STAFF REPORT
 FOR THE PLANNING COMMISSION

FILE NUMBER:

HEARING DATE:

REQUEST:

APPROVAL
CRITERIA:
STAFF REPORT
PREPARED BY:

DR-18-08

March 6, 2019

Site Design Review to construct a new commercial building at 2180 $8^{\text {th }}$ Court

Community Development Code (CDC) Chapter 55
Jennifer Arnold, Associate Planner

Planning Manager's Initials JRW Development Review Engineer's Initials: Ap

TABLE OF CONTENTS
STAFF ANALYSIS AND RECOMMENDATION
GENERAL INFORMATION .. 2
EXECUTIVE SUMMARY .. 3
PUBLIC COMMENTS.. 3
RECOMMENDATION.. 4
ADDENDUM/STAFF FINDINGS ... 5-26

EXHIBITS
PC-1 AFFIDAVIT AND NOTICE PACKET ... 27-31
PC-2 COMPLETENESS LETTER.. 32-33
PC-3 APPLICANT’S SUBMITTAL ..34-299
PC-4 PUBLIC COMMENTS...300-316
PC-5 TVFR COMMENTS ..317-324
PC-6 ODOT COMMENTS ..325-327

GENERAL INFORMATION

OWNER:	Willamette Capital Investments
	PO Box 2507
	Wilsonville, OR 97070
APPLICANT:	Ed Bruin
	2233 NW 23 ${ }^{\text {rd }}$ Avenue
	Portland, OR 97210
CONSULTANT:	Chris Deslauries
	6443 SW Beaverton-Hillsdale Hwy
	Portland, OR 97221
SITE LOCATION:	$21808^{\text {th }}$ Court
LEGAL	
DESCRIPTION:	Clackamas County Assessor's Map 2S-1E-35D, tax lot 0903
SITE SIZE:	45,491 square feet (1.04 acres)
ZONING:	General Commercial (GC)
COMP PLAN	
DESIGNATION:	Commercial
120-DAY PERIOD:	This application became complete on January 10, 2019. The 120day maximum application-processing period ends on May 9, 2019
PUBLIC NOTICE:	Public notice was mailed to the all neighborhood associations and affected property owners on February 14, 2019. The property was posted with a notice sign on February 21, 2019. The notice was published in the West Linn Tidings on February 21, 2019. The notice requirements of CDC Chapter 99 have been met. In addition, the staff report was posted on the City's website February 22, 2019.

EXECUTIVE SUMMARY

Site Conditions: The subject property has been approved for a two-parcel partition (Planning File MIP-18-04). The south parcel currently contains a vacant Shari's restaurant, parking, landscaping, and pedestrian access to the stairway that connects to the asphalt pathway along Willamette Falls Drive. The north parcel is currently a paved parking area. The south parcel is relatively flat and contains no environmental overlays. There is a 24 -foot public access easement that is centered over the boundary of the two parcels and extends from $8^{\text {th }}$ Court to the east end of the property. The easement provides access to both the north and south parcels, as well as providing the opportunity for a future connection from $8^{\text {th }}$ Court to Willamette Falls Drive.

Project Description: The applicant proposes to remove the existing Shari's restaurant building and construct a new single-story commercial building. The new building has two tenant spaces with a total of 4,271 square feet. The proposal also includes new landscaping, lighting, and circulation for the property. The applicant has a dental office tenant for the 2,777 square foot space and proposes only office use in the remaining 1,494 square foot space. The north parcel is not part of this proposal and will remain in its current configuration as a parking area.

The land use permits include:

- Class II Design Review

Surrounding Land Use and Zoning: The subject property is zoned General Commercial (GC). Adjacent zoning and land uses include:

Direction From Site	Zoning	Land Use
North	 OBC/R-10	I-205 is north of the property. North of I-205: White Oak Savanna Park and Single-Family Attached homes
East	GC	One Single-Family home
West	GC	Commercial Development
South	R-10	Single-family Residential homes

Applicable Community Development Code Approval Criteria:

- Chapter 19, General Commercial;
- Chapter 55, Design Review;

Public comments:

See Exhibit PC-4.

RECOMMENDATION

Staff recommends approval of application DR-18-08 based on: 1) the findings submitted by the applicant, which are incorporated by this reference, 2) supplementary staff findings included in the Addendum below, and 3) the addition of conditions of approval below. With these findings, the applicable approval criteria are met. The conditions are as follows:

1. Site Plans. With the exception of modifications required by these conditions, the project shall substantially conform to all submitted drawings A1.0, A1.1, A2.1, A2.2, C1.0, C2.0, C2.1, C2.2, C2.3, C3.0, C3.1, C3.2, L1.01, L1.02, L1.03, E1.0 \& SK-1.
2. Engineering Standards. All public improvements and facilities associated with the approved site design, including but not limited to street improvements, driveway approaches, curb cuts, utilities, grading, onsite and offsite storm water, street lighting, easements, easement locations, and connections for future extension of utilities are subject to conformance with the City Municipal Code and Community Development Code. All improvements must be designed, constructed, and completed prior to the issuance of occupancy permits. (See Staff Findings 31, 58, 59, \&67)
3. $\mathbf{2 3}$ Foot Drive Aisle. Prior to issuance of building permits, the applicant shall modify the site plan to redesign the curbs for the five east end parking spaces to create a minimum 23 foot drive aisle per Staff Finding 23.
4. Bicycle Parking. The applicant shall revise the site plan to show four secure bicycle parking spaces, including two that are covered per Staff Finding 22. All bicycle spaces shall be located within 50 feet from the entrance to the buildings, be well-lit, observable, and properly signed.

ADDENDUM PLANNING COMMISSION STAFF REPORT

March 6, 2019

STAFF EVALUATION OF THE PROPOSAL’S COMPLIANCE WITH APPLICABLE CODE CRITERIA

I. CHAPTER 19, GENERAL COMMERCIAL, GC

19.020 PROCEDURES AND APPROVAL PROCESS
C. A use permitted outright, CDC 19.030, is a use which requires no approval under the provisions of this code. If a use is not listed as a use permitted outright, it may be held to be a similar unlisted use under the provisions of Chapter 80 CDC.
(...)

Staff Finding 1: The applicant proposes a single-story office building with leasable space for professional services and a dental office which are permitted in the GC zone. This criterion is met.
11.030 PERMITTED USES

The following are uses permitted outright in this zoning district:
(...)
5. Utilities, minor
(...)

Staff Finding 2: The applicant proposes three stormwater facilities to meet water quality and quantity requirements of the West Linn Public Works Standards. Stormwater Planter 1 (546 square feet) will accommodate stormwater runoff from pavement, sidewalks, and the roof of tenant space two. Stormwater Planter 2 (179 square feet) will accommodate stormwater runoff from pavement and sidewalks on the east side of the new building. Stormwater Planter $\mathbf{3}$ ($\mathbf{7 1 2}$ square feet) will accommodate stormwater runoff from the roof of the larger tenant space one. All facilities will be connected to the existing infrastructure. The proposed stormwater system has been designed and sized by an Oregon licensed engineer to accommodate the projected peak storm event. The facilities are required by City regulations and will serve the proposed redevelopment of the subject property. The Planning Commission has discussed the issue of major versus minor utility and the applicant was informed of the interpretation at the pre-application conference.

19.070 DIMENSIONAL REQUIREMENTS, USES PERMITTED OUTRIGHT AND USES PERMITTED UNDER PRESCRIBED CONDITIONS

A. Except as may be otherwise provided by the provisions of this code, the following are the requirements for uses within this zone:

1. The minimum front lot line length or the minimum lot width at the front lot line shall be 35 feet.
2. The average minimum lot width shall be 50 feet.
3. The average minimum lot depth shall not be less than 90 feet.

Staff Finding 3: The subject property is on an existing lot at the end of the $8^{\text {th }}$ Court cul-de-sac. No proposed changes to the existing front lot line dimensions or average lot depth. These criteria are met.
4. Where the use abuts a residential district, except as provided in CDC 58.090(C)(1), the setback distance of the residential zone shall apply.
5. The maximum lot coverage shall be 50 percent, except as provided in CDC 58.090(C)(1)(d).

Staff Finding 4: The subject property is surrounded by the following development and zones:

Direction	Zone	Development
To the North	I-205 (no zone) \& Single-Family Residential (R-10)	The White Oak Savanna Park
To the South	Single-Family Residential (R-10)	Single-Family homes
To the East	General Commercial (GC)	Used as residential
To the West	General Commercial (GC)	Commercial buildings

The applicant has proposed a $\mathbf{2 0}$ foot setback to the nearest single-family residentially zoned property to the south. These criteria are met.
6. The maximum building height shall be two and one-half stories or 35 feet for any structure located within 50 feet of a low or medium density residential zone, and three and one-half stories or 45 feet for any structure located 50 feet or more from a low or medium density residential zone.
(...)

Staff Finding 5: The applicant is proposing a single story mixed use commercial building. The applicant's proposed uses are office space and a dental office. The proposed height of this commercial building is $\mathbf{1 8}$ feet. This criterion is met.

II. CHAPTER 38, ADDITIONAL YARD AREA REQUIRED, EXCEPTIONS TO YARD REQUIREMENTS, STORAGE IN YARDS, PROJECTIONS INTO YARDS

38.030 SETBACK FROM STREET CENTERLINE REQUIRED
A. To assure improved light, air, and sight distance and to protect the public health, safety and welfare, a setback in addition to the yard requirements of the zone may be required where the right-of-way is inadequate. A determination shall be made based on the street standards contained in CDC 85.200(A).
B. The minimum yard requirement shall be increased to provide for street widening in the event a yard abuts a street having a right-of-way width less than required by its functional classification on the City's Comprehensive Plan Map, and in such case the setback shall be not
less than the setback required by the zone plus one-half of the projected road width as required under CDC 85.200(A); however
C. The minimum distance from the wall of any structure to the centerline of an abutting street shall not be less than 25 feet plus the yard required by the zone. This provision shall not apply to rights-of-way of 50 feet or greater in width.

Staff Finding 6: The subject property is bordered by Willamette Falls Drive, an arterial classification. The existing right-of-way width for Willamette Falls Drive is $\mathbf{1 2 0}$ feet. The required cross-section design for an arterial requires 102 feet of right-of-way. No additional right-of-way is needed adjacent to the subject property and the $\mathbf{2 5}$ foot minimum distance is not applicable as the right-of-way exceeds 50 feet in width. These criteria are met.

III. CHAPTER 41, BUILDING HEIGHT, STRUCTURES ON STEEP SLOPES, EXCEPTIONS

41.005 DETERMINING HEIGHT OF BUILDING
A. For all zoning districts, building height shall be (...)

Staff Finding 7: The subject property is not located within any historic or commercial design district. The applicant is proposing a single story commercial building which does not exceed the 35 foot height restriction. This criterion is met.

IV. CHAPTER 42, CLEAR VISION AREAS

42.030 EXCEPTIONS

The following described area in Willamette shall be exempt from the provisions of this chapter. The units of land zoned General Commercial which abut Willamette Falls Drive, located between $10^{\text {th }}$ and $16^{\text {th }}$ Streets. (...)

Staff Finding 8: The subject property is not located on a corner lot. This criteria does not apply.

V. CHAPTER 46, OFF-STREET PARKING, LOADING AND RESERVOIR AREAS

46.060 STORAGE IN PARKING AND LOADING AREAS PROHIBITED

Required parking spaces shall be available for the parking of passenger automobiles of residents, customers, patrons and employees only, and the required parking spaces shall not be used for storage of vehicles or materials or for the parking of trucks connected with the business or use with the exception of small (under one-ton) delivery trucks or cars.

Staff Finding 8: The applicant does not propose the storage of materials or vehicles in the parking lot that would occupy required parking spaces. This criteria is met.
46.070 MAXIMUM DISTANCE ALLOWED BETWEEN PARKING AREA AND USE
A. Off-street parking spaces for single- and two-family dwellings shall be located on the same lot with the dwelling.
B. Off-street parking spaces for uses not listed in subsection A of this section shall be located not farther than 200 feet from an entryway to the building or use they are required to serve, measured in a straight line from the building, with the following exceptions:
(...)
3. Employee parking areas for carpools and vanpools shall be located closer to the entryway to the building than general employee parking.
(...)
5. All disabled parking shall be placed closest to building entrances than all other parking. Appropriate ADA curb cuts and ramps to go from the parking lot to the ADA-accessible entrance shall be provided unless exempted by ADA code.

Staff Finding 9: The furthest standard parking space is a maximum 115 feet from the entryway to the new tenant spaces. Disabled parking spaces are proposed to be placed closest to all building entrances in relation to all other parking. The disabled parking space is proposed to be approximately 15 feed from the entryway. The proposal requires no carpool/vanpool spaces. These criteria are met.
46.080 COMPUTATION OF REQUIRED PARKING SPACES AND LOADING AREA
A. Where several uses occupy a single structure or unit of land...
B. To calculate building square footage as a basis for determining how many parking spaces are needed, the area measured shall be gross floor area under the roof measured from the faces of the structure, including all habitable floors and excluding only space devoted to covered offstreet parking or loading.
C. Where employees are specified, the employees counted are the persons who work on the premises including proprietors, executives, professional people, production, sales, and distribution employees, during the largest shift.
D. Fractional space requirements shall be counted as a whole space.
E. On-street parking along the immediate property frontage(s) may be counted toward the minimum parking requirement with approval from the City Engineer.
(...)

Staff Finding 10: The proposal is for one tenant space (2,777 square feet) to be occupied by a dental office and the other tenant space (1,494 square feet) to be occupied by general office use. The proposal does not include on-street parking to count towards minimum requirements and all fractional space calculations have been counted as a whole space. These criteria are met.
46.090 MINIMUM PARKING SPACE REQUIREMENTS
(...)
B. Commercial.
(...)

5. Professional offices...

- One space for every 370 square feet of gross area.

6. Medical/dental clinics/day surgery.

- One space for every 250 square feet of gross floor area.

Staff Finding 11: The applicant is proposing a mixed use commercial building with proposed uses as a dental office (2,777 square feet) and professional office space (1,494 square feet). The parking requirement for the professional office space is one space per 370 square feet of office area (5 total required spaces). The requirement for the dental office is one space per $\mathbf{2 5 0}$ square feet of floor area ($\mathbf{1 2}$ total required spaces). The required number of parking spaces for the proposed mixed use commercial building is 17 spaces and the applicant is proposing $\mathbf{2 1}$ spaces. The criteria is satisfied.
46.150 DESIGN AND STANDARDS

The following standards apply to the design and improvement of areas used for vehicle parking, storage, loading, and circulation:
A. Design Standards.

1. "One standard parking space" means a minimum for a parking stall of eight feet in width and 16 feet in length. These stalls shall be identified as "compact." To accommodate larger cars, 50 percent of the required parking spaces shall have a minimum dimension of nine feet in width and 18 feet in length (nine feet by 18 feet). When multi-family parking stalls back onto a main driveway, the stalls shall be nine feet by 20 feet. Parking for development in water resource areas may have 100 percent compact spaces.
2. Disabled parking and maneuvering spaces shall be consistent with current federal dimensional standards and subsection B of this section and placed nearest to accessible building entryways and ramps.
(...)

Staff Finding 12: The applicant proposes 5 parking spaces of eight feet by 16 feet, 15 spaces of nine feet by 18 feet (75%), and one space that meet federal ADA standards and are located nearest to accessible building entryways and ramps. These criteria are met.
(...)
11. Parking spaces along the boundaries of a parking lot or adjacent to interior landscaped areas or sidewalks shall be provided with a wheel stop at least four inches high located two feet back from the front of the parking stall. Such parking spaces may be provided without wheel stops if the sidewalks or landscaped areas adjacent the parking stalls are two feet wider than the minimum width.

Staff Finding 13: Wheel stops will be provided for all parking spaces. These criteria are met.
12. Off-street parking and loading areas shall be drained in accordance with plans and specifications approved by the City Engineer. Storm drainage at commercial sites may also have to be collected to treat oils and other residue.

Staff Finding 14: The applicant identifies all stormwater from off-street parking areas to be collected and conveyed to the stormwater facilities for treatment. This criterion is met.
13. Artificial lighting on all off-street parking facilities shall be designed to deflect all light downward away from surrounding residences and so as not to create a hazard to the public use of any road or street.

Staff Finding 15: The applicant has proposed an illumination plan with on-site lighting that is deflected downward and away from surrounding residences and public rights-of-way. This criterion is met.
14. Directional arrows and traffic control devices which are placed on parking lots shall be identified.
(...)
16. Visitor or guest parking must be identified by painted "GUEST" or "VISITOR."
17. The parking area shall have less than a five percent grade. No drainage across adjacent sidewalks or walkways is allowed.

Staff Finding 16: No directional arrows or signage for the access drives are proposed. No visitor or guest parking spaces are proposed. The grade of the parking lot is less than 2.0 percent. The design does not propose drainage across adjacent sidewalks or walkways. These criteria are met.
18. Commercial, office, industrial, and public parking lots may not occupy more than 50 percent of the main lot frontage of a development site. The remaining frontage shall comprise buildings or landscaping. If over 50 percent of the lineal frontage comprises parking lot, the landscape strip between the right-of-way and parking lot shall be increased to 15 feet wide and shall include terrain variations (e.g., one-foot-high berm) plus landscaping. The defensible space of the parking lot should not be compromised.

Staff Finding 17: The applicant does not propose parking along the main lot frontage of $8^{\text {th }}$ Court. This criterion is met.
19. Areas of the parking lot improved with asphalt or concrete surfaces shall be designed into areas of 12 or less spaces through the use of defined landscaped area. Groups of 12 or less spaces are defined as:
a. Twelve spaces in a row, provided there are no abutting parking spaces, as in the case when the spaces are abutting the perimeter of the lot; or
b. Twelve spaces in a group with six spaces abutting together; or
c. Two groups of 12 spaces abutting each other, but separated by a 15-foot-wide landscape area including a six-foot-wide walkway.
(...)

Staff Finding 18: The applicant proposal provides three parking areas that meet Criteria a. These criteria are met.
20. Pedestrian walkways shall be provided in parking areas having 20 or more spaces. Walkways or sidewalks shall be constructed between major buildings/activity areas... Walkways shall be constructed using a material that visually contrasts with the parking lot and driveway surface. Walkways shall be further identifiable to pedestrians and motorists by grade separation, walls, curbs, surface texture, and/or landscaping. Walkways shall be six feet wide. The arrangement and layout of the paths shall depend on functional requirements.

Staff Finding 19: The applicant proposes walkways along the three sides of the new building where parking is located. The walkways will be a minimum 6.5 feet wide and be accommodated above a curb. This criterion is met.

(...)

B. Accessible parking standards for persons with disabilities. If any parking is provided for the public or visitors, or both, the needs of the people with disabilities shall be based upon the following standards or current applicable federal standards, whichever are more stringent:

1. Minimum number of accessible parking space requirements (see following table):

MINIMUM REQUIRED NUMBER OF TOTAL PARKING SPACES	TOTAL NUMBER OF ACCESSIBLE SPACES	NUMBER OF VAN- ACCESSIBLE SPACES REQUIRED, OF TOTAL	SPACES SIGNED "WHEELCHAIR USE ONLY"
1-25	1	1	-

Staff Finding 20: The proposal is required to provide a minimum of 17 parking spaces, which then requires one accessible van space. The applicant has proposed one accessible van space. These criteria are met.
2. Location of parking spaces. Parking spaces for the individual with a disability that serve a particular building shall be located on the shortest possible accessible circulation route to an accessible entrance to a building. In separate parking structures or lots that do not serve a particular building, parking spaces for the persons with disabilities shall be located on the shortest possible circulation route to an accessible pedestrian entrance of the parking facility.
3. Accessible parking space and aisle shall meet ADA vertical and horizontal slope standards.
4. Where any differences exist between this section and current federal standards, those standards shall prevail over this code section.
5. One in every eight accessible spaces, but not less than one, shall be served by an access aisle 96 inches wide.
6. Van-accessible parking spaces shall have an additional sign marked "Van Accessible" mounted below the accessible parking sign. A van-accessible parking space reserved for wheelchair users shall have a sign that includes the words "Wheelchair Use Only." Vanaccessible parking shall have an adjacent eight-foot-wide aisle. All other accessible stalls shall have a six-foot-wide aisle. Two vehicles may share the same aisle if it is between them. The vertical clearance of the van space shall be 96 inches

Staff Finding 21: The applicant proposal has located the accessible parking spot nearest the building entryway. All accessible spaces meet ADA standards. These criteria are met.
(...)
D. Bicycle facilities and parking.

1. Provisions shall be made for pedestrian and bicycle ways if such facilities are shown on an adopted plan.
2. Bicycle parking facilities shall either be lockable enclosures in which the bicycle is stored, or secure stationary racks which accommodate bicyclist's locks securing the frame and both wheels. The bicycle parking shall be no more than 50 feet from the entrance to the building, well-lit, observable, and properly signed.
3. Bicycle parking must be provided in the following amounts:

LAND USE CATEGORY	MINIMUM REQUIRED BICYCLE PARKING SPACES	MINIMUM COVERED AMOUNT
Doctor, Dentist Offices	2, or 0.5 spaces per 1,000 gross sq. ft., whichever is greater	25%
Office	2, or 0.5 spaces per 1,000 gross sq. ft., whichever is greater	10%

Staff Finding 22: The subject property does not include any planned bicycle pathways. The applicant has provided a pedestrian walkway from $8^{\text {th }}$ Court to the existing stairway that provides access to the asphalt path along Willamette Falls Drive. The applicant is required to provide four bicycle parking spaces (2 for the $\mathbf{2 , 7 7 7}$ sq. ft. dental office and 2 for the $\mathbf{1 , 4 9 4} \mathbf{~ s q .}$ ft . general office) with two covered. The proposal shows 3 secure stationary racks. The applicant shall revise the site plan to show four secure bicycle parking spaces, including two that are covered per Condition of Approval 4. All bicycle spaces shall be located within 50 feet from the entrance to the buildings, be well-lit, observable, and properly signed. Subject to the Conditions of Approval, these criteria are met.
(...)
F. (See Figures 1 and 2 below.) Minimum Standards for Parking Lot Layout

ANGLE OF PARKING	DIRECTION OF PARKING	AISLE WIDTH		DIMENSION ' A^{\prime}		DIMENSION 'B'	
		STALL WIDTH		STALL WIDTH		STALL WIDTH	
		9.0	8.0^{\prime}	9.0^{\prime}	8.0^{\prime}	9.0^{\prime}	8.0'
(...)							
90°	DRIVE-IN	23.0^{\prime}	23.0^{\prime}	18.0^{\prime}	16.0^{\prime}	$9.0{ }^{\prime}$	8.0^{\prime}
(...)							

Staff Finding 23: The proposal is for the parking spaces to be drive-in at a 90 degree angle, which requires a drive aisle width of 23 feet regardless of whether the space is standard or compact. The applicant proposes a minimum 23 foot drive aisle for all parking spaces except the five compact spaces at the east end of the new building that is only 20 feet wide. The applicant shall redesign the curbs to create a 23 foot drive aisle per Condition of Approval 3. Subject to the Conditions of Approval, this criterion is met.

VI. CHAPTER 48, ACCESS, EGRESS AND CIRCULATION

48.025 ACCESS CONTROL

B. Access Control Standards

1. Traffic impact analysis requirements. The City or other agency with access jurisdiction may require a traffic study prepared by a qualified professional to determine access, circulation and other transportation requirements. (See also CDC 55.125, Traffic Impact Analysis.)

Staff Finding 24: The applicant submitted a Revised Technical Memorandum dated January 3, 2019 prepared by Lancaster Engineering. The analysis found adequate access and circulation on site, as well as no impact to off-site transportation facilities. See Sheet SK-1 for the fire truck turnaround in response to TVFR comments. This criterion is met.
2. The City or other agency with access permit jurisdiction may require the closing or consolidation of existing curb cuts or other vehicle access points, recording of reciprocal access easements (i.e., for shared driveways), development of a frontage street, installation of traffic control devices, and/or other mitigation as a condition of granting an access permit, to ensure the safe and efficient operation of the street and highway system. Access to and from off-street parking areas shall not permit backing onto a public street.

Staff Finding 25: The applicant proposes to utilize the existing access drive from $8^{\text {th }}$ Court. The applicant was required to record a reciprocal access easement as a condition of approval during the partition of the property into the north and south parcels. The design has no parking areas that back onto a public street. This criterion is met.
3. Access options. When vehicle access is required for development (i.e., for off-street parking, delivery, service, drive-through facilities, etc.), access shall be provided by one of the following methods (planned access shall be consistent with adopted public works standards and TSP). These methods are "options" to the developer/subdivider.
a) Option 1. Access is from an existing or proposed alley or mid-block lane. If a property has access to an alley or lane, direct access to a public street is not permitted.
b) Option 2. Access is from a private street or driveway connected to an adjoining property that has direct access to a public street (i.e., "shared driveway"). A public access easement covering the driveway shall be recorded in this case to assure access to the closest public street for all users of the private street/drive.
c) Option 3. Access is from a public street adjacent to the development lot or parcel. If practicable, the owner/developer may be required to close or consolidate an existing access point as a condition of approving a new access. Street accesses shall comply with the access spacing standards in subsection (B) (6) of this section.

Staff Finding 26: The applicant proposes one access point to subject property via Option 3. The applicant has designed the access to meet all City standards or regulations that enhance safety and convenience for all travel modes. These criteria are met.
4. Subdivisions fronting onto an arterial street.
(...)
5. Double-frontage lots.
(...)

Staff Finding 27: The subject property has frontage on $8^{\text {th }}$ Court (a local street) and Willamette Falls Drive (a minor arterial). The proposal is to only take access from the local street. The criteria are met.
6. Access spacing.
a. The access spacing standards found in Chapter 8 of the adopted Transportation System Plan (TSP) shall be applicable to all newly established public street intersections and non-traversable medians.
b. Private drives and other access ways are subject to the requirements of CDC 48.060 .

Staff Finding 28: The proposal does not create any new intersections or non-traversable medians. CDC 48.060 is addressed in Staff Findings 17 and 18. These criteria are met.
7. Number of access points.

8. Shared driveways.

Staff Finding 29: The proposal includes one access point to be shared with the vacant parcel to the north. The applicant was required to record a reciprocal access easement as a condition of approval during the partition of the property into the north and south parcels. These criteria are met.
C. Street connectivity and formation of blocks required.

In order to promote efficient vehicular and pedestrian circulation throughout the City, land divisions and large site developments shall produce complete blocks bounded by a connecting network of public and/or private streets, in accordance with the following standards:

1. Block length and perimeter. The maximum block length shall not exceed 800 feet or 1,800 feet along an arterial.

Staff Finding 30: The applicant's proposal does not create any new blocks. This criterion is met.
2. Street standards. Public and private streets shall also conform to Chapter 92 CDC, Required Improvements, and to any other applicable sections of the West Linn Community Development Code and approved TSP.

