.22      | 0.06         |      |  |
| v/s Ratio Perm                    | 0    | 0.09         | 0.00  | 0.10 | 0 = 0     | 0.11         |      |  |
| v/c Ratio                         | 0.57 | 0.48         | 0.83  | 0.13 | 0.50      | 0.23         |      |  |
| Uniform Delay, d1                 | 39.1 | 13.0         | 32.0  | 15.2 | 19.6      | 4.9          |      |  |
| Progression Factor                | 1.00 | 1.00         | 1.00  | 1.00 | 1.00      | 1.00         |      |  |
| Incremental Delay, d2             | 2.6  | 0.2          | 11.4  | 0.0  | 2.3       | 0.1          |      |  |
| Delay (s)                         | 41.7 | 13.2         | 43.4  | 15.2 | 21.9      | 5.0          |      |  |
| Level of Service                  | D    | В            | D     | В    | С         | А            |      |  |
| Approach Delay (s)                | 18.9 |              |       | 37.2 | 13.3      |              |      |  |
| Approach LOS                      | В    |              |       | D    | В         |              |      |  |
| Intersection Summary              |      |              |       |      |           |              |      |  |
| HCM Average Control Delay         |      |              | 21.5  | H    | CM Leve   | l of Service | C    |  |
| HCM Volume to Capacity ratio      |      |              | 0.59  |      |           |              |      |  |
| Actuated Cycle Length (s)         |      |              | 94.0  | Su   | um of los | t time (s)   | 11.0 |  |
| Intersection Capacity Utilization | I    |              | 62.5% | IC   | U Level   | of Service   | В    |  |
| Analysis Period (min)             |      |              | 15    |      |           |              |      |  |
| c Critical Lane Group             |      |              |       |      |           |              |      |  |

## Year 2040 (No-Build) Traffic Conditions 2: I-205 SB Ramps & 10th Street

|                         | -    | *    | 1    | 1    | Ŧ     |
|-------------------------|------|------|------|------|-------|
| Lane Group              | WBT  | WBR  | NBL  | NBT  | SBT   |
| Lane Group Flow (vph)   | 267  | 343  | 145  | 456  | 951   |
| v/c Ratio               | 0.81 | 0.60 | 0.23 | 0.34 | 0.89  |
| Control Delay           | 63.1 | 9.0  | 27.8 | 7.2  | 45.7  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.4  | 125.1 |
| Total Delay             | 63.1 | 9.0  | 27.8 | 7.6  | 170.8 |
| Queue Length 50th (ft)  | 191  | 0    | 77   | 116  | 322   |
| Queue Length 95th (ft)  | 287  | 80   | 133  | 177  | #425  |
| Internal Link Dist (ft) | 651  |      |      | 256  | 177   |
| Turn Bay Length (ft)    |      |      | 250  |      |       |
| Base Capacity (vph)     | 407  | 625  | 632  | 1413 | 1180  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 520  | 434   |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0     |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0     |
| Reduced v/c Ratio       | 0.66 | 0.55 | 0.23 | 0.51 | 1.27  |
| Intersection Summary    |      |      |      |      |       |

# 95th percentile volume exceeds capacity, queue may be longer.

## Year 2040 (No-Build) Traffic Conditions 2: I-205 SB Ramps & 10th Street

|                                   | ۶    | +    | *     | 4     | ł          | •          | <          | 1        | 1    | ×    | ţ           | ∢    |
|-----------------------------------|------|------|-------|-------|------------|------------|------------|----------|------|------|-------------|------|
| Movement                          | EBL  | EBT  | EBR   | WBL   | WBT        | WBR        | NBL        | NBT      | NBR  | SBL  | SBT         | SBR  |
| Lane Configurations               |      |      |       |       | र्भ        | 1          | - <b>T</b> | <b>↑</b> |      |      | <b>≜</b> ⊅⊱ |      |
| Volume (vph)                      | 0    | 0    | 0     | 251   | 0          | 322        | 136        | 429      | 0    | 0    | 587         | 307  |
| Ideal Flow (vphpl)                | 1900 | 1900 | 1900  | 1900  | 1900       | 1900       | 1900       | 1900     | 1900 | 1900 | 1900        | 1900 |
| Total Lost time (s)               |      |      |       |       | 5.5        | 5.5        | 5.5        | 5.5      |      |      | 5.5         |      |
| Lane Util. Factor                 |      |      |       |       | 1.00       | 1.00       | 1.00       | 1.00     |      |      | 0.95        |      |
| Frpb, ped/bikes                   |      |      |       |       | 1.00       | 1.00       | 1.00       | 1.00     |      |      | 0.99        |      |
| Flpb, ped/bikes                   |      |      |       |       | 1.00       | 1.00       | 1.00       | 1.00     |      |      | 1.00        |      |
| Frt                               |      |      |       |       | 1.00       | 0.85       | 1.00       | 1.00     |      |      | 0.95        |      |
| Flt Protected                     |      |      |       |       | 0.95       | 1.00       | 0.95       | 1.00     |      |      | 1.00        | _    |
| Satd. Flow (prot)                 |      |      |       |       | 1787       | 1583       | 1736       | 1881     |      |      | 3342        |      |
| Flt Permitted                     |      |      |       |       | 0.95       | 1.00       | 0.95       | 1.00     |      |      | 1.00        | _    |
| Satd. Flow (perm)                 |      |      |       |       | 1787       | 1583       | 1736       | 1881     |      |      | 3342        |      |
| Peak-hour factor, PHF             | 0.94 | 0.94 | 0.94  | 0.94  | 0.94       | 0.94       | 0.94       | 0.94     | 0.94 | 0.94 | 0.94        | 0.94 |
| Adj. Flow (vph)                   | 0    | 0    | 0     | 267   | 0          | 343        | 145        | 456      | 0    | 0    | 624         | 327  |
| RTOR Reduction (vph)              | 0    | 0    | 0     | 0     | 0          | 280        | 0          | 0        | 0    | 0    | 58          | 0    |
| Lane Group Flow (vph)             | 0    | 0    | 0     | 0     | 267        | 63         | 145        | 456      | 0    | 0    | 893         | 0    |
| Confl. Bikes (#/hr)               |      |      |       |       |            |            |            |          |      |      |             | 1    |
| Heavy Vehicles (%)                | 0%   | 0%   | 0%    | 1%    | 0%         | 2%         | 4%         | 1%       | 0%   | 0%   | 1%          | 3%   |
| Turn Type                         |      |      |       | Split |            | Perm       | Prot       |          |      |      |             |      |
| Protected Phases                  |      |      |       | 8     | 8          |            | 5          | 2        |      |      | 6           |      |
| Permitted Phases                  |      |      |       |       |            | 8          |            |          |      |      |             |      |
| Actuated Green, G (s)             |      |      |       |       | 20.4       | 20.4       | 40.3       | 79.2     |      |      | 33.4        |      |
| Effective Green, g (s)            |      |      |       |       | 20.4       | 20.4       | 40.3       | 79.2     |      |      | 33.4        |      |
| Actuated g/C Ratio                |      |      |       |       | 0.18       | 0.18       | 0.36       | 0.72     |      |      | 0.30        |      |
| Clearance Time (s)                |      |      |       |       | 5.5        | 5.5        | 5.5        | 5.5      |      |      | 5.5         |      |
| Vehicle Extension (s)             |      |      |       |       | 2.3        | 2.3        | 5.2        | 2.3      |      |      | 2.3         |      |
| Lane Grp Cap (vph)                |      |      |       |       | 330        | 292        | 633        | 1347     |      |      | 1009        |      |
| v/s Ratio Prot                    |      |      |       |       | c0.15      |            | 0.08       | c0.24    |      |      | c0.27       |      |
| v/s Ratio Perm                    |      |      |       |       |            | 0.04       |            |          |      |      |             |      |
| v/c Ratio                         |      |      |       |       | 0.81       | 0.22       | 0.23       | 0.34     |      |      | 0.89        |      |
| Uniform Delay, d1                 |      |      |       |       | 43.2       | 38.3       | 24.4       | 5.9      |      |      | 36.8        |      |
| Progression Factor                |      |      |       |       | 1.00       | 1.00       | 1.00       | 1.00     |      |      | 1.00        |      |
| Incremental Delay, d2             |      |      |       |       | 13.1       | 0.2        | 0.8        | 0.1      |      |      | 9.3         |      |
| Delay (s)                         |      |      |       |       | 56.3       | 38.5       | 25.2       | 6.0      |      |      | 46.0        |      |
| Level of Service                  |      |      |       |       | E          | D          | С          | А        |      |      | D           |      |
| Approach Delay (s)                |      | 0.0  |       |       | 46.3       |            |            | 10.6     |      |      | 46.0        |      |
| Approach LOS                      |      | А    |       |       | D          |            |            | В        |      |      | D           |      |
| Intersection Summary              |      |      |       |       |            |            |            |          |      |      |             |      |
| HCM Average Control Delay         |      |      | 36.3  | Н     | CM Level   | of Servic  | e          |          | D    |      |             |      |
| HCM Volume to Capacity ratio      |      |      | 0.65  |       |            |            |            |          |      |      |             |      |
| Actuated Cycle Length (s)         |      |      | 110.6 |       | um of lost |            |            |          | 16.5 |      |             |      |
| Intersection Capacity Utilization |      |      | 86.9% | IC    | U Level o  | of Service |            |          | E    |      |             |      |
| Analysis Period (min)             |      |      | 15    |       |            |            |            |          |      |      |             |      |
| c Critical Lane Group             |      |      |       |       |            |            |            |          |      |      |             |      |

|                         | -    | $\mathbf{r}$ | 1    | 1    | 1    | Ļ    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | NBT  | NBR  | SBL  | SBT  |
| Lane Group Flow (vph)   | 188  | 109          | 401  | 465  | 312  | 560  |
| v/c Ratio               | 0.61 | 0.29         | 0.58 | 0.57 | 0.74 | 0.44 |
| Control Delay           | 38.3 | 8.7          | 24.1 | 8.9  | 37.8 | 6.8  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 38.3 | 8.7          | 24.1 | 8.9  | 37.8 | 6.8  |
| Queue Length 50th (ft)  | 83   | 0            | 140  | 35   | 136  | 93   |
| Queue Length 95th (ft)  | 159  | 41           | 289  | 142  | 241  | 193  |
| Internal Link Dist (ft) | 628  |              | 216  |      |      | 168  |
| Turn Bay Length (ft)    |      |              |      | 100  | 150  |      |
| Base Capacity (vph)     | 512  | 545          | 808  | 891  | 646  | 1561 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.37 | 0.20         | 0.50 | 0.52 | 0.48 | 0.36 |
| Intersection Summary    |      |              |      |      |      |      |

## Year 2040 (No-Build) Traffic Conditions 3: I-205 NB Ramps & 10th Street

|                                    | ۶    | +              | $\mathbf{F}$ | 4    | +          | *          | 1       | Ť         | *    | 1        | ţ         | ~    |
|------------------------------------|------|----------------|--------------|------|------------|------------|---------|-----------|------|----------|-----------|------|
| Movement                           | EBL  | EBT            | EBR          | WBL  | WBT        | WBR        | NBL     | NBT       | NBR  | SBL      | SBT       | SBR  |
| Lane Configurations                |      | <del>्</del> 4 | 1            |      |            |            |         | <b>↑</b>  | 1    | <u>۲</u> | <b>↑</b>  |      |
| Volume (vph)                       | 180  | 0              | 105          | 0    | 0          | 0          | 0       | 385       | 446  | 300      | 538       | 0    |
| Ideal Flow (vphpl)                 | 1900 | 1900           | 1900         | 1900 | 1900       | 1900       | 1900    | 1900      | 1900 | 1900     | 1900      | 1900 |
| Total Lost time (s)                |      | 5.0            | 5.0          |      |            |            |         | 5.0       | 5.0  | 5.0      | 5.0       |      |
| Lane Util. Factor                  |      | 1.00           | 1.00         |      |            |            |         | 1.00      | 1.00 | 1.00     | 1.00      |      |
| Frpb, ped/bikes                    |      | 1.00           | 1.00         |      |            |            |         | 1.00      | 1.00 | 1.00     | 1.00      |      |
| Flpb, ped/bikes                    |      | 1.00           | 1.00         |      |            |            |         | 1.00      | 1.00 | 1.00     | 1.00      |      |
| Frt                                |      | 1.00           | 0.85         |      |            |            |         | 1.00      | 0.85 | 1.00     | 1.00      |      |
| Flt Protected                      |      | 0.95           | 1.00         |      |            |            |         | 1.00      | 1.00 | 0.95     | 1.00      | _    |
| Satd. Flow (prot)                  |      | 1770           | 1615         |      |            |            |         | 1863      | 1599 | 1787     | 1881      |      |
| Flt Permitted                      |      | 0.95           | 1.00         |      |            |            |         | 1.00      | 1.00 | 0.95     | 1.00      | _    |
| Satd. Flow (perm)                  |      | 1770           | 1615         |      |            |            |         | 1863      | 1599 | 1787     | 1881      |      |
| Peak-hour factor, PHF              | 0.96 | 0.96           | 0.96         | 0.96 | 0.96       | 0.96       | 0.96    | 0.96      | 0.96 | 0.96     | 0.96      | 0.96 |
| Adj. Flow (vph)                    | 188  | 0              | 109          | 0    | 0          | 0          | 0       | 401       | 465  | 312      | 560       | 0    |
| RTOR Reduction (vph)               | 0    | 0              | 90           | 0    | 0          | 0          | 0       | 0         | 217  | 0        | 0         | 0    |
| Lane Group Flow (vph)              | 0    | 188            | 19           | 0    | 0          | 0          | 0       | 401       | 248  | 312      | 560       | 0    |
| Confl. Bikes (#/hr)                | •••  | • • • •        | •••          | •••  | •••        | • • · ·    | • • • • | •••       | 101  | 101      | 10/       | 1    |
| Heavy Vehicles (%)                 | 2%   | 0%             | 0%           | 0%   | 0%         | 0%         | 0%      | 2%        | 1%   | 1%       | 1%        | 0%   |
| Turn Type                          | Perm |                | Perm         |      |            |            |         |           | Perm | Prot     |           |      |
| Protected Phases                   | -    | 8              | -            |      |            |            |         | 6         | -    | 5        | 2         |      |
| Permitted Phases                   | 8    | (              | 8            |      |            |            |         |           | 6    |          |           |      |
| Actuated Green, G (s)              |      | 12.6           | 12.6         |      |            |            |         | 26.9      | 26.9 | 17.1     | 49.0      |      |
| Effective Green, g (s)             |      | 12.6           | 12.6         |      |            |            |         | 26.9      | 26.9 | 17.1     | 49.0      | _    |
| Actuated g/C Ratio                 |      | 0.18           | 0.18         |      |            |            |         | 0.38      | 0.38 | 0.24     | 0.68      |      |
| Clearance Time (s)                 |      | 5.0            | 5.0          |      |            |            |         | 5.0       | 5.0  | 5.0      | 5.0       |      |
| Vehicle Extension (s)              |      | 2.3            | 2.3          |      |            |            |         | 6.9       | 6.9  | 2.3      | 6.9       |      |
| Lane Grp Cap (vph)                 |      | 311            | 284          |      |            |            |         | 700       | 601  | 427      | 1287      | _    |
| v/s Ratio Prot                     |      | 0.44           | 0.04         |      |            |            |         | c0.22     | 0.45 | c0.17    | 0.30      |      |
| v/s Ratio Perm                     |      | 0.11           | 0.01         |      |            |            |         | 0.57      | 0.15 | 0.70     | 0.44      |      |
| v/c Ratio                          |      | 0.60           | 0.07         |      |            |            |         | 0.57      | 0.41 | 0.73     | 0.44      |      |
| Uniform Delay, d1                  |      | 27.2           | 24.6         |      |            |            |         | 17.8      | 16.5 | 25.1     | 5.1       |      |
| Progression Factor                 |      | 1.00           | 1.00         |      |            |            |         | 1.00      | 1.00 | 1.00     | 1.00      |      |
| Incremental Delay, d2              |      | 2.6            | 0.1          |      |            |            |         | 2.7       | 1.6  | 5.8      | 0.8       |      |
| Delay (s)                          |      | 29.8           | 24.7         |      |            |            |         | 20.4      | 18.1 | 30.9     | 5.9       |      |
| Level of Service                   |      | C              | С            |      | 0.0        |            |         | C         | В    | С        | A         | _    |
| Approach Delay (s)<br>Approach LOS |      | 27.9<br>C      |              |      | 0.0<br>A   |            |         | 19.2<br>B |      |          | 14.8<br>B |      |
| Intersection Summary               |      |                |              |      |            |            |         |           |      |          |           |      |
| HCM Average Control Delay          |      |                | 18.6         | Н    | CM Level   | of Service | e       |           | В    |          |           |      |
| HCM Volume to Capacity ratio       |      |                | 0.63         |      |            |            |         |           |      |          |           |      |
| Actuated Cycle Length (s)          |      |                | 71.6         | Si   | um of lost | time (s)   |         |           | 15.0 |          |           |      |
| Intersection Capacity Utilization  | 1    |                | 86.9%        |      |            | of Service |         |           | E    |          |           |      |
| Analysis Period (min)              |      |                | 15           |      |            |            |         |           |      |          |           |      |
| c Critical Lane Group              |      |                |              |      |            |            |         |           |      |          |           |      |