Staff Finding 31: The applicant is not required to make any improvements to Willamette Falls Drive. Willamette Falls Drive is consistent with the provisions of the West Linn Community Development Code and the West Linn Transportation System Plan. The applicant anticipates impacts to adjacent curbs and sidewalks during construction and installation of utilities on $8^{\text {th }}$ Court. The applicant will mitigate any impacts to public right-of-way infrastructure through replacement per Condition of Approval 2. Subject to the Conditions of Approval, this criterion is met.
(...)
48.040 MINIMUM VEHICLE REQUIREMENTS FOR NON-RESIDENTIAL USES

Access, egress, and circulation system for all non-residential uses shall not be less than the following:
A. Service drives for non-residential uses shall be fully improved with hard surface pavement:

1. With a minimum of 24 -foot width when accommodating two-way traffic; or
2. With a minimum of 15 -foot width when accommodating one-way traffic. Horizontal clearance shall be two and one-half feet wide on either side of the driveway.
3. Meet the requirements of CDC 48.030(E)(3) through (6).
4. Pickup window driveways may be 12 feet wide unless the Fire Chief determines additional width is required.

Staff Finding 32: The applicant proposes a 24 foot, two-way, shared access drive from $8^{\text {th }}$ Court that is improved with asphalt. The criteria are met.
B. All non-residential uses shall be served by one or more service drives as determined necessary to provide convenient and safe access to the property and designed according to CDC 48.030(A). In no case shall the design of the service drive or drives require or facilitate the backward movement or other maneuvering of a vehicle within a street, other than an alley.
C. All on-site maneuvering and/or access drives shall be maintained pursuant to CDC 46.130.
D. Gated accessways to non-residential uses are prohibited unless required for public safety or security.

Staff Finding 33: The subject property is not proposing any gated accessways or service drives. The Transportation Systems Plan indicates a required 24 foot wide easement through the center of the subject property. January of 2019 a partition was approved (MIP-18-04) to divide the property down the middle of this easement. The easement was maintained and will be paved to match the parking areas. The easement is shown on sheet C2.0 of the applicant's submittal. The final plat for this partition has not been recorded as of the publication of this staff report. Upon final recording of the partition plat for MIP-18-04, easements for public utilities, access and maintenance shall be recorded for the $\mathbf{2 4}$ foot ingress and egress easement. There is no proposed development on the north side of the easement at this time. These criteria are met.

(...)

48.060 WIDTH AND LOCATION OF CURB CUTS AND ACCESS SEPARATION REQUIREMENTS
A. Minimum curb cut width shall be 16 feet.
B. Maximum curb cut width shall be 36 feet, except along Highway 43 in which case the maximum curb cut shall be 40 feet. For emergency service providers, including fire stations, the maximum shall be 50 feet.
C. No curb cuts shall be allowed any closer to an intersecting street right-of-way line than the following:

1. On an arterial when intersected by another arterial, 150 feet.
(...)
2. On a local street when intersecting any other street, 35 feet.
D. There shall be a minimum distance between any two adjacent curb cuts on the same side of a public street, except for one-way entrances and exits, as follows:
3. On an arterial street, 150 feet.
4. On a collector street, 75 feet.
5. Between any two curb cuts on the same lot or parcel on a local street, 30 feet.

Staff Finding 34: The applicant is not proposing any new curb cuts. These criteria does not apply.
E. A rolled curb may be installed in lieu of curb cuts and access separation requirements.
F. Curb cuts shall be kept to the minimum, particularly on Highway 43. Consolidation of driveways is preferred. The standard on Highway 43 is one curb cut per business if consolidation of driveways is not possible.
G. Adequate line of sight pursuant to engineering standards should be afforded at each driveway or accessway.

Staff Finding 35: The applicant is not proposing any new curb cuts. These criteria does not apply.
(...)
48.080 BICYCLE AND PEDESTRIAN CIRCULATION
(...)
c. Bicycle and pedestrian ways at commercial or industrial sites shall be provided according to the provisions of Chapter 55 CDC, Design Review.

Staff Finding 36: The applicant has proposed bicycle parking onsite and has maintained the existing stairs leading to Willamette Falls Drive on the west side of the building leading to a sidewalk. These criteria are met.

VII. CHAPTER 52, SIGNS

52.210 APPROVAL STANDARDS

All signs shall meet the following standards:
(...)

Staff Finding 37: The applicant is not proposing any signs at this time. Tenants will be responsible for securing appropriate sign permits. These criteria are met.

VIII. CHAPTER 54, LANDSCAPING

54.010 PURPOSE

The purpose of this chapter is to provide for the design, selection (...)
54.020 APPROVAL CRITERIA
(...)
E. Landscaping - By type, location and amount.

1. Residential uses (nonOsingle-family). (...)
2. Non-residential uses. A minimum of 20 percent of the gross site area shall be landscaped. Parking lot landscaping may be counted in the percentage. (...)

Staff Finding 38: The applicant has submitted a landscaping plan (see sheets L1.01, L1.02, and L1.03 of the applicant's supplemental submittal). This criteria is met.

CHAPTER 55, DESIGN REVIEW

55.100 APPROVAL STANDARDS - CLASS II DESIGN REVIEW
B. Relationship to the natural and physical environment.

1. The buildings and other site elements shall be designed and located so that all heritage trees, as defined in the municipal code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction.

Staff Finding 39: The subject site contains no heritage trees. This criteria does not apply.
2. All heritage trees...all trees and clusters of trees ("cluster" is defined as three or more trees with overlapping driplines; however, native oaks need not have an overlapping dripline) that are considered significant by the City Arborist...shall be protected pursuant to the criteria of subsections $(B)(2)(a)$ through (f) of this section...
a. Non-residential and residential projects on Type I and II lands shall protect all heritage trees and all significant trees and tree clusters by either the dedication of these areas or establishing tree conservation easements...

Staff Finding 40: There are no heritage trees or significant trees on the site. The criteria is met.
b. Non-residential and residential projects on non-Type I and II lands shall set aside up to 20 percent of the area to protect trees and tree clusters that are determined to be significant, plus any heritage trees...

Staff Finding 41: The applicant is proposing to remove the existing restaurant and replacing it with a single-story commercial building. Because this property was previously developed and paved, the property is mostly flat and does not contain any Type I or Type II lands. This criteria does not apply.
3. The topography and natural drainage shall be preserved to the greatest degree possible.

Staff Finding 42: Staff adopts the applicant's findings on page 40 (Exhibit PC-3 applicant's narrative). The applicant is not proposing any work within the Water Resource Protection Area associated with Bernert Creek to the north of the subject property. Staff finds that the criteria is met.
4. The structures shall not be located in areas subject to slumping and sliding. The Comprehensive Plan Background Report's Hazard Map, or updated material as available and as deemed acceptable by the Planning Director, shall be the basis for preliminary determination.

Staff Finding 43: Staff adopts the applicant's findings on page 40 (Exhibit PC-3 applicant's narrative). The criteria is met.
5. There shall be adequate distance between on-site buildings and on-site and off-site buildings on adjoining properties to provide for adequate light and air circulation and for fire protection.

Staff Finding 44: The properties located on each side of the subject property are zoned general commercial. The property located to the south (across Willamette Falls Drive) is zoned R-10 (single-family residential) and the applicant has proposed to maintain the existing 20' setback as the existing restaurant. I-205 is north of the subject property, separating the property from residential development to the north. The criteria is met.
6. Architecture.
a. The proposed structure(s) scale shall be compatible with the existing structure(s) on site and on adjoining sites. Contextual design is required. Contextual design means respecting and incorporating prominent architectural styles, building lines, roof forms, rhythm of windows, building scale and massing of surrounding buildings in the proposed structure. The materials and colors shall be complementary to the surrounding buildings.

Staff Finding 45: Staff incorporates applicant findings found on page 40 (Exhibit PC-3 applicant's narrative). This criterion is met.

b. While there has been discussion in Chapter 24 CDC about transition, it is appropriate that new buildings should architecturally transition in terms of bulk and mass to work with, or fit, adjacent existing buildings. This transition can be accomplished by selecting designs that "step down" or "step up" from small to big structures and vice versa (see figure below). Transitions may also take the form of carrying building patterns and lines (e.g., parapets, windows, etc.) from the existing building to the new one.
c. Contrasting architecture shall only be permitted when the design is manifestly superior to adjacent architecture in terms of creativity, design, and workmanship, and/or it is adequately separated from other buildings by distance, screening, grade variations, or is part of a development site that is large enough to set its own style of architecture.
d. Human scale is a term that seeks to accommodate the users of the building and the notion that buildings should be designed around the human scale (i.e., their size and the average range of their perception). Human scale shall be accommodated in all designs by, for example, multilight windows that are broken up into numerous panes, intimately scaled entryways, and visual breaks (exaggerated eaves, indentations, ledges, parapets, awnings, engaged columns, etc.) in the facades of buildings, both vertically and horizontally.

Staff Finding 46: Staff incorporates applicant findings found on pages page 40 to 42 (Exhibit PC-3 applicant's narrative). These criteria are met.
e. The main front elevation of commercial and office buildings shall provide at least 60 percent windows or transparency at the pedestrian level to create more interesting streetscape and window shopping opportunities. One side elevation shall provide at least 30 percent transparency. Any additional side or rear elevation, which is visible from a collector road or greater classification, shall also have at least 30 percent transparency...

Staff Finding 47: Staff incorporates applicant findings on pages 40 to 42 (Exhibit PC-3 applicant's narrative).

These criteria are met.

f. Variations in depth and roof line are encouraged for all elevations.

To vary the otherwise blank wall of most rear elevations, continuous flat elevations of over 100
feet in length should be avoided by indents or variations in the wall. The use of decorative brick, masonry, or stone insets and/or designs is encouraged. Another way to vary or soften this elevation is through terrain variations such as an undulating grass area with trees to provide vertical relief.
g. Consideration of the micro-climate (e.g., sensitivity to wind, sun angles, shade, etc.) shall be made for building users, pedestrians, and transit users, including features like awnings.
h. The vision statement identified a strong commitment to developing safe and attractive pedestrian environments with broad sidewalks, canopied with trees and awnings
i. Sidewalk cafes, kiosks, vendors, and street furniture are encouraged. However, at least a four-foot-wide pedestrian accessway must be maintained per Chapter 53 CDC, Sidewalk Use.

Staff Finding 48: Staff incorporates applicant findings on pages 40 to 42 (Exhibit PC-3 applicant's narrative).
These criteria are met.
7. Transportation Planning Rule (TPR) compliance. The automobile shall be shifted from a dominant role, relative to other modes of transportation, by the following means:
a. Commercial and office development shall be oriented to the street. At least one public entrance shall be located facing an arterial street; or....facing the local street with highest traffic levels...
(...)
c. Commercial, office, and multi-family projects shall be built as close to the adjacent main right-of-way as practical to facilitate safe pedestrian and transit access...

Staff Finding 49: The proposed commercial building is located on the south side of the subject property. On the north side of proposed structure is an access easement required by the Transportation Systems Plan. The applicant has proposed sidewalks around the commercial building connecting to existing sidewalks along $8^{\text {th }}$ Court. See Sheet C2.0 for details. These criteria are satisfied.
d. Accessways, parking lots, and internal driveways shall accommodate pedestrian circulation and access by specially textured, colored, or clearly defined footpaths at least six feet wide. Paths shall be eight feet wide when abutting parking areas or travel lanes. Paths shall be separated from parking or travel lanes by either landscaping, planters, curbs, bollards, or raised surfaces...
e. Paths shall provide direct routes that pedestrians will use between buildings, adjacent rights-of-way, and adjacent commercial developments. They shall be clearly identified. They shall be laid out to attract use and to discourage people from cutting through parking lots and impacting environmentally sensitive areas.

Staff Finding 50: Paths and accessways are provided with the proposed commercial building (see Applicant's submittal sheet C2.0); these criteria are met.
(...)
C. Compatibility between adjoining uses, buffering, and screening.

1. In addition to the compatibility requirements contained in Chapter 24 CDC, buffering shall be provided between different types of land uses; for example, buffering between single-family homes and apartment blocks. However, no buffering is required between single-family homes and duplexes or single-family attached units. The following factors shall be considered in determining the adequacy of the type and extent of the buffer:
a. The purpose of the buffer, for example to decrease noise levels, absorb air pollution, filter dust, or to provide a visual barrier.
b. The size of the buffer required to achieve the purpose in terms of width and height.
c. The direction(s) from which buffering is needed.
d. The required density of the buffering.
e. Whether the viewer is stationary or mobile.

Staff Finding 51: Staff incorporates applicant findings on page 45 (Exhibit PC-3 applicant's narrative). These criteria are met.

2. On-site screening from view from adjoining properties of such things as service areas, storage areas, and parking lots shall be provided and the following factors will be considered in determining the adequacy of the type and extent of the screening:
a. What needs to be screened?
b. The direction from which it is needed.
c. How dense the screen needs to be.
d. Whether the viewer is stationary or mobile.
e. Whether the screening needs to be year-round.

Staff Finding 52: Staff incorporates the applicant's findings on page 45 (Exhibit PC-3 applicant's narrative). These criteria are met.

3. Rooftop air cooling and heating systems and other mechanical equipment shall be screened from view from adjoining properties.

Staff Finding 53: The applicant proposes to screen all HVAC rooftop equipment. These criteria are met.

D. Privacy and noise.

1. Structures which include residential dwelling units shall provide private outdoor areas for each ground floor unit which is screened from view from adjoining units.
2. Residential dwelling units shall be placed on the site in areas having minimal noise exposure to the extent possible. Natural-appearing sound barriers shall be used to lessen noise impacts where noise levels exceed the noise standards contained in West Linn Municipal Code Section 5.487.
3. Structures or on-site activity areas which generate noise, lights, or glare shall be buffered from adjoining residential uses in accordance with the standards in subsection C of this section where applicable.
4. Businesses or activities that can reasonably be expected to generate noise in excess of the noise standards contained in West Linn Municipal Code Section 5.487 shall undertake and submit appropriate noise studies and mitigate as necessary to comply with the code. (See CDC 55.110(B)(11) and 55.120(M).)

If the decision-making authority reasonably believes a proposed use may generate noise exceeding the standards specified in the municipal code, then the authority may require the applicant to supply professional noise studies from time to time during the user's first year of operation to monitor compliance with City standards and permit requirements.

Staff Finding 54: The proposal does not include residential dwelling units so criteria 1-2, above, do not apply. Regarding noise, the properties on each side of the subject property are also zoned commercial. The property to the east is zoned commercial, however the use is still residential. Staff incorporates the applicant's findings on page 46 (Exhibit PC-3 applicant's submittal). The criteria is met.

(...)

G. Demarcation of public, semi-public, and private spaces. The structures and site improvements shall be designed so that public areas such as streets or public gathering places, semi-public areas, and private outdoor areas are clearly defined in order to establish persons having a right to be in the space, to provide for crime prevention, and to establish maintenance responsibility. These areas may be defined by:

1. A deck, patio, fence, low wall, hedge, or draping vine;
2. A trellis or arbor;
3. A change in level;
4. A change in the texture of the path material;
5. Sign; or
6. Landscaping.

Staff Finding 55: Staff incorporates applicant findings- see applicant's submittal page 48
(Exhibit PC-3 applicant's submittal). These criteria are met.
H. Public transit.

1. Provisions for public transit may be required where the site abuts an existing or planned public transit route. The required facilities shall be based on the following:
a. The location of other transit facilities in the area.
(....)

Staff Finding 56: The nearest public transit stop is located at $10^{\text {th }}$ Street and $8^{\text {th }}$ Court. This stop is approximately 450 feet from the subject property and there are no public transit stops down $8^{\text {th }}$ Court. These criteria are met.
I. Public facilities. An application may only be approved if adequate public facilities will be available to provide service to the property prior to occupancy.

1. Streets. Sufficient right-of-way and slope easement shall be dedicated to accommodate all abutting streets to be improved to the City's Improvement Standards and Specifications. The City Engineer shall determine the appropriate level of street and traffic control improvements to be required, including any off-site street and traffic control improvements, based upon the transportation analysis submitted. The City Engineer's determination of developer obligation, the extent of road improvement and City's share, if any, of improvements and the timing of improvements shall be made based upon the City's systems development charge ordinance and capital improvement program, and the rough proportionality between the impact of the development and the street improvements...

Staff Finding 57: The applicant shall comply with the requirements and install improvements to meet the West Linn Public Works Standards. The City Engineer has reviewed the submitted Traffic Impact Analysis. See applicant submitted Traffic Impact Analysis (Attachment E); these criteria are met.
2. Storm detention and treatment and geologic hazards. Per the submittals required by CDC 55.130 and $92.010(E)$, all proposed storm detention and treatment facilities must comply with the standards for the improvement of public and private drainage systems located in the West Linn Public Works Design Standards, there will be no adverse off-site impacts caused by the development (including impacts from increased intensity of runoff downstream or constrictions causing ponding upstream), and the applicant must provide sufficient factual data to support the conclusions of the submitted plan.
Per the submittals required by CDC 55.130(E), the applicant must demonstrate that the proposed methods of rendering known or potential hazard sites safe for development, including proposed geotechnical remediation, are feasible and adequate to prevent landslides or other damage to property and safety. The review authority may impose conditions, including limits on type or intensity of land use, which it determines are necessary to mitigate known risks of landslides or property damage.

Staff Finding 58: The applicant has submitted a Stormwater Management Report, prepared by a licensed engineer, which complies with the West Linn Public Works Design Standards, shows no adverse off-site impacts, and provides sufficient factual data to support the conclusions of the plan. The subject property does not contain any known landslide hazards. Any geotechnical hazards associated with on-site soil structure can be remediated per the GeoPacific Engineering report. The applicant shall comply with the requirements and install improvements to meet the West Linn Public Works Design Standards per Condition of Approval 2. Subject to the Conditions of Approval, these criteria are met.
3. Municipal water. A registered civil engineer shall prepare a plan for the provision of water which demonstrates to the City Engineer's satisfaction the availability of sufficient volume, capacity, and pressure to serve the proposed development's domestic, commercial, and industrial fire flows. All plans will then be reviewed by the City Engineer.

Staff Finding 59: The water system has sufficient water volume and pressure to serve the proposed building. The applicant shall complete and submit a fire flow test per Condition of Approval 2. These criteria are met.
4. Sanitary sewers. A registered civil engineer shall prepare a sewerage collection system plan which demonstrates sufficient on-site capacity to serve the proposed development. The City Engineer shall determine whether the existing City system has sufficient capacity to serve the development.

Staff Finding 60: The existing sanitary sewer line is sufficient to serve the proposed structure. The criteria is met.
5. Solid waste and recycling storage areas. Appropriately sized and located solid waste and recycling storage areas shall be provided. Metro standards shall be used.

Staff Finding 61: The applicant has proposed a solid waste and recycling storage area to the east of the commercial building. The storage area is also screened. The criteria is met.
J. Crime prevention and safety/defensible space.

1. Windows shall be located so that areas vulnerable to crime can be surveyed by the occupants.
2. Interior laundry and service areas shall be located in a way that they can be observed by others.
3. Mailboxes, recycling, and solid waste facilities shall be located in lighted areas having vehicular or pedestrian traffic.

Staff Finding 62: Staff incorporates applicant findings found on pages 50-51 (Exhibit PC-3 applicant's submittal). The criteria is met.
4. The exterior lighting levels shall be selected and the angles shall be oriented towards areas vulnerable to crime.
5. Light fixtures shall be provided in areas having heavy pedestrian or vehicular traffic and in potentially dangerous areas such as parking lots, stairs, ramps, and abrupt grade changes.
6. Fixtures shall be placed at a height so that light patterns overlap at a height of seven feet which is sufficient to illuminate a person. All commercial, industrial, residential, and public facility projects undergoing design review shall use low or high pressure sodium bulbs and be able to demonstrate effective shielding so that the light is directed downwards rather than
omni-directional. Omni-directional lights of an ornamental nature may be used in general commercial districts only.

Staff Finding 63: The applicant has provided a proposed lighting plan that illuminates all areas vulnerable to crime. The parking areas and primary pedestrian walkways will be fully lighted. The light fixtures will comply with bulb standards and be directed downward. See Sheet E1.0 of the applicant's submittal; these criteria are met.
7. Lines of sight shall be reasonably established so that the development site is visible to police and residents.

Staff Finding 64: See Staff Finding 9; this criterion is met.
K. Provisions for persons with disabilities.

1. The needs of a person with a disability shall be provided for. Accessible routes shall be provided between all buildings and accessible site facilities. The accessible route shall be the most practical direct route between accessible building entries, accessible site facilities, and the accessible entry to the site. An accessible route shall connect to the public right-of-way and to at least one on-site or adjacent transit stop (if the area is served by transit). All facilities shall conform to, or exceed, the Americans with Disabilities Act (ADA) standards, including those included in the Uniform Building Code.

Staff Finding 65: Staff incorporates applicant finding on pages 51-52 (Exhibit PC-3 applicant's submittal). These criteria are met.
L. Signs.
(...)

Staff Finding 66: The applicant is not proposing any signs with this application. Any future tenants of the commercial building are responsible for obtaining any necessary sign permits for future signs. This criteria is met.
M. Utilities. The developer shall make necessary arrangements with utility companies or other persons or corporations affected for the installation of underground lines and facilities. Electrical lines and other wires, including but not limited to communication, street lighting, and cable television, shall be placed underground, as practical. The design standards of Tables 1 and 2 above, and of subsection 5.487 of the West Linn Municipal Code relative to existing high ambient noise levels shall apply to this section.

Staff Finding 67: The applicant shall make necessary arrangements with appropriate utilities to place them underground per Condition of Approval 2. Subject to the Condition of Approval, these criteria are met.
(...)

55.125 TRANSPORTATION ANALYSIS

Certain development proposals required that a Traffic Impact Analysis (TIA) be provided which may result in modifications to the site plan or conditions of approval to address or minimize any adverse impacts created by the proposal. The purpose, applicability and standards of this analysis are found in CDC 85.170(B)(2).

Staff Finding 68: See Staff Finding 9. This criteria is met.

55.170 EXCEPTIONS TO UNDERLYING ZONE, YARD, PARKING, SIGN PROVISIONS, AND LANDSCAPING PROVISIONS
A. The Planning Director may grant an exception to the dimensional building setback or yard requirements in the applicable zone based on findings that the approval will satisfy the following criteria:

1. A minor exception that is not greater than 20 percent of the required setback.
(...)
B. The Planning Director may grant an exception to the off-street parking dimensional and minimum number of space requirements in the applicable zone so long as the following criteria are met:
2. The minor exception is not greater than 10 percent of the required parking; (...)
C. The Planning Director may grant an exception to the sign dimensional requirements in the applicable zone when the following criteria are met:
3. The minor exception is not greater than 10 percent of the required applicable dimensional standard for signs;
(....)

Staff Finding 69: The applicant is not requesting any setback, parking, sign or landscape exceptions under this section. Therefore the criteria does not apply.

PC-1 AFFIDAVIT AND NOTICE PACKET

AFFIDAVIT OF NOTICE

We, the undersigned do hereby certify that, in the interest of the party (parties) initiating a proposed land use, the following took place on the dates indicated below:

GENERAL

File No. DR -18-08
Applicant's Name Ed Bruin
Development Name \qquad
Ron Ne U N
Scheduled Meeting/ Decision Date 3-6-19
NOTICE: Notices were sent at least 20 days prior to the scheduled hearing, meeting, or decision date per Section 99.080 of the Community Development Code. (check below)

TYPE A
TYPE A _
A. The applicant (date) 2-14-19
B. Affected property owners (date) 2-14-19
C. School District/ Board (date) \qquad
D. Other affected gov't. agencies (date) 2-14-19
E. Affected neighborhood asses. (date) 2-14-19 (ACL)
F. All parties to an appeal or review (date) \qquad
(signed) S.sheryer
(signed) s.sheryer
(signed)
(signed) s sharer

(signed) \qquad

At least 10 days prior to the scheduled hearing or meeting, notice was published/ posted:

SIGN

At least 10 days prior to the scheduled hearing, meeting or decision date, a sign was posted on the property per Section 99.080 of the Community Development Code.
(date) $2 / 21 / 19$

NOTICE: Notices were sent at least 14 days prior to the scheduled hearing, meeting, or decision date per Section 99.080 of the Community Development Code. (check below)

TYPE B \qquad
A. The applicant (date) \qquad (signed) \qquad
B. Affected property owners (date) (signed) \qquad
C. School District/Board (date) \qquad (signed) \qquad
D. Other affected gov't. agencies (date)
(signed) \qquad
E. Affected neighborhood assns. (date)
(signed) \qquad

Notice was posted on the City's website at least 10 days prior to the scheduled hearing or meeting.
Date: \qquad (signed)
STAFF REPORT mailed to applicant, City Council/Planning Commission and any other applicable parties 10 days prior to the scheduled hearing.
(date) \qquad (signed) \qquad

FINAL DECISION notice mailed to applicant, all other parties with standing, and, if zone change, the County surveyor's office. (date) \qquad (signed)
$\mathrm{p}: \backslash$ devrvw \backslash forms \backslash affidvt of notice-land use (9/09)

CITY OF WEST LINN PLANNING COMMISSION
 PUBLIC HEARING NOTICE

FILE NO. DR-18-08

The West Linn Planning Commission will hold a public hearing, on Wednesday, March 6, 2019, starting at 6:30 p.m. in the Council Chambers of City Hall, 22500 Salamo Road, West Linn, to consider a request for a Class II Design Review to construct a new commercial building at 2180 8th Court.

Criteria applicable to the requested Class II Design Review are in Chapters 19, 55, and 99 of the Community Development Code (CDC). The decision by the Planning Commission to approve or deny this request will be based upon the applicable criteria. At the hearing, it is important that comments relate specifically to the applicable criteria.

You have been notified of this proposal because County records indicate that you own property within 500 feet of the subject property (Clackamas County Assessor's Map 2S-1E-35D, tax lot 0903), or as otherwise required by Chapter 99 of the CDC.

The complete application in the above noted file is available for inspection at no cost at City Hall or via the web site at https://westlinnoregon.gov/planning/2180-8th-court-class-ii-design-review-commercial-development or copies can be obtained for a minimal charge per page. At least ten days prior to the hearing, a copy of the staff report will be available for inspection. For further information, please contact Associate Planner Jennifer Arnold at jarnold@westlinnoregon.gov or 503-742-6057. Alternately, visit City Hall, 22500 Salamo Road, West Linn, OR 97068.

The hearing will be conducted in accordance with the rules of Section 99.170 of the CDC. Anyone wishing to present written testimony on this proposed action may do so in writing prior to, or at the public hearing. Oral testimony may be presented at the public hearing. At the public hearing, the Planning Commission will receive a staff presentation, and invite both oral and written testimony. The Planning Commission may continue the public hearing to another meeting to obtain additional information, leave the record open for additional evidence, arguments, or testimony, or close the public hearing and take action on the application as provided by state law. In the event that the Planning Commission decision is appealed, City Council review of the appeal will be de novo. Failure to raise an issue in person or by letter at some point prior to the close of the hearing, or failure to provide sufficient specificity to afford the decision maker an opportunity to respond to the issue, precludes an appeal to the Land Use Board of Appeals (LUBA) based on that issue.

Publish: West Linn Tidings, February 21, 2019

CITY OF WEST LINN
 NOTICE OF UPCOMING
 PLANNING COMMISSION HEARING

PROJECT \# DR-18-08
MAIL: 2/14/19 TIDINGS: 2/21/19

CITIZEN CONTACT INFORMATION

To lessen the bulk of agenda packets, land use application notice, and to address the worries of some City residents about testimony contact information and online application packets containing their names and addresses as a reflection of the mailing notice area, this sheet substitutes for the photocopy of the testimony forms and/or mailing labels. A copy is available upon request.

PC-2 COMPLETENESS LETTER

January 10, 2019

Ed Bruin
735 SW 20 ${ }^{\text {th }}$ Place, Suite 220
Portland, OR. 97205

SUBJECT: DR-18-08 application for Class II Design Review at $21808^{\text {th }}$ Court.