## Year 2040 (No-Build) Traffic Conditions 4: 8th Avenue & 10th Street

| Lane Configurations         1         4         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                      |                                        | ٨    | -    | $\mathbf{r}$ | 4         | +          | •    | 1    | Ť    | 1    | 1    | Ļ    | ~    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------|--------------|-----------|------------|------|------|------|------|------|------|------|
| Volume (ven/h)         123         10         40         50         8         159         22         549         60         125         428         125           Sign Control         Stop         Stop         Pree         Free         Free         Free         Free         Free         Stop         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0%         0% <td< th=""><th>Movement</th><th>EBL</th><th>EBT</th><th>EBR</th><th>WBL</th><th>WBT</th><th>WBR</th><th>NBL</th><th>NBT</th><th>NBR</th><th>SBL</th><th>SBT</th><th>SBR</th></td<>                    | Movement                               | EBL  | EBT  | EBR          | WBL       | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Sign Control         Stop         Free         Free         Free           Grade         0%         0%         0%         0%         0%         0%           Peak Hour Factor         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96                                                                                                                                             | Lane Configurations                    | ۲    | eî   |              |           | र्भ        | 1    | 1    | et 🕺 |      | ٦    | ef 🕺 |      |
| Grade         0%         0%         0%         0%         0%         0%           Peak Hour Factor         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0                                                                                                                                |                                        | 123  | 10   | 40           | 50        | 8          | 159  | 22   | 549  | 60   | 125  | 428  | 90   |
| Peak Hour Factor       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96       0.96 <th0.96< th="">       0.96       0.96</th0.96<>                                                                                                                                                                                        | Sign Control                           |      | Stop |              |           | Stop       |      |      | Free |      |      | Free |      |
| Hourly flow rate (vph)       128       10       42       52       8       166       23       572       62       130       446       9         Pedestrians       Lane Width (ft)       Walking Speed (ft/s)       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                 | Grade                                  |      | 0%   |              |           | 0%         |      |      | 0%   |      |      | 0%   |      |
| Pedestrians         Lane Width (ft)         Walking Speed (ft/s)       Percent Blockage         Right turn flare (veh)       4         Median type       None       None         Median storage veh)       296         Upstream signal (ft)       296         X, platon unblocked       0.88       0.88       0.88       0.88       0.88         vC. conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vc4       41       634       634       634         vC2, stage 2 conf vol       vc4       93       35       4.0       3.3       2.2       2.2       2.2         Di Queue free %       0       90       93       36       92       67       98       86         confusion       441       634       41       634         tC2, stage (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC2, stage (s)       7.1       6.5       6.2       7.98       86       66          0       90 <td>Peak Hour Factor</td> <td>0.96</td>                                                                                                          | Peak Hour Factor                       | 0.96 | 0.96 | 0.96         | 0.96      | 0.96       | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 |
| Lane Width (ft)<br>Walking Speed (ft/s)<br>Percent Blockage<br>Right turn flare (veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hourly flow rate (vph)                 | 128  | 10   | 42           | 52        | 8          | 166  | 23   | 572  | 62   | 130  | 446  | 94   |
| Walking Speed (ft/s)       Percent Blockage         Right turn flare (veh)       4         Median type       None       None         Median torage veh)       14       14         Upstream signal (ft)       296       296         pX, platon unblocked       0.88       0.88       0.88       0.88       0.88         vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC1, stage (s)       7.1       6.5       6.2       4.1       4.1       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1       4.1                                                                                                                                                                                                                  | Pedestrians                            |      |      |              |           |            |      |      |      |      |      |      |      |
| Percent Blockage         Right turn flare (veh)       4         Median type       None       None         Wedian storage veh)       Upstream signal (ft)       296         Upstream signal (ft)       1438       0.88       0.88       0.88       0.88         vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vc2, stage 2 conf vol       vc2, stage 2 conf vol       vc4       613       414       634         vC2, stage (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)       1452       1425       361       1389       1442       603       414       634         tC, stage (s)       7.1       6.5       6.2       4.1       4.1       4.1         tF (s)       3.5       4.0       3.3       3.2.2       2.2       2.0         p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949                                                                                                                                                                                                                                                                | Lane Width (ft)                        |      |      |              |           |            |      |      |      |      |      |      |      |
| 4         Median type       None       None         Median storage veh)       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .                                                                                                                                                                                                                                                                                                                                                                                    | Walking Speed (ft/s)                   |      |      |              |           |            |      |      |      |      |      |      |      |
| Median type         None         None           Median storage veh)         Upstream signal (ft)         296           pX, platoon unblocked         0.88         0.88         0.88         0.88         0.88           vC, conflicting volume         1458         1433         493         1402         1449         603         540         634           vC1, stage 1 conf vol         vC2, stage 2 conf vol         vC2, stage 2 conf vol         vC2, stage 2 conf vol         vC2, stage (s)         7.1         6.5         6.2         7.1         6.5         6.2         4.1         4.1           tC, 2 stage (s)         7.1         6.5         6.2         7.1         6.5         6.2         2.2         2.2           p0 queue free %         0         90         93         36         92         67         98         86           cM capacity (veh/h)         53         102         608         81         100         499         1022         949           Direction, Lane #         EB 1         EB 2         WB 1         NB 1         NB 2         SB 1         SB 2           Volume Total         128         52         226         23         634         130         540 <tr< td=""><td>Percent Blockage</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<> | Percent Blockage                       |      |      |              |           |            |      |      |      |      |      |      |      |
| Median storage veh)       Upstream signal (ft)       296         Vp, Jatoon unblocked       0.88       0.88       0.88       0.88       0.88       0.88         vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC4       634       634       634         vC2, stage 2 conf vol       vC4, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.9       9.2       6.7       9.8       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       VB 1       NB 1       NB 2 <t< td=""><td>Right turn flare (veh)</td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                  | Right turn flare (veh)                 |      |      |              |           |            | 4    |      |      |      |      |      |      |
| Median storage veh)       Upstream signal (ft)       296         Vp, Jatoon unblocked       0.88       0.88       0.88       0.88       0.88       0.88         vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC2, stage 2 conf vol       vC4       634       634       634         vC2, stage 2 conf vol       vC4, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.5       6.2       4.1       4.1         tC, stage (s)       r       r       6.9       9.2       6.7       9.8       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       VB 1       NB 1       NB 2 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>None</td><td></td><td></td><td>None</td><td></td></t<>                                                                                 |                                        |      |      |              |           |            |      |      | None |      |      | None |      |
| Upstream signal (ft)       296         pX, platoon unblocked       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.88       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.83       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.11       0.12       0.11       0.12       0       0.11       0.12       0       0.11       0.12                                                                                                                                                                                                             |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
| pX, platoon unblocked       0.88       0.88       0.88       0.88       0.88       0.88       0.88         vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC2, stage 1 conf vol       vC2, stage 2 conf vol       vC2, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)                  p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       226       23       634       130       540         Volume Right       0       42       166       0       62       0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>296</td><td></td></td<>                                                                                                                                                                                                  |                                        |      |      |              |           |            |      |      |      |      |      | 296  |      |
| vC, conflicting volume       1458       1433       493       1402       1449       603       540       634         vC1, stage 1 conf vol       vC2, stage 2 conf vol       vCu, unblocked vol       1452       1425       361       1389       1442       603       414       634         vCu, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)          54.0       3.3       2.2       2.2         p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       223       0       130       0         Volume Left       128       0       52       23       130       0         Volume Right       0                                                                                                                                                                                                                                                                                    |                                        | 0.88 | 0.88 | 0.88         | 0.88      | 0.88       |      | 0.88 |      |      |      |      |      |
| vC1, stage 1 conf vol         vC2, stage 2 conf vol         vCu, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |      |      |              | 1402      |            | 603  | 540  |      |      | 634  |      |      |
| vC2, stage 2 conf vol         vCu, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
| vCu, unblocked vol       1452       1425       361       1389       1442       603       414       634         tC, single (s)       7.1       6.5       6.2       7.1       6.5       6.2       4.1       4.1         tC, 2 stage (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
| tC, single (s)7.16.56.27.16.56.24.14.1tC, 2 stage (s) $X$ $X$ $X$ $X$ $X$ $X$ $X$ $X$ $X$ p0 queue free %09093 $X$ $Y$ $Y$ $Y$ $Y$ $X$ $X$ $X$ p0 queue free %09093 $X$ $Y$ <td></td> <td>1452</td> <td>1425</td> <td>361</td> <td>1389</td> <td>1442</td> <td>603</td> <td>414</td> <td></td> <td></td> <td>634</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 1452 | 1425 | 361          | 1389      | 1442       | 603  | 414  |      |      | 634  |      |      |
| tC, 2 stage (s)         tF (s)       3.5       4.0       3.3       3.5       4.0       3.3       2.2       2.2         p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       226       23       634       130       540         Volume Left       128       0       52       23       0       130       0         Volume Right       0       42       166       0       62       0       94         CSH       53       306       313       1022       1700       949       1700         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0                                                                                                                                                                                                                                                                                                |                                        |      |      |              |           |            | 6.2  |      |      |      |      |      |      |
| tF (s)       3.5       4.0       3.3       3.5       4.0       3.3       2.2       2.2         p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       226       23       634       130       540         Volume Left       128       0       52       23       0       130       0         Volume Right       0       42       166       0       62       0       94         CSH       53       306       313       1022       1700       949       1700         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0.0       9.4       0.0                                                                                                                                                                                                                                                                                                  |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
| p0 queue free %       0       90       93       36       92       67       98       86         cM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       226       23       634       130       540         Volume Left       128       0       52       23       0       130       0         Volume Right       0       42       166       0       62       0       949         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0.0       9.4       0.0         Lane LOS       F       C       E       A       A         Approach LOS       F       E       E       Image: Control Delay (s)       575.9       43.4       0.3       1.8 <td></td> <td>3.5</td> <td>4.0</td> <td>3.3</td> <td>3.5</td> <td>4.0</td> <td>3.3</td> <td>2.2</td> <td></td> <td></td> <td>2.2</td> <td></td> <td></td>                                                                                                                                          |                                        | 3.5  | 4.0  | 3.3          | 3.5       | 4.0        | 3.3  | 2.2  |      |      | 2.2  |      |      |
| CM capacity (veh/h)       53       102       608       81       100       499       1022       949         Direction, Lane #       EB 1       EB 2       WB 1       NB 1       NB 2       SB 1       SB 2         Volume Total       128       52       226       23       634       130       540         Volume Left       128       0       52       23       0       130       0         Volume Right       0       42       166       0       62       0       949         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0.0       9.4       0.0         Lane LOS       F       C       E       A       A         Approach LOS       F       E       E       43.4       0.3       1.8                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | 0    |      |              |           | 92         |      | 98   |      |      | 86   |      |      |
| Volume Total         128         52         226         23         634         130         540           Volume Left         128         0         52         23         0         130         0           Volume Right         0         42         166         0         62         0         94           cSH         53         306         313         1022         1700         949         1700           Volume to Capacity         2.40         0.17         0.72         0.02         0.37         0.14         0.32           Queue Length 95th (ft)         326         15         131         2         0         12         0           Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach LOS         F         E         E         43.4         0.3         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 53   | 102  | 608          | 81        | 100        | 499  | 1022 |      |      | 949  |      |      |
| Volume Left       128       0       52       23       0       130       0         Volume Right       0       42       166       0       62       0       94         cSH       53       306       313       1022       1700       949       1700         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0.0       9.4       0.0         Lane LOS       F       C       E       A       A         Approach Delay (s)       575.9       43.4       0.3       1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Direction, Lane #                      | EB 1 | EB 2 | WB 1         | NB 1      | NB 2       | SB 1 | SB 2 |      |      |      |      |      |
| Volume Right         0         42         166         0         62         0         94           cSH         53         306         313         1022         1700         949         1700           Volume to Capacity         2.40         0.17         0.72         0.02         0.37         0.14         0.32           Queue Length 95th (ft)         326         15         131         2         0         12         0           Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach Delay (s)         575.9         43.4         0.3         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume Total                           | 128  | 52   | 226          | 23        | 634        | 130  | 540  |      |      |      |      |      |
| Volume Right         0         42         166         0         62         0         94           cSH         53         306         313         1022         1700         949         1700           Volume to Capacity         2.40         0.17         0.72         0.02         0.37         0.14         0.32           Queue Length 95th (ft)         326         15         131         2         0         12         0           Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach Delay (s)         575.9         43.4         0.3         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume Left                            |      |      |              |           |            |      |      |      |      |      |      |      |
| cSH       53       306       313       1022       1700       949       1700         Volume to Capacity       2.40       0.17       0.72       0.02       0.37       0.14       0.32         Queue Length 95th (ft)       326       15       131       2       0       12       0         Control Delay (s)       802.2       19.2       43.4       8.6       0.0       9.4       0.0         Lane LOS       F       C       E       A       A         Approach Delay (s)       575.9       43.4       0.3       1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume Right                           | 0    | 42   | 166          |           | 62         | 0    | 94   |      |      |      |      |      |
| Volume to Capacity         2.40         0.17         0.72         0.02         0.37         0.14         0.32           Queue Length 95th (ft)         326         15         131         2         0         12         0           Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach Delay (s)         575.9         43.4         0.3         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |      |      |              | 1022      | 1700       |      | 1700 |      |      |      |      |      |
| Queue Length 95th (ft)         326         15         131         2         0         12         0           Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach Delay (s)         575.9         43.4         0.3         1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volume to Capacity                     |      |      |              |           | 0.37       | 0.14 |      |      |      |      |      |      |
| Control Delay (s)         802.2         19.2         43.4         8.6         0.0         9.4         0.0           Lane LOS         F         C         E         A         A           Approach Delay (s)         575.9         43.4         0.3         1.8           Approach LOS         F         E         E         E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |      |      | 131          |           |            |      |      |      |      |      |      |      |
| Lane LOSFCEAApproach Delay (s)575.943.40.31.8Approach LOSFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
| Approach Delay (s)         575.9         43.4         0.3         1.8           Approach LOS         F         E         E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |      |      | Е            |           |            | А    |      |      |      |      |      |      |
| Approach LOS F E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |      |      |              |           |            |      |      |      |      |      |      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intersection Summary                   |      |      |              |           |            |      |      |      |      |      |      |      |
| Average Delay 66.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Average Delay                          |      |      | 66.4         |           |            |      |      |      |      |      |      |      |
| Intersection Capacity Utilization 62.9% ICU Level of Service B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntersection Capacity Utilization 62.9% |      |      | IC           | U Level o | of Service |      |      | В    |      |      |      |      |
| Analysis Period (min) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |      |      | 15           |           |            |      |      |      |      |      |      |      |

|                              | ٦      | -        | -     | •    | 1         | 1          |
|------------------------------|--------|----------|-------|------|-----------|------------|
| Movement                     | EBL    | EBT      | WBT   | WBR  | SBL       | SBR        |
| Lane Configurations          | ۲      | <b>†</b> | f,    |      | ٦         | 1          |
| Sign Control                 |        | Stop     | Stop  |      | Stop      |            |
| Volume (vph)                 | 456    | 703      | 230   | 175  | 218       | 300        |
| Peak Hour Factor             | 0.94   | 0.94     | 0.94  | 0.94 | 0.94      | 0.94       |
| Hourly flow rate (vph)       | 485    | 748      | 245   | 186  | 232       | 319        |
| Direction, Lane #            | EB 1   | EB 2     | WB 1  | SB 1 | SB 2      |            |
| Volume Total (vph)           | 485    | 748      | 431   | 232  | 319       |            |
| Volume Left (vph)            | 485    | 0        | 0     | 232  | 0         |            |
| Volume Right (vph)           | 0      | 0        | 186   | 0    | 319       |            |
| Hadj (s)                     | 0.52   | 0.03     | -0.24 | 0.53 | -0.68     |            |
| Departure Headway (s)        | 7.7    | 7.2      | 6.7   | 8.2  | 7.0       |            |
| Degree Utilization, x        | 1.03   | 1.49     | 0.81  | 0.53 | 0.62      |            |
| Capacity (veh/h)             | 466    | 505      | 527   | 425  | 501       |            |
| Control Delay (s)            | 76.5   | 248.2    | 32.0  | 18.8 | 19.5      |            |
| Approach Delay (s)           | 180.6  |          | 32.0  | 19.2 |           |            |
| Approach LOS                 | F      |          | D     | С    |           |            |
| Intersection Summary         |        |          |       |      |           |            |
| Delay                        |        |          | 111.6 |      |           |            |
| HCM Level of Service         |        |          | F     |      |           |            |
| Intersection Capacity Utiliz | zation |          | 70.1% | IC   | U Level c | of Service |
| Analysis Period (min)        |        |          | 15    |      |           |            |

Appendix E Year 2040 Traffic Conditions and Queuing Worksheets with Corridor Improvements Alternative 1

|                         | -    | $\mathbf{r}$ | 1    | +    | 1    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 131  | 524          | 407  | 115  | 385  | 397  |
| v/c Ratio               | 0.54 | 0.29         | 0.66 | 0.16 | 0.23 | 0.31 |
| Control Delay           | 42.9 | 3.2          | 37.2 | 17.4 | 13.5 | 1.1  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.6  | 0.4  |
| Total Delay             | 42.9 | 3.2          | 37.2 | 17.4 | 14.0 | 1.5  |
| Queue Length 50th (ft)  | 63   | 23           | 100  | 39   | 54   | 0    |
| Queue Length 95th (ft)  | 125  | 51           | 155  | 72   | 101  | 22   |
| Internal Link Dist (ft) | 590  |              |      | 679  | 177  |      |
| Turn Bay Length (ft)    |      | 190          | 190  |      | 100  | 100  |
| Base Capacity (vph)     | 654  | 1811         | 1265 | 1471 | 1704 | 1506 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 918  | 613  |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.20 | 0.29         | 0.32 | 0.08 | 0.49 | 0.44 |
| Intersection Summary    |      |              |      |      |      |      |

|                               | -     | $\mathbf{r}$ | 1     | -        | 1       | 1            |  |
|-------------------------------|-------|--------------|-------|----------|---------|--------------|--|
| Movement                      | EBT   | EBR          | WBL   | WBT      | NBL     | NBR          |  |
| Lane Configurations           | •     | 11           | ኘካ    | <u>+</u> | ኘ       | 1            |  |
| Volume (vph)                  | 126   | 503          | 391   | 110      | 370     | 381          |  |
| Ideal Flow (vphpl)            | 1900  | 1900         | 1900  | 1900     | 1900    | 1900         |  |
| Total Lost time (s)           | 5.5   | 5.5          | 5.5   | 6.0      | 5.5     | 5.5          |  |
| Lane Util. Factor             | 1.00  | 0.88         | 0.97  | 1.00     | 0.97    | 1.00         |  |
| Frpb, ped/bikes               | 1.00  | 1.00         | 1.00  | 1.00     | 1.00    | 1.00         |  |
| Flpb, ped/bikes               | 1.00  | 1.00         | 1.00  | 1.00     | 1.00    | 1.00         |  |
| Frt                           | 1.00  | 0.85         | 1.00  | 1.00     | 1.00    | 0.85         |  |
| FIt Protected                 | 1.00  | 1.00         | 0.95  | 1.00     | 0.95    | 1.00         |  |
| Satd. Flow (prot)             | 1900  | 2775         | 3433  | 1900     | 3467    | 1583         |  |
| Flt Permitted                 | 1.00  | 1.00         | 0.95  | 1.00     | 0.95    | 1.00         |  |
| Satd. Flow (perm)             | 1900  | 2775         | 3433  | 1900     | 3467    | 1583         |  |
| Peak-hour factor, PHF         | 0.96  | 0.96         | 0.96  | 0.96     | 0.96    | 0.96         |  |
| Adj. Flow (vph)               | 131   | 524          | 407   | 115      | 385     | 397          |  |
| RTOR Reduction (vph)          | 0     | 94           | 0     | 0        | 0       | 131          |  |
| Lane Group Flow (vph)         | 131   | 430          | 407   | 115      | 385     | 266          |  |
| Confl. Bikes (#/hr)           |       | 1            |       |          |         |              |  |
| Heavy Vehicles (%)            | 0%    | 2%           | 2%    | 0%       | 1%      | 2%           |  |
| Turn Type                     |       | pm+ov        | Prot  |          |         | pm+ov        |  |
| Protected Phases              | 4     | 5            | 3     | 8        | 5       | 3            |  |
| Permitted Phases              |       | 4            |       |          |         | 5            |  |
| Actuated Green, G (s)         | 10.5  | 50.7         | 14.6  | 30.1     | 40.2    | 54.8         |  |
| Effective Green, g (s)        | 10.5  | 50.7         | 14.6  | 30.1     | 40.2    | 54.8         |  |
| Actuated g/C Ratio            | 0.13  | 0.62         | 0.18  | 0.37     | 0.49    | 0.67         |  |
| Clearance Time (s)            | 5.5   | 5.5          | 5.5   | 6.0      | 5.5     | 5.5          |  |
| Vehicle Extension (s)         | 2.3   | 5.2          | 2.3   | 2.3      | 5.2     | 2.3          |  |
| Lane Grp Cap (vph)            | 244   | 1907         | 613   | 699      | 1704    | 1167         |  |
| v/s Ratio Prot                | c0.07 | 0.11         | c0.12 | 0.06     | 0.11    | c0.04        |  |
| v/s Ratio Perm                |       | 0.04         |       |          |         | 0.13         |  |
| v/c Ratio                     | 0.54  | 0.23         | 0.66  | 0.16     | 0.23    | 0.23         |  |
| Uniform Delay, d1             | 33.4  | 6.9          | 31.3  | 17.4     | 11.9    | 5.3          |  |
| Progression Factor            | 1.00  | 1.00         | 1.00  | 1.00     | 1.00    | 1.00         |  |
| Incremental Delay, d2         | 1.5   | 0.0          | 2.3   | 0.1      | 0.3     | 0.1          |  |
| Delay (s)                     | 34.9  | 6.9          | 33.6  | 17.5     | 12.2    | 5.3          |  |
| Level of Service              | C     | А            | С     | B        | B       | A            |  |
| Approach Delay (s)            | 12.5  |              |       | 30.1     | 8.7     |              |  |
| Approach LOS                  | В     |              |       | С        | A       |              |  |
| Intersection Summary          |       |              |       |          |         |              |  |
| HCM Average Control Delay     |       |              | 15.7  | H        | CM Leve | l of Service |  |
| HCM Volume to Capacity ra     | atio  |              | 0.39  |          |         |              |  |
| Actuated Cycle Length (s)     |       |              | 81.8  |          |         | t time (s)   |  |
| Intersection Capacity Utiliza | tion  |              | 42.1% | IC       | U Level | of Service   |  |
| Analysis Period (min)         |       |              | 15    |          |         |              |  |
| c Critical Lane Group         |       |              |       |          |         |              |  |

|                         | +    | •    | 1    | 1    | Ŧ     |
|-------------------------|------|------|------|------|-------|
| Lane Group              | WBT  | WBR  | NBL  | NBT  | SBT   |
| Lane Group Flow (vph)   | 267  | 343  | 145  | 456  | 951   |
| v/c Ratio               | 0.81 | 0.60 | 0.23 | 0.34 | 0.89  |
| Control Delay           | 63.1 | 9.0  | 27.8 | 7.2  | 45.7  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.4  | 125.1 |
| Total Delay             | 63.1 | 9.0  | 27.8 | 7.6  | 170.8 |
| Queue Length 50th (ft)  | 191  | 0    | 77   | 116  | 322   |
| Queue Length 95th (ft)  | 287  | 80   | 133  | 177  | #425  |
| Internal Link Dist (ft) | 651  |      |      | 504  | 177   |
| Turn Bay Length (ft)    |      |      |      |      |       |
| Base Capacity (vph)     | 407  | 625  | 632  | 1413 | 1180  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 520  | 434   |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0     |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0     |
| Reduced v/c Ratio       | 0.66 | 0.55 | 0.23 | 0.51 | 1.27  |
| Intersection Summary    |      |      |      |      |       |

# 95th percentile volume exceeds capacity, queue may be longer.

## Year 2040 Traffic Conditions - Alternative 1 2: I-205 SB Ramps & 10th Street

|                                              | ۶    | -    | $\mathbf{F}$ | •     | +               | •            | •            | Ť            | 1    | 1    | ţ            | ~    |
|----------------------------------------------|------|------|--------------|-------|-----------------|--------------|--------------|--------------|------|------|--------------|------|
| Movement                                     | EBL  | EBT  | EBR          | WBL   | WBT             | WBR          | NBL          | NBT          | NBR  | SBL  | SBT          | SBR  |
| Lane Configurations                          |      |      |              |       | <del>र्</del> ग | 1            | - ሽ          | <b>↑</b>     |      |      | <b>∱</b> ⊅   |      |
| Volume (vph)                                 | 0    | 0    | 0            | 251   | 0               | 322          | 136          | 429          | 0    | 0    | 587          | 307  |
| Ideal Flow (vphpl)                           | 1900 | 1900 | 1900         | 1900  | 1900            | 1900         | 1900         | 1900         | 1900 | 1900 | 1900         | 1900 |
| Total Lost time (s)                          |      |      |              |       | 5.5             | 5.5          | 5.5          | 5.5          |      |      | 5.5          |      |
| Lane Util. Factor                            |      |      |              |       | 1.00            | 1.00         | 1.00         | 1.00         |      |      | 0.95         | _    |
| Frpb, ped/bikes                              |      |      |              |       | 1.00            | 1.00         | 1.00         | 1.00         |      |      | 0.99         |      |
| Flpb, ped/bikes                              |      |      |              |       | 1.00            | 1.00         | 1.00         | 1.00         |      |      | 1.00         |      |
| Frt<br>Flt Directional                       |      |      |              |       | 1.00            | 0.85         | 1.00         | 1.00         |      |      | 0.95         |      |
| Fit Protected                                |      |      |              |       | 0.95            | 1.00         | 0.95         | 1.00         |      |      | 1.00         |      |
| Satd. Flow (prot)<br>Flt Permitted           |      |      |              |       | 1787            | 1583         | 1736         | 1881<br>1.00 |      |      | 3342<br>1.00 |      |
|                                              |      |      |              |       | 0.95<br>1787    | 1.00<br>1583 | 0.95<br>1736 | 1881         |      |      | 3342         |      |
| Satd. Flow (perm)                            | 0.04 | 0.04 | 0.04         | 0.04  |                 |              |              |              | 0.04 | 0.04 |              | 0.04 |
| Peak-hour factor, PHF                        | 0.94 | 0.94 | 0.94         | 0.94  | 0.94            | 0.94         | 0.94         | 0.94         | 0.94 | 0.94 | 0.94         | 0.94 |
| Adj. Flow (vph)                              | 0    | 0    | 0            | 267   | 0               | 343          | 145          | 456          | 0    | 0    | 624          | 327  |
| RTOR Reduction (vph)                         | 0    | 0    | 0            | 0     | 0               | 280          | 0            | 0            | 0    | 0    | 58           | 0    |
| Lane Group Flow (vph)                        | 0    | 0    | 0            | 0     | 267             | 63           | 145          | 456          | 0    | 0    | 893          | 0    |
| Confl. Bikes (#/hr)                          | 00/  | 00/  | 00/          | 10/   | 00/             | 00/          | 40/          | 10/          | 00/  | 00/  | 10/          | 20/  |
| Heavy Vehicles (%)                           | 0%   | 0%   | 0%           | 1%    | 0%              | 2%           | 4%           | 1%           | 0%   | 0%   | 1%           | 3%   |
| Turn Type                                    |      |      |              | Split | 0               | Perm         | Prot         | 0            |      |      | <u>^</u>     |      |
| Protected Phases                             |      |      |              | 8     | 8               | 0            | 5            | 2            |      |      | 6            |      |
| Permitted Phases                             |      |      |              |       | 20.4            | 8<br>20.4    | 40.2         | 79.2         |      |      | 33.4         |      |
| Actuated Green, G (s)                        |      |      |              |       | 20.4<br>20.4    | 20.4         | 40.3<br>40.3 | 79.2<br>79.2 |      |      | 33.4<br>33.4 |      |
| Effective Green, g (s)<br>Actuated g/C Ratio |      |      |              |       | 0.18            | 0.18         | 0.36         | 0.72         |      |      | 0.30         |      |
| Clearance Time (s)                           |      |      |              |       | 5.5             | 5.5          | 5.5          | 5.5          |      |      | 5.5          |      |
| Vehicle Extension (s)                        |      |      |              |       | 2.3             | 2.3          | 5.2          | 2.3          |      |      | 2.3          |      |
|                                              |      |      |              |       |                 |              |              |              |      |      | 1009         |      |
| Lane Grp Cap (vph)<br>v/s Ratio Prot         |      |      |              |       | 330<br>c0.15    | 292          | 633          | 1347         |      |      | c0.27        |      |
| v/s Ratio Perm                               |      |      |              |       | CO. 15          | 0.04         | 0.08         | c0.24        |      |      | CU.27        |      |
| v/c Ratio                                    |      |      |              |       | 0.81            | 0.04         | 0.23         | 0.34         |      |      | 0.89         |      |
| Uniform Delay, d1                            |      |      |              |       | 43.2            | 38.3         | 24.4         | 0.34<br>5.9  |      |      | 36.8         |      |
| Progression Factor                           |      |      |              |       | 43.2            | 1.00         | 1.00         | 1.00         |      |      | 1.00         |      |
| Incremental Delay, d2                        |      |      |              |       | 13.1            | 0.2          | 0.8          | 0.1          |      |      | 9.3          |      |
| Delay (s)                                    |      |      |              |       | 56.3            | 38.5         | 25.2         | 6.0          |      |      | 46.0         |      |
| Level of Service                             |      |      |              |       | 50.5<br>E       | 00.0<br>D    | 23.2<br>C    | 0.0<br>A     |      |      | 40.0<br>D    |      |
| Approach Delay (s)                           |      | 0.0  |              |       | 46.3            | D            | 0            | 10.6         |      |      | 46.0         |      |
| Approach LOS                                 |      | A    |              |       | 40.0<br>D       |              |              | B            |      |      | чо.о<br>D    |      |
| Intersection Summary                         |      |      |              |       |                 |              |              |              |      |      |              |      |
| HCM Average Control Delay                    |      |      | 36.3         | Н     | CM Level        | of Service   | e            |              | D    |      |              |      |
| HCM Volume to Capacity ratio                 |      |      | 0.65         |       |                 |              |              |              |      |      |              |      |
| Actuated Cycle Length (s)                    |      |      | 110.6        |       | um of lost      | ( )          |              |              | 16.5 |      |              |      |
| Intersection Capacity Utilization            | 1    |      | 64.1%        | IC    | CU Level of     | of Service   |              |              | С    |      |              |      |
| Analysis Period (min)                        |      |      | 15           |       |                 |              |              |              |      |      |              |      |
| c Critical Lane Group                        |      |      |              |       |                 |              |              |              |      |      |              |      |

|                         | -+   | $\mathbf{N}$ | † 1  | 1    | Ļ        |
|-------------------------|------|--------------|------|------|----------|
|                         | ЕРТ  |              |      | CDL  | •<br>ODT |
| Lane Group              | EBT  | EBR          | NBT  | SBL  | SBT      |
| Lane Group Flow (vph)   | 188  | 109          | 866  | 312  | 560      |
| v/c Ratio               | 0.60 | 0.29         | 0.61 | 0.73 | 0.44     |
| Control Delay           | 37.8 | 8.7          | 13.6 | 37.2 | 6.9      |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.0      |
| Total Delay             | 37.8 | 8.7          | 13.6 | 37.2 | 6.9      |
| Queue Length 50th (ft)  | 78   | 0            | 90   | 128  | 92       |
| Queue Length 95th (ft)  | 159  | 41           | 193  | 241  | 193      |
| Internal Link Dist (ft) | 628  |              | 216  |      | 504      |
| Turn Bay Length (ft)    |      |              |      |      |          |
| Base Capacity (vph)     | 516  | 548          | 1627 | 651  | 1580     |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 0        |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0        |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0        |
| Reduced v/c Ratio       | 0.36 | 0.20         | 0.53 | 0.48 | 0.35     |
| Intersection Summary    |      |              |      |      |          |

|                                   | ≯    | -    | $\rightarrow$                           | ∢    | -           | *          | ٩    | Ť          | 1    | 1     | ţ        | ~    |
|-----------------------------------|------|------|-----------------------------------------|------|-------------|------------|------|------------|------|-------|----------|------|
| Movement                          | EBL  | EBT  | EBR                                     | WBL  | WBT         | WBR        | NBL  | NBT        | NBR  | SBL   | SBT      | SBR  |
| Lane Configurations               |      | र्भ  | 1                                       |      |             |            |      | <b>≜</b> ⊅ |      | ٦.    | <b>↑</b> |      |
| Volume (vph)                      | 180  | 0    | 105                                     | 0    | 0           | 0          | 0    | 385        | 446  | 300   | 538      | 0    |
| Ideal Flow (vphpl)                | 1900 | 1900 | 1900                                    | 1900 | 1900        | 1900       | 1900 | 1900       | 1900 | 1900  | 1900     | 1900 |
| Total Lost time (s)               |      | 5.0  | 5.0                                     |      |             |            |      | 5.0        |      | 5.0   | 5.0      |      |
| Lane Util. Factor                 |      | 1.00 | 1.00                                    |      |             |            |      | 0.95       |      | 1.00  | 1.00     |      |
| Frpb, ped/bikes                   |      | 1.00 | 1.00                                    |      |             |            |      | 1.00       |      | 1.00  | 1.00     |      |
| Flpb, ped/bikes                   |      | 1.00 | 1.00                                    |      |             |            |      | 1.00       |      | 1.00  | 1.00     |      |
| Frt                               |      | 1.00 | 0.85                                    |      |             |            |      | 0.92       |      | 1.00  | 1.00     |      |
| Flt Protected                     |      | 0.95 | 1.00                                    |      |             |            |      | 1.00       |      | 0.95  | 1.00     |      |
| Satd. Flow (prot)                 |      | 1770 | 1615                                    |      |             |            |      | 3271       |      | 1787  | 1881     |      |
| Flt Permitted                     |      | 0.95 | 1.00                                    |      |             |            |      | 1.00       |      | 0.95  | 1.00     |      |
| Satd. Flow (perm)                 |      | 1770 | 1615                                    |      |             |            |      | 3271       |      | 1787  | 1881     |      |
| Peak-hour factor, PHF             | 0.96 | 0.96 | 0.96                                    | 0.96 | 0.96        | 0.96       | 0.96 | 0.96       | 0.96 | 0.96  | 0.96     | 0.96 |
| Adj. Flow (vph)                   | 188  | 0    | 109                                     | 0    | 0           | 0          | 0    | 401        | 465  | 312   | 560      | 0    |
| RTOR Reduction (vph)              | 0    | 0    | 90                                      | 0    | 0           | 0          | 0    | 219        | 0    | 0     | 0        | 0    |
| Lane Group Flow (vph)             | 0    | 188  | 19                                      | 0    | 0           | 0          | 0    | 647        | 0    | 312   | 560      | 0    |
| Confl. Bikes (#/hr)               |      |      |                                         |      |             |            |      |            |      |       |          | 1    |
| Heavy Vehicles (%)                | 2%   | 0%   | 0%                                      | 0%   | 0%          | 0%         | 0%   | 2%         | 1%   | 1%    | 1%       | 0%   |
| Turn Type                         | Perm |      | Perm                                    |      |             |            |      |            |      | Prot  |          |      |
| Protected Phases                  |      | 8    |                                         |      |             |            |      | 6          |      | 5     | 2        |      |
| Permitted Phases                  | 8    |      | 8                                       |      |             |            |      |            |      |       |          |      |
| Actuated Green, G (s)             |      | 12.5 | 12.5                                    |      |             |            |      | 26.4       |      | 17.0  | 48.4     |      |
| Effective Green, g (s)            |      | 12.5 | 12.5                                    |      |             |            |      | 26.4       |      | 17.0  | 48.4     |      |
| Actuated g/C Ratio                |      | 0.18 | 0.18                                    |      |             |            |      | 0.37       |      | 0.24  | 0.68     |      |
| Clearance Time (s)                |      | 5.0  | 5.0                                     |      |             |            |      | 5.0        |      | 5.0   | 5.0      |      |
| Vehicle Extension (s)             |      | 2.3  | 2.3                                     |      |             |            |      | 6.9        |      | 2.3   | 6.9      |      |
| Lane Grp Cap (vph)                |      | 312  | 285                                     |      |             |            |      | 1218       |      | 428   | 1284     |      |
| v/s Ratio Prot                    |      |      |                                         |      |             |            |      | c0.20      |      | c0.17 | 0.30     |      |
| v/s Ratio Perm                    |      | 0.11 | 0.01                                    |      |             |            |      |            |      | ••••  | 0.00     |      |
| v/c Ratio                         |      | 0.60 | 0.07                                    |      |             |            |      | 0.53       |      | 0.73  | 0.44     |      |
| Uniform Delay, d1                 |      | 26.9 | 24.3                                    |      |             |            |      | 17.4       |      | 24.8  | 5.1      |      |
| Progression Factor                |      | 1.00 | 1.00                                    |      |             |            |      | 1.00       |      | 1.00  | 1.00     |      |
| Incremental Delay, d2             |      | 2.6  | 0.1                                     |      |             |            |      | 1.3        |      | 5.5   | 0.8      |      |
| Delay (s)                         |      | 29.5 | 24.4                                    |      |             |            |      | 18.7       |      | 30.4  | 5.9      |      |
| Level of Service                  |      | C    | C                                       |      |             |            |      | В          |      | C     | A        |      |
| Approach Delay (s)                |      | 27.6 | , i i i i i i i i i i i i i i i i i i i |      | 0.0         |            |      | 18.7       |      | Ū     | 14.7     |      |
| Approach LOS                      |      | C    |                                         |      | A           |            |      | В          |      |       | В        |      |
| Intersection Summary              |      |      |                                         |      |             |            |      |            |      |       |          |      |
| HCM Average Control Delay         |      |      | 18.3                                    | Н    | CM Level    | of Service |      |            | В    |       |          |      |
| HCM Volume to Capacity ratio      |      |      | 0.61                                    |      |             |            |      |            |      |       |          |      |
| Actuated Cycle Length (s)         |      |      | 70.9                                    |      | um of lost  |            |      |            | 15.0 |       |          |      |
| Intersection Capacity Utilization | า    |      | 64.1%                                   | IC   | CU Level of | of Service |      |            | С    |       |          |      |
| Analysis Period (min)             |      |      | 15                                      |      |             |            |      |            |      |       |          |      |
| c Critical Lane Group             |      |      |                                         |      |             |            |      |            |      |       |          |      |