Dear Mr. Bruin:

You submitted this application on November 28, 2018. The Planning and Engineering Departments found that this application was incomplete on December 27, 2018. All required information was subsequently provided on January 9, 2019 and the application has now been deemed complete. The city has 120 days to exhaust all local review; that period ends May 9, 2019.

Please be aware that a determination of a complete application does not guarantee a recommendation of approval from staff for your proposal as submitted - it signals that staff believes you have provided the necessary information for the Planning Commission to render a decision on your proposal.

A 20-day public notice will be prepared and mailed. This notice will identify the earliest potential hearing date by the Planning Commission.

Please contact me at 503-742-6057, or by email at jarnold@westlinnoregon.gov if you have any questions or comments.

Sincerely,

Jennifer Arnold
Associate Planner

PC-3 APPLICANT'S SUBMITTAL

Development Review Application

${ }^{\text {STafepsewactifer Amold }}$	${ }^{\text {Prolect No(s) }}$ DR-18-08	
-Reumoaste fet(s) 300	Refu Noable deposits) 8000	Total 8300^{-}

Type of Review (Please check all that apply):

Annexation (ANX)
Appeal and Review (AP) *
Conditional Use (CUP)
Design Review (DR)
Easement Vacation Extraterritorial Ext. of Utilities Final Plat or Plan (FP) Flood Management Area Hillside Protection \& Erosion ControlHistoric Review Legislative Plan or Change
\square Subdivision (SUB)
Lot Line Adjustment (LLA) */**
Minor Partition (MIP) (Preliminary Plat or Plan) Non-Conforming Lots, Uses \& Structures Planned Unit Development (PUD) Pre-Application Conference (PA) */** Street Vacation

Temporary Uses * Time Extension * Variance (VAR) Water Resource Area Protection/Single Lot (WAP) Water Resource Area Protection/Wetland (WAP) Willamette \& Tualatin River Greenway (WRG) Zone Change

Home Occupation, Pre-Application, Sidewalk Use, Sign Review Permit, and Temporary Sign Permit applications require different or additional application forms, available on the City website or at City Hall.

Site Location/Address:

2180 8 $^{\text {th }}$ Court, West Linn, Oregon

Assessor's Map No.: 21E35D
Tax Lot(s): 903
Total Land Area: 1.044 Acre's (45,489 sf)

Brief Description of Proposal: COMMERCIAL DEVELOPMENT ON THE SOUTH LOT OF THE PARENT PARCEL, PENDING LOT PARTITION. PROPOSED BUILDING TO BE A SINGLE STORY DENTIST OFFICE WITH SPACE AVAILABLE FOR ANOTHER OFFICE TENANT.

Applicant Name: ED BRUIN

(please print)
Address: 2233 NW 23 ${ }^{\text {RD }}$ AVE
City State Zip: PORTLAND, OR 97210

Phone: 5032927733
Email: ed@edgedevelop.com

Owner Name (required): WILLAMETTE CAPITAL INVESTMENTS
(please print)
Address: PO BOX 2507
City State Zip:

WILSONVILLE, OR 97070

Phone: 5034078957

Email: phanlin@msn.com

Consultant Name: Chris Deslauriers
(please print) Address:

City State Zip:
6443 SW Beaverton-Hillsdale Hwy.

1. All application fees are non-refundable (excluding deposit). Any overruns to deposit will result in additional billing.
2. The owner/applicant or their representative should be present at all public hearings.
3. A denial or approval may be reversed on appeal. No permit will be in effect until the appeal perlod has expired.
4. Three (3) complete hard-copy sets (single sided) of application materials must be submitted with this application. One (1) complete set of digital application materials must also be submitted on CD in PDF format. If large sets of plans are required in application please submit only two sets.

* No CD required / ** Only one hard-copy set needed

The undersigned property owner(s) hereby authorizes the filing of this application, and authorizes on site review by authorized staff, I hereby agree to comply with all code requirements applicable to my application. Acceptance of this application does not infer a completel súbmittal: All amendments to the Community Development Code and to other regulations adopted after the application is approved shall be enforced where applicable.
Approved applications and subsequent development is not vested under the provisions in place at thetime of the initial application.

EDGE

DESIGN REVIEW NARRATIVE $8^{\text {th }}$ COURT DEVELOPMENT

$21808^{\text {TH }}$ COURT, WEST LINN, OR

OVERVIEW:

The applicant proposes to construct a new commercial building on a site located at $21808^{\text {th }}$ Court in West Linn. There currently is an empty restaurant facility on the south side of the lot with surface parking and landscaping occupying the rest of the lot. The applicant requests approval to reconfigure parking, relocate utilities, construct a new stormwater management facility, construct new sidewalks, plaza areas and a trash area to support the proposed business structure. Concurrent with this proposal is a lot partition application to divide the lot into north and south lots, with the proposed lot line located at the midpoint of the existing access easement.

The applicant has a local dentist interested in leasing / purchasing the larger portion of the proposed building structure, with approximately 1,400 s.f. of office space remaining to lease.

Attached are architectural renderings illustrating how the proposed building meets the Community Development Code standards. The north lot is under consideration for development but plans are preliminary pending the identification of an end user / tenant. This application is focused solely on the south lot.

Other related permits are, as mentioned, the Lot Partition permit (under review) and an Alternate Review application addressing the Water Resource Area bordering the north property line of the original property. The A.R. application has been granted, reference WAP-18-02.

Project Details:

Tax Lot No: 903 Assesor's Map 21E35D
Site Area: 1.044 Acre's (45,489 sf)
Neighborhood: Willamette
Comp Plan: Commercial
Zoning: General Commercial
Environmental Overlays: WRA

CHAPTER 19, GENERAL COMMERCIAL

19.030 PERMITTED USES

19.010 thru 19.040: The proposed development proposes uses within the guidelines of the allowed permitted uses. No accessory uses are proposed.
19.050 thru 19.060: The proposed development proposes uses within the guidelines of the allowed permitted uses. No Prescribed or Conditional uses are proposed.

The proposed use for the building is medical and dental services for the 2,800 space and either medical and dental services or professional services for the 1,400 sf space.

19.070 DIMENSIONAL REQUIREMENTS

A. Except as may be otherwise provided by the provisions of this code, the following are the requirements for uses within this zone:

1. The minimum front lot line length or the minimum lot width at the front lot line shall be 35 feet. The proposed development is on an existing lot at the end of a cul-de-sac. No change is proposed for the existing lot frontage dimensional characteristics.
2. The average minimum lot width shall be 50 feet. The average minimum lot width is in excess of 50 feet.
3. The average minimum lot depth shall not be less than 90 feet. The average width is greater than 50 feet and the average depth is greater than 90 feet for both lots
4. Where the use abuts a residential district, except as provided in CDC 58.090(C)(1), the setback distance of the residential zone shall apply. The sites to the east and west are zoned GC and set back requirements are proposed to be met. The land north of the site is the l205 ODOT Right of Way corridor and the setback requirements are intended to be met. The zoning south of the project site is R10. The project proposes a 20 foot minimum building set back from the south property line abutting the R10 zoning and is therefore understood to be met assuming this will be interpreted as the rear yard set back.
5. The maximum lot coverage shall be 50 percent, except as provided in CDC $58.090(C)(1)(d)$. The proposed building is roughly 4,200 s.f. for the structure, which will have a lot area of 22,335 s.f. when the lot partition is approved. The proposed structure is roughly 19% of the lot area.
6. The maximum building height shall be two and one-half stories or 35 feet for any structure located within 50 feet of a low or medium density residential zone, and three and one-half stories or 45 feet for any structure located 50 feet or more from a low or medium density residential zone. The lot is abutted by the R10 zone. The R10 zone line follows the north side of the Willametter Falls Drive right of way which is the south lot line of the south Parcel. The south lot building is not proposed to exceed the 35 foot height limit.
7. For lot lines that abut an arterial, there shall be no minimum yard dimensions or minimum building setback area, and the maximum building setback shall be 20 feet. The front setback area between the street and the building line shall consist of landscaping or a combination of non-vehicular hardscape areas (covered with impervious surfaces) and landscaped areas. If there are not street trees within the public right-of-way, the front setback area shall include such trees per the requirements of the City Arborist. The lots do not abut an arterial.

19.080: Conditional Uses are not being requested.

19.090: The provisions of the chapters 34,38,40,42,44,46,48,52,54 are addressed under the Chapter 55 Design Review section.

19.090.1: No Temporary structures are proposed

19.090.4: No prosed modifications to building height are being requested. There is a steep slope along the south property line but no structures are proposed on the steep slope. No other exceptions to building height are proposed.

55.070 SUBMITTAL REQUIREMENTS

Included in this application is:
A site plan (CDC 55.120); at the original scale and one copy reduced to 11 inches by 17 . One copy of all other items must be submitted.

- A pdf of the complete application.
- A grading plan (CDC 55.130);
- Architectural drawings, indicating floor plan and elevation (CDC 55.140);
- A landscape plan
- A utility plan
- A light coverage plan with photometric data
- A material board showing images of exterior building materials and colors.

55.100 APPROVAL STANDARDS - CLASS II DESIGN REVIEW

The approval authority shall make findings with respect to the following criteria when approving, approving with conditions, or denying a Class II design review application:
A. The provisions of the following chapters shall be met:

1. Chapter $\underline{34}$ CDC, Accessory Structures, Accessory Dwelling Units, and Accessory Uses.

No Accessory Structures, Accessory Dwelling Units, and Accessory Uses are proposed.
2. Chapter 38 CDC, Additional Yard Area Required; Exceptions to Yard Requirements; Storage in Yards; Projections into Yards.
3. Chapter 40 CDC, Building Height Limitations, Exceptions.

The building design does not propose to exceed height limitations or pursue exceptions.

4. Chapter 42 CDC, Clear Vision Areas.

The lots will share a public access drive that accesses the dead end of the $8^{\text {th }}$ Court Cul-De-Sac. There are not any observed obstructions within the Clear Vision Area requirements at the public right of way access.
5. Chapter 44 CDC, Fences.

There is an existing fence along the east property line that is not planned to be removed. If grading requires reinstallation it is planned to meet the maximum 6 foot height restriction.

An existing 4.5 foot to 2.5 foot tall rock wall the follows the south Toe of Slope of the River Road embankment that is planned to remain.

The trash collection and storage area is planned to meet the requirements of the code for screening and sight obscuring.
6. Chapter 46 CDC, Off-Street Parking, Loading and Reservoir Areas.

Off street parking will be provided. The south lot shall be provided with 21 parking stalls, which is 5 stalls per 1,000 s.f. of building area.

7. Chapter 48 CDC, Access, Egress and Circulation.

There exists an public access easement in benefit of the City across the site to accommodate future development potential east of this site. The site is at a dead end cul-de-sac and is accessed by a curb cut driveway. Onsite parking aisles accommodate the dimensional standards to for movement.

There is an exception request for one bank of parking along the east side of the proposed building. The dimensional requirement for 90 degree parking is to provide a 24 foot drive aisle. There are five spaces that are provided 18 foot deep stall depths with a sidewalk access to the building. This drive aisle is dimensioned at 20 feet wide which is sufficient in width to accommodate vehicle maneuvering for standard and compact vehicles. This drive aisle also accesses a trash enclosure that will be accessed by trash and recycling vendors and 20 feet is wide enough to accommodate the trash and recycling collection vehicles.

It is believed that all other onsite existing to remain or proposed new parking meets the parking standards and access and egress standards.
8. Chapter 52 CDC, Signs.

Signage to be permitted separately.
9. Chapter 54 CDC, Landscaping.

There are five existing trees located in existing parking lot landscape islands that will be removed. New trees will be planted. The existing perimeter trees along the site north, east and south boundaries are planned to remain.
B. Relationship to the natural and physical environment.

1. The buildings and other site elements shall be designed and located so that all heritage trees, as defined in the municipal code, shall be saved. Diseased heritage trees, as determined by the City Arborist, may be removed at his/her direction.

There are no heritage trees identified on the site.
3. The topography and natural drainage shall be preserved to the greatest degree possible.

The topography and natural drainage will be preserved to the maximum extent feasible in areas not used for parking and building structures. The existing site is mostly paved parking with a restaurant building. The new site design will propose to redevelop the south site for one building and leave the north site as existing parking. Site grading will be modified to provide for the redevelopment and new storm facilities.
4. The structures shall not be located in areas subject to slumping and sliding. The Comprehensive Plan Background Report's Hazard Map, or updated material as available and as deemed acceptable by the Planning Director, shall be the basis for preliminary determination.

The structure is not proposed in an area subject to slumping and sliding.
5. There shall be adequate distance between on-site buildings and on-site and off-site buildings on adjoining properties to provide for adequate light and air circulation and for fire protection.

There is adequate distance between on-site building and off-site buildings on adjoining properties to provide for adequate light and air circulation and for fire protection
6. Architecture.
a. The proposed structure(s) scale shall be compatible with the existing structure(s) on site and on adjoining sites. Contextual design is required. Contextual design means respecting and incorporating prominent architectural styles, building lines, roof forms, rhythm of windows, building scale and massing of surrounding buildings in the proposed structure. The materials and colors shall be complementary to the surrounding buildings.

The proposed structure is a single story, similar in scale with the other structures located on $8^{\text {th }}$ Court. There is not a single architectural style or era to draw upon for the proposed buildings. The design intent is that the new building will relate in scale and complement the existing buildings while remaining architecturally distinct.
b. While there has been discussion in Chapter $\underline{24}$ CDC about transition, it is appropriate that new buildings should architecturally transition in terms of bulk and mass to work with, or fit, adjacent existing buildings. This transition can be accomplished by selecting designs that "step down" or "step up" from small to big structures and vice versa (see figure below). Transitions may also take the form of carrying building patterns and lines (e.g., parapets, windows, etc.) from the existing building to the new one.

> The proposed structure is not directly adjacent to any building or structure and is separated by parking or landscaping. The roof line and massing is varied to break up the form, and situated at an angles from the nearest structures.
c. Contrasting architecture shall only be permitted when the design is manifestly superior to adjacent architecture in terms of creativity, design, and workmanship, and/or it is adequately separated from other buildings by distance, screening, grade variations, or is part of a development site that is large enough to set its own style of architecture.

The proposed building is set at a distance from other buildings on a large site at the end of a cul-de-sac. The existing buildings in the proximity are not architecturally distinct nor appropriate for the proposed development.
d. Human scale is a term that seeks to accommodate the users of the building and the notion that buildings should be designed around the human scale (i.e., their size and the average range of their perception). Human scale shall be accommodated in all designs by, for example, multi-light windows that are broken up into numerous panes, intimately scaled entryways, and visual breaks (exaggerated eaves, indentations, ledges, parapets, awnings, engaged columns, etc.) in the facades of buildings, both vertically and horizontally.

The human scale is enhanced by bringing the building and its main entrance up to the edge of the sidewalk. It creates a more dramatic and interesting streetscape and improves the "height and width" ratio referenced in this section.

> The proposed building has two forms that are hinged around an entry courtyard wrapped with a wood trellis. The trellis creates a ceiling over the space accommodating a human scale. The courtyard is the first architectural feature noticed upon entering the site.
e. The main front elevation of commercial and office buildings shall provide at least 60 percent windows or transparency at the pedestrian level to create more interesting streetscape and window shopping opportunities. One side elevation shall provide at least 30 percent transparency. Any additional side or rear elevation, which is visible from a collector road or greater classification, shall also have at least 30 percent transparency. Transparency on other elevations is optional. The transparency is measured in lineal fashion. For example, a 100 -foot-long building elevation shall have at least 60 feet (60 percent of 100 feet) in length of windows. The window height shall be, at minimum, three feet tall. The exception to transparency would be cases where demonstrated functional constraints or topography restrict that elevation from being used. When this exemption is applied to the main front elevation, the square footage of transparency that would ordinarily be required by the above formula shall be installed on the remaining elevations at pedestrian level in addition to any transparency required by a side elevation, and vice versa. The rear of the building is not
required to include transparency. The transparency must be flush with the building elevation.

The access easement shall be considered for purposes of this evaluation as the street fronting the building. The elevation facing the easement and the elevation to the west facing the adjacent business shall be a minimum of 60% transparent, as demonstrated in the table on the architectural elevations. See architectural drawings for tabulations.

The building backside is facing south towards the wooded embankment up to Willamette Falls Drive. Windows are not included in the DR package but are assumed as the design progresses and the interior program for the spaces is defined.
f. Variations in depth and roof line are encouraged for all elevations.

To vary the otherwise blank wall of most rear elevations, continuous flat elevations of over 100 feet in length should be avoided by indents or variations in the wall. The use of decorative brick, masonry, or stone insets and/or designs is encouraged. Another way to vary or soften this elevation is through terrain variations such as an undulating grass area with trees to provide vertical relief.

No walls proposed over 100'. A use of different siding materials helps with the appearance on all building sides.
g. Consideration of the micro-climate (e.g., sensitivity to wind, sun angles, shade, etc.) shall be made for building users, pedestrians, and transit users, including features like awnings.

Awnings and wood trellises proposed at building entrances. Flashing will be provided to prevent rainwater drippage over building entrances.
h. The vision statement identified a strong commitment to developing safe and attractive pedestrian environments with broad sidewalks, canopied with trees and awnings.

Project includes sidewalks on parking area frontages and an entry plaza facing the $8^{\text {th }}$ Court cul-de-sac.
i. Sidewalk cafes, kiosks, vendors, and street furniture are encouraged. However, at least a four-foot-wide pedestrian accessway must be maintained per Chapter 53 CDC, Sidewalk Use.

Benches are planned for the plaza area. All sidewalk widths will exceed 4 feet.
7. Transportation. The automobile shall be shifted from a dominant role, relative to other modes of transportation, by the following means:
a. Commercial and office development shall be oriented to the street. At least one public entrance shall be located facing an arterial street; or, if the project does not front on an arterial, facing a collector street; or, if the project does not front on a collector, facing the local street with highest traffic levels. Parking lots shall be placed behind or to the side of
commercial and office development. When a large and/or multi-building development is occurring on a large undeveloped tract (three plus acres), it is acceptable to focus internally; however, at least 20 percent of the main adjacent right-of-way shall have buildings contiguous to it unless waived per subsection $(B)(7)(c)$ of this section. These buildings shall be oriented to the adjacent street and include pedestrian-oriented transparencies on those elevations.

For individual buildings on smaller individual lots, at least 30 lineal feet or 50 percent of the building must be adjacent to the right-of-way unless waived per subsection (B)(7)(c) of this section. The elevations oriented to the right-of-way must incorporate pedestrian-oriented transparency.

For the purposes of this development the access easement is considered the street frontage. Accessible stalls are located in front of the building nearest the building entries. The streetscape is similar to a Main Street configuration with perpendicular parking stalls opposite the building walls.
b. Multi-family projects shall be required to keep the parking at the side or rear of the buildings or behind the building line of the structure as it would appear from the right-ofway inside the multi-family project. For any garage which is located behind the building line of the structure, but still facing the front of the structure, architectural features such as patios, patio walls, trellis, porch roofs, overhangs, pergolas, etc., shall be used to downplay the visual impact of the garage, and to emphasize the rest of the house and front entry.

The parking may be positioned inside small courtyard areas around which the units are built. These courtyard spaces encourage socialization, defensible space, and can provide a central location for landscaping, particularly trees, which can provide an effective canopy and softening effect on the courtyard in only a few years. Vehicular access and driveways through these courtyard areas is permitted.

No residential buildings proposed.

c. Commercial, office, and multi-family projects shall be built as close to the adjacent main right-of-way as practical to facilitate safe pedestrian and transit access. Reduced frontages by buildings on public rights-of-way may be allowed due to extreme topographic (e.g., slope, creek, wetlands, etc.) conditions or compelling functional limitations, not just inconveniences or design challenges.

The building is located as close to the existing pedestrian circulation system as possible. Pedestrian easements are in place to facilitate circulation from Willamette Falls Drive to the $8^{\text {th }}$ Court circle.
d. Accessways, parking lots, and internal driveways shall accommodate pedestrian circulation and access by specially textured, colored, or clearly defined footpaths at least six feet wide. Paths shall be eight feet wide when abutting parking areas or travel lanes. Paths shall be separated from parking or travel lanes by either landscaping, planters, curbs, bollards, or raised surfaces. Sidewalks in front of storefronts on the arterials and main store entrances on the arterials identified in CDC $85.200(A)(3)$ shall be 12 feet wide to accommodate pedestrians, sidewalk sales, sidewalk cafes, etc. Sidewalks in front of
storefronts and main store entrances in commercial/OBC zone development on local streets and collectors shall be eight feet wide.

Pedestrian circulation has been designed to meet criteria in 55.100.7.d
e. Paths shall provide direct routes that pedestrians will use between buildings, adjacent rights-of-way, and adjacent commercial developments. They shall be clearly identified. They shall be laid out to attract use and to discourage people from cutting through parking lots and impacting environmentally sensitive areas.

There is an existing pedestrian easement connecting steps to Willamette Falls Drive with the proposed building and across to the end of the cul-de-sac. The easement shall be maintained for pedestrians.
f. At least one entrance to the building shall be on the main street, or as close as possible to the main street. The entrance shall be designed to identify itself as a main point of ingress/egress.

The commercial building main entry is facing the access easement and end of cul-desac.
g. Where transit service exists, or is expected to exist, there shall be a main entrance within a safe and reasonable distance of the transit stop. A pathway shall be provided to facilitate a direct connection.

No transit service identified for this site.
h. Projects shall bring at least part of the project adjacent to or near the main street right-of-way in order to enhance the height-to-width ratio along that particular street. (The "height-to-width ratio" is an architectural term that emphasizes height or vertical dimension of buildings adjacent to streets. The higher and closer the building is, and the narrower the width of the street, the more attractive and intimate the streetscape becomes.) For every one foot in street width, the adjacent building ideally should be one to two feet higher. This ratio is considered ideal in framing and defining the streetscape.

The site does not front the right of way in a typical city scape way. The proposed structure is a single story building fronting a parking area, more in keeping with a shopping center than a "main street" frontage. Eventually the north lot will be developed to create a streetscape.
i. These architectural standards shall apply to public facilities such as reservoirs, water towers, treatment plants, fire stations, pump stations, power transmission facilities, etc. It is recognized that many of these facilities, due to their functional requirements, cannot readily be configured to meet these architectural standards. However, attempts shall be made to make the design sympathetic to surrounding properties by landscaping, setbacks, buffers, and all reasonable architectural means.

Not applicable

j. Parking spaces at trailheads shall be located so as to preserve the view of, and access to, the trailhead entrance from the roadway. The entrance apron to the trailhead shall be marked: "No Parking," and include design features to foster trail recognition.

Not applicable

C. Compatibility between adjoining uses, buffering, and screening.

1. In addition to the compatibility requirements contained in Chapter 24 CDC, buffering shall be provided between different types of land uses; for example, buffering between single-family homes and apartment blocks. However, no buffering is required between single-family homes and duplexes or single-family attached units. The following factors shall be considered in determining the adequacy of the type and extent of the buffer:
a. The purpose of the buffer, for example to decrease noise levels, absorb air pollution, filter dust, or to provide a visual barrier.
b. The size of the buffer required to achieve the purpose in terms of width and height.
c. The direction(s) from which buffering is needed.
d. The required density of the buffering.
e. Whether the viewer is stationary or mobile.

The site is located at the end of a cul-de-sac with natural screening in every direction except to the west which has adjacent commercial properties.
2. On-site screening from view from adjoining properties of such things as service areas, storage areas, and parking lots shall be provided and the following factors will be considered in determining the adequacy of the type and extent of the screening:
a. What needs to be screened?
b. The direction from which it is needed.
c. How dense the screen needs to be.
d. Whether the viewer is stationary or mobile.
e. Whether the screening needs to be year-round.

The site is located at the end of a cul-de-sac with natural screening in every direction except to the west which has adjacent commercial properties.
3. Rooftop air cooling and heating systems and other mechanical equipment shall be screened from view from adjoining properties.

Rooftop HVAC equipment shall be screened.
D. Privacy and noise.

1. Structures which include residential dwelling units shall provide private outdoor areas for each ground floor unit which is screened from view from adjoining units.

Not applicable

2. Residential dwelling units shall be placed on the site in areas having minimal noise exposure to the extent possible. Natural-appearing sound barriers shall be used to lessen noise impacts where noise levels exceed the noise standards contained in West Linn Municipal Code Section 5.487.

Not applicable

3. Structures or on-site activity areas which generate noise, lights, or glare shall be buffered from adjoining residential uses in accordance with the standards in subsection C of this section where applicable.

There is a full grown, mature line of trees buffering the site with the residential property to the east. No other residential lots bordering the property.
4. Businesses or activities that can reasonably be expected to generate noise in excess of the noise standards contained in West Linn Municipal Code Section 5.487 shall undertake and submit appropriate noise studies and mitigate as necessary to comply with the code. (See CDC 55.110(B)(11) and 55.120(M).)

No excessive noise producers proposed.

If the decision-making authority reasonably believes a proposed use may generate noise exceeding the standards specified in the municipal code, then the authority may require the applicant to supply professional noise studies from time to time during the user's first year of operation to monitor compliance with City standards and permit requirements.

No excessive noise producers proposed.
E. Private outdoor area. This section only applies to multi-family projects.

1. In addition to the requirements of residential living, unit shall have an outdoor private area (patio, terrace, porch) of not less than 48 square feet in area;
2. The outdoor space shall be oriented towards the sun where possible; and
3. The area shall be screened or designed to provide privacy for the users of the space.
4. Where balconies are added to units, the balconies shall not be less than 48 square feet, if they are intended to be counted as private outdoor areas.

Not applicable

F. Shared outdoor recreation areas. This section only applies to multi-family projects and projects with 10 or more duplexes or single-family attached dwellings on lots under 4,000 square feet. In those cases, shared outdoor recreation areas are calculated on the duplexes or single-family attached dwellings only. It also applies to qualifying PUDs under the provisions of CDC 24.170.

1. In addition to the requirements of subsection E of this section, usable outdoor recreation space shall be provided in residential developments for the shared or common use of all the residents in the following amounts:
a. Studio up to and including two-bedroom units: 200 square feet per unit.
b. Three or more bedroom units: 300 square feet per unit.
2. The required recreation space may be provided as follows:
a. It may be all outdoor space; or
b. It may be part outdoor space and part indoor space; for example, an outdoor tennis court and indoor recreation room; and
c. Where some or all of the required recreation area is indoor, such as an indoor recreation room, then these indoor areas must be readily accessible to all residents of the development subject to clearly posted restrictions as to hours of operation and such regulations necessary for the safety of minors.
d. In considering the requirements of this subsection F , the emphasis shall be on usable recreation space. No single area of outdoor recreational space shall encompass an area of less than 250 square feet. All common outdoor recreational space shall be clearly delineated and readily identifiable as such. Small, marginal, and incidental lots or parcels of land are not usable recreation spaces. The location of outdoor recreation space should be integral to the overall design concept of the site and be free of hazards or constraints that would interfere with active recreation.
3. The shared space shall be readily observable to facilitate crime prevention and safety.

Not applicable

G. Demarcation of public, semi-public, and private spaces. The structures and site improvements shall be designed so that public areas such as streets or public gathering places, semi-public areas, and private outdoor areas are clearly defined in order to establish persons having a right to be in the space, to provide for crime prevention, and to establish maintenance responsibility. These areas may be defined by:

1. A deck, patio, fence, low wall, hedge, or draping vine;
2. A trellis or arbor;
3. A change in level;
4. A change in the texture of the path material;
5. Sign; or
6. Landscaping.

Use of gates to demarcate the boundary between a public street and a private access driveway is prohibited.

Not applicable

H. Public transit.

1. Provisions for public transit may be required where the site abuts an existing or planned public transit route. The required facilities shall be based on the following:
a. The location of other transit facilities in the area.
b. The size and type of the proposed development.
c. The rough proportionality between the impacts from the development and the required facility.
2. The required facilities shall be limited to such facilities as the following:
a. A waiting shelter with a bench surrounded by a three-sided covered structure, with transparency to allow easy surveillance of approaching buses.
b. A turnout area for loading and unloading designed per regional transit agency standards.
c. Hard-surface paths connecting the development to the waiting and boarding areas.
d. Regional transit agency standards shall, however, prevail if they supersede these standards.
3. The transit stop shall be located as close as possible to the main entrance to the shopping center, public or office building, or multi-family project. The entrance shall not be more than 200 feet from the transit stop with a clearly identified pedestrian link.
4. All commercial business centers (over three acres) and multi-family projects (over 40 units) may be required to provide for the relocation of transit stops to the front of the site if the existing stop is within 200 to 400 yards of the site and the exaction is roughly proportional to the impact of the development. The commercial or multi-family project may be required to provide new facilities in those cases where the nearest stop is over 400 yards away. The transit stop shall be built per subsection $(H)(2)$ of this section.

There is no public transit serving this location.

I. Public facilities. An application may only be approved if adequate public facilities will be available to provide service to the property prior to occupancy.

1. Streets. Sufficient right-of-way and slope easement shall be dedicated to accommodate all abutting streets to be improved to the City's Improvement Standards and Specifications. The City Engineer shall determine the appropriate level of street and traffic control improvements to be required, including any off-site street and traffic control improvements, based upon the transportation analysis submitted. The City Engineer's determination of developer obligation, the extent of road improvement and City's share, if any, of improvements and the timing of improvements shall be made based upon the City's systems development charge ordinance and capital improvement program, and the rough proportionality between the impact of the development and the street improvements.

In determining the appropriate sizing of the street in commercial, office, multi-family, and public settings, the street should be the minimum necessary to accommodate anticipated traffic load and needs and should provide substantial accommodations for pedestrians and bicyclists. Road and driveway alignment should consider and mitigate impacts on adjacent properties and in neighborhoods in terms of increased traffic loads, noise, vibrations, and glare.

The realignment or redesign of roads shall consider how the proposal meets accepted engineering standards, enhances public safety, and favorably relates to adjacent lands and land uses. Consideration should also be given to selecting an alignment or design that minimizes or avoids hazard areas and loss of significant natural features (drainageways, wetlands, heavily forested areas, etc.) unless site mitigation can clearly produce a superior landscape in terms of shape, grades, and reforestation, and is fully consistent with applicable code restrictions regarding resource areas

Streets shall be installed per Chapter 85 CDC standards. The City Engineer has the authority to require that street widths match adjacent street widths. Sidewalks shall be installed per CDC 85.200(A)(3) for commercial and office projects, and CDC 85.200(A)(16) and 92.010(H) for residential projects, and applicable provisions of this chapter. Where streets bisect or traverse water resource areas (WRAs) the street width shall be reduced to the appropriate "constrained" cross-section width indicated in the TSP or alternate configurations which are appropriate to site conditions, minimize WRA disturbance or are consistent with an adopted transportation system plan. The street design shall also be consistent with habitat friendly provisions of CDC $\underline{32.060(1) .}$

Based upon the City Manager's or Manager's designee's determination, the applicant shall construct or cause to be constructed, or contribute a proportionate share of the costs, for all necessary off-site improvements identified by the transportation analysis commissioned to address CDC 55.125 that are required to mitigate impacts from the proposed development. Proportionate share of the costs shall be determined by the City Manager or Manager's designee, who shall assume that the proposed development provides improvements in rough proportion to identified impacts of the development.

No changes proposed to the public street system serving the property. The public access easement across the site will be regraded to accommodate 90 degree head in parking along both sides of the easement and to accommodate storm collection and building access.
2. Storm detention and treatment and geologic hazards. Per the submittals required by CDC 55.130 and 92.010(E), all proposed storm detention and treatment facilities must comply
with the standards for the improvement of public and private drainage systems located in the West Linn Public Works Design Standards, there will be no adverse off-site impacts caused by the development (including impacts from increased intensity of runoff downstream or constrictions causing ponding upstream), and the applicant must provide sufficient factual data to support the conclusions of the submitted plan.

It is proposed to provide onsite vegetative storm planters and basin to meet both water quality and detention requirements. The site will discharge to it's current location reducing flows from the existing conditions with by meeting the detention requirement. The project is being redeveloped and those areas being redeveloped will be collected, treated and detained per the city storm drainage policy. It is understood that the onsite detention provision relieves the need for downstream analysis.

Per the submittals required by CDC 55.130(E), the applicant must demonstrate that the proposed methods of rendering known or potential hazard sites safe for development, including proposed geotechnical remediation, are feasible and adequate to prevent landslides or other damage to property and safety. The review authority may impose conditions, including limits on type or intensity of land use, which it determines are necessary to mitigate known risks of landslides or property damage.
3. Municipal water. A registered civil engineer shall prepare a plan for the provision of water which demonstrates to the City Engineer's satisfaction the availability of sufficient volume, capacity, and pressure to serve the proposed development's domestic, commercial, and industrial fire flows. All plans will then be reviewed by the City Engineer.

It is understood that sufficient water supply from the existing public water mains is adequate to meet the demand of the proposed projects.
4. Sanitary sewers. A registered civil engineer shall prepare a sewerage collection system plan which demonstrates sufficient on-site capacity to serve the proposed development. The City Engineer shall determine whether the existing City system has sufficient capacity to serve the development.

It is understood that sufficient sanitary capacity from the existing public sanitary mains is adequate to meet the demand of the proposed projects.
5. Solid waste and recycling storage areas. Appropriately sized and located solid waste and recycling storage areas shall be provided. Metro standards shall be used.

Waste collection areas are proposed for the ends of the east side parking drive aisles. Metro design standards shall be used to design these structures.

J. Crime prevention and safety/defensible space.

1. Windows shall be located so that areas vulnerable to crime can be surveyed by the occupants.

Windows are oriented towards parking areas.
2. Interior laundry and service areas shall be located in a way that they can be observed by others.

All amenities are located in a way that they can be observed by others.

3. Mailboxes, recycling, and solid waste facilities shall be located in lighted areas having vehicular or pedestrian traffic.

Site lighting is designed for trash areas and pedestrian circulation.
4. The exterior lighting levels shall be selected and the angles shall be oriented towards areas vulnerable to crime.

Site lighting has been selected and angles have been oriented towards areas vulnerable to crime.
5. Light fixtures shall be provided in areas having heavy pedestrian or vehicular traffic and in potentially dangerous areas such as parking lots, stairs, ramps, and abrupt grade changes.

Light fixtures are shown in areas of pedestrian and vehicular traffic, and in potentially dangerous areas such as parking lots, stairs, ramps, and abrupt grade changes.
6. Fixtures shall be placed at a height so that light patterns overlap at a height of seven feet which is sufficient to illuminate a person. All commercial, industrial, residential, and public facility projects undergoing design review shall use low or high pressure sodium bulbs and be able to demonstrate effective shielding so that the light is directed downwards rather than omnidirectional. Omni-directional lights of an ornamental nature may be used in general commercial districts only.

The design of the site lighting includes the selection dark sky compliant LED luminaires. The luminaires will be equipped with shields that minimize glare, reduces light trespass and skyglow. No light will be emitted about 180 degrees. The lighting has been laid out to provide overlapping vertical illumination at 7' above grade which will be sufficient to illuminate a person.
7. Lines of sight shall be reasonably established so that the development site is visible to police and residents.

Lines of sight have been established so that the development site is visible to police and occupants.
8. Security fences for utilities (e.g., power transformers, pump stations, pipeline control equipment, etc.) or wireless communication facilities may be up to eight feet tall in order to protect public safety. No variances are required regardless of location.

Not applicable.

K. Provisions for persons with disabilities.

1. The needs of a person with a disability shall be provided for. Accessible routes shall be provided between all buildings and accessible site facilities. The accessible route shall be the most practical direct route between accessible building entries, accessible site facilities, and the accessible entry to the site. An accessible route shall connect to the public right-of-way and to at least one on-site or adjacent transit stop (if the area is served by transit). All facilities shall conform to, or exceed, the Americans with Disabilities Act (ADA) standards, including those included in the Uniform Building Code.

Accessible routes are proposed between all buildings and accessible site facilities.

L. Signs.

1. Based on considerations of crime prevention and the needs of emergency vehicles, a system of signs for identifying the location of each residential unit, store, or industry shall be established.

The building units shall be numbered for emergency identification. A monument sign is proposed at the development entry landscaping to help with way-finding.
2. The signs, graphics, and letter styles shall be designed to be compatible with surrounding development, to contribute to a sense of project identity, or, when appropriate, to reflect a sense of the history of the area and the architectural style.

Signs, graphics, and letter styles shall be designed to be compatible with surrounding development
3. The sign graphics and letter styles shall announce, inform, and designate particular areas or uses as simply and clearly as possible.

Sign graphics and letter styles shall announce, inform, and designate particular areas or uses as simply and clearly as possible.
4. The signs shall not obscure vehicle driver's sight distance.

The monument sign is not proposed in a location that would block site lines to vehicular circulation.
5. Signs indicating future use shall be installed on land dedicated for public facilities (e.g., parks, water reservoir, fire halls, etc.).

Not applicable.

6. Signs and appropriate traffic control devices and markings shall be installed or painted in the driveway and parking lot areas to identify bicycle and pedestrian routes.

Signs and appropriate traffic control devices and markings shall be installed or painted in the driveway and parking lot areas to identify bicycle and pedestrian routes.
M. Utilities. The developer shall make necessary arrangements with utility companies or other persons or corporations affected for the installation of underground lines and facilities. Electrical lines and other
wires, including but not limited to communication, street lighting, and cable television, shall be placed underground, as practical. The design standards of Tables 1 and 2 above, and of subsection 5.487 of the West Linn Municipal Code relative to existing high ambient noise levels shall apply to this section.

The project shall be designed to meet the CDC standards for utilities.
N. Wireless communication facilities (WCFs). (This section only applicable to WCFs.) WCFs as defined in Chapter 57 CDC may be required to go through Class I or Class II design review. The approval criteria for Class I design review is that the visual impact of the WCF shall be minimal to the extent allowed by Chapter 57 CDC. Stealth designs shall be sufficiently camouflaged so that they are not easily seen by passersby in the public right-of-way or from any adjoining residential unit. WCFs that are classified as Class II design review must respond to all of the approval criteria of this chapter.

The project shall be designed to meet the CDC standards for WCFs.
O. Refuse and recycling standards.

1. All commercial, industrial and multi-family developments over five units requiring Class II design review shall comply with the standards set forth in these provisions. Modifications to these provisions may be permitted if the Planning Commission determines that the changes are consistent with the purpose of these provisions and the City receives written evidence from the local franchised solid waste and recycling firm that they are in agreement with the proposed modifications.

The project shall be designed to meet the CDC standards for refuse and recycling. No modifications proposed.
2. Compactors, containers, and drop boxes shall be located on a level Portland cement concrete pad, a minimum of four inches thick, at ground elevation or other location compatible with the local franchise collection firm's equipment at the time of construction. The pad shall be designed to discharge surface water runoff to avoid ponding.

Compactors, containers, and drop boxes shall be located on a level Portland cement concrete pad, a minimum of four inches thick, at ground elevation or other location compatible with the local franchise collection firm's equipment at the time of construction. The pad shall be designed to discharge surface water runoff to avoid ponding.
3. Recycling and solid waste service areas.

The project shall be designed to meet the Recycling and solid waste standards.
a. Recycling receptacles shall be designed and located to serve the collection requirements for the specific type of material. Recycling receptacles shall be designed and located to serve the collection requirements for the specific type of material.
b. The recycling area shall be located in close proximity to the garbage container areas and be accessible to the local franchised collection firm's equipment. The recycling area
shall be located in close proximity to the garbage container areas and be accessible to the local franchised collection firm's equipment.
c. Recycling receptacles or shelters located outside a structure shall have lids and be covered by a roof constructed of water and insect-resistive material. The maintenance of enclosures, receptacles and shelters is the responsibility of the property owner. Recycling receptacles shall be shelted in the trash corral east of the building. The bins will have lids and the structure shall be covered. The maintenance of enclosures, receptacles and shelters will be the responsibility of the property owner.
d. The location of the recycling area and method of storage shall be approved by the local fire marshal. Shall be reviewed during building permit submittal.
e. Recycling and solid waste service areas shall be at ground level and/or otherwise accessible to the franchised solid waste and recycling collection firm. Recycling and solid waste service areas shall be at ground level.
f. Recycling and solid waste service areas shall be used only for purposes of storing solid waste and recyclable materials and shall not be a general storage area to store personal belongings of tenants, lessees, property management or owners of the development or premises. Recycling and solid waste service areas shall be used only for purposes of storing solid waste and recyclable materials and shall not be a general storage area to store personal belongings of tenants, lessees, property management or owners of the development or premises.
g. Recyclable material service areas shall be maintained in a clean and safe condition. Recyclable material service areas shall be maintained in a clean and safe condition.
4. Special wastes or recyclable materials.

The project shall be designed to meet the Special wastes or recyclable materials standards.
a. Environmentally hazardous wastes defined in ORS 466.005 shall be located, prepared, stored, maintained, collected, transported, and disposed in a manner acceptable to the Oregon Department of Environmental Quality. No hazardous materials will be allowed to be stored, maintained, collected, transported, or disposed at this site.
b. Containers used to store cooking oils, grease or animal renderings for recycling or disposal shall not be located in the principal recyclable materials or solid waste storage areas. These materials shall be stored in a separate storage area designed for such purpose.

Containers used to store cooking oils, grease or animal renderings for recycling or disposal shall not be located in the principal recyclable materials or solid waste storage areas, or anywhere on site.

5. Screening and buffering.

a. Enclosures shall include a curbed landscape area at least three feet in width on the sides and rear. Landscaping shall include, at a minimum, a continuous hedge maintained at a height of 36 inches.

See landscape plans.

b. Placement of enclosures adjacent to residentially zoned property and along street frontages is strongly discouraged. They shall be located so as to conceal them from public view to the maximum extent possible.

See landscape plans. Criteria met.

c. All dumpsters and other trash containers shall be completely screened on all four sides with an enclosure that is comprised of a durable material such as masonry with a finish that is architecturally compatible with the project. Chain link fencing, with or without slats, will not be allowed.

Trash enclosures shall be constructed with concrete masonry units designed to be compatible with primary buildings.

6. Litter receptacles.

a. Location. Litter receptacles may not encroach upon the minimum required walkway widths.

Litter receptacles shall not encroach upon the minimum required walkway widths.
b. Litter receptacles may not be located within public rights-of-way except as permitted through an agreement with the City in a manner acceptable to the City Attorney or his/her designee.

Litter receptacles shall not be located within the ROW.

c. Number. The number and location of proposed litter receptacles shall be based on the type and size of the proposed uses. However, at a minimum, for non-residential uses, at least one external litter receptacle shall be provided for every 25 parking spaces for first 100 spaces, plus one receptacle for every additional 100 spaces.

21 parking stalls are proposed. 1 litter receptacles is proposed. See landscape plans.

55.110 SITE ANALYSIS

The site analysis shall include:
A. A vicinity map showing the location of the property in relation to adjacent properties, roads, pedestrian and bike ways, transit stops and utility access. Included on Cover Sheet.
B. A site analysis on a drawing at a suitable scale (in order of preference, one inch equals 10 feet to one inch equals 30 feet) which shows:

1. The property boundaries, dimensions, and gross area.
2. Contour lines at the following minimum intervals:
a. Two-foot intervals for slopes from zero to 25 percent; and
b. Five- or 10 -foot intervals for slopes in excess of 25 percent.
3. Tables and maps identifying acreage, location and type of development constraints due to site characteristics such as slope, drainage and geologic hazards, including a slope analysis which identifies portions of the site according to the land types (I, II, III and IV) defined in Chapter 02 CDC.
4. The location and width of adjoining streets.
5. The drainage patterns and drainage courses on the site and on adjacent lands.
6. Potential natural hazard areas including:
a. Floodplain areas pursuant to the site's applicable FEMA Flood Map panel;
b. Water resource areas as defined by Chapter 32 CDC;
c. Landslide areas designated by the Natural Hazard Mitigation Plan, Map 16; and
d. Landslide vulnerable analysis areas, designated by the Natural Hazard Mitigation Plan, Map 17.
7. Resource areas including:
a. Wetlands;
b. Riparian corridors;
c. Streams, including intermittent and ephemeral streams;
d. Habitat conservation areas; and
e. Large rock outcroppings.
8. Potential historic landmarks and registered archaeological sites. The existence of such sites on the property shall be verified from records maintained by the Community Development Department and other recognized sources.
9. Identification information including the name and address of the owner, developer, project designer, lineal scale and north arrow.
10. Identify Type I and II lands in map form. Provide a table which identifies square footage of Type I and II lands also as percentage of total site square footage.

55.120 SITE PLAN

The submitted site plan is at the same scale as the site analysis and shows:

A. The entire property and the surrounding property to a distance sufficient to determine the relationship between the applicant's property and proposed development and adjacent property and development.
B. Boundary lines and dimensions for the perimeter of the property and the dimensions for all proposed lot or parcel lines.
C. Streams and stream corridors.
D. Identification information, including the name and address of the owner, developer, project designer, lineal scale and north arrow.
E. The location, dimensions, and names of all existing and proposed streets, public pathways, easements on adjacent properties and on the site, and all associated rights-of-way.
F. The location, dimensions and setback distances of all:

1. Existing and proposed structures, improvements, and utility facilities on site; and
2. Existing structures and driveways on adjoining properties.
G. The location and dimensions of:
3. The entrances and exits to the site;
4. The parking and circulation areas;
5. Areas for waste disposal, recycling, loading, and delivery;
6. Pedestrian and bicycle routes, including designated routes, through parking lots and to adjacent rights-of-way;
7. On-site outdoor recreation spaces and common areas;
8. All utilities, including stormwater detention and treatment; and
9. Sign locations.
H. The location of areas to be landscaped. (Ord. 1442, 1999; Ord. 1613 § 14, 2013; Ord. 1622 § 28, 2014; Ord. 1636 § 39, 2014)

55.125 TRANSPORTATION ANALYSIS

Included in DR submittal.

55.130 GRADING AND DRAINAGE PLANS

A registered civil engineer has prepared a conceptual grading plan and a storm detention and treatment plan pursuant to CDC $92.010(\mathrm{E})$, at a scale sufficient to evaluate all aspects of the proposal, and a statement that demonstrates:
A. The location and extent to which grading will take place indicating general contour lines, slope ratios, slope stabilization proposals, and location and height of retaining walls, if proposed.
B. All proposed storm detention and treatment facilities comply with the standards for the improvement of public and private drainage systems located in the West Linn Public Works Design Standards.
C. There is sufficient factual data to support the conclusions of the plan.
D. Per CDC 99.035, the Planning Director may require the information in subsections A, B and C of this section for Type IV lands if the information is needed to properly evaluate the proposed site plan.
E. A geologic report is attached.
F. Identification information, including the name and address of the owner, developer, project designer, and the project engineer. Included on Cover Sheet

55.140 ARCHITECTURAL DRAWINGS

Architectural drawings shall be submitted showing:
A. Building elevations and sections tied to curb elevation; Shown schematically on plans. To be refined through design development.
B. Building materials: color and type; Shown on attached Material Board.
C. The name of the architect or designer. Included on Cover Sheet

55.150 LANDSCAPE PLAN

This section does not apply to detached single-family residential subdivisions or partitions, or up to two duplexes or single-family attached dwellings.
A. The landscape plan shall be prepared and shall show the following:

1. Preliminary underground irrigation system, if proposed; Irrigation to be design-build.
2. The location and height of fences and other buffering of screening materials, if proposed; No fencing currently proposed.
3. The location of terraces, decks, patios, shelters, and play areas, if proposed; Shown on plans.
4. The location, size, and species of the existing and proposed plant materials, if proposed; Shown on plans.
5. Building and pavement outlines. Shown on plans.
B. The landscape plan shall be accompanied by:
6. The erosion controls that will be used, if necessary; See civil plans
7. Planting list; Shown on plans.
8. Supplemental information as required by the Planning Director or City Arborist. N/A

PRELIMINARY STORM DRAINAGE CALCULATIONS

FOR
$8^{\text {th }}$ Court Commercial
2180 8 $^{\text {th }}$ CT
WEST LINN, OR 97068

September 13, 2018
Revised: November 29, 2018

TABLE OF CONTENTS/INCLUSIONS:

Storm Drainage Narrative:

Edge Development
735 SW 20 ${ }^{\text {th }}$ Place, Suite 220
Portland, OR 97205

September 13, 2018
Revised: November 28, 2018

RE: $\quad 8^{\text {th }}$ Court Commercial Preliminary "Storm Drainage Narrative and Analysis Report"

Dear Mr. Bruin,
At your request, WDY, Inc. has completed the following storm drainage calculations for the 2180 $8^{\text {th }}$ Court project in West Linn, Oregon. The purpose of this report is to show the analysis and design of storm water, water quality and detention systems utilizing City of Portland style Storm Planters also known as "rain gardens" to provide detention and water quality for all new and redeveloped impervious areas. The storm drainage detention and water quality systems are designed per the City of West Linn's Design Standards for Storm Drain Requirements. The water quality standards meet the 2016 City of Portland's Stormwater Management Manual (SWMM) which the City of West Linn accepts for water quality design standards. Rain fall intensities were provided by the City of West Linn and utilized in a Performance Approach Engineered analysis for both detention and water quality for each planter.

Site Existing Conditions

The existing site is currently one tax lot that consists of one building, concrete walkways, asphalt paved parking and landscaping. The south property line abuts Willamette Falls Drive. The site slopes relatively steeply down from Willamette Falls Drive north right of way to the north to the top of an existing 3 foot to 4 foot tall rock retaining wall at the base of the slope. The north property line has a bank that slopes down to the north to the flow line of existing public regional drainage conveyance ditch that s within a sensitive area buffer zone. The remaining area of the lot is generally flat with the overall slopes less than 5% that drain runoff to existing catch basins which are connected to an existing public storm conveyance pipe that exists in a public easement. The entire $8^{\text {th }}$ Court business park east of $10^{\text {th }}$ street drains to this shared public storm main and discharges into the regional drainage ditch. The drainage ditch conveys storm runoff to an existing public water quality and retention basin that is adjacent to and east of the subject project site. The water quality and retention are presumed to be constructed with a liner with a perforated pipe below the surface growing media that ultiamtly collects all runoff and then discharges through a concrete ditch inlet into an existing public 12" diameter PVC pipe that out falls into Bernert Creek approximately 200 feet east of the subject project site. Bernert Creek collects and conveys over 100 acres of upstream and downstream storm water, is a major drainage way and eventually discharges directly into the Willamette River about 3,800 feet downs stream. Bernert Creek does not appear to have a history of flooding and is not a FEMA listed floodway.

Proposed New Site Development:

The proposed development will partition the one property into two separate tax lots. The proposed partition will split the existing 24 ft wide shared public access easement that runs through the middle of the site. The Parcel 1 north lot will remain a private parking lot with independent catch basins that connect to the existing public drainage system. No work is proposed on the north lot other than to cross the lot with new storm drainage conveyance pipe to discharge the Parcel 2 south lot storm runoff to the existing public conveyance system. The total area of the north lot is approximately 23,142 sf with $18,270 \mathrm{sf}$ of impervious area and 4,872 sf of pervious area to remain undisturbed.
$8^{\text {th }}$ Court Redevelopment
"Stormwater Design Narrative"
Page 2
The Parcel 2 south lot proposes to construct and approximately 2,777 sf medical office building and 1,494 sf of retail space. The west existing parking area is proposed to remain undisturbed but new curb and sidewalk will be installed along the west building wall from the existing public pedestrian stair to the north edge of the proposed development. New paved parking along the north and east sides of the building is proposed along with sidewalks. All new or redeveloped impervious area will drain to one of the three new storm planters designed to provide water quality and detention to meet City of West Linn storm water policies.

Planter-1:

Planter 1 is a standard concrete wall flat bottom storm planter that is approximately 546 sf in area. The total storage depth will be 1.3 feet. Pavement and sidewalks will surface drain to the storm planter with curb cuts. Roof drains from the 1,494 sf building will discharge directly into the planter. See sheet STM-6 \& STM-7 for a summary of the detention and water quality analysis and STM-9 thru STM-26 for the HydronCAD output analysis. This planter will be directly connected to the existing public storm main that crosses the west property line of the north Parcel 1 which ultimately discharges into the existing public conveyance ditch that conveys stormwater through the downstream existing water quality and retention facility. The planter is designed for water quality and detention.

Planter-2:

Planter 2 is standard concrete flat bottom storm planter that is approximately 179 sf in area. The total storage depth is 1.6 feet. Pavement and sidewalks will surface drain to the storm planter with curb cuts. This planter is not proposed to receive any roof area. See sheet STM-6 \& STM-7 for a summary of the detention and water quality analysis and STM-27 thru STM-44 for the HydronCAD output analysis. This planter proposes a new outfall conveyance pipe that crosses along the east property line of the north Parcel 1 lot and will discharge into the existing public conveyance ditch that conveys stormwater through the downstream existing water quality and retention facility. The planter is designed for water quality and detention.

Planter-3:

Planter 3 is a storm planter basin with $3 \mathrm{H}: 1 \mathrm{~V}$ side slopes. The total top of basin foot print is 552 sf and the bottom area is 160 sf. The total storage depth is 1.15 feet with the total depth of the planter being 1.5 feet. Roof water from the 2,777 sf building will directly discharge to this planter. See sheet STM-6 \& STM-7 for a summary of the detention and water quality analysis and STM-45 thru STM-62 for the HydronCAD output analysis. This planter proposes a new outfall conveyance pipe that crosses along the east property line of the north Parcel 1 lot and will discharge into the existing public conveyance ditch that conveys stormwater through the downstream existing water quality and retention facility. The planter is designed for water quality and detention.

The stormwater detention design for each planter is per the City of West Linn and City of Portland's stormwater standards and design guidelines. Each storm facility is a "Flow-Thru" type facility. The site is underlain by silty loam soil and does not percolate very well. The City of West Linn requires the 2, 5, 10 and 25-year post developed stormwater runoff rates to the be detained to their respective pre-developed runoff rates. The water quality requirement is per the City of Portland which is to treat 90 percent of the average annual runoff volume. This is achieved by treating the predetermined runoff rate from a 0.83 inch over 24 -hour volume storm. The analysis for each storm planter was conducted using HydroCAD Version 10.00 with an engineered performance approach.

Sincerely,
Chris DesLauriers, PE

OWDY

Structural - Civil Engineers

6448 SW Beaverton-Hillsdale Hwy, suite 210
Portland, Oregon 97221
产 $p h: 503.203 .8111$ fx:503.203.8122 www.wdyi.com
(C) 2018 WDY, INC.