## Year 2040 Traffic Conditions - Alternative 1 4: 8th Avenue & 10th Street

|                                 | ۶    | -    | $\mathbf{r}$ | 1    | +         | ×          | •    | Ť           | 1    | 1    | ŧ           | ~    |
|---------------------------------|------|------|--------------|------|-----------|------------|------|-------------|------|------|-------------|------|
| Movement                        | EBL  | EBT  | EBR          | WBL  | WBT       | WBR        | NBL  | NBT         | NBR  | SBL  | SBT         | SBR  |
| Lane Configurations             |      | 4    |              |      | - ↔       |            |      | <b>≜1</b> ≱ |      |      | <b>∱1</b> ≱ |      |
| Volume (veh/h)                  | 0    | 0    | 40           | 0    | 0         | 159        | 0    | 672         | 60   | 0    | 553         | 90   |
| Sign Control                    |      | Stop |              |      | Stop      |            |      | Free        |      |      | Free        |      |
| Grade                           |      | 0%   |              |      | 0%        |            |      | 0%          |      |      | 0%          |      |
| Peak Hour Factor                | 0.96 | 0.96 | 0.96         | 0.96 | 0.96      | 0.96       | 0.96 | 0.96        | 0.96 | 0.96 | 0.96        | 0.96 |
| Hourly flow rate (vph)          | 0    | 0    | 42           | 0    | 0         | 166        | 0    | 700         | 62   | 0    | 576         | 94   |
| Pedestrians                     |      |      |              |      |           |            |      |             |      |      |             |      |
| Lane Width (ft)                 |      |      |              |      |           |            |      |             |      |      |             |      |
| Walking Speed (ft/s)            |      |      |              |      |           |            |      |             |      |      |             |      |
| Percent Blockage                |      |      |              |      |           |            |      |             |      |      |             |      |
| Right turn flare (veh)          |      |      |              |      |           |            |      |             |      |      |             |      |
| Median type                     |      |      |              |      |           |            |      | None        |      |      | None        |      |
| Median storage veh)             |      |      |              |      |           |            |      |             |      |      |             |      |
| Upstream signal (ft)            |      |      |              |      |           |            |      | 275         |      |      | 296         |      |
| pX, platoon unblocked           |      |      |              |      |           |            |      |             |      |      |             |      |
| vC, conflicting volume          | 1139 | 1385 | 335          | 1061 | 1401      | 381        | 670  |             |      | 762  |             |      |
| vC1, stage 1 conf vol           |      |      |              |      |           |            |      |             |      |      |             |      |
| vC2, stage 2 conf vol           |      |      |              |      |           |            |      |             |      |      |             |      |
| vCu, unblocked vol              | 1139 | 1385 | 335          | 1061 | 1401      | 381        | 670  |             |      | 762  |             |      |
| tC, single (s)                  | 7.5  | 6.5  | 6.9          | 7.5  | 6.5       | 6.9        | 4.1  |             |      | 4.1  |             |      |
| tC, 2 stage (s)                 |      |      |              |      |           |            |      |             |      |      |             |      |
| tF (s)                          | 3.5  | 4.0  | 3.3          | 3.5  | 4.0       | 3.3        | 2.2  |             |      | 2.2  |             |      |
| p0 queue free %                 | 100  | 100  | 94           | 100  | 100       | 73         | 100  |             |      | 100  |             |      |
| cM capacity (veh/h)             | 116  | 145  | 667          | 170  | 141       | 617        | 930  |             |      | 846  |             |      |
| Direction, Lane #               | EB 1 | WB 1 | NB 1         | NB 2 | SB 1      | SB 2       |      |             |      |      |             |      |
| Volume Total                    | 42   | 166  | 467          | 296  | 384       | 286        |      |             |      |      |             |      |
| Volume Left                     | 0    | 0    | 0            | 0    | 0         | 0          |      |             |      |      |             |      |
| Volume Right                    | 42   | 166  | 0            | 62   | Ũ         | 94         |      |             |      |      |             |      |
| cSH                             | 667  | 617  | 1700         | 1700 | 1700      | 1700       |      |             |      |      |             |      |
| Volume to Capacity              | 0.06 | 0.27 | 0.27         | 0.17 | 0.23      | 0.17       |      |             |      |      |             |      |
| Queue Length 95th (ft)          | 5    | 27   | 0            | 0    | 0         | 0          |      |             |      |      |             |      |
| Control Delay (s)               | 10.8 | 13.0 | 0.0          | 0.0  | 0.0       | 0.0        |      |             |      |      |             |      |
| Lane LOS                        | В    | В    | 0.0          | 0.0  | 0.0       |            |      |             |      |      |             |      |
| Approach Delay (s)              | 10.8 | 13.0 | 0.0          |      | 0.0       |            |      |             |      |      |             |      |
| Approach LOS                    | B    | B    | 0.0          |      | 0.0       |            |      |             |      |      |             |      |
| Intersection Summary            |      |      |              |      |           |            |      |             |      |      |             |      |
| Average Delay                   |      |      | 1.6          |      |           |            |      |             |      |      |             |      |
| Intersection Capacity Utilizati | ion  |      | 37.0%        | IC   | U Level o | of Service |      |             | А    |      |             |      |
| Analysis Period (min)           |      |      | 15           |      | 5 20101   |            |      |             |      |      |             |      |
|                                 |      |      | 10           |      |           |            |      |             |      |      |             |      |

|                         | ٦    | -    | -    | 1    | -    |
|-------------------------|------|------|------|------|------|
| Lane Group              | EBL  | EBT  | WBT  | SBL  | SBR  |
| Lane Group Flow (vph)   | 603  | 759  | 470  | 341  | 289  |
| v/c Ratio               | 0.88 | 0.72 | 0.91 | 0.78 | 0.47 |
| Control Delay           | 40.5 | 15.0 | 44.8 | 34.5 | 5.6  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| Total Delay             | 40.5 | 15.0 | 44.8 | 34.5 | 5.6  |
| Queue Length 50th (ft)  | 110  | 187  | 148  | 111  | 0    |
| Queue Length 95th (ft)  | #197 | 315  | #313 | #220 | 49   |
| Internal Link Dist (ft) |      | 670  | 736  | 195  |      |
| Turn Bay Length (ft)    | 220  |      |      |      |      |
| Base Capacity (vph)     | 687  | 1059 | 526  | 488  | 650  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.88 | 0.72 | 0.89 | 0.70 | 0.44 |
| Intersection Summary    |      |      |      |      |      |

# 95th percentile volume exceeds capacity, queue may be longer.

|                                   | ≯    | +        | Ļ        | •    | 1          | 4          |  |
|-----------------------------------|------|----------|----------|------|------------|------------|--|
| Movement                          | EBL  | EBT      | WBT      | WBR  | SBL        | SBR        |  |
| Lane Configurations               | ሻሻ   | <b>↑</b> | <b>†</b> |      | 5          | 1          |  |
| Volume (vph)                      | 567  | 713      | 276      | 165  | 321        | 272        |  |
| Ideal Flow (vphpl)                | 1900 | 1900     | 1900     | 1900 | 1900       | 1900       |  |
| Total Lost time (s)               | 5.5  | 5.5      | 5.5      |      | 5.5        | 5.5        |  |
| Lane Util. Factor                 | 0.97 | 1.00     | 1.00     |      | 1.00       | 1.00       |  |
| Frt                               | 1.00 | 1.00     | 0.95     |      | 1.00       | 0.85       |  |
| Flt Protected                     | 0.95 | 1.00     | 1.00     |      | 0.95       | 1.00       |  |
| Satd. Flow (prot)                 | 3467 | 1863     | 1784     |      | 1770       | 1599       |  |
| Flt Permitted                     | 0.95 | 1.00     | 1.00     |      | 0.95       | 1.00       |  |
| Satd. Flow (perm)                 | 3467 | 1863     | 1784     |      | 1770       | 1599       |  |
| Peak-hour factor, PHF             | 0.94 | 0.94     | 0.94     | 0.94 | 0.94       | 0.94       |  |
| Adj. Flow (vph)                   | 603  | 759      | 294      | 176  | 341        | 289        |  |
| RTOR Reduction (vph)              | 0    | 0        | 36       | 0    | 0          | 217        |  |
| Lane Group Flow (vph)             | 603  | 759      | 434      | 0    | 341        | 72         |  |
| Heavy Vehicles (%)                | 1%   | 2%       | 0%       | 3%   | 2%         | 1%         |  |
| Turn Type                         | Prot |          |          |      |            | Perm       |  |
| Protected Phases                  | 7    | 4        | 8        |      | 6          |            |  |
| Permitted Phases                  |      |          |          |      |            | 6          |  |
| Actuated Green, G (s)             | 11.5 | 32.7     | 15.7     |      | 14.4       | 14.4       |  |
| Effective Green, g (s)            | 11.5 | 32.7     | 15.7     |      | 14.4       | 14.4       |  |
| Actuated g/C Ratio                | 0.20 | 0.56     | 0.27     |      | 0.25       | 0.25       |  |
| Clearance Time (s)                | 5.5  | 5.5      | 5.5      |      | 5.5        | 5.5        |  |
| Vehicle Extension (s)             | 3.0  | 3.0      | 3.0      |      | 3.0        | 3.0        |  |
| Lane Grp Cap (vph)                | 686  | 1049     | 482      |      | 439        | 396        |  |
| v/s Ratio Prot                    | 0.17 | c0.41    | c0.24    |      | c0.19      |            |  |
| v/s Ratio Perm                    |      |          |          |      |            | 0.04       |  |
| v/c Ratio                         | 0.88 | 0.72     | 0.90     |      | 0.78       | 0.18       |  |
| Uniform Delay, d1                 | 22.6 | 9.4      | 20.4     |      | 20.4       | 17.2       |  |
| Progression Factor                | 1.00 | 1.00     | 1.00     |      | 1.00       | 1.00       |  |
| Incremental Delay, d2             | 12.3 | 2.5      | 19.8     |      | 8.4        | 0.2        |  |
| Delay (s)                         | 34.9 | 11.9     | 40.2     |      | 28.8       | 17.4       |  |
| Level of Service                  | С    | В        | D        |      | С          | В          |  |
| Approach Delay (s)                |      | 22.1     | 40.2     |      | 23.6       |            |  |
| Approach LOS                      |      | С        | D        |      | С          |            |  |
| Intersection Summary              |      |          |          |      |            |            |  |
| HCM Average Control Delay         |      |          | 25.9     | H    | CM Level   | of Service |  |
| HCM Volume to Capacity ratio      |      |          | 0.86     |      |            |            |  |
| Actuated Cycle Length (s)         |      |          | 58.1     | Si   | um of lost | t time (s) |  |
| Intersection Capacity Utilization | ı    |          | 72.3%    |      |            | of Service |  |
| Analysis Period (min)             |      |          | 15       |      |            |            |  |
| a Oritical Lana Orayn             |      |          |          |      |            |            |  |

c Critical Lane Group

Appendix F Year 2040 Traffic Conditions and Queuing Worksheets with Corridor Improvements Alternative 2

|                         | -    | $\mathbf{r}$ | 1    | -    | 1    | 1    |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | WBL  | WBT  | NBL  | NBR  |
| Lane Group Flow (vph)   | 131  | 524          | 407  | 115  | 385  | 397  |
| v/c Ratio               | 0.57 | 0.28         | 0.69 | 0.17 | 0.21 | 0.31 |
| Control Delay           | 46.4 | 3.7          | 40.8 | 19.1 | 11.9 | 0.8  |
| Queue Delay             | 0.0  | 0.0          | 0.0  | 0.0  | 0.4  | 0.3  |
| Total Delay             | 46.4 | 3.7          | 40.8 | 19.1 | 12.3 | 1.0  |
| Queue Length 50th (ft)  | 71   | 28           | 113  | 45   | 50   | 0    |
| Queue Length 95th (ft)  | 122  | 58           | 151  | 69   | 84   | 10   |
| Internal Link Dist (ft) | 590  |              |      | 679  | 177  |      |
| Turn Bay Length (ft)    |      | 150          | 200  |      | 100  | 100  |
| Base Capacity (vph)     | 623  | 1859         | 820  | 1182 | 1812 | 1373 |
| Starvation Cap Reductn  | 0    | 0            | 0    | 0    | 900  | 446  |
| Spillback Cap Reductn   | 0    | 22           | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.21 | 0.29         | 0.50 | 0.10 | 0.42 | 0.43 |
| Intersection Summary    |      |              |      |      |      |      |

|                               | -     | $\mathbf{r}$ | ∢     | ←    | 1       | 1            |  |
|-------------------------------|-------|--------------|-------|------|---------|--------------|--|
| Movement                      | EBT   | EBR          | WBL   | WBT  | NBL     | NBR          |  |
| Lane Configurations           | 1     | 11           | ኘካ    | 1    | ኘካ      | 1            |  |
| Volume (vph)                  | 126   | 503          | 391   | 110  | 370     | 381          |  |
| Ideal Flow (vphpl)            | 1900  | 1900         | 1900  | 1900 | 1900    | 1900         |  |
| Total Lost time (s)           | 5.5   | 5.5          | 5.5   | 6.0  | 5.5     | 5.5          |  |
| Lane Util. Factor             | 1.00  | 0.88         | 0.97  | 1.00 | 0.97    | 1.00         |  |
| Frpb, ped/bikes               | 1.00  | 1.00         | 1.00  | 1.00 | 1.00    | 1.00         |  |
| Flpb, ped/bikes               | 1.00  | 1.00         | 1.00  | 1.00 | 1.00    | 1.00         |  |
| Frt                           | 1.00  | 0.85         | 1.00  | 1.00 | 1.00    | 0.85         |  |
| Flt Protected                 | 1.00  | 1.00         | 0.95  | 1.00 | 0.95    | 1.00         |  |
| Satd. Flow (prot)             | 1900  | 2776         | 3433  | 1900 | 3467    | 1583         |  |
| Flt Permitted                 | 1.00  | 1.00         | 0.95  | 1.00 | 0.95    | 1.00         |  |
| Satd. Flow (perm)             | 1900  | 2776         | 3433  | 1900 | 3467    | 1583         |  |
| Peak-hour factor, PHF         | 0.96  | 0.96         | 0.96  | 0.96 | 0.96    | 0.96         |  |
| Adj. Flow (vph)               | 131   | 524          | 407   | 115  | 385     | 397          |  |
| RTOR Reduction (vph)          | 0     | 72           | 0     | 0    | 0       | 121          |  |
| Lane Group Flow (vph)         | 131   | 452          | 407   | 115  | 385     | 276          |  |
| Confl. Bikes (#/hr)           |       | 1            |       |      |         |              |  |
| Heavy Vehicles (%)            | 0%    | 2%           | 2%    | 0%   | 1%      | 2%           |  |
| Turn Type                     |       | pm+ov        | Prot  |      |         | pm+ov        |  |
| Protected Phases              | 4     | . 5          | 3     | 8    | 5       | 3            |  |
| Permitted Phases              |       | 4            |       |      |         | 5            |  |
| Actuated Green, G (s)         | 10.9  | 57.9         | 15.6  | 31.5 | 47.0    | 62.6         |  |
| Effective Green, g (s)        | 10.9  | 57.9         | 15.6  | 31.5 | 47.0    | 62.6         |  |
| Actuated g/C Ratio            | 0.12  | 0.64         | 0.17  | 0.35 | 0.52    | 0.70         |  |
| Clearance Time (s)            | 5.5   | 5.5          | 5.5   | 6.0  | 5.5     | 5.5          |  |
| Vehicle Extension (s)         | 2.3   | 5.2          | 2.3   | 2.3  | 5.2     | 2.3          |  |
| Lane Grp Cap (vph)            | 230   | 1956         | 595   | 665  | 1811    | 1198         |  |
| v/s Ratio Prot                | c0.07 | 0.12         | c0.12 | 0.06 | 0.11    | c0.04        |  |
| v/s Ratio Perm                |       | 0.04         |       |      |         | 0.13         |  |
| v/c Ratio                     | 0.57  | 0.23         | 0.68  | 0.17 | 0.21    | 0.23         |  |
| Uniform Delay, d1             | 37.3  | 6.7          | 34.9  | 20.2 | 11.6    | 5.0          |  |
| Progression Factor            | 1.00  | 1.00         | 1.00  | 1.00 | 0.90    | 0.41         |  |
| Incremental Delay, d2         | 2.3   | 0.0          | 2.8   | 0.1  | 0.2     | 0.1          |  |
| Delay (s)                     | 39.7  | 6.8          | 37.7  | 20.3 | 10.7    | 2.1          |  |
| Level of Service              | D     | А            | D     | С    | В       | А            |  |
| Approach Delay (s)            | 13.3  |              |       | 33.9 | 6.3     |              |  |
| Approach LOS                  | В     |              |       | С    | А       |              |  |
| Intersection Summary          |       |              |       |      |         |              |  |
| HCM Average Control Delay     |       |              | 16.0  | H    | CM Leve | l of Service |  |
| HCM Volume to Capacity ra     | tio   |              | 0.39  | -    |         |              |  |
| Actuated Cycle Length (s)     |       |              | 90.0  |      |         | t time (s)   |  |
| Intersection Capacity Utiliza | tion  |              | 42.1% | IC   | U Level | of Service   |  |
| Analysis Period (min)         |       |              | 15    |      |         |              |  |
| c Critical Lane Group         |       |              |       |      |         |              |  |

|                         | ←    | *    | 1    | 1    | Ŧ    |
|-------------------------|------|------|------|------|------|
| Lane Group              | WBT  | WBR  | NBL  | NBT  | SBT  |
| Lane Group Flow (vph)   | 267  | 343  | 145  | 456  | 951  |
| v/c Ratio               | 0.74 | 0.58 | 0.53 | 0.36 | 0.60 |
| Control Delay           | 46.3 | 7.6  | 33.9 | 1.6  | 13.7 |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.4  |
| Total Delay             | 46.3 | 7.6  | 33.9 | 1.6  | 14.1 |
| Queue Length 50th (ft)  | 142  | 0    | 43   | 2    | 110  |
| Queue Length 95th (ft)  | 213  | 64   | 93   | 8    | 174  |
| Internal Link Dist (ft) | 651  |      |      | 504  | 177  |
| Turn Bay Length (ft)    |      |      |      |      |      |
| Base Capacity (vph)     | 459  | 661  | 334  | 1274 | 1591 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 218  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.58 | 0.52 | 0.43 | 0.36 | 0.69 |
| Intersection Summary    |      |      |      |      |      |