SCALE: $\quad 1^{\prime \prime}=40^{\prime}-0^{\prime \prime}$

Job Name: 8TH COURT COMMERCIAL	Date:	NOV 2018	
Job No.:	18116	Drawn:	RMK
Client:	EDGE DEVELOPMENT	Sheet:	\mathbf{M}

\square PROPOSED NEW
CONCRETE 3,413 SF $\mathrm{CN}=98$ \square PROPOSED NEW ROOF 4,271 SF $\mathrm{CN}=98$
"*****

PROPOSED LANDSCAPING 4,886 SF CN=86

PROPOSED SOUTH PARCEL \#2 AREA MAP

SCALE: $1^{\prime \prime}=40^{\prime \prime}-0^{\prime \prime}$

Job Name: 8TH COURT COMMERCIAL	Date:	NOV 2018	
Job No.:	18116	Drawn:	RMK
Client:	EDGE DEVELOPMENT	Sheet:	\mathbf{M}

Job Name:	$\mathbf{8}^{\text {th }}$ Court Commercial	Job No:	$\mathbf{1 8 1 1 6}$	Sheet No: STM-5
Client:	Edge Development	Date:	Sept. $\mathbf{2 0 1 8}$	By: RMK

SITE STORM DRAINAGE DESIGN CRITERIA

- Design Manuals:
- Water quality and detention designed per City of West Linn's Design Standards for Storm Drain Requirements.
- The City of West Linn accepts the City of Portland's 2016 Stormwater Management Manual (SWMM) for water quality standards.
- Santa Barbara Unit Hydrograph Method NRCS Type 1A 24-hour storm distribution design.

Rainfall Depths Provided By City of West Linn Engineering Deparment.

Storm Event	Rainfall Depth
$2-\mathrm{yr}$	2.5 in
$5-\mathrm{yr}$	3.0 in
$10-\mathrm{yr}$	3.4 in
$25-\mathrm{yr}$	3.9 in
$100-\mathrm{yr}$	4.5 in
Water Quality	0.83 in

- Pre-developed Conditions:
- USDA Web Soil Survey Existing Hydrologic Soil Group C Woodburn Silt Loam, Open Space, Assumed Poor Condition Grass Cover $<50 \%$; Curve Number (CN) = 86
- Proposed Conditions:
- Impervious areas are analyzed with runoff $\mathrm{CN}=98$
- Landscaping areas are analyzed with $\mathrm{CN}=86$
- Detention Design: the design for detention facilities per the City of West Linn's Design Standards are to detain flows as follows:
- 2 year post-developed $\rightarrow 2$ year pre-developed
- 5 year post-developed $\rightarrow 5$ year pre-developed
- 10 year post-developed $\rightarrow 10$ year pre-developed
- 25 year post-developed $\rightarrow 25$ year pre-developed
- Convey the $100-y r$ storm safely without causing damage to downstream property.
- See STM-8 for Tc calculations (5 minute minimum per City of West Linn Design Standards, Formula per City of Portland BES and 2016 City of Portland's SWMM)
- Water Quality Design: the design for water quality adheres to the 2016 City of Portland's SWMM:
- Treat 90 percent of the average annual runoff volume
- Predetermined water quality rainfall intensity of 0.83 inch over 24 hours to develop the maximum water quality flow.

Structural • Civil Engineers

| Job Name: | $\mathbf{8 t}^{\text {th }}$ Court Commercial | Job No: | $\mathbf{1 8 1 1 6}$ | Sheet No: STM-6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Client: | Edge Development | Date: | Sept. $\mathbf{2 0 1 8}$ | By: RMK |

TRIBUTARY AREAS

- Total Existing Parcel 1 and Parcel 2 lot Area $=45,477 \mathrm{sf}=1.04 \mathrm{sf}$
- Existing Conditions
> Impervious $=34,905 \mathrm{sf}$
- AC \& Concrete $=40,011$ sf
- Roof $=5,106 \mathrm{sf}$
- Pervious Landscapin $=10,572$ sf
- Parcel \#1 Proposed Conditions: Total Area $=23,142$ sf
- Parcel \#1 Existing Impervious Area $=18,270$ sf, to remain
- Parcel \#1 Existing Pervious Area (Landscaping \& Native) $=4,872$ sf, to remain
- Parcel \#2 Proposed Conditions: Total Area $=22,335 \mathrm{sf}$
- Planter \#1 = 546 sf
> Pavement/Concrete $=5,146 \mathrm{sf}$
> Roof $=1,494 \mathrm{sf}$
- Planter \#2 = 197 sf
> Pavement/Concrete $=2,206 \mathrm{sf}$
> Landscape $=650$ sf
- Planter Basin \#3 $=$ Bottom Area $=160$ sf; Top Area $=552$ sf
> Roof $=2,777 \mathrm{sf}$
> Landscape $=3,811$ sf
- Existing Pavement Area to remain undisturbed $=5,508 \mathrm{sf}$.

| Job Name: | $\mathbf{8 t h}^{\text {th }}$ Court Commercial | Job No: | $\mathbf{1 8 1 1 6}$ | Sheet No: STM-7 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Client: | Edge Development | Date: | Sept. $\mathbf{2 0 1 8}$ | By: RMK |

SUMMARY OF STORM DESIGN

Planter \#1: Summary of Detention Design Release Rates

Storm Even	Pre-Developed Runoff	Post-Developed Runoff	$\underline{\text { Target Rate }}$	Discharge to Drainage Ditch*	Peak Elevation
WQ	0.001 cfs	0.02 cfs	0.02 cfs	0.001 cfs	143.40 ft
$2-\mathrm{yr}$	0.04 cfs	0.09 cfs	0.04 cfs	0.01 cfs	144.31 ft
$5-\mathrm{yr}$	0.06 cfs	0.11 cfs	0.06 cfs	0.02 cfs	144.32 ft
$10-\mathrm{yr}$	0.07 cfs	0.12 cfs	0.07 cfs	0.04 cfs	144.33 ft
$25-\mathrm{yr}$	0.09 cfs	0.14 cfs	0.09 cfs	0.08 cfs	144.35 ft
$100-\mathrm{yr}$	0.11 cfs	0.16 cfs	N / A	0.15 cfs	144.38 ft

*The Discharge to Drainage Ditch is the rate at which water is being released into the existing drainage ditch.

- See HydroCAD print-outs for supporting information of storm design.

Planter \#2: Summary of Detention Design Release Rates

Storm Even	Pre-Developed Runoff	Post-Developed $\underline{\text { Runoff }}$	Target Rate	Discharge to Drainage Ditch*	Peak Elevation
WQ	0.001 cfs	0.02 cfs	0.02	0.0005 cfs	143.68 ft
$2-\mathrm{yr}$	0.02 cfs	0.52 cfs	0.02 cfs	0.01 cfs	144.61 ft
$5-\mathrm{yr}$	0.02 cfs	0.64 cfs	0.02 cfs	0.02 cfs	144.61 ft
$10-\mathrm{yr}$	0.03 cfs	0.67 cfs	0.03 cfs	0.02 cfs	144.62 ft
$25-\mathrm{yr}$	0.04 cfs	0.06 cfs	0.04 cfs	0.04 cfs	144.63 ft
$100-\mathrm{yr}$	0.05 cfs	0.07 cfs	N / A	0.06 cfs	144.64 ft

*The Discharge to Drainage Ditch is the rate at which water is being released into the existing drainage ditch.

- See HydroCAD print-outs for supporting information of storm design.

Planter \#3: Summary of Detention Design Release Rates

Storm Even	Pre-Developed Runoff	Post-Developed Runoff	Target Rate	Discharge to Drainage Ditch*	Peak Elevation
WQ	0.001 cfs	0.01 cfs	0.01 cfs	0.002 cfs	144.23 ft
$2-\mathrm{yr}$	0.04 cfs	0.06 cfs	0.04 cfs	0.01 cfs	145.02 ft
$5-\mathrm{yr}$	0.06 cfs	0.08 cfs	0.06 cfs	0.02 cfs	145.16 ft
$10-\mathrm{yr}$	0.07 cfs	0.09 cfs	0.07 cfs	0.04 cfs	145.17 ft
$25-\mathrm{yr}$	0.09 cfs	0.11 cfs	0.09 cfs	0.09 cfs	145.20 ft
$100-\mathrm{yr}$	0.11 cfs	0.13 cfs	N / A	0.13 cfs	145.22 ft

*The Discharge to Drainage Ditch is the rate at which water is being released into the existing drainage ditch.

- See HydroCAD print-outs for supporting information of storm design.

Job Name:	$\mathbf{8}^{\text {th }}$ Court Commercial	Job No:	$\mathbf{1 8 1 1 6}$	Sheet No: STM-8
Client:	Edge Development	Date:	Sept. $\mathbf{2 0 1 8}$	By: RMK

CONVEYANCE CALCULATIONS

- Pipe Capacity Equation
- $\mathrm{Q}_{\max }=\underline{1.486 \times \mathrm{A} \times \mathrm{R}^{2 / 3} \times \mathrm{S}^{1 / 2}}$
n
- A = Area; R = Hydraulic Radius; S = Slope; n = Manning's Roughness Coefficient
- Conveyance for Planter 2 \& Planter 3 worst case Site Runoff
- 8 " dia. where $\mathrm{n}=0.013, \mathrm{~A}=0.785 \mathrm{sf}, \mathrm{R}=0.250 \mathrm{ft}, \mathrm{S}=0.005$
- $Q_{\max }=0.854 \mathrm{cfs}>\mathrm{Q}_{100-\mathrm{yr}}=0.13+0.07=0.20 \mathrm{cfs}$ OK
- 8 " dia. pipe size (min) at 1.0% slope (min) for entire site stormwater runoff conveyance

TIME OF CONCENTRATION

- Time of Concentration T_{c} for Pre-Developed Conditions:

Pre-Developed Sheet Flow:

$\mathrm{L}=100^{\prime}$	$\mathrm{T}_{1}=\frac{0.42(0.24 \times 100)^{0.8}}{1.58 \times(0.05)^{0.4}}=11.19 \mathrm{MIN}$
$\mathrm{P}=1.58$ in	
$\mathrm{S}=5 \%$	
$\mathrm{n}=0.24$	

Pre-Developed Tc = 11.19 = 11.2 min; Use 11.2 MIN

- Time of Concentration Tc for Post-Developed Conditions:

Post-Developed Sheet Flow:
$\mathrm{L}=100$, $\quad \mathrm{T}_{1}=0.42(0.011 \times 100)^{0.8}=1.37 \mathrm{MIN}$
$\mathrm{P}=1.58$ in $\quad 1.58 \times(0.02)^{0.4}$
S = 2.0\%
$\mathrm{n}=0.011$
Post-Developed Pipe Flow:
$\begin{array}{ll}\mathrm{L}=126 \\ \mathrm{~V}=4.05 \mathrm{fps} & \mathrm{T}_{2}=\frac{126518 \mathrm{MIN}}{60 \times 4.05} \mathrm{M}\end{array}$
S = 2.0\%
6 " dia. pipe
$\mathrm{n}=0.013$
Post-Developed Tc $=1.37+0.518=1.888 \mathrm{~min} ;$ Use 5 MIN

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Inflow Area =	6,640	00.00\% Imperviou	Inflow Depth $=0.63{ }^{\prime \prime}$ for WQVOL event
Inflow	0.02 cfs @	7.91 hrs , Volume=	347 cf
Outflow	0.00 cfs @	23.41 hrs , Volume=	142 cf, Atten= 90\%, Lag= 930.0 min
Primary	0.00 cfs @	23.41 hrs, Volume=	142 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 143.40' @ 23.41 hrs Surf.Area= 546 sf Storage= 221 cf
Plug-Flow detention time= 607.2 min calculated for 142 cf (41% of inflow)
Center-of-Mass det. time $=316.3 \mathrm{~min}(1,040.0-723.7$)

Primary OutFlow Max=0.00 cfs @ 23.41 hrs HW=143.40' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Controls 0.00 cfs)

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Inflow Area =	6,640	00.00\% Impervious,	Inflow Depth = 2.27" for 2 yr event
Inflow	0.09 cfs @	7.88 hrs , Volume=	1,256 cf
Outflow	0.01 cfs @	14.67 hrs , Volume=	599 cf, Atten= 86\%, Lag= 407.5 min
Primary	0.01 cfs @	14.67 hrs, Volume=	599 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.31' @ 14.67 hrs Surf.Area= 546 sf Storage= 714 cf
Plug-Flow detention time= 601.1 min calculated for 599 cf (48% of inflow)
Center-of-Mass det. time $=329.2 \mathrm{~min}(1,001.8-672.6)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	819 cf	$\mathbf{1 0 . 0 0} \mathbf{W} \times 54.60^{\prime} \mathrm{L} \times 1.50^{\prime} \mathrm{H}$ Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Wetted area above 143.00' Excluded Wetted area $=546 \mathrm{sf}$
\#2	Primary	144.30^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $C=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 14.67 hrs HW=144.31' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Weir Controls 0.00 cfs @ 0.29 fps)

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.32' @ 10.03 hrs Surf.Area= 546 sf Storage= 719 cf
Plug-Flow detention time= 510.6 min calculated for 872 cf (57% of inflow)
Center-of-Mass det. time= 268.7 min (935.8-667.0)

Primary OutFlow Max=0.02 cfs @ 10.03 hrs HW=144.32' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Weir Controls 0.02 cfs @ 0.43 fps)

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.33' @ 8.85 hrs Surf.Area= 546 sf Storage= 725 cf
Plug-Flow detention time $=450.6 \mathrm{~min}$ calculated for $1,092 \mathrm{cf}$ (62% of inflow)
Center-of-Mass det. time= 229.1 min (892.7-663.6)

Primary OutFlow Max=0.04 cfs @ 8.85 hrs HW=144.33' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Weir Controls 0.03 cfs @ 0.55 fps)

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.35' @ 8.22 hrs Surf.Area= 546 sf Storage= 736 cf
Plug-Flow detention time= 393.6 min calculated for 1,366 cf (67% of inflow)
Center-of-Mass det. time= 194.1 min (854.2-660.1)

Primary OutFlow Max=0.08 cfs @ 8.22 hrs HW=144.35' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Weir Controls 0.07 cfs @ 0.71 fps)

Prepared by Microsoft
Printed 11/28/2018
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 07105$ © 2011 HydroCAD Software Solutions LLC

Subcatchment P-1: Pre-Developed

Pond 1P: Planter \#1

Summary for Pond 1P: Planter \#1

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.38' @ 8.01 hrs Surf.Area= 546 sf Storage= 751 cf
Plug-Flow detention time= 344.1 min calculated for 1,697 cf (72% of inflow)
Center-of-Mass det. time= 166.0 min (822.9-656.9)

Primary OutFlow Max=0.15 cfs @ 8.01 hrs HW=144.38' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
$\mathbf{2 = O v e r f l o w ~ (W e i r ~ C o n t r o l s ~} 0.14$ cfs @ 0.90 fps)

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

\square Inflow \square Primary

Summary for Pond 2P: Planter \#2

| Inflow Area $=$ | $2,856 \mathrm{sf}$, | 77.24% | Impervious, | Inflow Depth $=0.51 "$ |
| :--- | :--- | :--- | :--- | :--- | for WQVOL event

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 143.68' @ 26.00 hrs Surf.Area= 179 sf Storage= 122 cf
Plug-Flow detention time=(not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$\mathbf{5 . 0 0 ^ { \prime } \mathrm { W } \times \mathbf { 3 5 . 8 0 }} \mathbf{\prime} \mathbf{L} \times \mathbf{1 . 8 0}$ 'H Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 143.00' Excluded Surface area $=179 \mathrm{sf}$
\#2	Primary	144.60^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=143.00' (Free Discharge)
-1=Exfiltration (Controls 0.00 cfs)
2=Overflow (Controls 0.00 cfs)

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

Summary for Pond 2P: Planter \#2

Inflow Area =	2,856	77.24\% Imperviou	Inflow Depth = 2.04" for 2 yr event
Inflow	0.03 cfs @	7.89 hrs , Volume=	485 cf
Outflow	0.01 cfs @	12.52 hrs , Volume=	198 cf, Atten= 82\%, Lag= 277.6 min
Primary	0.01 cfs @	12.52 hrs , Volume=	198 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.61' @ 12.52 hrs Surf.Area= 179 sf Storage= 288 cf
Plug-Flow detention time= 640.4 min calculated for 198 cf (41% of inflow)
Center-of-Mass det. time $=343.9 \mathrm{~min}(1,034.4-690.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$\mathbf{5 . 0 0 ^ { \prime } \mathrm { W } \times 3 5 . 8 0 ^ { \prime } \mathrm { L } \times 1 . 8 0 ^ { \prime } \mathrm { H } \text { Prismatoid }}$

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 143.00' Excluded Surface area $=179 \mathrm{sf}$
\#2	Primary	144.60^{\prime}	8.0" Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 12.52 hrs HW=144.61' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Weir Controls 0.01 cfs @ 0.31 fps)

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

Summary for Pond 2P: Planter \#2

Inflow Area =	2,856	77.24\% Impervious,	Inflow Depth = 2.52" for 5 yr event
Inflow	0.04 cfs @	7.89 hrs , Volume=	599 cf
Outflow	0.01 cfs @	9.64 hrs, Volume=	313 cf, Atten= 75\%, Lag= 105.0 min
Primary	0.01 cfs @	9.64 hrs, Volume=	313 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.61' @ 9.64 hrs Surf.Area= 179 sf Storage= 289 cf
Plug-Flow detention time= 517.5 min calculated for 312 cf (52% of inflow)
Center-of-Mass det. time= 256.9 min (941.5-684.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$5.00^{\prime} \mathrm{W} \times 35.80^{\prime} \mathrm{L} \times 1.80^{\prime} \mathrm{H}$ Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 143.00' Excluded Surface area $=179 \mathrm{sf}$
\#2	Primary	144.60^{\prime}	8.0" Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ 9.64 hrs HW=144.61' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
2=Overflow (Weir Controls 0.01 cfs @ 0.37 fps)

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

Summary for Pond 2P: Planter \#2

Inflow Area =	2,856 s	77.24\% Impervious,	Inflow Depth = 2.90" for 10 yr event
Inflow	0.05 cfs @	7.89 hrs , Volume=	691 cf
Outflow	0.02 cfs @	8.70 hrs , Volume=	405 cf , Atten $=63 \%$, Lag $=48.5 \mathrm{~min}$
Primary	0.02 cfs @	8.70 hrs, Volume=	405 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.62' @ 8.70 hrs Surf.Area= 179 sf Storage= 290 cf
Plug-Flow detention time= 450.1 min calculated for 405 cf (59% of inflow)
Center-of-Mass det. time= 213.0 min (893.8-680.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$\mathbf{5 . 0 0 ^ { \prime } \mathrm { W } \times \mathbf { 3 5 . 8 0 }} \mathbf{\prime} \mathbf{L} \times \mathbf{1 . 8 0}$ 'H Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 143.00' Excluded Surface area $=179 \mathrm{sf}$
\#2	Primary	144.60^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 8.70 hrs HW=144.62' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Weir Controls 0.02 cfs @ 0.45 fps)

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

\square Inflow
\square Primary

Summary for Pond 2P: Planter \#2

Inflow Area $=$	$2,856 \mathrm{sf}$		77.24%	Impervious,
Inflow	$=$	$0.06 \mathrm{cfs} @$	7.89 hrs , Volume $=$	807 cf
Outflow	$=$	$0.04 \mathrm{cfs} @$	8.13 hrs , Volume $=$	520 cf , Atten=
Primary	$=$	$0.04 \mathrm{cfs} @$	8.13 hrs , Volume $=$	520 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.63' @ 8.13 hrs Surf.Area= 179 sf Storage= 292 cf
Plug-Flow detention time= 388.7 min calculated for 520 cf (64% of inflow)
Center-of-Mass det. time $=176.5 \mathrm{~min}$ (853.3-676.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$\mathbf{5 . 0 0 ^ { \prime } \mathrm { W } \times \mathbf { 3 5 . 8 0 }} \mathbf{\prime} \mathbf{L} \mathbf{~ 1 . 8 0} \mathbf{H}$ Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	$\mathbf{2 . 0 0 0}$ in/hr Exfiltration over Surface area above 143.00'
\#2	Primary	144.60^{\prime}	Excluded Surface area $=179 \mathrm{sf}$
	$\mathbf{8 . 0}$ Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads		

Primary OutFlow Max=0.04 cfs @ 8.13 hrs HW=144.63' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Weir Controls 0.04 cfs @ 0.57 fps)

Prepared by Microsoft
Printed 11/28/2018
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 07105$ © 2011 HydroCAD Software Solutions LLC

Subcatchment P-2: Pre-Developed

Pond 2P: Planter \#2

Summary for Pond 2P: Planter \#2

Inflow Area =	2,856 s	77.24\% Impervious	Inflow Depth = 3.98" for 100 yr event
Inflow	0.07 cfs @	7.88 hrs , Volume=	947 cf
Outflow	0.06 cfs @	7.94 hrs , Volume=	660 cf, Atten= 1\%, Lag= 3.5 min
Primary	0.06 cfs @	7.94 hrs, Volume=	660 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.64' @ 7.94 hrs Surf.Area= 179 sf Storage= 294 cf
Plug-Flow detention time= 336.6 min calculated for 660 cf (70% of inflow)
Center-of-Mass det. time= 148.5 min (821.4-672.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	143.00^{\prime}	322 cf	$\mathbf{5 . 0 0 ^ { \prime } \mathrm { W } \times \mathbf { 3 5 . 8 0 }} \mathbf{\prime} \mathbf{L} \times \mathbf{1 . 8 0}$ 'H Prismatoid

Device	Routing	Invert	Outlet Devices
\#1	Primary	143.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 143.00' Excluded Surface area $=179 \mathrm{sf}$
\#2	Primary	144.60^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.06 cfs @ 7.94 hrs HW=144.64' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Weir Controls 0.06 cfs @ 0.69 fps)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area =	6,588 sf,	42.15\% Impervious	Depth $=0.33$ " for WQVOL event
Inflow	0.01 cfs @	7.96 hrs , Volume=	183 cf
Outflow	0.00 cfs @	11.16 hrs , Volume=	164 cf, Atten= 74\%, Lag= 192.3 min
Primary	0.00 cfs @	11.16 hrs, Volume=	164 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 144.23' @ 11.16 hrs Surf.Area= 220 sf Storage= 45 cf
Plug-Flow detention time= 236.1 min calculated for 164 cf (90% of inflow)
Center-of-Mass det. time= 170.1 min (944.9-774.7)

Volume	Inve	ert Avai	Storage	Storage Descriptio		
\#1	144.00		528 cf	Custom Stage D	rregular)List	w (Recalc)
Elevation (feet)		Surf.Area (sq-ft)	Perim (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
144.00		161	52.5	0	0	161
144.10		187	57.6	17	17	206
144.20		213	62.4	20	37	252
144.30		236	65.5	22	60	284
144.40		260	68.6	25	85	318
144.50		285	71.7	27	112	354
144.60		311	74.9	30	142	392
144.70		337	78.0	32	174	430
144.80		365	81.1	35	209	470
144.90		391	83.5	38	247	503
145.00		417	85.5	40	287	531
145.10		443	87.4	43	330	558
145.20		469	89.3	46	376	586
145.30		496	91.2	48	424	615
145.40		524	93.1	51	475	645
145.50		532	94.9	53	528	673
Device	Routing	Invert Outlet Devices				
	Primary	144.00	$2.000 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area above 144.00' Excluded Surface area = 161 sf			
\#2 P	Primary		5' 8.0'	Horiz. Overflow	0.600 Limite	eir flow at low heads

Primary OutFlow Max $=0.00 \mathrm{cfs} @ 11.16 \mathrm{hrs} \mathrm{HW}=144.23^{\prime} \quad$ (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.00 cfs)
-2=Overflow (Controls 0.00 cfs)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area	6,588	42.15\% Impervious,	Inflow Depth = 1.68" for 2 yr event
Inflow	0.06 cfs @	7.92 hrs , Volume=	920 cf
Outflow	0.01 cfs @	11.67 hrs , Volume=	767 cf, Atten= 80\%, Lag= 224.7 min
Primary	0.01 cfs @	11.67 hrs , Volume=	767 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 145.02' @ 11.67 hrs Surf.Area= 422 sf Storage= 295 cf
Plug-Flow detention time= 326.9 min calculated for 767 cf (83% of inflow)
Center-of-Mass det. time= 218.6 min (946.5-727.9)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	144.00^{\prime}	528 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
144.00	161	52.5	0	0	161
144.10	187	57.6	17	17	206
144.20	213	62.4	20	37	252
144.30	236	65.5	22	60	284
144.40	260	68.6	25	85	318
144.50	285	71.7	27	112	354
144.60	311	74.9	30	142	392
144.70	337	78.0	32	174	430
144.80	365	81.1	35	209	470
144.90	391	83.5	38	247	503
145.00	417	85.5	40	287	531
145.10	443	87.4	43	330	558
145.20	469	89.3	46	376	586
145.30	496	91.2	48	424	615
145.40	524	93.1	51	475	645
145.50	532	94.9	53	528	673

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 144.00' Excluded Surface area $=161 \mathrm{sf}$
\#2	Primary	145.15^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.01 cfs @ $11.67 \mathrm{hrs} \mathrm{HW=}=145.02^{\prime} \quad$ (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Controls 0.00 cfs)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area =	6,588	42.15\% Impervious,	Inflow Depth = 2.13" for 5 yr event
Inflow	0.08 cfs @	7.91 hrs, Volume=	1,169 cf
Outflow	0.02 cfs @	9.46 hrs , Volume=	963 cf, Atten= 73\%, Lag= 92.7 min
Primary	0.02 cfs @	9.46 hrs, Volume=	963 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 145.16' @ 9.46 hrs Surf.Area= 459 sf Storage= 358 cf
Plug-Flow detention time $=324.1$ min calculated for 963 cf (82% of inflow)
Center-of-Mass det. time= 209.5 min (929.3-719.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	144.00^{\prime}	528 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
144.00	161	52.5	0	0	161
144.10	187	57.6	17	17	206
144.20	213	62.4	20	37	252
144.30	236	65.5	22	60	284
144.40	260	68.6	25	85	318
144.50	285	71.7	27	112	354
144.60	311	74.9	30	142	392
144.70	337	78.0	32	174	430
144.80	365	81.1	35	209	470
144.90	391	83.5	38	247	503
145.00	417	85.5	40	287	531
145.10	443	87.4	43	330	558
145.20	469	89.3	46	376	586
145.30	496	91.2	48	424	615
145.40	524	93.1	51	475	645
145.50	532	94.9	53	528	673

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 144.00' Excluded Surface area $=161 \mathrm{sf}$
\#2	Primary	145.15^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow $\mathrm{C}=0.600 \quad$ Limited to weir flow at low heads

Primary OutFlow Max=0.02 cfs @ 9.46 hrs HW=145.16' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
-2=Overflow (Weir Controls 0.01 cfs @ 0.34 fps)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area =	6,588	42.15\% Imperviou	Inflow Depth = 2.50" for 10 yr event
Inflow	0.09 cfs @	7.91 hrs, Volume=	1,371 cf
Outflow	0.04 cfs @	8.43 hrs , Volume=	$1,141 \mathrm{cf}$, Atten= 57%, Lag $=31.5 \mathrm{~min}$
Primary	0.04 cfs @	8.43 hrs , Volume=	1,141 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 145.17' @ 8.43 hrs Surf.Area= 462 sf Storage= 364 cf
Plug-Flow detention time= 287.3 min calculated for 1,140 cf (83% of inflow)
Center-of-Mass det. time= 176.7 min (891.2-714.4)

Volume	Inve	ert Ava	torage	Storage Descriptio		
\#1	144.0		528 cf	Custom Stage D	(Irregular)List	ow (Recalc)
Elevation (feet)		$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Perim.	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$
144.00		161	52.5	0	0	161
144.10		187	57.6	17	17	206
144.20		213	62.4	20	37	252
144.30		236	65.5	22	60	284
144.40		260	68.6	25	85	318
144.50		285	71.7	27	112	354
144.60		311	74.9	30	142	392
144.70		337	78.0	32	174	430
144.80		365	81.1	35	209	470
144.90		391	83.5	38	247	503
145.00		417	85.5	40	287	531
145.10		443	87.4	43	330	558
145.20		469	89.3	46	376	586
145.30		496	91.2	48	424	615
145.40		524	93.1	51	475	645
145.50		532	94.9	53	528	673
Device	Routing	Invert Outlet Devices				
\#1 P	Primary	144.00	2.000 in/hr Exfiltration over Surface area above 144.00' Excluded Surface area $=161 \mathrm{sf}$			
\#2 P	Primary		5' 8.0'	Horiz. Overflow	0.600 Limite	eir flow at low heads

Primary OutFlow Max=0.04 cfs @ 8.43 hrs HW=145.17' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
2=Overflow (Weir Controls 0.03 cfs @ 0.51 fps)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area =	6,588 sf,	42.15\% Impervious,	Inflow Depth = 2.97" for 25 yr event
Inflow	0.11 cfs @	7.91 hrs , Volume=	1,628 cf
Outflow	0.09 cfs @	8.08 hrs , Volume=	1,377 cf, Atten= 22\%, Lag= 10.1 min
Primary	0.09 cfs @	8.08 hrs, Volume=	1,377 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 145.20' @ 8.08 hrs Surf.Area= 469 sf Storage= 375 cf
Plug-Flow detention time $=247.6 \mathrm{~min}$ calculated for $1,377 \mathrm{cf}$ (85% of inflow)
Center-of-Mass det. time= 144.6 min (853.2-708.6)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	144.00^{\prime}	528 cf	Custom Stage Data (Irregular)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
144.00	161	52.5	0	0	161
144.10	187	57.6	17	17	206
144.20	213	62.4	20	37	252
144.30	236	65.5	22	60	284
144.40	260	68.6	25	85	318
144.50	285	71.7	27	112	354
144.60	311	74.9	30	142	392
144.70	337	78.0	32	174	430
144.80	365	81.1	35	209	470
144.90	391	83.5	38	247	503
145.00	417	85.5	40	287	531
145.10	443	87.4	43	330	558
145.20	469	89.3	46	376	586
145.30	496	91.2	48	424	615
145.40	524	93.1	51	475	645
145.50	532	94.9	53	528	673

Device	Routing	Invert	Outlet Devices
\#1	Primary	144.00^{\prime}	2.000 in/hr Exfiltration over Surface area above 144.00' Excluded Surface area $=161 \mathrm{sf}$
\#2	Primary	145.15^{\prime}	$\mathbf{8 . 0}$ ' Horiz. Overflow C=0.600 Limited to weir flow at low heads

Primary OutFlow Max=0.09 cfs @ $8.08 \mathrm{hrs} \mathrm{HW}=145.20^{\prime} \quad$ (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
$\mathbf{2 = O v e r f l o w ~ (W e i r ~ C o n t r o l s ~} 0.07$ cfs @ 0.72 fps)

Subcatchment P-3: Pre-Developed

Pond 3P: Planter \#3

Summary for Pond 3P: Planter \#3

Inflow Area =	6,588 sf,	42.15\% Impervious,	Inflow Depth = 3.53" for 100 yr event
Inflow	0.13 cfs @	7.90 hrs , Volume=	1,941 cf
Outflow	0.13 cfs @	7.99 hrs , Volume=	1,676 cf, Atten= 2\%, Lag= 5.2 min
Primary	0.13 cfs @	7.99 hrs, Volume=	1,676 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-26.00 hrs, dt= $0.01 \mathrm{hrs} / 9$
Peak Elev= 145.22' @ 7.99 hrs Surf.Area= 473 sf Storage= 384 cf
Plug-Flow detention time= 211.8 min calculated for 1,676 cf (86% of inflow)
Center-of-Mass det. time $=119.5 \mathrm{~min}$ (822.2-702.7)

Volume	Inve	ert Ava	torage	Storage Descriptio		
\#1	144.0		528 cf	Custom Stage D	(Irregular)List	ow (Recalc)
Elevation (feet)		$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Perim.	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	$\begin{array}{r} \text { Wet.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$
144.00		161	52.5	0	0	161
144.10		187	57.6	17	17	206
144.20		213	62.4	20	37	252
144.30		236	65.5	22	60	284
144.40		260	68.6	25	85	318
144.50		285	71.7	27	112	354
144.60		311	74.9	30	142	392
144.70		337	78.0	32	174	430
144.80		365	81.1	35	209	470
144.90		391	83.5	38	247	503
145.00		417	85.5	40	287	531
145.10		443	87.4	43	330	558
145.20		469	89.3	46	376	586
145.30		496	91.2	48	424	615
145.40		524	93.1	51	475	645
145.50		532	94.9	53	528	673
Device	Routing	Invert Outlet Devices				
\#1 P	Primary	144.00	2.000 in/hr Exfiltration over Surface area above 144.00' Excluded Surface area $=161 \mathrm{sf}$			
\#2 P	Primary		5' 8.0'	Horiz. Overflow	0.600 Limite	eir flow at low heads

Primary OutFlow Max=0.13 cfs @ 7.99 hrs HW=145.22' (Free Discharge)
-1=Exfiltration (Exfiltration Controls 0.01 cfs)
2=Overflow (Weir Controls 0.12 cfs @ 0.84 fps)

$8^{\text {th }}$ COURTDEVELOPMENT

(A) COUNTRY LEDGESTONE.

MUTUAL MATERIALS OR SIMILAR

(B) CLEAR GLASS STOREFRONT GLAZING WITH ANODIZED ALUMINUM FRAMING. FINISH COLOR T.B.D.

ARTISAN LAP SIDING.
JAMES HARDIE OR SIMILAR

ARTISAN LAP SIDING. JAMES HARDIE OR SIMILAR

Willamette Capital Investments, LLC

$8^{\text {th }}$ COURTDEVELOPMENT

(D) WOOD TRELLIS.

PARTIAL NORTHWEST ELEVATION

Bth COURT BUILDING SHELL

West Linn, OR

PROJECT TEAM
OWNER

developer
DEVELOPER

ARCHITECT

ELECTRICAL ENGINEER

traffic engineer

geotechnical enginer

 LANDSCAPE ARCHITECT

 CIVIL ENGINEER

LAND SURVEYOR

PROJECT INFORMATION

PRoJECT DEESCRIPTON	new commercial officerretall bullding SHEL (INTERIORIMR SEPARATE PERMTT)
properti location	180 8th COUR WEST LINN, OR 97068
	parcele
countr	clackamas
Stitarea	22.335 sF
BuILING AREA	
zonng	gc, general commerial
buliding occupancr	B, OFFICE M, MERCANTILE
COnstruction trpe	v.b, NoN.SPPRNKLERED

DRAWING INDEX
A1.0 COVER SHEET
A1.1 SHELL FLOOR PLAN
A2.1 BUILDING ELEVATIONS
A2.2 BUILDING ELEVATIONS
ECM EXISTING CONDITIONS MAP
C1.0 CIVIL NOTES
2.0 DIMENSIONED SITE PLAN

C2.1 ESC PLAN
C2.2 UTILITY PLAN
2.3 GRADING PLAN

C3.0 CIVIL DETAILS
C3.1
CIVIL DETAILS
C3.2 CIVIL DETAILS
E0.1 SITE ELECTRICAL PLAN
L1 LANDSCAPE PLAN
$\begin{array}{ll} & \\ \text { PLANTING PLAN }\end{array}$

floor plan

DESIGN REVIEW

DESIGN

A2. 2

LUMINAIRE SCHEDULE						
	Scaproon		Mwors	(oncer		Mentracurer ano woot ser
\cdots	12" DIAMETER ARM MOUNTED LED ANGLE REFLECTOR. ALL ALUMINUM HOUSING, 90CR 120 V AND BRONZE FINISH. BRONZE FINISH.	${ }_{1.860}^{\text {Led }}$ Lunss	${ }^{15 W}$	Stumafo	4.000	TROY RLM LIGHTING: ANGLE REFLECTOR SERIES OR APPROVED.
'8'	SURFACE MOUNTED LED WALL SCONCE ALUMINUM HOUSING, TOCRI, VISUAL COMFORT DARK BRONZE FINISH.		${ }^{25 \%}$	Stumafe	4.000	LITHONIA LIGHTING: WST LED SERIES OR APPROVED.
' ${ }^{\prime}$	POLE MOUNTED LED LUMINAIRE. FORWARD OPTICS, TYPE 2 MEDIUM DISTRIBUTION, MVOLT, OPTICS, TYPE 2 MEDIUM DISTRIBUTION, MOUNTED AT 180 DEGREES AND DARK BRONZ FINISH.	${ }_{5.593}^{\text {LED }}$ Luness	${ }^{49 \%}$	Stumaro	4,000	LITHONIA LIGHTING: DSXO SERIES OR APPROVED. APPROVED.
'o'	WALL MOUNT LED LUMINAIRE. MVOLT STANDARD DISTRIBUTION AND DARK BRONZE Finish.		${ }^{13}$	Stumate	4.000k	LITHONIA LIGHTING: OLWX1 SERIES OR APPROVED.
E'	POIE Mounte Led Lummene. Formen 	${ }_{5.593}^{\text {LED Lunss }}$	${ }^{49 \%}$		4.000	LITHONIA LIGHTING: DSXO SERIES OR APPROVED.
1. ALL POLE MOUNTED LUMINAIRES HAVE A MOUNTING HEIGHT OF 20° . CONR ATtACH tO EXISting pole.						

E1.0

Catalog \#:
Aluminum Shade
with Glass and Guard Options
Date:

Project: Type: A
Notes:

	A	B
RA8	$8^{\prime \prime}$	$9^{\prime \prime}$
RA10	$10^{\prime \prime}$	$11^{\prime \prime}$
RA12	$12^{\prime \prime}$	$12-1 / 2^{\prime \prime}$

Electrical

- 120 V input (277 V available in arm and post option only)
- Integrated power supply allows the fixture to be connected directly into line voltage
- Pre-wired and ready for install
- LED is dimmable with Incandescent/Triac dimmers

Mounting

- $1 / 2^{\text {" }}$ or $3 / 4^{\text {" IP }}$ for arms. Flush mount and post available only in $1 / 2^{\prime \prime}$

Finishes

- Shade and mounting finish options
- Available in 21 standard and 2 specialty finishes with optional coastal coating to protect finish in coastal environments (add "- C " to the finish)
- Inner shade is painted gloss white
- Consult factory for custom finish options

Optional Accessories

- Glass, Cast Guard, Wire Cage or Wire Guard options available

Listing

UL listed to US and Canadian standards for wet locations

Angle Reflector Order Matrix (Example: RA10LED1127GA-2)

14508 Nelson Ave. City of Industry, CA 91744 - tel: 626.336 .4511 - fax: 626.330 .4266 - www.TroyRLM.com
© 2018 Troy-RLM Lighting, A Division of Troy-CSL Lighting, Inc.
All rights reserved. Subject to change without notice.

ANGLE REFLECTOR
Aluminum Shade
with Glass and Guard Options

Catalog \#:
Project:
Date:
Type: A
Notes:

Glass Enclosure

- Glass is available in clear (-CG), frosted (-FG) or opal (-OG)

Wire Cage with Glass Enclosure

- Wire cage can be specified in all standard and specialized finishes, and will match shade finish unless otherwise specified (Note: For galvanized shade finishes, wire cage is finished in Painted Natural Aluminum)
- Glass is available in clear (-CGWC), frosted (-FGWC) or opal (-OGWC)

Cast Guard with Glass Enclosure

- Cast guard can be specified in all standard and specialized finishes, and will match shade finish unless otherwise specified
(Note: For galvanized shade finishes, cast guard is unfinished Raw Aluminum)
- Glass is available in clear (-CGG), frosted (-FGG) or opal (-OGG)

Wire Guard (-WG)

- Wire cage can be specified in all standard and specialized finishes, and will match shade finish unless otherwise specified (Note: For galvanized shade finishes, wire guard is finished in Painted Natural Aluminum)

Catalog \#:
Project:
Date:

Type: A Notes:

Arm Mount Order Matrix (Example: 2SL3ORD)

Curve Arm

A30

Miter Arm

Catalog \#:
Project:
Type: A
Aluminum Shade
with Glass and Guard Options

Date:
Notes:

Knuckle Accessory Order Matrix (Example: 2KNLRD)

Pipe	Finish	Finish		Coastal Coating Option	
$\square 2\left(1 / 2^{\prime \prime} \mathrm{PP}\right)$	KNL (Adjustable 180° Knuckle for Arm Mounts)	$\square \mathrm{ABL}$	(Aegean Blue)	$\square \text { (blank) }$	(No coating) (Coating)
$\left.\square^{\left(3 / 4^{*}\right.} 1 \mathrm{P}\right)$		$\square \mathrm{BB}$	(Burnished Bronze)		
		$\square \mathrm{BK}$	(Gloss Black)		
		$\square \mathrm{BLU}$	(Blue)		
		$\square \mathrm{DVG}$	(Dove Gray)		
		$\square \mathrm{FLG}$	(Flannel Gray)		
		$\square \mathrm{GA}$	(Galvanized)		
		LG	(Lime Green)		
		$\square \mathrm{MB}$	(Matte Black)		
		$\square \mathrm{MBL}$	(Midnight Blue)		
		\square PNA	(Painted Natural Aluminum)		
		\square PNC	(Painted Natural Copper)		
		$\square \mathrm{RD}$	(Red)		
		$\square \mathrm{SA}$	(Satin Aluminum)		
		\square SGR	(Sage Green)		
		\square SGW	(Semi Gloss White)		
		\square SND	(Sand)		
		\square ss	(Satin Silver)		
		\square TBZ	(Textured Bronze)		
		\square TGP	(Textured Graphite)		
		\square TNG	(Tangerine)		
		$\square \mathrm{TLL}$	(Tahitian Teal)		
		\square WT	(Gloss White)		
				4. Satin alu	ninum coated

Description
Adjustable knuckle for arm mounts that allow luminaire to be rotated up to 180°.

Standard Finishes

ANGLE REFLECTOR

Catalog \#:

Aluminum Shade
with Glass and Guard Options
Project:
Date:
Type: A
Notes:

Pipe	Mount Type	Finish	Input Voitage
$\square 2$ (1/2" 1 P)	P1 (Single Post Mount) P2 (Double Post Mount) W1 (Traditional Wall Mount)	\square ABL (Aegean Blue) $\square \mathrm{BB}$ (Burnished Bronze) $\square \mathrm{BK}$ (Gloss Black) \square BLU (Blue) \square DVG (Dove Gray) $\square \mathrm{FLG}$ (Flannel Gray) $\square \mathrm{GA}$ (Galvanized) $\square \mathrm{LG}$ (Lime Green) $\square \mathrm{MB}$ (Matte Black) $\square \mathrm{MBL}$ (Midnight Blue) $\square \mathrm{PNA}$ (Painted Natural Aluminum) $\square \mathrm{PNC}$ (Painted Natural Copper) \square RD (Red) \square SA (Satin Aluminum) \square SGR (Sage Green) \square SGW (Semi Gloss White) \square SND (Sand) \square SS (Satin Silver) \square TBZ (Textured Bronze) \square TGP (Textured Graphite) \square TNG (Tangerine) \square TIL (Tahitian Teal) \square WT (Gloss White)	$\begin{array}{ll} \hline \text { (blank) } & \text { (120V) } \\ -27^{5} & (277 V) \end{array}$

5. Post mount only

Post Type Order Matrix (Example: P8683-96RD)

Post Type		Finish	
\square PM4946	(Cast Aluminum Post)	$\square \mathrm{ABL}$	(Aegean Blue)
\square P8683-96	(Cast Aluminum Base w/ 96" Aluminum Post)	$\square \mathrm{BB}$	(Burnished Bronze)
\square P8683-120	(Cast Aluminum Base w/ 120" Aluminum Post)	$\square \mathrm{BK}$	(Gloss Black)
\square P8684-96	(96" Straight Aluminum Post)	$\square \mathrm{BLU}$	(Blue)
\square P8684-120	(120" Straight Aluminum Post)	\square DVG	(Dove Gray)
\square PM8685	(Cast Aluminum Pier Mount - must be used	$\square \mathrm{FLG}$	(Flannel Gray)
	with straight aluminum post, P8683)	$\square \mathrm{GA}$	(Galvanized)
		$\square \mathrm{LG}$	(Lime Green)
		$\square \mathrm{MB}$	(Matte Black)
		$\square \mathrm{MBL}$	(Midnight Blue)
		\square PNA	(Painted Natural Aluminum)
		\square PNC	(Painted Natural Copper)
		$\square \mathrm{RD}$	(Red)
		\square SA	(Satin Aluminum)
		\square SGR	(Sage Green)
		SGW	(Semi Gloss White)
		\square SND	(Sand)
		\square SS	(Satin Silver)
		\square TBZ	(Textured Bronze)
			(Textured Graphite)
			(Tangerine)
		$\square \mathrm{TLL}$	(Tahitian Teal)
		\square WT	(Gloss White)

Standard Finishes

| | ABL |
| :--- | :--- | (Aegean Blue)

\square	PNC	(Painted Natural Copper)
RD	(Red)	
SGR	(Sage Green)	
\square	SGW	(Semi Gloss White)
SND	(Sand)	
SS	(Satin Silver)	
\square	TBZ	(Textured Bronze)
TGP	(Textured Graphite)	
TNG	(Tangerine)	
\square		
TTL	(Tahitian Teal)	
\square	WT	(Gloss White)

Specialty Finishes

GA (Galvanized)
SA
SA (Satin Aluminum)

Specifications

Luminaire

Height:	$8-1 / 2^{\prime \prime}$ $(21.59 \mathrm{~cm})$
Width:	$17^{\prime \prime}$ $(43.18 \mathrm{~cm})$
Depth:	$10-3 / 16^{\prime \prime}$ $(25.9 \mathrm{~cm})$
Weight:	20 lbs
$(9.1 \mathrm{~kg})$	

Optional Back Box (PBBW)

\($$
\begin{array}{ll}\text { Height: } & \begin{array}{l}8.49^{\prime \prime} \\
(21.56 \mathrm{~cm})\end{array} \\
\text { Width: } & \begin{array}{l}17.01^{\prime \prime} \\
(43.21 \mathrm{~cm})\end{array}
$$

\&\)| $1.70^{\prime \prime}$ |
| :--- |
| Depth: |
| |
| |
| |
| $\hline .32 \mathrm{~cm})$ |\end{array}

Optional Back Box (BBW)

WST LED
Architectural Wall Sconce

Catalog
 Number

Notes

Type TYPE B

SA+Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+Certified when ordered with DTL® controls marked by a shaded background. DTL DLL equipped luminaires meet the $\mathrm{A}+$ specification for luminaire to photocontrol interoperability1
- This luminaire is part of an A+Certified solution for ROAM ${ }^{\circledR}$ or XPoint $^{\text {TM }}$ Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background ${ }^{1}$

To learn more about A+, visit www.acuitybrands.com/aplus.

See ordering tree for details.
A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link to Roam; Link to DTLDLL

A+Capable options indicated by this color background.

Ordering Information

WSt Led	P2	40K	VF	MVOLT		SURFACE MTG BRACKET
Series	Performance Package	Color temperature	Distribution	Voltage		Mounting
WST LED	P1 1,500 Lumen package P2 3,000 Lumen package P3 6,000 Lumen package	27 K 2700 K 30 K 3000 K 40 K 4000 K 50 K 5000 K	VF Visual comfort forward throw VW Visual comfort wide	$\begin{aligned} & \text { MVOLT' } \\ & 120^{2} \\ & 208^{2} \\ & 240^{2} \end{aligned}$	$\begin{aligned} & 277^{2} \\ & 347^{2} \\ & 480^{2} \end{aligned}$	Shipped included (blank) Sufface mounting bracket Shipped separately BBW Surface-mounted back box ${ }^{3}$ PBBW Premium surface-mounted back box ${ }^{3.4}$

DDBXD

Options				Finish (required)	
PE	Photoelectric cell, button types	E7WC	Emergency battery backup, Non CEC compliant (cold,	DDBXD	Dark bronze
PER	NEMA twis-lock receptacle only (controls ordered separate) ${ }^{6}$		7W) ${ }^{10.11}$	DBLXD	Black
PER5	Five-wire receptade only (controls ordered separate) ${ }^{6}$	E7WHR	Remote emergency battery backup, Non CEC compliant (remote 7W) ${ }^{10,12}$	DNAXD	Natural aluminum
PER7	Seven-wire receptacle only (controls ordered separate) ${ }^{6}$		Emergency battery pack 18W constant power (FC	DWHXD	White
PIR	Motion/Ambient Light Sensor, 8-15' mounting height ${ }^{\text {P }}$ /	E2OWH	Emergency battery pack 18 W constant power, CEC compliant ${ }^{10}$	DSSXD	Sandstone
PIR1FC3V PIRH	Motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at $1 \mathrm{fc}^{2,8}$ 180° motion/ambient light sensor, $15-30^{\prime}$ mounting height ${ }^{\text {² }}$.	E20WC	Emergency battery pack $-20^{\circ} \mathrm{C} 18 \mathrm{~W}$ constant power, CEC compliant ${ }^{\text {ta.\| }}$	$\begin{aligned} & \text { DDBTXD } \\ & \text { DBLBXD } \end{aligned}$	Textured dark bronze Textured black
PIRH1FC3V SF	Motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at $1 \mathrm{ff}^{78}$ Single fuse $(120,277,347 \mathrm{~V})^{2}$	E23WHR	Remote emergency battery backup, Non CEC compliant (remote 20W) ${ }^{10,1 / 13}$	DNATXD DWHGXD	Textured natural aluminum Textured white
DF	Double fuse ($208,240,480 \mathrm{~V})^{2}$	LCE	Left side conduit entry ${ }^{4}$	DSSTXD	Textured sandstone
DS	Dual switching ${ }^{9}$	RCE	Right side conduit entry ${ }^{14}$		
E7WH	Emergency battery backup, Non CEC compliant (7W) ${ }^{10}$	Shipped RBPW VG WG	eparately Retrofit back plate ${ }^{3}$ Vandal guard ${ }^{15}$ Wire guard ${ }^{15}$		

Accessories		NOTES			Reference Motion Sensor table.
		1	MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}$ ($50 / 60$ Hz).	10	Not available with Emergency options, PE or PER options. Not available with $347 / 480 \mathrm{~V}$.
WSTVCPBBW DDBXDU	Premium Surface - mounted back box	2	Single fuse (SF) requires $120 \mathrm{~V}, 277 \mathrm{~V}$ or 347 V . Double fuse (DF) requires $208 \mathrm{~V}, 240 \mathrm{~V}$ or 480 V .	12	Battery pack rated for -20° to $40^{\circ} \mathrm{C}$. Comes with PBBW.
WSBbw dobixu	Surface - mounted back box	3	Also available as a separate accessory; see accessories information.	13	Warranty period is 3 -years.
RBPW Dobxiu	Retroftit badk plate	4	Top conduit entry standard.	14	Not available with BBW.
		5	Need to specify 120, 208, 240 or 277 voltage.		Must order with fixture; not an accessory.
		6	Photocell ordered and shipped as a separate line item from Acuity Brands Controls. Shorting Cap included.		

Emergency Battery Operation

The emergency battery backup is integral to the luminaire - no external housing required! This design provides reliable emergency operation while maintaining the aesthetics of the product.
All emergency backup configurations include an independent secondary driver with an integral relay to immediately detect AC power loss, meeting interpretations of NFPA $70 /$ NEC $2008-700.16$
 and NFPA 101 Life Safety Code Section 7.9, provided luminaires are mounted at an appropriate height and illuminate an open space with no major obstructions.
The examples below show illuminance of 1 fc average and 0.1 fc minimum of the P 1 power package and VF distribution product in emergency mode.

```
10' x 10' Gridlines
8' and 12' Mounting Height
```


WST LED P1 27K VF MVOLT E7WH

WST LED P2 40K VF MVOLT E20WH

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperature from 0-40 ${ }^{\circ} \mathrm{C}\left(32-104^{\prime} \mathrm{F}\right)$.

Ambient		
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.03
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.02
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$25^{\circ} \mathrm{C}$	$77^{\circ} \mathrm{F}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.98

Projected LED Lumen Maintenance
Values calculated according to IESNA TM-21-11 methodology and valid up to $40^{\circ} \mathrm{C}$.

Operating Hours	0	25,000	50,000	100,000
Lumen Maintenance 1.0 >0.95 >0.92	>0.87			

Motion Sensor DefaultSettings						
Option	Dimmed State	High level (when triggered)	Photocell Operation	Ramp-up Time	Dwell Time	Ramp-down
FPIRe or PIRH	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @ 5 FC	3 sec	5 min	5 min
PIR1FC3V or PIRH1FC3V	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @1FC	3 sec	5 min	5 min

*for use with centrilize Dusk to Dawn

PER Table

Control	$\begin{aligned} & \text { PER } \\ & \text { (3 wire) } \end{aligned}$	PER5 (5 wif)		PERT (7 wire)		
			Wire 4 Wire5		Wire 4 Wires	Wire 6/Wire7
Photocontrol Only (0n/0ff)	\checkmark	A	Wired to dimming leads on driver	Δ	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM	0	\checkmark	Wired to dimming leads on driver	$\boldsymbol{\Delta}$	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM with Motion	8	A	Wired to dimming leads on driver		Wired to dimming leads on driver	Wires Capped inside fixture
Futureproof*	(A	Wired to dimming leads on driver	\checkmark	Wired to dimming leads on driver	Wires Capped inside fixture
Futureproof* with Motion	0	A	Wired to dimming leads on driver	\checkmark	Wired to dimming leads on driver	Wires Capped inside fixture

Recommended
(v) Will not work

A
Alternate
*Futureproof means: Ability to change controls in the future.

Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative
of the configurations shown, within the tolerances allowed by Lighting Facts.

Performance Package	System Watts (MVOLI)	Dist. Type	$\begin{gathered} 27 \mathrm{~K} \\ (2700 \mathrm{~K}, 70 \mathrm{Ci} 1) \end{gathered}$					$\begin{gathered} 30 \mathrm{~K} \\ \text { (B000K, } 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$				
			tumens	8	U	6	LPW	tumens	B	0	6	IPW	tumens	8	U	6	LPW	tumans	B	U	6	IPW
P1	12W	VF	1,494	0	0	0	125	1,529	0	0	0	127	1,639	0	0	0	137	1,639	0	0	0	137
		VW	1,513	0	0	0	126	1,548	0	0	0	129	1,659	0	0	0	138	1,660	0	0	0	138
P2	25W	VF	3,163	1	0	1	127	3,237	1	0	1	129	3,469	1	0	1	139	3,468	1	0	1	139
		VW	3,201	1	0	0	128	3,276	1	0	0	131	3,512	1	0	0	140	3,512	1	0	0	140
P3	50W	VF	6,025	1	0	1	121	6,165	1	0	1	123	6,609	1	0	1	132	6,607	1	0	1	132
		VW	6,098	1	0	1	122	6,240	1	0	1	125	6,689	1	0	1	134	6,691	1	0	1	134

Photometric Diag EMS To see complete photometric reports or download ies files for this product, visit Lithonia Lighting's W/ST LED homepage,

Isofootcandle plots for the WST LED P3 40K VF and WW. Distances are in units of mounting height (10^{\prime}).