## Year 2040 Traffic Conditions - Alternative 2 2: I-205 SB Ramps & 10th Street

|                                             | ۶    | -    | *     | ∢     | ł            | *            | •            | 1           | 1    | *    | ţ            | ~    |
|---------------------------------------------|------|------|-------|-------|--------------|--------------|--------------|-------------|------|------|--------------|------|
| Movement                                    | EBL  | EBT  | EBR   | WBL   | WBT          | WBR          | NBL          | NBT         | NBR  | SBL  | SBT          | SBR  |
| Lane Configurations                         |      |      |       |       | र्भ          | 1            | ٦            | <b>↑</b>    |      |      | <b>∱</b> }   |      |
| Volume (vph)                                | 0    | 0    | 0     | 251   | 0            | 322          | 136          | 429         | 0    | 0    | 587          | 307  |
| Ideal Flow (vphpl)                          | 1900 | 1900 | 1900  | 1900  | 1900         | 1900         | 1900         | 1900        | 1900 | 1900 | 1900         | 1900 |
| Total Lost time (s)                         |      |      |       |       | 5.5          | 5.5          | 5.5          | 5.5         |      |      | 5.5          |      |
| Lane Util. Factor                           |      |      |       |       | 1.00         | 1.00         | 1.00         | 1.00        |      |      | 0.95         |      |
| Frpb, ped/bikes                             |      |      |       |       | 1.00         | 1.00         | 1.00         | 1.00        |      |      | 0.99         |      |
| Flpb, ped/bikes                             |      |      |       |       | 1.00         | 1.00         | 1.00         | 1.00        |      |      | 1.00         |      |
| Frt                                         |      |      |       |       | 1.00         | 0.85         | 1.00         | 1.00        |      |      | 0.95         |      |
| Flt Protected                               |      |      |       |       | 0.95         | 1.00         | 0.95         | 1.00        |      |      | 1.00         | _    |
| Satd. Flow (prot)                           |      |      |       |       | 1787         | 1583         | 1736         | 1881        |      |      | 3343         |      |
| Flt Permitted                               |      |      |       |       | 0.95         | 1.00         | 0.95         | 1.00        |      |      | 1.00         | _    |
| Satd. Flow (perm)                           |      |      |       |       | 1787         | 1583         | 1736         | 1881        |      |      | 3343         |      |
| Peak-hour factor, PHF                       | 0.94 | 0.94 | 0.94  | 0.94  | 0.94         | 0.94         | 0.94         | 0.94        | 0.94 | 0.94 | 0.94         | 0.94 |
| Adj. Flow (vph)                             | 0    | 0    | 0     | 267   | 0            | 343          | 145          | 456         | 0    | 0    | 624          | 327  |
| RTOR Reduction (vph)                        | 0    | 0    | 0     | 0     | 0            | 274          | 0            | 0           | 0    | 0    | 65           | 0    |
| Lane Group Flow (vph)                       | 0    | 0    | 0     | 0     | 267          | 69           | 145          | 456         | 0    | 0    | 886          | 0    |
| Confl. Bikes (#/hr)                         | 00/  | 00/  | 00/   | 40/   | 00/          | 00/          | 40/          | 40/         | 00/  | 00/  | 4.07         | 1    |
| Heavy Vehicles (%)                          | 0%   | 0%   | 0%    | 1%    | 0%           | 2%           | 4%           | 1%          | 0%   | 0%   | 1%           | 3%   |
| Turn Type                                   |      |      |       | Split |              | Perm         | Prot         | •           |      |      |              |      |
| Protected Phases                            |      |      |       | 8     | 8            | _            | 5            | 2           |      |      | 6            |      |
| Permitted Phases                            |      |      |       |       | 40.4         | 8            | 44.0         | <u> </u>    |      |      | 44.4         |      |
| Actuated Green, G (s)                       |      |      |       |       | 18.1         | 18.1         | 14.3         | 60.9        |      |      | 41.1         |      |
| Effective Green, g (s)                      |      |      |       |       | 18.1         | 18.1         | 14.3         | 60.9        |      |      | 41.1         |      |
| Actuated g/C Ratio                          |      |      |       |       | 0.20         | 0.20         | 0.16         | 0.68        |      |      | 0.46         |      |
| Clearance Time (s)                          |      |      |       |       | 5.5          | 5.5          | 5.5          | 5.5         |      |      | 5.5          |      |
| Vehicle Extension (s)                       |      |      |       |       | 2.3          | 2.3          | 5.2          | 2.3         |      |      | 2.3          |      |
| Lane Grp Cap (vph)                          |      |      |       |       | 359          | 318          | 276          | 1273        |      |      | 1527         |      |
| v/s Ratio Prot                              |      |      |       |       | c0.15        | 0.04         | c0.08        | 0.24        |      |      | c0.27        |      |
| v/s Ratio Perm<br>v/c Ratio                 |      |      |       |       | 0.74         | 0.04         | 0.50         | 0.36        |      |      | 0.50         |      |
|                                             |      |      |       |       | 0.74<br>33.8 | 0.22<br>30.0 | 0.53<br>34.7 | 0.36<br>6.2 |      |      | 0.58<br>18.1 |      |
| Uniform Delay, d1<br>Prograssian Easter     |      |      |       |       | 33.0<br>1.00 | 1.00         | 0.82         | 0.2         |      |      | 0.69         |      |
| Progression Factor<br>Incremental Delay, d2 |      |      |       |       | 7.5          | 0.2          | 0.62<br>3.0  | 0.13        |      |      | 1.5          |      |
|                                             |      |      |       |       |              |              |              |             |      |      |              |      |
| Delay (s)<br>Level of Service               |      |      |       |       | 41.2<br>D    | 30.2<br>C    | 31.4<br>C    | 1.5<br>A    |      |      | 14.1<br>B    |      |
| Approach Delay (s)                          |      | 0.0  |       |       | 35.0         | U            | U            | 8.7         |      |      | 14.1         |      |
| Approach LOS                                |      | A    |       |       | 00.0<br>D    |              |              | 0.7<br>A    |      |      | В            |      |
| Intersection Summary                        |      |      |       |       |              |              |              |             |      |      |              |      |
| HCM Average Control Delay                   |      |      | 18.5  | Н     | CM Level     | of Servic    | e            |             | В    |      |              |      |
| HCM Volume to Capacity ratio                |      |      | 0.61  |       |              |              |              |             |      |      |              |      |
| Actuated Cycle Length (s)                   |      |      | 90.0  |       | um of lost   |              |              |             | 16.5 |      |              |      |
| Intersection Capacity Utilization           | I    |      | 66.7% | IC    | CU Level of  | of Service   |              |             | С    |      |              |      |
| Analysis Period (min)                       |      |      | 15    |       |              |              |              |             |      |      |              |      |
| c Critical Lane Group                       |      |      |       |       |              |              |              |             |      |      |              |      |

|                         | -    | $\mathbf{r}$ | 1    | 1    | 1    | ↓ I  |
|-------------------------|------|--------------|------|------|------|------|
| Lane Group              | EBT  | EBR          | NBT  | NBR  | SBL  | SBT  |
| Lane Group Flow (vph)   | 188  | 109          | 401  | 465  | 312  | 560  |
| v/c Ratio               | 0.70 | 0.32         | 0.59 | 0.57 | 0.55 | 0.40 |
| Control Delay           | 50.3 | 9.4          | 23.9 | 8.1  | 24.0 | 3.0  |
| Queue Delay             | 0.0  | 0.0          | 4.1  | 0.9  | 0.0  | 0.0  |
| Total Delay             | 50.3 | 9.4          | 28.1 | 9.0  | 24.0 | 3.0  |
| Queue Length 50th (ft)  | 102  | 0            | 177  | 65   | 127  | 104  |
| Queue Length 95th (ft)  | 167  | 43           | 283  | 157  | 181  | 8    |
| Internal Link Dist (ft) | 628  |              | 216  |      |      | 504  |
| Turn Bay Length (ft)    |      |              |      | 100  |      |      |
| Base Capacity (vph)     | 334  | 393          | 683  | 818  | 564  | 1388 |
| Starvation Cap Reductn  | 0    | 0            | 202  | 144  | 0    | 0    |
| Spillback Cap Reductn   | 0    | 0            | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0            | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.56 | 0.28         | 0.83 | 0.69 | 0.55 | 0.40 |
| Intersection Summary    |      |              |      |      |      |      |

|                                   | ۶    | -         | $\mathbf{F}$ | ∢    | -          | *          | ٩.   | Ť         | *         | 1         | Ļ        | ~    |
|-----------------------------------|------|-----------|--------------|------|------------|------------|------|-----------|-----------|-----------|----------|------|
| Movement                          | EBL  | EBT       | EBR          | WBL  | WBT        | WBR        | NBL  | NBT       | NBR       | SBL       | SBT      | SBR  |
| Lane Configurations               |      | - सी      | 1            |      |            |            |      | <b>↑</b>  | 1         | ٦         | <b>↑</b> |      |
| Volume (vph)                      | 180  | 0         | 105          | 0    | 0          | 0          | 0    | 385       | 446       | 300       | 538      | 0    |
| Ideal Flow (vphpl)                | 1900 | 1900      | 1900         | 1900 | 1900       | 1900       | 1900 | 1900      | 1900      | 1900      | 1900     | 1900 |
| Total Lost time (s)               |      | 5.0       | 5.0          |      |            |            |      | 5.0       | 5.0       | 5.0       | 5.0      |      |
| Lane Util. Factor                 |      | 1.00      | 1.00         |      |            |            |      | 1.00      | 1.00      | 1.00      | 1.00     |      |
| Frpb, ped/bikes                   |      | 1.00      | 1.00         |      |            |            |      | 1.00      | 1.00      | 1.00      | 1.00     |      |
| Flpb, ped/bikes                   |      | 1.00      | 1.00         |      |            |            |      | 1.00      | 1.00      | 1.00      | 1.00     |      |
| Frt                               |      | 1.00      | 0.85         |      |            |            |      | 1.00      | 0.85      | 1.00      | 1.00     |      |
| Flt Protected                     |      | 0.95      | 1.00         |      |            |            |      | 1.00      | 1.00      | 0.95      | 1.00     |      |
| Satd. Flow (prot)                 |      | 1770      | 1615         |      |            |            |      | 1863      | 1599      | 1787      | 1881     |      |
| Flt Permitted                     |      | 0.95      | 1.00         |      |            |            |      | 1.00      | 1.00      | 0.95      | 1.00     |      |
| Satd. Flow (perm)                 |      | 1770      | 1615         |      |            |            |      | 1863      | 1599      | 1787      | 1881     |      |
| Peak-hour factor, PHF             | 0.96 | 0.96      | 0.96         | 0.96 | 0.96       | 0.96       | 0.96 | 0.96      | 0.96      | 0.96      | 0.96     | 0.96 |
| Adj. Flow (vph)                   | 188  | 0         | 109          | 0    | 0          | 0          | 0    | 401       | 465       | 312       | 560      | 0    |
| RTOR Reduction (vph)              | 0    | 0         | 93           | 0    | 0          | 0          | 0    | 0         | 232       | 0         | 0        | 0    |
| Lane Group Flow (vph)             | 0    | 188       | 16           | 0    | 0          | 0          | 0    | 401       | 233       | 312       | 560      | 0    |
| Confl. Bikes (#/hr)               |      |           |              |      |            |            |      |           |           |           |          | 1    |
| Heavy Vehicles (%)                | 2%   | 0%        | 0%           | 0%   | 0%         | 0%         | 0%   | 2%        | 1%        | 1%        | 1%       | 0%   |
| Turn Type                         | Perm |           | Perm         |      |            |            |      |           | Perm      | Prot      |          |      |
| Protected Phases                  |      | 8         |              |      |            |            |      | 6         |           | 5         | 2        |      |
| Permitted Phases                  | 8    | -         | 8            |      |            |            |      | -         | 6         |           | _        |      |
| Actuated Green, G (s)             | -    | 13.6      | 13.6         |      |            |            |      | 33.0      | 33.0      | 28.4      | 66.4     |      |
| Effective Green, g (s)            |      | 13.6      | 13.6         |      |            |            |      | 33.0      | 33.0      | 28.4      | 66.4     |      |
| Actuated g/C Ratio                |      | 0.15      | 0.15         |      |            |            |      | 0.37      | 0.37      | 0.32      | 0.74     |      |
| Clearance Time (s)                |      | 5.0       | 5.0          |      |            |            |      | 5.0       | 5.0       | 5.0       | 5.0      |      |
| Vehicle Extension (s)             |      | 2.3       | 2.3          |      |            |            |      | 6.9       | 6.9       | 2.3       | 6.9      |      |
| Lane Grp Cap (vph)                |      | 267       | 244          |      |            |            |      | 683       | 586       | 564       | 1388     |      |
| v/s Ratio Prot                    |      | 201       | 277          |      |            |            |      | c0.22     | 500       | c0.17     | 0.30     |      |
| v/s Ratio Perm                    |      | 0.11      | 0.01         |      |            |            |      | 00.22     | 0.15      | 00.17     | 0.00     |      |
| v/c Ratio                         |      | 0.70      | 0.07         |      |            |            |      | 0.59      | 0.40      | 0.55      | 0.40     |      |
| Uniform Delay, d1                 |      | 36.3      | 32.8         |      |            |            |      | 23.0      | 21.1      | 25.5      | 4.4      |      |
| Progression Factor                |      | 1.00      | 1.00         |      |            |            |      | 0.87      | 1.04      | 0.77      | 0.45     |      |
| Incremental Delay, d2             |      | 7.2       | 0.1          |      |            |            |      | 3.4       | 1.9       | 3.1       | 0.45     |      |
| Delay (s)                         |      | 43.5      | 32.8         |      |            |            |      | 23.4      | 23.8      | 22.8      | 2.7      |      |
| Level of Service                  |      | 40.0<br>D | 52.0<br>C    |      |            |            |      | 23.4<br>C | 20.0<br>C | 22.0<br>C | Δ.7      |      |
| Approach Delay (s)                |      | 39.6      | U            |      | 0.0        |            |      | 23.6      | U         | U         | 9.9      |      |
| Approach LOS                      |      | 00.0<br>D |              |      | A          |            |      | 23.0<br>C |           |           | 9.9<br>A |      |
| Intersection Summary              |      |           |              |      |            |            |      |           |           |           |          |      |
| HCM Average Control Delay         |      |           | 20.1         | Н    | CM Level   | of Service |      |           | С         |           |          |      |
| HCM Volume to Capacity ratio      |      |           | 0.60         |      |            |            |      |           |           |           |          |      |
| Actuated Cycle Length (s)         |      |           | 90.0         | S    | um of lost | t time (s) |      |           | 15.0      |           |          |      |
| Intersection Capacity Utilization | ۱    |           | 66.7%        |      |            | of Service |      |           | С         |           |          |      |
| Analysis Period (min)             |      |           | 15           |      |            |            |      |           |           |           |          |      |
| c Critical Lane Group             |      |           |              |      |            |            |      |           |           |           |          |      |

## Year 2040 Traffic Conditions - Alternative 2 4: 8th Avenue & 10th Street

|                         | ≯    | -    | -    | •    | •    | Ť    | 1    | Ļ    |  |
|-------------------------|------|------|------|------|------|------|------|------|--|
| Lane Group              | EBL  | EBT  | WBT  | WBR  | NBL  | NBT  | SBL  | SBT  |  |
| Lane Group Flow (vph)   | 128  | 52   | 60   | 166  | 23   | 634  | 130  | 540  |  |
| v/c Ratio               | 0.62 | 0.18 | 0.29 | 0.43 | 0.04 | 0.47 | 0.26 | 0.41 |  |
| Control Delay           | 47.6 | 13.9 | 35.6 | 8.9  | 0.2  | 0.7  | 2.4  | 1.9  |  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.8  | 0.0  | 0.3  |  |
| Total Delay             | 47.6 | 13.9 | 35.6 | 8.9  | 0.2  | 1.6  | 2.4  | 2.1  |  |
| Queue Length 50th (ft)  | 69   | 5    | 31   | 0    | 0    | 1    | 3    | 11   |  |
| Queue Length 95th (ft)  | 118  | 34   | 63   | 50   | m0   | m2   | 14   | 41   |  |
| Internal Link Dist (ft) |      | 412  | 312  |      |      | 195  |      | 216  |  |
| Turn Bay Length (ft)    |      |      |      | 100  | 50   |      | 125  |      |  |
| Base Capacity (vph)     | 341  | 449  | 341  | 520  | 588  | 1337 | 504  | 1322 |  |
| Starvation Cap Reductn  | 0    | 0    | 0    | 0    | 0    | 395  | 0    | 269  |  |
| Spillback Cap Reductn   | 0    | 14   | 9    | 12   | 0    | 133  | 0    | 57   |  |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Reduced v/c Ratio       | 0.38 | 0.12 | 0.18 | 0.33 | 0.04 | 0.67 | 0.26 | 0.51 |  |
| Intersection Summary    |      |      |      |      |      |      |      |      |  |

m Volume for 95th percentile queue is metered by upstream signal.

## Year 2040 Traffic Conditions - Alternative 2 4: 8th Avenue & 10th Street

|                               | ٦     | -       | $\mathbf{F}$              | ∢     | -               | •          | •       | Ť     | 1    | 1    | ţ       | ~    |
|-------------------------------|-------|---------|---------------------------|-------|-----------------|------------|---------|-------|------|------|---------|------|
| Movement                      | EBL   | EBT     | EBR                       | WBL   | WBT             | WBR        | NBL     | NBT   | NBR  | SBL  | SBT     | SBR  |
| Lane Configurations           | - ከ   | ef 👘    |                           |       | <del>र्</del> ग | 1          | ٦.      | 4Î    |      | ሻ    | eî 👘    |      |
| Volume (vph)                  | 123   | 10      | 40                        | 50    | 8               | 159        | 22      | 549   | 60   | 125  | 428     | 90   |
| Ideal Flow (vphpl)            | 1900  | 1900    | 1900                      | 1900  | 1900            | 1900       | 1900    | 1900  | 1900 | 1900 | 1900    | 1900 |
| Total Lost time (s)           | 5.5   | 5.5     |                           |       | 5.5             | 5.5        | 5.5     | 5.5   |      | 5.5  | 5.5     |      |
| Lane Util. Factor             | 1.00  | 1.00    |                           |       | 1.00            | 1.00       | 1.00    | 1.00  |      | 1.00 | 1.00    |      |
| Frpb, ped/bikes               | 1.00  | 1.00    |                           |       | 1.00            | 1.00       | 1.00    | 1.00  |      | 1.00 | 1.00    |      |
| Flpb, ped/bikes               | 1.00  | 1.00    |                           |       | 1.00            | 1.00       | 1.00    | 1.00  |      | 1.00 | 1.00    |      |
| Frt                           | 1.00  | 0.88    |                           |       | 1.00            | 0.85       | 1.00    | 0.99  |      | 1.00 | 0.97    |      |
| Flt Protected                 | 0.95  | 1.00    |                           |       | 0.96            | 1.00       | 0.95    | 1.00  |      | 0.95 | 1.00    |      |
| Satd. Flow (prot)             | 1805  | 1670    |                           |       | 1821            | 1583       | 1805    | 1839  |      | 1770 | 1814    |      |
| Flt Permitted                 | 0.72  | 1.00    |                           |       | 0.72            | 1.00       | 0.43    | 1.00  |      | 0.37 | 1.00    | _    |
| Satd. Flow (perm)             | 1364  | 1670    |                           |       | 1364            | 1583       | 811     | 1839  |      | 694  | 1814    |      |
| Peak-hour factor, PHF         | 0.96  | 0.96    | 0.96                      | 0.96  | 0.96            | 0.96       | 0.96    | 0.96  | 0.96 | 0.96 | 0.96    | 0.96 |
| Adj. Flow (vph)               | 128   | 10      | 42                        | 52    | 8               | 166        | 23      | 572   | 62   | 130  | 446     | 94   |
| RTOR Reduction (vph)          | 0     | 36      | 0                         | 0     | 0               | 141        | 0       | 3     | 0    | 0    | 6       | 0    |
| Lane Group Flow (vph)         | 128   | 16      | 0                         | 0     | 60              | 25         | 23      | 631   | 0    | 130  | 534     | 0    |
| Confl. Bikes (#/hr)           |       | • • • • | •••                       | • • • | • • •           |            | • • • • | •••   | •••  |      | • • • • | 1    |
| Heavy Vehicles (%)            | 0%    | 0%      | 0%                        | 0%    | 0%              | 2%         | 0%      | 2%    | 0%   | 2%   | 2%      | 0%   |
| Turn Type                     | Perm  |         |                           | Perm  |                 | Perm       | Perm    |       |      | Perm |         |      |
| Protected Phases              |       | 4       |                           |       | 8               |            |         | 2     |      |      | 6       |      |
| Permitted Phases              | 4     |         |                           | 8     |                 | 8          | 2       |       |      | 6    |         |      |
| Actuated Green, G (s)         | 13.7  | 13.7    |                           |       | 13.7            | 13.7       | 65.3    | 65.3  |      | 65.3 | 65.3    |      |
| Effective Green, g (s)        | 13.7  | 13.7    |                           |       | 13.7            | 13.7       | 65.3    | 65.3  |      | 65.3 | 65.3    |      |
| Actuated g/C Ratio            | 0.15  | 0.15    |                           |       | 0.15            | 0.15       | 0.73    | 0.73  |      | 0.73 | 0.73    |      |
| Clearance Time (s)            | 5.5   | 5.5     |                           |       | 5.5             | 5.5        | 5.5     | 5.5   |      | 5.5  | 5.5     | _    |
| Vehicle Extension (s)         | 3.0   | 3.0     |                           |       | 3.0             | 3.0        | 3.0     | 3.0   |      | 3.0  | 3.0     |      |
| Lane Grp Cap (vph)            | 208   | 254     |                           |       | 208             | 241        | 588     | 1334  |      | 504  | 1316    |      |
| v/s Ratio Prot                |       | 0.01    |                           |       |                 |            |         | c0.34 |      |      | 0.29    |      |
| v/s Ratio Perm                | c0.09 |         |                           |       | 0.04            | 0.02       | 0.03    |       |      | 0.19 |         |      |
| v/c Ratio                     | 0.62  | 0.06    |                           |       | 0.29            | 0.10       | 0.04    | 0.47  |      | 0.26 | 0.41    |      |
| Uniform Delay, d1             | 35.7  | 32.7    |                           |       | 33.8            | 32.9       | 3.5     | 5.2   |      | 4.2  | 4.8     |      |
| Progression Factor            | 1.00  | 1.00    |                           |       | 1.00            | 1.00       | 0.03    | 0.01  |      | 0.22 | 0.18    |      |
| Incremental Delay, d2         | 5.3   | 0.1     |                           |       | 0.8             | 0.2        | 0.1     | 0.7   |      | 1.2  | 0.9     | _    |
| Delay (s)                     | 41.0  | 32.8    |                           |       | 34.6            | 33.1       | 0.2     | 0.7   |      | 2.1  | 1.7     |      |
| Level of Service              | D     | С       |                           |       | С               | С          | Α       | A     |      | А    | A       |      |
| Approach Delay (s)            |       | 38.6    |                           |       | 33.5            |            |         | 0.7   |      |      | 1.8     |      |
| Approach LOS                  |       | D       |                           |       | С               |            |         | A     |      |      | A       |      |
| Intersection Summary          |       |         |                           |       |                 |            |         |       |      |      |         |      |
| HCM Average Control Dela      |       |         | 9.3                       | Н     | CM Level        | of Servic  | е       |       | А    |      |         | _    |
| HCM Volume to Capacity ratio  |       | 0.50    |                           |       |                 |            |         |       |      |      |         |      |
| Actuated Cycle Length (s)     |       | 90.0    | Sum of lost time (s) 11.0 |       |                 |            |         |       |      |      |         |      |
| Intersection Capacity Utiliza | ation |         | 68.1%                     | IC    | CU Level of     | of Service |         |       | С    |      |         |      |
| Analysis Period (min)         |       |         | 15                        |       |                 |            |         |       |      |      |         |      |
| c Critical Lane Group         |       |         |                           |       |                 |            |         |       |      |      |         |      |