Distribution overlay comparison to 175 W metal halide.

LEGEND	
WST LED, 0.5 fc	
	\
WST	
HID,	()
10^{\prime} W Sidowalk	-
Luss:	WST HID: WST LED:
WST HID $=0.72$	213W 50W
WST LED $=0.95$	VST LED P3 40K VF,
	WST 175M FT Probe, 12^{\prime} Mounting Ht

FEATURES \& SPECIFICATIONS

INTENDED USE

The classic architectural shape of the WST LED was designed for applications such as hospitals, schools, malls, restaurants, and commercial buildings. The long life LEDs and driver make this luminaire nearly maintenance-free.

CONSTRUCTION

The single-piece die-cast aluminum housing integrates secondary heat sinks to optimize thermal transfer from the internal light engine heat sinks and promote long life. The driver is mounted in direct contact with the casting for a low operating temperature and long life. The die-cast door frame is fully gasketed with a one-piece solid silicone gasket to keep out moisture and dust, providing an IP65 rating for the luminaire.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Standard Super Durable colors include dark bronze, black, natural aluminum, sandstone and white. Available in textured and non-textured finishes.

OPTICS

Well crafted reflector optics allow the light engine to be recessed within the luminaire, providing visual comfort, superior distribution, uniformity, and spacing in wall-mount applications. The WST LED has zero uplight and qualifies as a Nighttime Friendly ${ }^{\text {TM }}$ product, meaning it is consistent with the LEED ${ }^{\text {² }}$ and Green Globes ${ }^{\text {M }}$ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine(s) consist of 98 high-efficacy LEDs mounted to a metal core circuit board and integral aluminum heat sinks to maximize heat dissipation and promote long life (100,000 hrs at $40^{\circ} \mathrm{C}$, L87). Class 2 electronic driver has a power factor $>90 \%$, THD $<20 \%$. Easilyserviceable surge protection device meets a minimum Category B (per ANSI/IEEE C62.41.2). INSTALLATION
A universal mounting plate with integral mounting support arms allows the fixture to hinge down for easy access while making wiring connections.

LISTINGS

CSA certified to U.S. and Canadian standards. Luminaire is IP65 rated. PIR and back box options are rated for wet location. Rated for $-30^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ambient.

DesignLights Consortium ${ }^{8}$ (DLC) Premium qualified product. Not all versions of this product may be DLC Premium qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

WARRANTY

5 -year limited warranty. Complete warranty terms located at:
mww.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.
 D-Series
Size 0

Notes

Type TYPE C

SA+Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+Certified when ordered with DTL® controls marked by a shaded background. DTL DLL equipped luminaires meet the A+ specification for luminaire to photocontrol interoperability1
- This luminaire is part of an A+Certified solution for ROAM ${ }^{\circledR}$ or XPoint $^{\text {™ }}$ Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background'

To learn more about A+,
visit www. acuitybrands.com/aplus.

1. See ordering tree for details.
2. A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link to Roam; Link to DTL DLL

Ordering Information

Accessories

Ordered and shipped separately. DLL127F 1.5 J Photocell - SSL twist-lock (120-277V) ${ }^{21}$ DLL347F 1.5 CUL JU Photocell - 5 SL twist-lock (347 V) ${ }^{21}$ DLL480F 1.5 CUL JU Photocell - 5 SL twist-lock (480 V$)^{3}$ DSHORT SBKU Shorting cap ${ }^{22}$
DSXOHS 20CU House-side shield for 20 LED unit ${ }^{21}$ DSXOHS 30CU House-side shield for 30 LED unit ${ }^{13}$ DSXOHS $40 \mathrm{CU} \quad$ House-side shield for 40 LED unit ${ }^{33}$ DSXODDLU PUMBADDBXDU* Diffused drop lens (polycarbonate) 20 Square and round pole universal mount ing bracket adaptor (specify finish) ${ }^{2}$ Mast arm mounting bracket adaptor
(spedify finish) (spedify finish) ${ }^{8}$

NOTES
1 P10, P11, P12 and P13 and rotated options (L.90 or R90) only available together,
2 AMBPC is not available with BLC, LCCO, RCCO, P4, P7 or P13.
3 Not available with HS or DDL.
4 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$
5 Any PIRx with BL 30 , BL 50 or PNMT, is not available with $208 \mathrm{~V}, 240 \mathrm{~V}, 347 \mathrm{~V}, 480 \mathrm{~V}$ or MVOLT. It is only available in 120 V or 277 V specified.
6 Single fuse (SF) requires $120 \mathrm{~V}, 277 \mathrm{~V}$ or 347 V . Double fuse (DF) requires 208V, 240 V or 480 V .
7 Not available in P4, P7 or P13. Not available with BL30, BL50 or PNMT options
8 Existing drilled pole only. Avalable as a separate combination accessory; for retrofit use only. PUMBA (finish) U; 1.5 G vibration load rating per ANCI C136. 31 .
9 Must order fixture with SPA mounting. Must be ordered as a separate accessony, see Accessories information. For use with 2-3/8" mast arm (not induded).
10 Must be ordered with PIRHN.
41 Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting Cap included.
12 If ROAM ${ }^{*}$ node required, it must be ordered and shipped as a separate line item from Acuity Brands Controls. Shorting Cap induded.
13 Reference Motion Sensor table on page 3.
14 Reference PER Table on page 3 to see functionality.
15 Must be ordered with NLTAlR2. For more information on nLight Air 2 visit this link,
16 Requires (2) separately switched circuits.
17 Not available with 347V, 480V or PNMT. For PER5 or PER7 see PER Table on page 3. Requires isolated neutral.
18 Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$, BL 30 and BL50. For PER5 or PER7 see PER Table on page 3. Separate Dusk to Dawn required.
19 Not available with other dimming controls options.
20 Not available with BLC, LCCO and RCCO distribution. Also available as a separate accessory, see Accessories information.
21 Must be ordered with fixture for factory pre-drilling.
22 Requires luminaire to be specified with PER, PER5 or PER7 option. See PER Table on page 3.
23 For retrofit use only.

External Glare Shield

Drilling

Tenon Mounting Slipfitter **

Tenon 0.D.	Single Ulitit	2at 180	2at 90°	3at 120°	3at 90°	4at 90°
$2-3 / 8^{\prime \prime}$	AST20-190	AST20-280	AST20-290	AST20-320	AST20-390	AST20-490
$2-7 / 8^{\prime \prime}$	AST25-190	AST25-280	AST25-290	AST25-320	AST25-390	AST25-490
$4^{\prime \prime}$	AST35-190	AST35-280	AST35-290	AST35-320	AST35-390	AST35-490

Pole drilling nomendature: \# of heads at degree from handhole (default side A)					
DM19AS	DM28AS	DM29AS	DM32AS	DM39AS	DM49AS
$1 @ 90^{\circ}$	2@ 280°	2@90 ${ }^{\circ}$	$3 @ 120^{\circ}$	$3 @ 90^{\circ}$	$4 @ 90^{\circ}$
Side B	Side B \& D	Side B \& C	Round pole only	Side B, C, \& D	Sides A, B, C, D
Note: Review luminaire spec sheet for specific nomenclature					

Pole top or tenon 0.D.	4.5" 9.90°	4.990	3.5" 900°	$3^{3} @ 90^{\circ}$	$45^{\prime \prime} @ 120^{\circ}$	$4{ }^{4} 120^{\circ}$	$3.5{ }^{\circ} \times 120^{\circ}$	$3^{\prime \prime}$ ¢120
OSX SPA	Y	Y	Y	N	-	.	.	.
DSX RPA	Y	Y	N	N	Y	Y	Y	Y
DSX SPUMBA	Y	N	N	N	-	-	-	-
DSX RPUMBA	N	N	N	N	Y	Y	Y	N
					*3 fixtures al20 require round pole top tienon.			

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 0 homepage.
Isofootcandle plots for the DSXO LED 40 C 100040 K . Distances are in units of mounting height (20^{\prime}).
LEGEND

[^0]One Lithonia Way - Conyers, Georgia 30012 - Phone: 800.279.8041 - www.lithonia.com

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.04
$5^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{F}$	1.04
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.03
$15^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.02
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$\mathbf{2 5} \mathrm{C}$	$\mathbf{7 7 ^ { \circ } \mathrm { F }}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$35^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{F}$	0.98
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a $25^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and $25^{\circ} \mathrm{C}$ ambient, based on 10,000
projected per IESNA TM-21-11).
To calculate LLF, use the lumen maintenance factor that corresponds to the desired number
of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	25000	50000	100000
Lumen Maintenance Factor	0.96	0.92	0.85

Motion Sensor Default Settings							
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time	
PIR or PIRH	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @ 5FC	5 min	3 sec	5 min	
*PIR1FC3V or PIRH1FC3V	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @ 1FC	5 min	3 sec	5 min	
-for use with Inline Dusk to Dawn or timer.							

PERTable						
Control	PER (3 wire)	PER5 (5 wire)		PER7 (7 wire)		
			Wire 4/Wire5		Wire A/Wires	Wire 6/Wire7
Photocontrol Only (On/0ff)	\checkmark	A	Wired to dimming leads on driver	A	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM	(1)	\checkmark	Wired to dimming leads on driver	A	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM with Motion (ROAM on/off only)	(1)	A	Wires Capped inside fixture	A	Wres Capped inside fixture	Wires Capped inside fixture
future-proof*	Q	A	Wired to dimming leads on driver	\checkmark	Wired to dimming leads on driver	Wires Capped inside fixture
Future-proof* with Motion	(1)	A	Wres Capped inside fixture	\checkmark	$\begin{aligned} & \hline \text { Wires Capped inside } \\ & \text { fixture } \end{aligned}$	Wires Capped inside fixture

\checkmark Recommended
 A. Alternate

*Future-proof means: Ability to change controls in the future

Performance Data
Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Optics																								
IED Count	Drive Current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CR}) \\ \hline \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CR}) \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	B	0	6	LPW	Lumens	B	0	G	LPW	Lumens	B	U	6	LPW	Lumens	8	U	6	LPW
20	530	P1	38W	T15	4,369	1	0	1	115	4,706	1	0	1	124	4,766	1	0	1	125	2.541	1	0	1	73
				T2S	4,364	1	0	1	115	4,701	1	0	1	124	4,761	1	0	1	125	2,589	1	0	1	74
				T2M	4,387	1	0	1	115	4,726	1	0	1	124	4,785	1	0	1	126	2,539	1	0	1	73
				T35	4,248	1	0	1	112	4,577	1	0	1	120	4,634	1	0	1	122	2,558	1	0	1	73
				T3M	4,376	1	0	1	115	4,714	1	0	1	124	4,774	1	0	1	126	2,583	1	0	1	74
				T4M	4,281	1	0	1	113	4,612	1	0	2	121	4,670	1	0	2	123	2,570	1	0	1	73
				TFTM	4,373	1	0	1	115	4,711	1	0	2	124	4,771	1	0	2	126	2,540	1	0	1	73
				TSVS	4,548	2	0	0	120	4,900	2	0	0	129	4,962	2	0	0	131	2,650	1	0	0	76
				TSS	4,552	2	0	0	120	4,904	2	0	0	129	4,966	2	0	0	131	2,690	1	0	0	77
				TSM	4,541	3	0	1	120	4,891	3	0	1	129	4,953	3	0	1	130	2,658	2	0	0	76
				T5W	4,576	3	0	2	120	4,929	3	0	2	130	4,992	3	0	2	131	2,663	2	0	1	73
				BLC	3,586	1	0	1	94	3,863	1	0	1	102	3,912	1	0	1	103					
				LCCO	2,668	1	0	1	70	2,874	1	0	2	76	2,911	1	0	2	77					
				Reco	2,668	1	0	1	70	2,874	1	0	2	76	2,911	1	0	2	77					
20	700	P2	49W	T15	5,570	1	0	1	114	6,001	1	0	1	122	6,077	2	0	2	124	3,144	1	0	1	70
				T2S	5,564	1	0	2	114	5,994	1	0	2	122	6,070	2	0	2	124	3,203	1	0	1	71
				T2M	5,593	1	0	1	114	6,025	1	0	1	123	6,102	1	0	1	125	3,141	1	0	1	70
				T35	5,417	1	0	2	111	5,835	1	0	2	119	5,909	2	0	2	121	3,165	1	0	1	70
				T3M	5,580	1	0	2	114	6,011	1	0	2	123	6,087	1	0	2	124	3,196	1	0	1	71
				T4M	5,458	1	0	2	111	5,880	1	0	2	120	5,955	1	0	2	122	3,179	1	0	1	71
				TFIM	5,576	1	0	2	114	6,007	1	0	2	123	6,083	1	0	2	124	3,143	1	0	1	70
				TSVS	5,799	2	0	0	118	6,247	2	0	0	127	6,327	2	0	0	129	3,278	2	0	0	73
				TSS	5,804	2	0	0	118	6,252	2	0	0	128	6,332	2	0	1	129	3,328	2	0	0	74
				TSM	5,789	3	0	1	118	6,237	3	0	1	127	6,316	3	0	1	129	3,288	2	0	1	73
				TSW	5,834	3	0	2	119	6,285	3	0	2	128	6,364	3	0	2	130	3,295	2	0	1	73
				BLC	4,572	1	0	1	93	4,925	1	0	1	101	4,987	1	0	1	102					
				LCCO	3,402	1	0	2	69	3,665	1	0	2	75	3,711	1	0	2	76					
				RCCO	3,402	1	0	2	69	3,665	1	0	2	75	3,711	1	0	2	76					
20	1050	P3	71W	T15	7,833	2	0	2	110	8,438	2	0	2	119	8,545	2	0	2	120					
				T2S	7,825	2	0	2	110	8,429	2	0	2	119	8,536	2	0	2	120					
				T2M	7,865	2	0	2	111	8,473	2	0	2	119	8,580	2	0	2	121					
				T35	7,617	2	0	2	107	8,205	2	0	2	116	8,309	2	0	2	117					
				T3M	7,846	2	0	2	111	8,452	2	0	2	119	8,559	2	0	2	121					
				T4M	7,675	2	0	2	108	8,269	2	0	2	116	8,373	2	0	2	118					
				TFTM	7,841	2	0	2	110	8,447	2	0	2	119	8,554	2	0	2	120					
				TSVS	8,155	3	0	0	115	8,785	3	0	0	124	8,896	3	0	0	125					
				T5S	8,162	3	0	1	115	8,792	3	0	1	124	8,904	3	0	1	125					
				T5M	8,141	3	0	2	115	8,770	3	0	2	124	8,881	3	0	2	125					
				T5W	8,204	3	0	2	116	8,838	4	0	2	124	8,950	4	0	2	126					
				BLC	6,429	1	0	2	91	6,926	1	0	2	98	7,013	1	0	2	99					
				LCCO	4,784	1	0	2	67	5,153	1	0	2	73	5,218	1	0	2	73					
				RCCO	4,784	1	0	2	67	5,153	1	0	2	73	5,218	1	0	2	73					
20	1400	P4	92W	T15	9,791	2	0	2	106	10,547	2	0	2	115	10,681	2	0	2	116					
				T2S	9,780	2	0	2	106	10,536	2	0	2	115	10,669	2	0	2	116					
				T2M	9,831	2	0	2	107	10,590	2	0	2	115	10,724	2	0	2	117					
				T35	9,521	2	0	2	103	10,256	2	0	2	111	10,386	2	0	2	113					
				T3M	9,807	2	0	2	107	10,565	2	0	2	115	10,698	2	0	2	116					
				T4M	9,594	2	0	2	104	10,335	2	0	3	112	10,466	2	0	3	114					
				TFTM	9,801	2	0	2	107	10,558	2	0	2	115	10,692	2	0	2	116					
				TSVS	10,193	3	0	1	111	10,981	3	0	1	119	11,120	3	0	1	121					
				TSS	10,201	3	0	1	111	10,990	3	0	1	119	11,129	3	0	1	121					
				T5M	10,176	4	0	2	111	10,962	4	0	2	119	11,101	4	0	2	121					
				T5W	10,254	4	0	3	111	11,047	4	0	3	120	11,186	4	0	3	122					
				BLC	8,036	1	0	2	87	8,656	1	0	2	94	8,766	1	0	2	95					
				LCCO	5,979 5,979	1	0	2	65	6,441 6,441	1	0	2	70	6,523 6,523	1	0	3	71					

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Optics																								
LED Count	Drive current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \\ \hline \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	0	6	LPW	Lumens	B	U	6	LPW
40	700	P5	89 W	T15	10,831	2	0	2	122	11,668	2	0	2	131	11,816	2	0	2	133					
				T2S	10,820	2	0	2	122	11,656	2	0	2	131	11,803	2	0	2	133					
				T2M	10,876	2	0	2	122	11,716	2	0	2	132	11,864	2	0	2	133					
				T3S	10,532	2	0	2	118	11,346	2	0	2	127	11,490	2	0	2	129					
				T3M	10,849	2	0	2	122	11,687	2	0	2	131	11,835	2	0	2	133					
				T4M	10,613	2	0	3	119	11,434	2	0	3	128	11,578	2	0	3	130					
				TFTM	10,842	2	0	2	122	11,680	2	0	2	131	11,828	2	0	2	133					
				TSVS	11,276	3	0	1	127	12,148	3	0	1	136	12,302	3	0	1	138					
				T5S	11,286	3	0	1	127	12,158	3	0	1	137	12,312	3	0	1	138					
				T5M	11,257	4	0	2	126	12,127	4	0	2	136	12,280	4	0	2	138					
				T5W	11,344	4	0	3	127	12,221	4	0	3	137	12,375	4	0	3	139					
				BLC	8,890	1	0	2	100	9,576	1	0	2	108	9,698	1	0	2	109					
				LCCO	6,615	1	0	3	74	7,126	1	0	3	80	7,216	1	0	3	81					
				RCCO	6,615	1	0	3	74	7,126	1	0	3	80	7,216	1	0	3	81					
40	1050	P6	134W	T15	14,805	3	0	3	110	15,949	3	0	3	119	16,151	3	0	3	121	6,206	2	0	2	68
				T2S	14,789	3	0	3	110	15,932	3	0	3	119	16,134	3	0	3	120	6,322	2	0	2	69
				T2M	14,865	3	0	3	111	16,014	3	0	3	120	16,217	3	0	3	121	6,201	2	0	2	68
				T3S	14,396	3	0	3	107	15,509	3	0	3	116	15,705	3	0	3	117	6,247	1	0	2	69
				T3M	14,829	2	0	3	111	15,975	3	0	3	119	16,177	3	0	3	121	6,308	2	0	2	69
				T4M	14,507	2	0	3	108	15,628	3	0	3	117	15,826	3	0	3	118	6,275	1	0	2	69
				TFTM	14,820	2	0	3	111	15,965	3	0	3	119	16,167	3	0	3	121	6,203	1	0	2	68
				TSVS	15,413	4	0	1	115	16,604	4	0	1	124	16,815	4	0	1	125	6,671	2	0	0	73
				T5S	15,426	3	0	1	115	16,618	4	0	1	124	16,828	4	0	1	126	6,569	2	0	0	72
				TSM	15,387	4	0	2	115	16,576	4	0	2	124	16,786	4	0	2	125	6,491	3	0	1	71
				TSW	15,506	4	0	3	116	16,704	4	0	3	125	16,915	4	0	3	126	6,504	3	0	2	71
				BLC	12,151	1	0	2	91	13,090	1	0	2	98	13,255	1	0	2	99					
				LCCO	9,041	1	0	3	67	9,740	1	0	3	73	9,863	1	0	3	74					
				RCCO	9,041	1	0	3	67	9,740	1	0	3	73	9,863	1	0	3	74					
40	1300	P7	166 W	T1S	17,023	3	0	3	103	18,338	3	0	3	110	18,570	3	0	3	112					
				T2S	17,005	3	0	3	102	18,319	3	0	3	110	18,551	3	0	3	112					
				T2M	17,092	3	0	3	103	18,413	3	0	3	111	18,646	3	0	3	112					
				T3S	16,553	3	0	3	100	17,832	3	0	3	107	18,058	3	0	3	109					
				T3M	17,051	3	0	3	103	18,369	3	0	3	111	18,601	3	0	3	112					
				T4M	16,681	3	0	3	100	17,969	3	0	3	108	18,197	3	0	3	110					
				TFTM	17,040	3	0	3	103	18,357	3	0	4	111	18,590	3	0	4	112					
				T5VS	17,723	4	0	1	107	19,092	4	0	1	115	19,334	4	0	1	116					
				TSS	17,737	4	0	2	107	19,108	4	0	2	115	19,349	4	0	2	117					
				TSM	17,692	4	0	2	107	19,059	4	0	2	115	19,301	4	0	2	116					
				T5W	17,829	5	0	3	107	19,207	5	0	3	116	19,450	5	0	3	117					
				BLC	13,971	2	0	2	84	15,051	2	0	2	91	15,241	2	0	2	92					
				LCCO	10,396	1	0	3	63	11,199	1	0	3	67	11,341	1	0	3	68					
					10,396	1	0	3	63	11,199	1	0	3	67	11,341	1	0	3	68					

Performance Data

Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Optics																								
LED Count	Drive Current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CRI}) \\ \hline \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	G	Lpw
30	530	P10	53W	T15	6,727	2	0	2	127	7,247	3	0	3	137	7,339	3	0	3	138					
				T2S	6,689	3	0	3	126	7,205	3	0	3	136	7,297	3	0	3	138					
				T2M	6,809	3	0	3	128	7,336	3	0	3	138	7,428	3	0	3	140					
				T35	6,585	3	0	3	124	7,094	3	0	3	134	7,183	3	0	3	136					
				T3M	6,805	3	0	3	128	7,331	3	0	3	138	7,424	3	0	3	140					
				T4M	6,677	3	0	3	126	7,193	3	0	3	136	7,284	3	0	3	137					
				TFTM	6,850	3	0	3	129	7,379	3	0	3	139	7,472	3	0	3	141					
				T5VS	6,898	3	0	0	130	7,431	3	0	0	140	7,525	3	0	0	142					
				TSS	6,840	2	0	1	129	7,368	2	0	1	139	7,461	2	0	1	141					
				TSM	6,838	3	0	1	129	7,366	3	0	2	139	7,460	3	0	2	141					
				TSW	6,777	3	0	2	128	7,300	3	0	2	138	7,393	3	0	2	139					
				BLC	5,626	2	0	2	106	6,060	2	0	2	114	6,137	2	0	2	116					
				LCCO	4,018	1	0	2	76	4,328	1	0	2	82	4,383	1	0	2	83					
				RCCO	4,013	3	0	3	76	4,323	3	0	3	82	4,377	3	0	3	83					
30	700	P11	72W	T15	8,594	3	0	3	119	9,258	3	0	3	129	9,376	3	0	3	130					
				T2S	8,545	3	0	3	119	9,205	3	0	3	128	9,322	3	0	3	129					
				T2M	8,699	3	0	3	121	9,371	3	0	3	130	9,490	3	0	3	132					
				T3S	8,412	3	0	3	117	9,062	3	0	3	126	9,177	3	0	3	127					
				T3M	8,694	3	0	3	121	9,366	3	0	3	130	9,484	3	0	3	132					
				T4M	8,530	3	0	3	118	9,189	3	0	3	128	9,305	3	0	3	129					
				TFTM	8,750	3	0	3	122	9,427	3	0	3	131	9,546	3	0	3	133					
				T5VS	8,812	3	0	0	122	9,493	3	0	0	132	9,613	3	0	0	134					
				T5S	8,738	3	0	1	121	9,413	3	0	1	131	9,532	3	0	1	132					
				T5M	8,736	3	0	2	121	9,411	3	0	2	131	9,530	3	0	2	132					
				T5W	8,657	4	0	2	120	9,326	4	0	2	130	9,444	4	0	2	131					
				BLC	7,187	3	0	3	100	7,742	3	0	3	108	7,840	3	0	3	109					
				LCCO	5,133	1	0	2	71	5,529	1	0	2	77	5,599	1	0	2	78					
				RCCO	5,126	3	0	3	71	5,522	3	0	3	77	5,592	3	0	3	78					
30	1050	P12	104W	T15	12,149	3	0	3	117	13,088	3	0	3	126	13,253	3	0	3	127					
				T2S	12,079	4	0	4	116	13,012	4	0	4	125	13,177	4	0	4	127					
				T2M	12,297	3	0	3	118	13,247	3	0	3	127	13,415	3	0	3	129					
				T3S	11,891	4	0	4	114	12,810	4	0	4	123	12,972	4	0	4	125					
				T3M	12,290	3	0	3	118	13,239	4	0	4	127	13,407	4	0	4	129					
				T4M	12,058	4	0	4	116	12,990	4	0	4	125	13,154	4	0	4	126					
				TFTM	12,369	4	0	4	119	13,325	4	0	4	128	13,494	4	0	4	130					
				TSVS	12,456	3	0	1	120	13,419	3	0	1	129	13,589	4	0	1	131					
				T5S	12,351	3	0	1	119	13,306	3	0	1	128	13,474	3	0	1	130					
				T5M	12,349	4	0	2	119	13,303	4	0	2	128	13,471	4	0	2	130					
				TSW	12,238	4	0	3	118	13,183	4	0	3	127	13,350	4	0	3	128					
				BLC	10,159	3	0	3	98	10,944	3	0	3	105	11,083	3	0	3	107					
				LCCO	7,256	1	0	3	70	7,816	1	0	3	75	7,915	1	0	3	76					
				RCCO	7,246	3	0	3	70	7,806	4	0	4	75	7,905	4	0	4	76					
30	1300	P13	128W	T15	14,438	3	0	3	113	15,554	3	0	3	122	15,751	3	0	3	123					
				T2S	14,355	4	0	4	112	15,465	4	0	4	121	15,660	4	0	4	122					
				T2M	14,614	3	0	3	114	15,744	4	0	4	123	15,943	4	0	4	125					
				T3S	14,132	4	0	4	110	15,224	4	0	4	119	15,417	4	0	4	120					
				T3M	14,606	4	0	4	114	15,735	4	0	4	123	15,934	4	0	4	124					
				T4M	14,330	4	0	4	112	15,438	4	0	4	121	15,633	4	0	4	122					
				TFIM	14,701	4	0	4	115	15,836	4	0	4	124	16,037	4	0	4	125					
				TSVS	14,804	4	0	1	116	15,948	4	0	1	125	16,150	4	0	1	126					
				T5S	14,679	3	0	1	115	15,814	3	0	1	124	16,014	3	0	1	125					
				TSM	14,676	4	0	2	115	15,810	4	0	2	124	16,010	4	0	2	125					
				T5W	14,544	4	0	3	114	15,668	4	0	3	122	15,866	4	0	3	124					
				BLC	7919	3	0	3	62	8531	3	0	3	67	8639	3	0	3	67					
				LCCO	5145	1	0	2	40	5543	1	0	2	43	5613	1	0	2	44					
					5139	3	0	3	40	5536	3	0	3	43	5606	3	0	3	44					

FEATURES \& SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series size 0 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and pedestrian areas.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED driver is mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA ($0.95 \mathrm{ft}^{2}$) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish
that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage
process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution,
uniformity, and pole spacing. Light engines are available in $3000 \mathrm{~K}, 4000 \mathrm{~K}$ or 5000 K (70 CRI) configurations. The D-Series Size O has zero uplight and qualifies as a Nighttime Friendly ${ }^{\text {M }}$ product, meaning it is consistent with the LEED ${ }^{\circledR}$ and Green Globes ${ }^{\text {TM }}$ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine(s) configurations consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at $25^{\circ} \mathrm{C}$). Class
electronic drivers are designed to have a power factor $>90 \%$, THD $<20 \%$, and an expected life of

100,000 hours with $<1 \%$ failure rate. Easily serviceable 10 kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 0 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 0 utilizes the AERIS ${ }^{\text {TM }}$ series pole drilling pattern (template \#8). Optional terminal block and NEMA photocontrol receptacle are also available.