|                         | ٦    | -    | -    | 1    | -    |
|-------------------------|------|------|------|------|------|
| Lane Group              | EBL  | EBT  | WBT  | SBL  | SBR  |
| Lane Group Flow (vph)   | 485  | 748  | 431  | 232  | 319  |
| v/c Ratio               | 0.88 | 0.69 | 0.86 | 0.44 | 0.29 |
| Control Delay           | 39.2 | 16.3 | 45.1 | 32.4 | 3.6  |
| Queue Delay             | 0.0  | 0.0  | 0.0  | 1.1  | 0.4  |
| Total Delay             | 39.2 | 16.3 | 45.1 | 33.5 | 4.1  |
| Queue Length 50th (ft)  | 191  | 248  | 206  | 126  | 14   |
| Queue Length 95th (ft)  | #352 | 342  | #323 | 190  | 40   |
| Internal Link Dist (ft) |      | 670  | 736  | 195  |      |
| Turn Bay Length (ft)    | 225  |      |      | 125  |      |
| Base Capacity (vph)     | 575  | 1190 | 570  | 523  | 1124 |
| Starvation Cap Reductn  | 0    | 0    | 0    | 128  | 421  |
| Spillback Cap Reductn   | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio       | 0.84 | 0.63 | 0.76 | 0.59 | 0.45 |
| Intersection Summary    |      |      |      |      |      |

# 95th percentile volume exceeds capacity, queue may be longer.

| MovementEBLEBTWBTWBRSBLSBRLane Configurations11111Volume (vph)456703230175218300              |
|-----------------------------------------------------------------------------------------------|
| Lane Configurations 🌴 🛉 🎓                                                                     |
|                                                                                               |
|                                                                                               |
| Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900                                              |
| Total Lost time (s) 5.5 5.5 5.5 5.5 5.5                                                       |
| Lane Util. Factor 1.00 1.00 1.00 1.00 1.00                                                    |
| Frt 1.00 1.00 0.94 1.00 0.85                                                                  |
| Flt Protected 0.95 1.00 1.00 0.95 1.00                                                        |
| Satd. Flow (prot) 1787 1863 1766 1770 1599                                                    |
| Flt Permitted 0.15 1.00 1.00 0.95 1.00                                                        |
| Satd. Flow (perm) 285 1863 1766 1770 1599                                                     |
| Peak-hour factor, PHF 0.94 0.94 0.94 0.94 0.94 0.94                                           |
| Adj. Flow (vph) 485 748 245 186 232 319                                                       |
| RTOR Reduction (vph)         0         0         32         0         144                     |
| Lane Group Flow (vph) 485 748 399 0 232 175                                                   |
| Heavy Vehicles (%) 1% 2% 0% 3% 2% 1%                                                          |
| Turn Type pm+pt pm+ov                                                                         |
| Protected Phases 7 4 8 6 7                                                                    |
| Permitted Phases 4 6                                                                          |
| Actuated Green, G (s) 52.5 52.5 24.0 26.5 49.5                                                |
| Effective Green, g (s) 52.5 52.5 24.0 26.5 49.5                                               |
| Actuated g/C Ratio 0.58 0.58 0.27 0.29 0.55                                                   |
| Clearance Time (s) 5.5 5.5 5.5 5.5 5.5 5.5                                                    |
| Vehicle Extension (s)         3.0         3.0         3.0         3.0         3.0         3.0 |
| Lane Grp Cap (vph) 550 1087 471 521 977                                                       |
| v/s Ratio Prot c0.23 0.40 0.23 c0.13 0.05                                                     |
| v/s Ratio Perm c0.29 0.40 0.23 0.40 0.20 0.06                                                 |
| v/c Ratio 0.88 0.69 0.85 0.45 0.18                                                            |
| Uniform Delay, d1 22.0 13.1 31.3 25.8 10.1                                                    |
| Progression Factor         1.00         1.00         1.00         2.59                        |
| Incremental Delay, d2 15.3 1.8 13.2 2.6 0.1                                                   |
| Delay (s) 37.3 14.9 44.4 29.7 26.2                                                            |
| Level of Service D B D C C                                                                    |
| Approach Delay (s) 23.7 44.4 27.7                                                             |
| Approach LOS C D C                                                                            |
|                                                                                               |
| Intersection Summary                                                                          |
| HCM Average Control Delay 28.7 HCM Level of Service                                           |
| HCM Volume to Capacity ratio 0.71                                                             |
| Actuated Cycle Length (s) 90.0 Sum of lost time (s)                                           |
| Intersection Capacity Utilization 73.9% ICU Level of Service                                  |
| Analysis Period (min) 15                                                                      |

c Critical Lane Group

# MEMORANDUM

## **Daniel Heffernan Company**

2525 NE Halsey Street Portland. OR 97232

| DATE:<br>TO: | February 25, 2015<br>Susan Wright, Kittelson Associates |
|--------------|---------------------------------------------------------|
|              | Zach Pelz, City of West Linn, Planning                  |
| FROM:        | DJ Heffernan, DHC                                       |
| SUBJECT:     | Draft Technical Memorandum #9 – Regulatory Solutions    |

## Context

As part of the process to update the City of West Linn transportation system plan (TSP), the city is required to review and where necessary update implementation measures, such as its development code and public works design standards. Cities and counties across the state rely on these tools to address specific requirements in the Oregon Transportation Planning Rule (TPR) and the Regional Transportation Functional Plan (RTFP).

The City's implementing measures are used to achieve specific local transportation goals. These include:

- 1. Safety: Reduce transportation related fatalities and serious injuries across all modes;
- 2. Mobility, Access and Environment: Improve people's access to jobs, schools, health care and other regular needs in ways that improve health, reduce pollution and retain money in the local economy;
- 3. Maintenance: Deliver access and safety improvements cost effectively, within available revenues;
- 4. Equity: Equitably respond to the needs of all users of the transportation system, and in a way that is beneficial to the natural environment.

Performance measures are used over time to monitor the achievement of these goals. Performance measures have been established for safety, vehicles miles traveled per capita, freight reliability, congestion, and walking, bicycling and transit mode shares. Technical Memorandum #3 includes draft "Performance Measures" for West Linn's 2015 TSP update. These measures are used over time to monitor the TSP.<sup>1</sup> and, when performance measures are not being met, they guide the reexamination of city regulations to improve performance.

## Purpose

The purpose of this memorandum is to review West Linn's implementation measures for compliance with state and regional requirements. At their core, the state and regional requirements are intended to reduce reliance on single-occupancy vehicles, reduce environmental impacts related to automobile use, and expand mobility choices for transportation system users.

<sup>&</sup>lt;sup>1</sup> Section 3.08.230 Performance Targets and Standards, Chapter 3.08, Regional Transportation Function Plan, Exhibit E. to Ordinance No 10-1241B

The implementing measures include local neighborhood plans (NPs), which provide local context and refinement of the West Linn Comprehensive Land Use Plan (Comp Plan), the West Linn Community Development Code (CDC), ancillary transportation plans like the West Linn Master Trails Plan, and West Linn's Public Works Design Standards (PWDS). The analysis also considered the need to improve consistency between the comprehensive plan, the TSP, and the city's implementing measures.

Exhibit A to this memorandum summarizes state and regional compliance requirements and documents where and how the City's implementing measures meet or do not meet these requirements. The review shows that the City complies with most but not all state and regional transportation planning requirements. Where implementing measures are inadequate, the table indicates the reason why.

#### **Compliance Issues Summary**

The non-compliance issues identified in the review generally involve state and regional requirements for local transportation regulations, or conflicts within city documents. The following summary highlights the issues and solutions to address them:

- 1. The West Linn Comprehensive Plan (Comp Plan) includes language that grants neighborhood plans presumptive standing as part of the Comp Plan. The plan needs to clarify that this standing may only apply when a neighborhood plan formally has been adopted as part of the Comp Plan (i.e. by ordinance and in conformance with state postacknowledgement plan amendment (PAPA) adoption procedures in OAR 660.18.0020). In the absence of such action, the Comp Plan should clarify that land use decision makers may consult neighborhood plans as advisory documents but they may not rely on them in rendering land use decisions.
- 2. The Comp Plan narrative for Goal 12 Transportation needs to be updated to reflect the revised improvement program for the I-205/10<sup>th</sup> Street interchange area.
- 3. The Functional Street Classifications in the Comp Plan, the TSP, and the West Linn Community Development Code (CDC) are inconsistent. Amendments are needed to bring them into agreement.
- 4. The Comp Plan and TSP in effect specify that that the city's four mixed-use commercial districts function like "town centers" by supporting transit-oriented development, providing employment opportunities, and enhancing multi-modal accessibility to services for the surrounding neighborhoods. The Comp Plan should include a reference to the term "town center" for these areas to ensure the city is able to access regional, state, and federal resources that specifically pertain to geographic areas that are defined in the Metro 2040 Growth Plan as town centers. CDC regulations should reference the mixed-use districts in a consistent manner. Boundaries should be established for the Mixed Use Commercial Districts, which may be accomplished using an overlay that can be applied to more than one base zone.
- A number of modifications are recommended to the City's Design Review Approval Criteria: Page 2 Draft TM #9 – West Linn TSP Update

- a. Add requirements for Transportation Demand Management (TDM) measures for all "major" developments, major redevelopments, and conditional use applications;
- b. Amend the sidewalk fee-in-lieu program to specify where it may be used and to ensure this revenue is used elsewhere in West Linn for frontage improvements;
- c. Allow flexibility to street design standards in locations where terrain or natural features prevent construction of a standard cross-section, but in other areas limit discretionary review of the required transportation improvements;
- d. Require land division plats to show connectivity for bike/ped/transit where street connections are not required and the distance between connectivity exceeds recommended RTFP requirements;
- e. Reduce discretionary review of land use applications in town centers by offering a clear and objective approval option for all allowed uses and by adopting design standards, for each Town Center area, (e.g. the design standards for the Willamette District).
- 6. Amend West Linn Public Works Design and Construction Standards to include a cross section standard for a *Neighborhood Route*, a *Green Street*, and streets that share an on-street trail segment.

Specific solutions to these issues are presented in the tables below, which identify specific compliance issues, reviews the city code section or public works standard that needs to be amended, presents a recommendation to address the issue, and references the regulatory requirement that pertains to the issue. Where the proposed solution requires multi-faceted amendments to city documents, a summary of the proposed remedy is presented in the table with a reference to a detailed recommendation in Exhibit B.

|  | <b>Draft Regulatory</b> | Solutions fo | or the West Linn | Transportation | System Plan Update |
|--|-------------------------|--------------|------------------|----------------|--------------------|
|--|-------------------------|--------------|------------------|----------------|--------------------|

| CITY PLAN AND POLICY SOLUTIONS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                    |                                        |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| Issue                                          | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Recommendation                                                                                                                                                                                                                                                                     | Compliance                             |  |  |
| Neighborhood Plan/<br>Comp Plan<br>Consistency | West Linn's neighborhood plans (NPs) were not<br>formally adopted as elements of the Comp Plan<br>and have not been review for conformity with<br>statewide land use planning goals. Until they<br>have, NPs do not have standing as part of the<br>Comp Plan and may only be relied on as advisory<br>documents in land use proceedings.                                                                                                                                                | Amend the narrative and policies in the Comp Plan<br>related to Goals 1 and 2 to clarify the role of NPs so<br>that they are treated appropriately in land use<br>proceedings per Statewide Land Use Planning Goal 2.<br>Draft text recommendations are included in Appendix<br>B. | OAR 660.015.0000;<br>OAR 660.018.0020; |  |  |
| Neighborhood Plan<br>Consistency               | <ul> <li>The Willamette neighborhood plan was<br/>prepared in 2003. The Bolton, Marylhurst, and<br/>Parker Crest neighborhood plans were adopted<br/>in 2006. The Tanner Neighborhood Plan was<br/>adopted in 2007. The Robinwood and Sunset<br/>neighborhood plans were adopted in 2008.<br/>While the policies in these plans generally are<br/>compatible and supportive of the Comp Plan and<br/>TSP, some are not. All neighborhood plans pre-<br/>date the updated TSP.</li> </ul> | Amend the Comp Plan to clarify the role of<br>neighborhood plans in land use proceedings; where<br>necessary update neighborhood plans so that they are<br>consistent with the TSP and Comp Plan. Draft text<br>recommendations are included in Appendix B.                        | OAR 660.015.0000;                      |  |  |

| CITY PLAN AND POLICY SOLUTIONS                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| lssue                                                                                   | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Compliance                              |  |
| Comp Plan,<br>Neighborhood Plan,<br>and TSP Consistency<br>– 10th Street<br>Interchange | ✓ There are references to the I-205/10 <sup>th</sup> Street<br>interchange in the Comp Plan, and in the Tanner<br>Basin, Sunset, and Willamette Neighborhood<br>plans. These references may need to be<br>updated to reflect the revised interchange<br>improvement program in the updated TSP.                                                                                                                                                                                                               | Update the narrative in the Comp Plan for Goal 12 –<br>Transportation to reflect the program for improving the<br>I-205/10 <sup>th</sup> Avenue interchange area so that the<br>narrative is consistent consistent with the updated TSP.<br>Consider updating NPs, if necessary.                                                                                                                                                                                                                            | OAR 660-12-0015;<br>ODOT TSP; Metro RTP |  |
| Roadway Functional<br>Classifications                                                   | ✓ West Linn's CDC Chapter 85 lists "Neighborhood<br>Route" as roads whose functional purpose falls<br>between "Collector" and "Local" roadways. The<br>Comp Plan and TSP should define and identify<br>where this classification is applicable. There also<br>is a need for a plan policy that limits the use of<br>alternative street designs to areas where<br>proximity to sensitive resources, steep slopes,<br>narrow rights of way, or other extenuating<br>factors justify alternative design options. | Add "Neighborhood Route" as a functional<br>classification to "Action Measure" #7 under Comp Plan<br>Goal 12 Street policies (page T8). Add descriptions for<br>alternative street designs that place pedestrian and/or<br>bicycle facilities on one side of the roadway and a<br>"Shared Street" classification that permits multi-modal<br>use of the roadway. Add a policy that provides<br>guidance for the use of these alternative designs. Draft<br>text recommendations are included in Appendix B. |                                         |  |

| CITY PLAN AND POLICY SOLUTIONS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |                                               |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| lssue                                       | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Recommendation                                                                                                                                                                                                                                                                                           | Compliance                                    |  |
| Town Center<br>Designations and<br>Policies | <ul> <li>✓ In Comp Plan Goal 2 – Land Use Planning,<br/>Section 3, which pertains to West Linn's four<br/>Mixed Use Commercial Districts, the narrative<br/>should recognized the "Town Center" function<br/>that these areas provide West Linn residents.<br/>This establishes functional equivalency between<br/>the Comp Plan and the Metro 2040 Growth Plan<br/>for West Linn's four mixed-use districts that<br/>need to meet RTFP requirements for<br/>connectivity.</li> </ul> | Add policy language to Section 3, Goals 6 and 7 that<br>recognizes the "Town Center" function of West Linn's<br>mixed-use commercial districts. Draft text<br>recommendations are included in Appendix B. The<br>Metro 2040 Growth Plan map in the Comp Plan needs<br>to be updated to the 2014 version. | Metro RTP/2040<br>Plan; OAR<br>660.012.0045.3 |  |
| Town Center<br>Designations and<br>Policies | ✓ Policies in Comp Plan Goal 12 – Transportation,<br>especially for bicycles, pedestrians, and transit,<br>should call for multi-modal connectivity<br>between West Linn's mixed-use commercial<br>districts.                                                                                                                                                                                                                                                                         | Modify city transportation policies that call for<br>strategies to "connect the four <u>mixed-use</u> commercial<br>centers in Willamette, Bolton, Robinwood, and Tanner<br>Basin" to include bike, ped, transit strategies.                                                                             |                                               |  |

| CITY PLAN AND POLICY SOLUTIONS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |  |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| Issue                                                    | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compliance                                    |  |  |
| Town Center and<br>Transit Corridors and<br>TDM Policies | <ul> <li>✓ OAR 660.12.0045(5) requires cities in MPO areas<br/>to take steps to reduce single-occupancy vehicle<br/>(SOV) trips through their land use plans,<br/>development regulations and through<br/>Transportation Demand Management (TDM)<br/>programs. The later is often implemented<br/>through a "Transportation Option" program that<br/>adds regulations for new development that<br/>generates traffic above certain thresholds, or in<br/>areas and corridors with significant congestion.</li> </ul> | <ul> <li>Add the following policy to Goal 12 – Transportation under General Policies and Action Measures:</li> <li>11. Take action using the following measures to promote the use of Transportation Options: <ul> <li>Support community education to increase efficient use of existing transportation infrastructure and minimize congestion and safety concerns by offering choices of mode, route, and time.</li> <li>Support and participate in efforts by Metro, the Department of Environmental Quality (DEQ), transit providers, and Transportation Management Associations (TMAs) to develop, monitor and fund local TDM programs.</li> <li>Provide adequate bicycle and pedestrian facilities connecting mixed-use commercial centers to encourage use of bicycles or walking for the commute to work and to improve access to jobs for workers without cars.</li> <li>Take steps to reduce drive-alone vehicle trips with the goal to reach 40% non-drive alone trips in mixed-use areas by 2040.</li> </ul> </li> <li>Develop regulations for mixed-use areas that require major new development and redevelopment and conditional use applications to address Transportation Options requirements.</li> </ul> | OAR 660.012.0045(4)-<br>(5); RTFP 308.120(C). |  |  |

|               | CITY PLAN AND POLICY SOLUTIONS                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |  |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Issue         | Summary                                                                                                                                                                | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compliance      |  |  |
| Street Design | ✓ West Linn's Comp Plan does not include a policy<br>reference to Metro's Street Design<br>Classifications for supporting multi-modal street<br>use and Green Streets. | Add the following policies to the West Linn<br>Comprehensive Land Use Plan (WLCP) under Goal 12 –<br>Transportation: General Policies.<br>9. Consider the Metro Regional Street Design<br>Classifications for new and redesigned city streets prior<br>to construction or reconstruction.<br>10. Minimize impacts of managing storm water by<br>allowing for Metro's alternative street standards, such<br>as "green streets," as design alternatives. | RTFP reference: |  |  |

| CITY DEVELOPMENT CODE ACTIONS                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Issue                                                                            | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                            | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Compliance                            |  |
| CDC Design Review<br>Standards                                                   | ✓ The purpose statement in CDC Chapter<br>55.010 states "Multi-family, industrial,<br>commercial, office, and public projects will<br>comply with the Transportation Planning<br>Rule (TPR)". The requirement is aimed at<br>encouraging design features that promote<br>the use of alternative modes and improve<br>connectivity rather than demonstrating<br>project-level compliance with the TPR (OAR<br>660.12.000). Use alternative wording. | Make the following change to CDC 55.010:<br><u>Developers of Multimulti</u> -family, industrial, commercial,<br>office, and public projects <del>will comply with the</del><br><del>Transportation Planning Rule (TPR). The TPR is a State</del><br><del>requirement that jurisdictions must <u>are required to take</u><br/><u>steps to</u> reduce reliance on the automobile by, in part,<br/>encouraging other modes of transportation, such as<br/>transit, bicycles, and foot traffic, or through building<br/>orientation or location.</del> | OAR 660-12-045(3)                     |  |
| CDC Design Review<br>Standards –<br>Transportation<br>Demand<br>Management (TDM) | <ul> <li>The TPR mandates that TDM measures be<br/>integrated with all "major" new<br/>developments, redevelopments, and all<br/>conditionally approved development.<br/>"Major" is not defined in the rule. We have<br/>defined it as any project that requires<br/>discretionary (Type 3/Type 4) review.</li> </ul>                                                                                                                              | Amend CDC 55.100.7:<br>k. Major developments and conditional use applications in<br>designated town center and industrial areas must include<br>a transportation option (TO) elements into the<br>development program. Table A outlines requirements and<br>appropriate TDM measures for various types of<br>development. In general, larger scale developments and<br>development that generates a large amount of auto-trips<br>are required to implement more significant TO measures.<br>(see Exhibit B for the proposed TO requirements).     | RTFP 3.08.120; OAR<br>660.012.0045(5) |  |

| CITY DEVELOPMENT CODE ACTIONS                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |  |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|
| Issue                                                                       | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compliance                             |  |
| CDC Design<br>Standards for "Town<br>Center" Areas                          | ✓ West Linn's CDC Chapter 55 100 includes<br>design and development standards for multi-<br>family, commercial, public, and employment<br>land uses. Standards do not distinguish<br>between the development requirements in<br>mixed-use areas and other districts in West<br>Linn. Design requirements for multi-family in<br>particular may violate state law that requires<br>all cities to provide a clear and objective path<br>to development approval for needed housing<br>types. | Add language to the CDC that distinguish design<br>standards and public facility requirements for<br>development in mixed-use commercial districts. These<br>are intended to meet RTFP requirements for "Town<br>Center" areas, including parking, bicycle/pedestrian<br>accessibility, transit access, alternative mobility, etc.<br>Adding requirements for enhancing multi-modal access<br>and use within and in proximity to mixed-use districts.<br>Establish a "Type 2" approval process for projects that<br>meet specific design parameters as an alternative to<br>"Type 3" discretionary review. This is especially important<br>for multi-family housing projects that are required by<br>state law to have a clear and objective path to<br>development approval. | OAR 660.012.0045(3);<br>RTFP reference |  |
| CDC Design<br>Standards for "Town<br>Center" Areas and<br>Transit Corridors | ✓ OAR 660.12.0045(4) and (5) require cities in<br>MPOs to take steps to promote transit where<br>available. The city's approval criteria for<br>building orientation and access is vague for<br>determining when and how an applicant<br>needs to make special accommodations for<br>transit orientation.                                                                                                                                                                                  | Modify the design requirements in CDC55.100.7.g to<br>specify a distance parameter from transit stops that<br>triggers the requirement to orient a main building<br>entrance to transit and establish a pathway to the stop in<br>transit corridors.<br>Add standards and criteria for all development in mixed-<br>use areas to design development for access to transit<br>and to provide information about transit<br>stops/schedules/etc.                                                                                                                                                                                                                                                                                                                                 | RTFP reference                         |  |

| CITY DEVELOPMENT CODE ACTIONS                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Issue                                              | Summary                                                                                                                                                                                                                                                                                                 | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compliance                                                                                                                |  |
| CDC Design<br>Standards for "Town<br>Center" Areas | ✓ RTFP 30.8.130 includes an alternate provision<br>for meeting transit accessibility requirements<br>using designating Pedestrian Districts. Town<br>Center areas may be suitable areas for this<br>approach.                                                                                           | Add regulations for property in a designated pedestrian district if applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTFP 3.08.130.B,<br>OAR 660-12-00045.(3) -<br>(5)                                                                         |  |
| Fee in lieu<br>requirement                         | CDC 96.010.A.3 allows development in<br>neighborhoods without sidewalks to pay a<br>fee in lieu of building sidewalks in order to<br>match the existing development pattern.<br>These funds, however, go into the City's<br>General Fund where they are not limited in<br>use to sidewalk construction. | West Linn should alter its fee in lieu policy for sidewalk<br>construction. Dedicate fee revenue to a Sidewalk<br>Construction Fund that would be used to build higher<br>priority sidewalks first. The fee in lieu would apply to<br>development applications that are required to construct<br>sidewalks along their site frontage. In certain<br>circumstances, the fee in lieu policy lets them pay a fee<br>equivalent to the cost of constructing the frontage<br>improvement. Prioritize the use of the Sidewalk<br>Construction Fund for sidewalks and multi-modal trails<br>that enhance pedestrian safety on designated safe routes<br>to school and connections to/within mixed-use centers. | RTFP 3.08.130; OAR<br>660.012.0045.(3);<br>WLCLP Goal 12,<br>General Policy 8,<br>Action #5; Street<br>Policies 9 and 12. |  |

| CITY DEVELOPMENT CODE ACTIONS                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| Issue                                                                      | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compliance                 |  |
| Development<br>Approval Criteria                                           | ✓ CDC Chapter 60 - Conditional Uses: The approval criteria in 60.090 - Transportation Facilities (Type II), which are used to review the appropriateness of transportation improvements NOT included in the TSP, does not include a reference to the Metro Regional Transportation Facility Plan (RTFP).                                                                                                                                                                                                                                                                                            | Add to the approval criteria in CDC 60.090. A.1. and include a criterion that requires consistency of the proposed conditional use with the adopted RTP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OAR<br>660.012.0015(2)(b). |  |
| Increase the<br>availability of Non-<br>discretionary Land<br>Use Approval | ✓ Virtually every land use application other<br>than development approval for single-family<br>residential lots is required to go through<br>some form of discretionary review either as a<br>conditional use or through a design review<br>process. This adds cost and opportunities for<br>opponents of development that is consistent<br>with the adopted plan to mobilize at<br>hearings. This tactic has been used to<br>obstruct local connectivity and alternative<br>mode improvements even when these<br>improvements are listed in the TSP and<br>required by plan policies and CDC rule. | Provide a clear path to development approval (Type 1 or 2 review) for developments in mixed-use areas and along transit corridors that meet specific design criteria. Additionally, for Type 3 applications, limit the scope of review for transportation improvements to those that require subjective interpretation of a policy, such as locating a new or improved street near a designated Water Resource Area (WRA), on steep slopes, or in historic districts. Where the WLCP, the TSP, the Trails Plan, and/ or the CDC requirements are definitive, the scope of review by the decision maker/ body may be limited. |                            |  |

| CITY DEVELOPMENT CODE ACTIONS                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|
| Issue                                                                | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compliance                                                    |  |
| Design requirements<br>and Approval Criteria<br>for Preliminary Plat | ✓ CDC Chapter 85 lacks specific guidance for<br>when partition requests need to show<br>tentative street plans for remnant undivided<br>portions of the property. Doing so will serve<br>to protect future street alignments from<br>encroachment by interim development. The<br>regulation also does not require tentative<br>plans to show internal and external<br>connectivity for pedestrians/bicycle/transit<br>access where street connections are not<br>present. | Add the following text to CDC 85.120: Where the<br>tentative subdivision for the unsubdivided portion. <u>A</u><br>tentative street plan is required for sites where the un-<br>subdivided portion of the property is greater than 300<br>percent of the minimum lot size allowed in the<br>underlying zoning district.<br>Add the following text to 85.170.B. Transportation 1.<br>Centerline profiles of street construction. <u>Where</u><br>street connections are not proposed within or beyond<br>the limits of the proposed subdivision on blocks<br>exceeding 330 feet, or for cul-de-sacs, the tentative plat<br>or partition shall indicate the location of easements that<br>provide connectivity for bicycle, pedestrian use to<br>accessible public rights of way. | RTFP 3.08.130.B;<br>RTFP 3.08.110.B.6;<br>OAR660.012.0045.(3) |  |
| Travel Lane Widths                                                   | ✓ The travel lane widths in the CDC vary by<br>functional class. Local streets have the<br>widest land widths, presumably because on-<br>street parking and bikeway travel is<br>envisioned to share the standard 24' of<br>pavement. This same approach should be<br>available to Neighborhood Routes where<br>ROW is insufficient to allow for designated<br>bike lanes and sidewalks.                                                                                  | Amend the table in CDC Chapter 85.200 A. Streets, 3.<br>Street Widths to allow travel lane widths on<br>Neighborhood Routes to be 10 - 12 feet. Include a<br>footnote that 12-foot travel lanes may only be used<br>when the ROW is too narrow to accommodate bike<br>lanes and sidewalks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Policy reference                                              |  |

|                        | CITY DEVELOPMENT CODE ACTIONS                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| Issue                  | Summary                                                                                                                                                                                                                                  | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Compliance       |  |  |
| Flexible Street Design | ✓ There are circumstances in West Linn where<br>topography, proximity to sensitive resource<br>sites, or prevailing development conditions<br>make it infeasible or impractical to build a<br>standard street cross section improvement. | Add the following street classification to CDC Chapter<br>85.200 Approval Criteria, 2. Right of Way: <i>Neighborhood</i><br><i>Route 40-60 feet</i><br>Add the following street description to CDC Chapter<br>85.200 Approval Criteria 3. Streets Widths: <i>Shared Street</i><br>– <i>Provides access to residential or commercial uses in</i><br><i>areas in which right-of-way is constrained by topography</i><br><i>or historically significant structures. The constrained</i><br><i>right-of-way prevents typical bicycle and pedestrian</i><br><i>facilities such as sidewalks and bicycle lanes. Therefore,</i><br><i>pedestrians, bicycles, and motor vehicles may share the</i><br><i>entire width of the street. The design of the street should</i><br><i>emphasize a slower speed environment and provide clear</i><br><i>physical and visual indications that the space is shared</i><br><i>across modes.</i> | Policy reference |  |  |



| CITY PUBLIC WORKS DESIGN STANDARDS |                                                                                                                                                                                                                                                            |                                                                                                                                                                                            |                                     |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Issue                              | Summary                                                                                                                                                                                                                                                    | Recommendation                                                                                                                                                                             | Compliance                          |
| On-street Trail                    | <ul> <li>West Linn's Trails Master Plan calls for a<br/>number of trail segments on existing streets<br/>but the city's design standards do not include<br/>guidance for these facilities.</li> </ul>                                                      | Amend WLPW Design Standards, Division 5.0050 and<br>5.0060 to provide dimensional standards for on-street<br>trail facilities.                                                             | West Linn Trails Plan,<br>TPR; RTFP |
| Shared Street                      | ✓ The updated TSP includes identification of<br>locations where mixed-modal use of the right<br>of way is appropriate because of the existing<br>development pattern or because of natural<br>conditions that preclude building a standard<br>improvement. | Amend WLPW Design Standards, Division 5.0110, to<br>include a cross section and amenities for streets that are<br>designed to integrate autos, bikes, and pedestrian use of<br>the street. | PM #s TPR, RTFP                     |

| CITY PUBLIC WORKS DESIGN STANDARDS |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Issue                              | Summary                                                                                                                                                                                               | Recommendation                                                                                                                                                                                                                                                                               | Compliance     |
| Green Street                       | <ul> <li>West Linn's public works design standards do<br/>not include guidance for locations where<br/>green streets may be constructed in place of<br/>a more conventional street design.</li> </ul> | Amendments are proposed to Public Works Design<br>Standards, Division 5 that will establish clear guidance for<br>the construction of approved green street infrastructure.<br>Details for the proposed standard, which is based on<br>Metro's Green Street Design Manual, are in Exhibit B. | RTFP reference |

#### Exhibit A – Regulatory Review Compliance Matrix

| Regional Transportation Functional Plan<br>Requirement                                                                                                                                                                                | Development Code Compliance                                                                                                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Allow complete street designs consistent with<br>regional street design policies<br>(Title 1, Street System Design Sec<br>3.08.110A(1))                                                                                               | Existing code requirements and the updated TSP meet these RTFP requirements in the following ways.                                                                                           |  |
| Allow green street designs consistent with<br>federal regulations for stream protection<br>(Title 1, Street System Design Sec<br>3.08.110A(2))                                                                                        | Citations needed.                                                                                                                                                                            |  |
| Allow transit-supportive street designs that<br>facilitate existing and planned transit service<br>pursuant 3.08.120B<br>(Title 1, Street System Design Sec<br>3.08.110A(3))                                                          |                                                                                                                                                                                              |  |
| <ul> <li>Allow implementation of:</li> <li>narrow streets (&lt;28 ft curb to curb);</li> <li>wide sidewalks (at least five feet of through zong);</li> </ul>                                                                          | Existing and proposed code amendments (TSP Appendix<br>), and the updated TSP meet these RTFP requirements as<br>follows:                                                                    |  |
| <ul> <li>zone);</li> <li>landscaped pedestrian buffer strips or paved furnishing zones of at least five feet, that include street trees;</li> <li>Traffic calming to discourage traffic infiltration and excessive speeds;</li> </ul> | CDC 92.010.B – Extension of streets to subdivisions requires street extensions to intersect with the existing grade of adjacent streets. Street widths may be approved as narrow as 24-feet. |  |
| • short and direct right-of-way routes and<br>shared-use paths to connect residences with<br>commercial services, parks, schools,                                                                                                     | Amendments are proposed to CDC                                                                                                                                                               |  |
| hospitals, institutions, transit corridors,<br>regional trails and other neighborhood<br>activity centers;                                                                                                                            | Note that these requirements will serve to implement the TSP's Safe Routes to School plan (TSP Chapter).                                                                                     |  |
| • opportunities to extend streets in an incremental fashion, including posted notification on streets to be extended.                                                                                                                 |                                                                                                                                                                                              |  |
| (Title 1, Street System Design Sec                                                                                                                                                                                                    |                                                                                                                                                                                              |  |
| <b>3.08.110B)</b><br>Require new residential or mixed-use                                                                                                                                                                             | Existing code requirements meet these RTFP requirements                                                                                                                                      |  |
| development (of five or more acres) that                                                                                                                                                                                              | as follows:                                                                                                                                                                                  |  |
| proposes or is required to construct or extend                                                                                                                                                                                        |                                                                                                                                                                                              |  |
| street(s) to provide a site plan (consistent with<br>the conceptual new streets map required by                                                                                                                                       | Review CDC 85 – General Provisions for land divisions                                                                                                                                        |  |
| Title 1, Sec 3.08.110D) that:                                                                                                                                                                                                         | ,                                                                                                                                                                                            |  |
| • provides full street connections with                                                                                                                                                                                               |                                                                                                                                                                                              |  |
| spacing of no more than 530 feet between                                                                                                                                                                                              |                                                                                                                                                                                              |  |
| connections except where prevented by                                                                                                                                                                                                 |                                                                                                                                                                                              |  |
| <ul><li>barriers</li><li>Provides a crossing every 800 to 1,200 feet</li></ul>                                                                                                                                                        |                                                                                                                                                                                              |  |
| • FIOVIDES a crossing every 800 to 1,200 feet                                                                                                                                                                                         |                                                                                                                                                                                              |  |

| Regional Transportation Functional Plan<br>Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Development Code Compliance                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>if streets must cross water features<br/>protected pursuant to Title 3 UGMFP<br/>(unless habitat quality or the length of the<br/>crossing prevents a full street connection)</li> <li>provides bike and pedestrian accessways in<br/>lieu of streets with spacing of no more than<br/>330 feet except where prevented by barriers</li> <li>limits use of cul-de-sacs and other closed-<br/>end street systems to situations where<br/>barriers prevent full street connections</li> <li>includes no closed-end street longer than<br/>220 feet or having no more than 25<br/>dwelling units</li> <li>(Title 1, Street System Design Sec<br/>3.08.110E)</li> <li>Establish city/county standards for local street<br/>connectivity, consistent with Title 1, Sec<br/>3.08.110E, that applies to new residential or<br/>mixed-use development (of less than five<br/>acres) that proposes or is required to construct<br/>or extend street(s).</li> <li>(Title 1, Street System Design Sec<br/>3.08.110F)</li> </ul> | Existing code requirements meet these RTFP requirements<br>as follows:<br>CDC Chapter 92.010.A – Streets within subdivisions, and<br>C – Local and Minor Collector Streets, requires that streets<br>"shall be graded for the full right-of-way width and<br>improved to the City's permanent improvement standards<br>and specifications". Exceptions to this requirement are<br>allowed with a finding that the full improvement cannot be |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | made to protect a drainage way or wetland, or when there<br>are other reasons demonstrated that the Street ROW is not<br>needed. A change is proposed to CH 92.010A.2 requiring<br>an alternative trail, bikeway or access way when a street<br>connection is not feasible (Exhibit B)                                                                                                                                                       |
| Applicable to both Development Code and<br><u>TSP</u><br>To the extent feasible, restrict driveway and<br>street access in the vicinity of interchange<br>ramp terminals, consistent with Oregon<br>Highway Plan Access Management Standards,<br>and accommodate local circulation on the<br>local system. Public street connections,<br>consistent with regional street design and<br>spacing standards, shall be encouraged and<br>shall supersede this access restriction.<br>Multimodal street design features including<br>pedestrian crossings and on-street parking<br>shall be allowed where appropriate.<br>(Title 1,Street System Design Sec<br>3.08.110G)                                                                                                                                                                                                                                                                                                                                                         | Existing code and the updated TSP meet these RTFP<br>requirements as follows:<br>Citation needed.                                                                                                                                                                                                                                                                                                                                            |
| Include Site design standards for new retail,<br>office, multi-family and institutional buildings<br>located near or at major transit stops shown in<br>Figure 2.15 in the RTP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | West Linn does not have any major transit stops shown on RTP Figure 2.10, which replaced RTP Figure 2.15 in the latest update to the RTP.                                                                                                                                                                                                                                                                                                    |

| Regional Transportation Functional Plan<br>Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Development Code Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Provide reasonably direct pedestrian connections between transit stops and building entrances and streets adjoining transit stops;</li> <li>Provide safe, direct and logical pedestrian crossings at all transit stops where practicable.</li> <li>At major transit stops, require the following:</li> <li>Locate buildings within 20 feet of the transit stop, a transit street or an intersection street, or a pedestrian plaza at the stop or a street intersections;</li> <li>Transit passenger landing pads accessible to disabled persons to transit agency standards;</li> <li>An easement or dedication for a passenger shelter and an underground utility connection to a major transit provider;</li> <li>Lighting to transit agency standards at the major transit stop;</li> <li>Intersection and mid-block traffic management improvements as needed and practicable to enable marked crossings at major transit stops.</li> <li>(Title 1, Transit System Design Sec 3.08.120B(2))</li> </ul> | <ul> <li>CDC 55.100 APPROVAL STANDARDS – CLASS II<br/>DESIGN REVIEW provides guidance for approval of land<br/>use applications that require discretionary design review,<br/>which includes most development types except single<br/>family uses. The TSP proposes a future work program to<br/>improve connectivity within and between Town Center<br/>areas, including transit, to establish design standards for<br/>development within town centers that promote less single<br/>occupancy vehicle use, and to reduce the number of land<br/>use actions that required discretionary review.</li> <li>CDC 55.100.B.7 – TPR Compliance generally promote<br/>connectivity within and from commercial, multi-family,<br/>and office developments to transit stops. In particular, (g)<br/>requires a main entrance and a direct pathway to transit<br/>stops.</li> <li>CDC 55.100.H – Public Transit requires development that<br/>abuts existing or planned transit routes to orient the<br/>development to transit facilities, provide transit shelters,<br/>bus turnouts, hard surface pathways to stops, and other<br/>enhancements that promote safe convenient access to<br/>transit service.</li> <li>Inclusion of these approval criteria is recommended in<br/>non-discretionary review proceedings for all land uses that<br/>abut transit corridors and in town center areas.<br/>Development and adoption of these criteria will be made<br/>part of a TSP implementation planning process.</li> <li>There are no <i>"Major Transit Stops"</i> in West Linn.</li> </ul> |
| <ul> <li>(Could be in Comprehensive plan or TSP as<br/>well) As an alternative to implementing site<br/>design standards at major transit stops (section<br/>3.08.120B(2), a city or county may establish<br/>pedestrian districts with the following<br/>elements:</li> <li>A connected street and pedestrian network<br/>for the district;</li> <li>An inventory of existing facilities, gaps and<br/>deficiencies in the network of pedestrian<br/>routes;</li> <li>Interconnection of pedestrian, transit and<br/>bicycle systems;</li> <li>Parking management strategies;</li> <li>Sidewalk and accessway location and<br/>width;</li> <li>Landscaped or paved pedestrian buffer strip</li> </ul>                                                                                                                                                                                                                                                                                                              | There are no designated pedestrian districts in West Linn,<br>although they may be appropriate in some Commercial<br>Town Center Areas. A decision to use this approach may<br>emerge from future planning programs in Town Center<br>Areas and transit corridors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Development Code Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Review CDC Chapter 85 and 92.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Existing code requirements and the updated TSP meet these RTFP requirements in the following ways.</li> <li>CDC Chapter 46 regulates off street parking.</li> <li>CDC 46.090 A – the minimum parking ratios for residential units mirror those in Metro Table 3.08-3. Parking minimums for non-residential uses are at or below the minimum levels in Metro Table 3.08-3.</li> <li>CDC 46.090.F sets parking maximums for non-residential uses at 10% above the minimum, which conforms to the maximum ratios in in Metro Table 3.08-3. include parking maximums for the following uses: high schools,</li> <li>CDC 46.090.G and CDC 55.100.(H)(5) allow for reductions to parking ratios when developments are in proximity to transit stops. An amendment is proposed to allow reductions in Town Centers and along Transit Corridors. and corridors.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Regional Transportation Functional Plan<br>Requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Development Code Compliance |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| mixed-use development is proposed, cities<br>and counties shall provide for blended parking<br>rates. Cities and counties may count adjacent<br>on-street parking spaces, nearby public<br>parking and shared parking toward required<br>parking minimum standards.                                                                                                                                                                                                                                                                                                                                                      |                             |
| Use categories or standards other than those in Table 3.08-3 upon demonstration that the effect will be substantially the same as the application of the ratios in the table.                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| Provide for the designation of residential<br>parking districts in local comprehensive plans<br>or implementing ordinances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Require that parking lots more than three<br>acres in size provide street-like features along<br>major driveways, including curbs, sidewalks<br>and street trees or planting strips. Major<br>driveways in new residential and mixed-use<br>areas shall meet the connectivity standards for<br>full street connections in section 3.08.110, and<br>should line up with surrounding streets except<br>where prevented by topography, rail lines,<br>freeways, pre-existing development or leases,<br>easements or covenants that existed prior to<br>May 1, 1995, or the requirements of Titles 3<br>and 13 of the UGMFP. |                             |
| Require on-street freight loading and<br>unloading areas at appropriate locations in<br>centers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
| <ul> <li>Establish short-term and long-term bicycle parking minimums for:</li> <li>New multi-family residential developments of four units or more;</li> <li>New retail, office and institutional developments;</li> <li>Transit centers, high capacity transit stations, inter-city bus and rail passenger terminals; and</li> <li>Bicycle facilities at transit stops and parkand-ride lots.</li> <li>(Title 4, Parking Management Sec 3.08.410)</li> </ul>                                                                                                                                                            |                             |

| Regional Transportation Functional                                                                                                                                                                                                                                                                                                   | Public Works Design Standards Compliance |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Plan Requirement                                                                                                                                                                                                                                                                                                                     |                                          |
| <ul> <li>Allow implementation of:</li> <li>narrow streets (&lt;28 ft curb to curb);</li> <li>wide sidewalks (at least five feet of through zone);</li> <li>landscaped pedestrian buffer strips or paved furnishing zones of at least five feet, that include street trees;</li> </ul>                                                |                                          |
| <ul> <li>Traffic calming to discourage traffic infiltration and excessive speeds;</li> <li>short and direct right-of-way routes and shared-use paths to connect residences with commercial services, parks, schools, hospitals, institutions, transit corridors, regional trails and other neighborhood activity centers;</li> </ul> |                                          |
| <ul> <li>opportunities to extend streets in an incremental fashion, including posted notification on streets to be extended.</li> <li>(Title 1, Street System Design Sec 3.08.110B)</li> </ul>                                                                                                                                       |                                          |
|                                                                                                                                                                                                                                                                                                                                      |                                          |

#### <u>Exhibit B – Draft Text for Proposed Comp Plan, TSP, and CDC</u> <u>Amendments</u>

#### West Linn Comprehensive Land Use Plan

Goal 1 – Citizen Involvement:

Policy 7.

c. Neighborhood plans will be treated as advisory documents in land-use planning proceedings until they are formally adopted as an implementing element of the Comprehensive Plan.

#### **Recommended Action Measures**

10. The City Council, together with neighborhood leaders, shall formulate a neighborhood plan adoption process for each neighborhood prior to beginning a neighborhood plan. Neighborhood Plans may be <u>adopted by resolution when</u> <u>intended to be an advisory document, or by ordinance when adopted as part of the Comprehensive Plan. Neighborhood Plans may be periodically amended by the City Council directly or in response to <del>the</del> <u>a</u> request of the neighborhood association, or others<del>, in accordance with the plan amendment procedures of the City Of West Linn</del>.</u>

Goal 2 - Land Use Planning:

Section 1 – Residential Development

Goal 2<u>.</u> Allow mixed residential and commercial uses in <u>existing in Mixed Use</u> <u>Commercial Districts</u> <del>commercial areas only in conjunction with an adopted</del> <del>neighborhood plan designed</del> to ensure compatibility and maintain the residential character of existing neighborhoods.

Section 3 - Mixed Use /Commercial Development

Background and Findings:

West Linn is unique in that it does not have a major commercial district or downtown... The major districts are Willamette, including the area north of I-205 at the 10th Street interchange, Bolton, the Robinwood area adjacent to Highway 43, and Tanner Basin. These areas function like the "Town Centers" that are shown on the Metro 2040 Growth Concept plan; they have transit service, include a mix of commercial and residential land uses, and provide connections to essential services and employment opportunities for the surrounding neighborhoods.

Goals:

6. Provide for <u>multi-modal connections to and</u> interconnections between mixed use/commercial centers via <u>automobiles</u>, transit, <u>bicycles</u>, and\_pedestrian <u>pathwaysfacilities</u>, and other means.

7. Require standards for mixed-use <u>commercial districts that promote safe</u> access into and within these areas for walking, biking, and transit use from <u>surrounding neighborhoods</u> areas and that create livable areas that fit in <u>compatible</u> with existing neighborhood character.

Policies:

Amend or redact policies 1 – 3 to remove references to neighborhood plans that have not been adopted as elements of the Comp Plan. Consider replacing these policies with one policy that establishes common land use attributes for these areas.

Section 5 - Intergovernmental Coordination

Policies:

<u>6. Adopt amendments to the West Linn Comprehensive Plan, including ancillary elements that are elements of the Plan such as the Transportation System Plan, Public Facility Plan, and neighborhood plans, as well as implementing ordinances consistent with Statewide Land Use Planning requirements.</u>

Update Figure 2-1 Comprehensive Plan to show boundaries for Mixed Use Commercial Districts;

Update Figure 2-2 Metro 2040 Growth Concept to the current version;

÷

#### West Linn Community Development Code (CDC)

CDC 46.090

G. Parking reductions. CDC 55.100(H)(5) explains reductions of up to 10 percent for development sites next to within ¼ miles of a transit stops corridor or within a town center area, and up to 10 percent for commercial development sites adjacent to large multi-family residential sites with the potential to accommodate more than \_\_ dwelling units.

#### <u>Street/Bike/Ped Connectivity</u>

CDC 92.010.A - Streets in Subdivisions

2. When the decision-making authority makes these findings, the decisionmaking authority may shall impose any of the following conditions of approval:

a. A condition that the applicant initiate vacation proceedings for all or part of the right-of-way.

b. A condition that the applicant build a trail, bicycle path, or other appropriate way.

#### CDC 92.010

C. Local and minor collector streets within the <u>public</u> rights-of-way abutting a subdivision <u>or within a town center area</u> shall be graded for the full right-of-way width and approved to the City's permanent improvement standards and specifications. The City Engineer shall review the need for street improvements and shall specify whether full street or partial street improvements shall be required. <u>Where a street connection is not feasible and the distance from the nearest street connection exceeds 330', the City Engineer shall require the subdivider to build a trail, bicycle path, or other appropriate way.</u>

#### Transportation Demand Management:

#### CDC 55.100.7:

k. Major developments and conditional use applications in designated town center and industrial areas must include a transportation demand management (TDM) elements into the development program. Table A outlines requirements and appropriate TDM measures for various types of development. Larger scale developments that generate more auto-trips are required to implement more significant TDM measures. The measures are organized into three categories based on their level of impact. Development that falls below the threshold for Category 1 are encouraged but not required to address TDM measures.

- 1. Low– development that is expected to generate from \_\_\_\_\_ to \_\_\_\_ new auto trips.
- 2. Moderate development that is expected to generate from \_\_\_\_\_ to \_\_\_\_ new auto trips.
- 3. High development that is expected to generate more than \_\_\_\_ new auto trips.

Category 1 developments are required to implement \_\_\_\_\_ strategies from this part of the table. Category 2 developments must choose \_\_\_\_\_ strategies from Category 1 and \_\_\_\_\_ strategies from Category 2. Category 3 developments must meet the requirements for Categories 1 and 2 and also implement \_\_\_\_\_ strategies from Category 3.

| Strategy                     | Description                                                                                                                                                                           | Potential Trip Reduction <sup>a</sup>                                |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Category 1 Strategies        |                                                                                                                                                                                       |                                                                      |
| Walking Program              | Provide support services for those who walk to<br>work. This could include buying walking shoes or<br>providing lockers and showers.                                                  | 0-3%                                                                 |
| Bicycle Program <sup>b</sup> | Provide support services to those employees that<br>bicycle to work. Examples include: safe/secure<br>bicycle storage, shower facilities, and subsidy of<br>commute bicycle purchase. | 0-10%<br>Percentage of employees<br>living within 6 mi. of work site |

| Table A: Transportation Demand Management Strategies for Employers <sup>2</sup> |  |
|---------------------------------------------------------------------------------|--|
| Tuble A. Thunoportation Demand management of alogico for Employero              |  |

<sup>&</sup>lt;sup>2</sup> Guidance for Estimating Trip Reductions from Commute Options, Oregon Department of Environmental Quality (DEQ), August 1996, and *Employee Commute Options (ECO) Sample Trip Reduction Plan*, Oregon DEQ, October 2006.

| Strategy                                 | Description                                                                                                                                                                                                                                                                                                    | Potential Trip Reduction <sup>a</sup>                                                                                                                                                                                                                                                     |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Telecommuting                            | Allow employees to perform regular work duties at<br>home or at a work center closer to home, rather<br>than commuting from home to work. This can be<br>full time or on selected workdays. This can require                                                                                                   | 82-91% (Full Time)<br>14-36% (1-2 day/wk)<br>Per employee participating                                                                                                                                                                                                                   |
|                                          | computer equipment to be most effective.                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                     |
| Alternative Mode<br>Subsidy <sup>b</sup> | Provide a monetary bonus to employees that<br>commute to work by modes other than driving<br>alone.                                                                                                                                                                                                            | <u>High Transit Service:</u><br>21-34% (full subsidy)<br>10-17% (half subsidy)<br><u>Medium Transit Service:</u><br>5-7% (full subsidy)<br>2-4% (half subsidy)<br><u>Low Transit Service:</u><br>1-2% (full subsidy)<br>0.5-1% (half subsidy)21-34%                                       |
| Category 2 Strategies                    |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |
| Transit Pass<br>Subsidyb                 | Pay a portion of the cost of a monthly transit pass<br>for employees that commute to work by bus or<br>other public transportation methods. (The potential<br>trip reduction is lower than the alternative mode<br>subsidy because it does not incentivize bicycle,<br>pedestrian, and vanpool/carpool modes.) | <u>High Transit Service:</u><br><u>19-32% (full subsidy)</u><br><u>10-16% (half subsidy)</u><br><u>Medium Transit Service:</u><br><u>4-6% (full subsidy)</u><br><u>2-3% (half subsidy)</u><br><u>Low Transit Service:</u><br><u>0.5-1% (full subsidy)</u><br><u>0-0.5% (half subsidy)</u> |
| Compressed Work<br>Week                  | Allow employees to work their regularly scheduled number of hours in fewer days per week.                                                                                                                                                                                                                      | <u>Most Typical:</u><br><u>16-18% (4 day/40 hr)</u><br><u>Other Options:</u><br><u>7-9% (9 day/80 hr)</u><br><u>32-36% (3 day/36 hr)</u>                                                                                                                                                  |
|                                          |                                                                                                                                                                                                                                                                                                                | Per employee participating                                                                                                                                                                                                                                                                |

| Strategy                                      | Description                                                                                                                                                                                                                                                                                                                              | Potential Trip Reduction                                                                                                                            |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Category 2 Strategies                         | (continued)                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |
| Preferential Parking for Carpools             | Provide preferred parking stalls to employees using carpools and vanpools.                                                                                                                                                                                                                                                               | c                                                                                                                                                   |
| Time off with Pay for<br>Alternative Mode Use | Offer employees time off with pay as an incentive to use alternative modes.                                                                                                                                                                                                                                                              | 1-2%                                                                                                                                                |
| Gift/Awards for<br>Alternative Mode Use       | Offer employees the opportunity to receive a gift or<br>an award for using modes other than driving alone.                                                                                                                                                                                                                               | 0-3%                                                                                                                                                |
| Category 3 Strategies                         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |
| Car-Sharing                                   | Pay for car-sharing memberships (such as Zipcar) for business-related travel during the day                                                                                                                                                                                                                                              | د<br>Dependent upon presence of<br>nearby cars                                                                                                      |
| On-Site Services                              | Provide services at the work site that are frequently<br>used by employees (and that employees would<br>typically need to drive to use). Examples include<br>cafes/restaurants, dry cleaners, day care centers,<br>and bank machines.                                                                                                    | 1-2%                                                                                                                                                |
| Provide Vanpools <sup>b</sup>                 | Organize employees that live near each other into<br>a vanpool for their trips to and from work. The<br>employer may subsidize the van's operation and<br>maintenance costs. Existing programs in the area<br>that could be utilized include Valley VanPool (for<br>Salem destinations) and Metro VanPool (for<br>Portland destinations) | 30-40% (Fully-subsidize van)<br>15-25% (Run vanpool but<br>charge fee)<br>Percentage of employees<br>living more than 20 mi. away<br>from work site |
| On-Site Rideshare<br>Matching for HOVs        | Match employees who can reasonably carpool or<br>vanpool together based on information that<br>employees provide regarding their work hours,<br>availability of a vehicle, and place of residence.                                                                                                                                       | 6-8% (with support strategies)<br>1-2% (without support<br>strategies)                                                                              |
| Company Cars for<br>Business Travel           | Provide company cars for business-related travel during the day                                                                                                                                                                                                                                                                          | 0-1%                                                                                                                                                |
| Guaranteed Ride<br>Home Program               | Maintain a company owned or leased vehicle that is<br>available in the case of an emergency for<br>employees that arrived to work using transit or<br>bicycle.                                                                                                                                                                           | 1-3%<br>When used in combination<br>with other measures                                                                                             |

#### (Continued) Table A: Transportation Demand Management Strategies for Employers

<sup>a</sup> Reduction applicable to total number of employees, unless otherwise noted. <sup>b</sup> Tax benefits may be available to employers who provide their employees with certain transportation benefits (see www.irs.gov/pub/irs-pdf/p15b.pdf).

<sup>c</sup> Strategy not identified in Employee Commute Options (ECO) table, so potential trip reduction is unknown.