LISTINGS

UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. U.S. Patent No. D672,492 S. International patent pending.
DesignLights Consortium(B) (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www designlights.org/QPL to confirm which versions are qualified
International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000 K color temperature only.

WARRANTY

5-year limited warranty. Complete warranty terms located at
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx
Note: Actual performance may differ as a result of end-user environment and application All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Fighiting
facts

Introduction

Cotalog Number	
Notes	
Type	D

Flush or backbox mount

The OLWX1 is versatile and energy efficient. It is designed to replace up to 250 W metal halide while saving over 87% in energy costs. Whether you are mounting it to a recessed junction box, conduit/ through wiring, as an up light, as a down light, or as a flood light - the OLWX1 has all applications covered.

Ordering Information

OLWX1LED	13W		40K		MVOLT				DARK BRONZE	
Series	Performance Package		Color Temperature		Voltage		Controls		Finish	
OLWX1 LED	$\begin{aligned} & 13 \mathrm{~W} \\ & 20 \mathrm{~W} \\ & 40 \mathrm{~W} \end{aligned}$	13 watts 20 watts 40 watts	$\begin{aligned} & 40 \mathrm{~K} \\ & 50 \mathrm{~K} \end{aligned}$	$\begin{aligned} & 4000 \mathrm{~K}^{1} \\ & 5000 \mathrm{~K} \end{aligned}$	$\begin{aligned} & \text { (blank) } \\ & 120 \\ & 347 \end{aligned}$	MVOLT ${ }^{2}$ $120 \mathrm{~V}^{3}$ 347 V	(blank) PE	None 120 V button photocell ${ }^{13}$	(blank)	Dark bronze

Accessories Ontered andsthipped separtely	
OLWXITS	Slipfitter-size 1
OLWX1YK	Yoke-size 1
OLWX1THK	Knuckle-size 1

NOTES

1 Not available with 347 V option.
2 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$.
3 Specify 120 V when ordering with photocell (PE option).

FEATURES \& SPECIFICATIONS

INTENDED USE

The versatility of the OLWX1 LED combines a sleek, low-profile wall pack design with energy efficient,
low maintenance LEDs for replacing up to 250 W metal halide fixtures. Mounting accessories are available to convert the OLWX1 LED into an energy efficient flood light.

OLWX1 LED is ideal for outdoor applications such as building perimeters, loading areas, driveways and sign and building flood lighting.

CONSTRUCTION

Cast-aluminum housing with textured dark bronze polyester powder paint for durability. Integral heat sinks optimize thermal management through conductive and convective cooling. LEDs are protected behind a glass lens. Housing is sealed against moisture and environmental contaminants (IP65 rated). See Lighting Facts label and photometry reports for details.

ELECTRICAL

Light engine consists of 1 high-efficiency Chip On Board (COB) LED with integrated circuit board mounted directly to the housing to maximize heat dissipation and promote long life (L.73/100,000 hours at $25^{\circ} \mathrm{C}$. Electronic drivers have a power factor $>90 \%$ and THD $<20 \%$ and a minimum 2.5 kV surge rating. Flood light mounting accessories include an additional 6 kV surge protection device. LEDs are available in 4000 K and 5000 K CCTs.

INSTALLATION

Easily mounts to recessed junction boxes with the included wall mount bracket, or for surface mounting and conduit entry - with the included junction box with five $1 / 2^{\prime \prime}$ threaded conduit entry hubs. Flood light mounting accessories (sold separately) include knuckle, integral slipfitter and yoke mounting options. Each flood mount accessory comes with a top visor and vandal guard. Luminaire may be wall or ground mounted in downward or upward orientation.

LISTINGS

UL Listed to U.S. and Canadian safety standards for wet locations. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. Tested in accordance with IESNA LM-79 and LM-80 standards. DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org to confirm which versions are qualified.

WARRANTY

5 -year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Performance Data

Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts.

Fixture Model Number	CCT	System Watts	Lumens	LPW	B	U	G	CRI
OLWX1 LED 13W 40K	4000 K	14 W	1,271	91	1	0	0	>70
OLWX1 LED 13W 50K	5000 K	14 W	1,289	92	1	0	0	>80
OLWX1 LED 20W 40K	4000 K	20 W	2,697	135	1	0	0	>70
OLWX1 LED 20W 50K	5000 K	19 W	2,663	140	1	0	0	>70
OLWX1 LED 40W 40K	4000 K	39 W	4,027	101	2	0	0	>70
OLWX1 LED 40W 50K	5000 K	37 W	4,079	110	2	0	0	>70

Lumen Ambient Temperature (LAT) Multipliers
Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
13 W	1.06	1.03	1.01	1.00	0.99	0.96
20 W	1.06	1.04	1.01	1.00	0.99	0.96
40 W	1.07	1.04	1.01	1.00	0.99	0.96

Projected LED Lumen Maintenance

Data references the extrapolated performance projections in a $25^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).

To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	0	25,000	50,000	100,000
OLWXI LED 13W	1.00	0.92	0.85	0.73
OLWX1 LED 20W	1.00	0.92	0.85	0.73
OLWX1 LED 40W	1.00	0.94	0.88	0.79

Photometric Diagrams

To see complete photometric reports or download ies files for this product, visit the Lithonia Lighting OLWX1 LED homepage. Tested in accordance with ESNA LM-79 and LM-80 standards

Test No. LTL22697 tested in accordance with IESNA LM-79-08.

OLWX1 LED 20W 40K, Mounting height $=12^{\prime}$

Test No. LTL22696 tested in accordance with IESNA LM-79-08.

OLWX1 LED 40W 40K, Mounting height $=15^{\prime}$

Test No. LTL22695 tested in accordance with IESNA LM-79-08

Accessories

0LWX1TS
Slipfitter-size 1
Standard size tenon is $21 / 8^{\prime \prime}$
The slip fitter has a range of $2^{\prime \prime}$ to $23 / 8^{\prime \prime}$.

OLWX1YK
Yoke-size 1

0LWX1THK
Knuckle-size 1

Top Visor and Vandal Guard
included with accessories

L/GHTINE

OLWX1 LED 13W 40K XXX Xx XXX

OLWX1LED 13W 50K XXX XX XXX

OLWX1 LED 40W 40K Xxx Xx Xxx

【y in!

OLWX1 LED 20W 40K XXX XX XXX

 Photometer Tealing of Solid Siale Lighteg The U S. Department of Eneigy (DOE) vecties nookt test casa end resuls

Visit www.lightingfacts.com for the Label Reference Guide.
Registaion Number NUSM E43JES (B25:2016)
 Thpe Luminare Over

OLWX1 LED 40W 50K XXX XX XXX

D-Series Size 0 LED Area Luminaire

Specifications

Notes

Type TYPE E

<SA+Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+Certified when ordered with DTL® controls marked by a shaded background. DTL DLL equipped luminaires meet the $A+$ specification for luminaire to photocontrol interoperability1
- This luminaire is part of an A+Certified solution for ROAM ${ }^{\circledR}$ or XPoint $^{\text {TM }}$ Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background

To learn more about A+,
visit www.acuitybrands.com/aplus.

1. See ordering tree for details.
2. A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link to Roam; Link to DTL DLL

Ordering Information						EXAMPLE: DSX0 LED P6 40K T3M MVOLT SPA DDBXD				
DSXOLED	P2	40K	T2M				MVOLT	SPA		
Series	LEDS	Color temperature	Distribution				Voltage	Mounting		
DSXOLED	Forward optics P1 P4 P7 P2 P5 P3 P6 Rotated optics P10' P12' P111 P13' 	30 K 3000 K 40K 4000 K 50 K 5000 K AMBPC Amber phosshor converted	T1S Type I short T2S Typell short T2M Typell medium T3S Type ill short T3M Type Ill medium T4M TypelV medium TFTM Forward throw medium T5VS TypeV very short		TSS TSM TSW BLC LCCO RCCO	IypeV short TypeV medium IypeV wide Backlight control ${ }^{[3]}$ Left corner cutof ${ }^{3}$ Right corner cutoff ${ }^{3}$	MVOLT ${ }^{4,5}$ 120^{6} 208 5.6 $240^{5,6}$ $277{ }^{6}$ $347^{5.67}$ $480^{5.6,7}$	Shipped included SPA Square RPA WBA SPUMBA Square RPUMBA Round Shipped separately KMA8 DDBXDU $\begin{aligned} & \text { Masta } \\ & \text { (specify }\end{aligned}$	pole mountin pole mounting acket pole universa pole universal m mounting finish) ${ }^{9}$	g 1 mounting adaptor ${ }^{8}$ mounting adaptor ${ }^{8}$ oracket adaptor
							EGS HS		DDBXD	
Control options							Other options		Finish (cemure	
Shipped i NLTAIR2 PER PERS PER7 DMG PIR PIRH PIRHN PIR1FC3V	nstalled nlight AlR generation 2 ena NEMA twist-lock receptade Five-wire receptade only (co Seven-wire receptade only $0-10 \mathrm{~V}$ dimming extend out Bi-level, motion/ambient sen Bi-level, motion/ambient sen Network, Bi-Level motion/ar Bi-level, motion/ambient se	ontrol ordered separate) " dered separate) ${ }^{11,12}$ ordered separate) ${ }^{1,1.1}$ housing for external control (cont 15^{\prime} mounting height, ambient senso 30° mounting height, ambient sens ensor ${ }^{15}$ 15 'mounting height, ambient senso	ordered separate) abled at $5 f^{\text {s. }}$, 1,14 enabled at $5 f f^{5131 / 4}$ abled at lff ${ }^{513,14}$	PIRH1FC3V BL30 BL50 PNMTDD3 PNMT5D3 PNMT6D3 PNMT7D3 FAO	Bi-leve 15-30' enable Bi-leve Bi-leve Partni Partni Part nig Part nig Field a	, motion/ambient sensor, mounting height, ambient sensor dat $1 f{ }^{\text {che }} 14$ s switched dimming, 50\% s.15:17 ght, dim till dawn ${ }^{\text {5.18 }}$ ight, dim 5 hrs s.18 ght, dim 6 hrs s.in ght, dim 7 hrs s.18 djustable output ${ }^{\text {P }}$	Shipp HS SF DF L90 R90 DDL Shipp BS EGS		DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White Textured dark bronze Textured black Textured natural aluminum Textured white

One Lithonia Way • Conyers, Georgia 30012 - Phone: 800.279.8041

- www.lithonia.com

Ordering Information

Accessories

Ordered and shipped separately. DLL127F $1.5 \mathrm{JU} \quad$ Photocell - 55L twist-lock $(120-277 \mathrm{~V})^{2}$ DLL 347F 1.5 CUL JU Photocell - SSL twist-lack (347V) ${ }^{2}$ DLL 480 F 1.5 CULJU Photocell - 5 SL twist-lock (480 V) ${ }^{2}$ DSHORT SBKU Shorting cap ${ }^{\text {a }}$
DSXOHS $20 \mathrm{CU} \quad$ House-side shield for 20 LED unit ${ }^{20}$ DSXOHS $30 \mathrm{CU} \quad$ House-side shield for 30 LED unit ${ }^{\text {® }}$ OSXOHS $40 \mathrm{CU} \quad$ House-side shield for 40 LED unit ${ }^{20}$ OSXODDLU Diffused droplens (polycarbonate) ${ }^{\circ 0}$ PUMBA DDBXDU* Square and round pole universal mounting bracket adaptor (specify finish) ${ }^{23}$ Mast arm mounting bracket adaptor (specify finish) ${ }^{2}$

NOTES

1 P10, P11, P12 and P13 and rotated options (L90 or R90) only available together
2 AMBPC is not available with BLC, LCCO, RCCO, P4, P7 or P13.
3 Not available with HS or DDL.
4 MVOLT driver operates on any line voltage from $120-277 \mathrm{~V}(50 / 60 \mathrm{~Hz})$.
5 Any PIRx with BL 30 , BLL50 or PNMT, is not available with $208 \mathrm{~V}, 240 \mathrm{~V}, 347 \mathrm{~V}, 480 \mathrm{~V}$ or MVOLT. It is only available in 120 V or 277 V specified
6 Single fuse (SF) requires $120 \mathrm{~V}, 277 \mathrm{~V}$ or 347 V . Double fuse (DF) requires $208 \mathrm{~V}, 240 \mathrm{~V}$ or 480 V .
7 Not available in P4, P7 or P13. Not available with BL30, BL50 or PNMT options
8 Existing drilled pole only. Available as a separate combination accessory, for retrofit use only. PUMBA (finish) U; 1.5 G vibration load rating per ANCI C136. 31
9 Must order fixture with SPA mounting. Must be ordered as a separate accessory; see Accessories information. For use with $2-3 / 8^{8}$ mast arm (not induded).
10 Must be ordered with PIRHN.
11 If ROAM ${ }^{*}$ node required, it must be ordered line item from Acuity Brands Controls. See accessories. Shorting Cap included. included.
13 Reference Motion Sensor table on page 3.
14 Reference Motion Sensor table on page 3 .
15
15 Must be ordered with NLTAIR2. For more information on nLight Air 2 visit this link.
16 Requires (2) separately switched circuits.
17 Not available with $347 \mathrm{~V}, 480 \mathrm{~V}$ or PNMT. For PER5 or PER7 see PER Table on page 3. Requires isolated neutral.
18 Not available with $347 \mathrm{VV}, 480 \mathrm{~V}, \mathrm{BL} 30$ and BL50. For PERS or PER7 see PER Table on page 3. Separate Dusk to Dawn required.
19 Not available with other dimming controls options.
20 Not available with BLC, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information.
21 Must be ordered with fixture for factory pre-drilling.
22 Requires luminaire to be specified with PER, PER5 or PER7 option. See PER Table on page 3.
23 For retrofit use only.

External Glare Shield

Drilling

Tenon Mounting Slipfitter**

Tenon 0.D.	Single Unit	2 at 180°	2 at 90°	3at 120°	3 at 90°	4at 90°
$2-3 / 8^{\prime \prime}$	AST20-190	AST20-280	AST20-290	AST20-320	AST20-390	AST20-490
$2-7 / 8^{\prime \prime}$	AST25-190	AST25-280	AST25-290	AST25-320	AST25-390	AST25-490
$4^{\prime \prime}$	AST35-190	AST35-280	AST35-290	AST35-320	AST35-390	AST35-490

Pole drilling nomendature: \# of heads at degree from handhole (default side A) DM19AS DM28AS DM29AS DM32AS DM39AS DM49AS $1 @ 90^{\circ}$ $2 @ 280^{\circ}$ $2 @ 90^{\circ}$ $3 @ 120^{\circ}$ $3 @ 90^{\circ}$ $4 @ 90^{\circ}$ Side B Side B \& D Side B \& C Round pole only Side B, C, \& D Sides A, B, C, D
Note: Review luminaire spec sheet for spedific nomendature

Pole top or tenon 0.D.	4.5"@90	$4^{\prime \prime}$ ®90	3.5"@90	$3^{\prime \prime} @ 90^{\circ}$	4.50120°	$4^{4} @ 120^{\circ}$	$3.5{ }^{\prime \prime}$ ¢ 120°	$3^{\prime \prime} 0120^{\circ}$
DSX SPA	Y	Y	Y	N	-	-	-	-
DSX RPA	Y	Y	N	N	Y	Y	Y	Y
DSX SPUMBA	Y	N	N	N	-	-	-	-
DSX RPUMBA	N	N	N	N	Y	Y	Y	N
					*3 fixtures al20 require round pole top/tenon.			

Photometric Diagrams

To see complete photometric reports or download .ies files for this product, visit Lithonia Lighting's D-Series Area Size 0 homepage.
Isofootcandle plots for the DSXO LED 40 C 1000 40K. Distances are in units of mounting height (20^{\prime}).

Performance Data

Lumen Ambient Temperature (LAT) Multipliers

Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.04
$5^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{F}$	1.04
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.03
$15^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.02
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$\mathbf{2 5} 5^{\circ} \mathrm{C}$	$\mathbf{7 7 ^ { \circ }}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$35^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{F}$	0.98
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a $25^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).
To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	25000	50000	100000
Lumen Maintenance Factor	0.96	0.92	0.85

Motion Sensor Deffalt Settings							
Option	Dimmed State	High Level (when triggered)	Phototcell Operation	Dwell Time	Ramp-up Time	Ramp-down Time	
PIR or PIRH	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @ 5FC	5 min	3 sec	5 min	
*PIR1FC3V or PIRH1FC3V	$3 V(37 \%)$ Output	$10 \mathrm{~V}(100 \%)$ Output	Enabled @1FC	5 min	3 sec	5 min	
*for use with Inline Dusk to Dawn or timer.							

PER Table						
Control	PER (3 wire)	PER5 (5 wire)		PER7 (7 wire)		
			Wire 4/Wires		Wire 4/Wire5	Wire 6/Wire7
Photocontrol Only (0n/0ff)	\checkmark	A	Wired to dimming leads on driver	A	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM	Q	\checkmark	Wired to dimming leads on driver	A	Wired to dimming leads on driver	Wires Capped inside fixture
ROAM with Motion (ROAM on/off only)	(1)	A	Wires Capped inside fixture	A	Wires Capped inside fixture	Wires Capped inside fixture
Future-proof	O	A	Wired to dimming leads on driver	\checkmark	Wired to dimming leads on driver	Wires Capped inside fixture
Future-proof' with Motion	O	A	Wires Capped inside fixture	\checkmark	Wires Capped inside fixture	Wires Capped inside fixture

[^1]A Alternate
*Future-proof means: Ability to change controls in the future.

Performance Data
Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the talerances
allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Optics																								
LED Count	Drive Current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CR}) \\ \hline \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CR}) \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	B	0	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	G	IPW	Lumens	B	U	6	LPW
20	530	P1	38W	T15	4,369	1	0	1	115	4,706	1	0	1	124	4,766	1	0	1	125	2,541	1	0	1	73
				T2S	4,364	1	0	1	115	4,701	1	0	1	124	4,761	1	0	1	125	2,589	1	0	1	74
				T2M	4,387	1	0	1	115	4,726	1	0	1	124	4,785	1	0	1	126	2,539	1	0	1	73
				T35	4,248	1	0	1	112	4,577	1	0	1	120	4,634	1	0	1	122	2,558	1	0	1	73
				T3M	4,376	1	0	1	115	4,714	1	0	1	124	4,774	1	0	1	126	2,583	1	0	1	74
				T4M	4,281	1	0	1	113	4,612	1	0	2	121	4,670	1	0	2	123	2,570	1	0	1	73
				TFIM	4,373	1	0	1	115	4,711	1	0	2	124	4,771	1	0	2	126	2,540	1	0	1	73
				TSVS	4,548	2	0	0	120	4,900	2	0	0	129	4,962	2	0	0	131	2,650	1	0	0	76
				T5S	4,552	2	0	0	120	4,904	2	0	0	129	4,966	2	0	0	131	2,690	1	0	0	77
				TSM	4,541	3	0	1	120	4,891	3	0	1	129	4,953	3	0	1	130	2,658	2	0	0	76
				T5W	4,576	3	0	2	120	4,929	3	0	2	130	4,992	3	0	2	131	2,663	2	0	1	73
				BLC	3,586	1	0	1	94	3,863	1	0	1	102	3,912	1	0	1	103					
				LCCO	2,668	1	0	1	70	2,874	1	0	2	76	2,911	1	0	2	77					
				RCCO	2,668	1	0	1	70	2,874	1	0	2	76	2,911	1	0	2	77					
20	700	P2	49W	T15	5,570	1	0	1	114	6,001	1	0	1	122	6,077	2	0	2	124	3,144	1	0	1	70
				T2S	5,564	1	0	2	114	5,994	1	0	2	122	6,070	2	0	2	124	3,203	1	0	1	71
				T2M	5,593	1	0	1	114	6,025	1	0	1	123	6,102	1	0	1	125	3,141	1	0	1	70
				T3S	5,417	1	0	2	111	5,835	1	0	2	119	5,909	2	0	2	121	3,165	1	0	1	70
				T3M	5,580	1	0	2	114	6,011	1	0	2	123	6,087	1	0	2	124	3,196	1	0	1	71
				T4M	5,458	1	0	2	111	5,880	1	0	2	120	5,955	1	0	2	122	3,179	1	0	1	71
				TFTM	5,576	1	0	2	114	6,007	1	0	2	123	6,083	1	0	2	124	3,143	1	0	1	70
				TSVS	5,799	2	0	0	118	6,247	2	0	0	127	6,327	2	0	0	129	3,278	2	0	0	73
				TSS	5,804	2	0	0	118	6,252	2	0	0	128	6,332	2	0	1	129	3,328	2	0	0	74
				T5M	5,789	3	0	1	118	6,237	3	0	1	127	6,316	3	0	1	129	3,288	2	0	1	73
				TSW	5,834	3	0	2	119	6,285	3	0	2	128	6,364	3	0	2	130	3,295	2	0	1	73
				BLC	4,572	1	0	1	93	4,925	1	0	1	101	4,987	1	0	1	102					
				LCCO	3,402	1	0	2	69	3,665	1	0	2	75	3,711	1	0	2	76					
				RCCO	3,402	1	0	2	69	3,665	1	0	2	75	3,711	1	0	2	76					
20	1050	P3	71W	T15	7,833	2	0	2	110	8,438	2	0	2	119	8,545	2	0	2	120					
				T2S	7,825	2	0	2	110	8,429	2	0	2	119	8,536	2	0	2	120					
				T2M	7,865	2	0	2	111	8,473	2	0	2	119	8,580	2	0	2	121					
				T3S	7,617	2	0	2	107	8,205	2	0	2	116	8,309	2	0	2	117					
				T3M	7,846	2	0	2	111	8,452	2	0	2	119	8,559	2	0	2	121					
				T4M	7,675	2	0	2	108	8,269	2	0	2	116	8,373	2	0	2	118					
				TFTM	7,841	2	0	2	110	8,447	2	0	2	119	8,554	2	0	2	120					
				T5VS	8,155	3	0	0	115	8,785	3	0	0	124	8,896	3	0	0	125					
				T5S	8,162	3	0	1	115	8,792	3	0	1	124	8,904	3	0	1	125					
				TSM	8,141	3	0	2	115	8,770	3	0	2	124	8,881	3	0	2	125					
				T5W	8,204	3	0	2	116	8,838	4	0	2	124	8,950	4	0	2	126					
				BLC	6,429	1	0	2	91	6,926	1	0	2	98	7,013	1	0	2	99					
				LCCO	4,784	1	0	2	67	5,153	1	0	2	73	5,218	1	0	2	73					
				RCCO	4,784	1	0	2	67	5,153	1	0	2	73	5,218	1	0	2	73					
20	1400	P4	92W	T15	9,791	2	0	2	106	10,547	2	0	2	115	10,681	2	0	2	116					
				T2S	9,780	2	0	2	106	10,536	2	0	2	115	10,669	2	0	2	116					
				T2M	9,831	2	0	2	107	10,590	2	0	2	115	10,724	2	0	2	117					
				T3S	9,521	2	0	2	103	10,256	2	0	2	111	10,386	2	0	2	113					
				T3M	9,807	2	0	2	107	10,565	2	0	2	115	10,698	2	0	2	116					
				T4M	9,594	2	0	2	104	10,335	2	0	3	112	10,466	2	0	3	114					
				TFTM	9,801	2	0	2	107	10,558	2	0	2	115	10,692	2	0	2	116					
				TSVS	10,193	3	0	1	111	10,981	3	0	1	119	11,120	3	0	1	121					
				TSS	10,201	3	0	1	111	10,990	3	0	1	119	11,129	3	0	1	121					
				T5M	10,176	4	0	2	111	10,962	4	0	2	119	11,101	4	0	2	121					
				T5W	10,254	4	0	3	111	11,047	4	0	3	120	11,186	4	0	3	122					
				BLC	8,036	1	0	2	87	8,656	1	0	2	94	8,766	1	0	2	95					
				LCCO	5,979	1	0	2	65	6,441	1	0	2	70	6,523	1	0	3	71					
					5,979	1	0	2	65	6,441	1	0	2	70	6,523	1	0	3	71					

Performance Data
Lumen Output
Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by lighting Facts. Contact factory for performance data on any configurations not shown here.

Forward Optics																								
Led Count	Orive Current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \\ \hline \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CR}) \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	G	LV
40	700	P5	89W	T15	10,831	2	0	2	122	11,668	2	0	2	131	11,816	2	0	2	133					
				T2S	10,820	2	0	2	122	11,656	2	0	2	131	11,803	2	0	2	133					
				T2M	10,876	2	0	2	122	11,716	2	0	2	132	11,864	2	0	2	133					
				T3S	10,532	2	0	2	118	11,346	2	0	2	127	11,490	2	0	2	129					
				T3M	10,849	2	0	2	122	11,687	2	0	2	131	11,835	2	0	2	133					
				T4M	10,613	2	0	3	119	11,434	2	0	3	128	11,578	2	0	3	130					
				TFIM	10,842	2	0	2	122	11,680	2	0	2	131	11,828	2	0	2	133					
				T5VS	11,276	3	0	1	127	12,148	3	0	1	136	12,302	3	0	1	138					
				TSS	11,286	3	0	1	127	12,158	3	0	1	137	12,312	3	0	1	138					
				TSM	11,257	4	0	2	126	12,127	4	0	2	136	12,280	4	0	2	138					
				T5W	11,344	4	0	3	127	12,221	4	0	3	137	12,375	4	0	3	139					
				BLC	8,890	1	0	2	100	9,576	1	0	2	108	9,698	1	0	2	109					
				LCCO	6,615	1	0	3	74	7,126	1	0	3	80	7,216	1	0	3	81					
				RCCO	6,615	1	0	3	74	7,126	1	0	3	80	7,216	1	0	3	81					
40	1050	P6	134W	T15	14,805	3	0	3	110	15,949	3	0	3	119	16,151	3	0	3	121	6,206	2	0	2	68
				T2S	14,789	3	0	3	110	15,932	3	0	3	119	16,134	3	0	3	120	6,322	2	0	2	69
				T2M	14,865	3	0	3	111	16,014	3	0	3	120	16,217	3	0	3	121	6,201	2	0	2	68
				T3S	14,396	3	0	3	107	15,509	3	0	3	116	15,705	3	0	3	117	6,247	1	0	2	69
				T3M	14,829	2	0	3	111	15,975	3	0	3	119	16,177	3	0	3	121	6,308	2	0	2	69
				T4M	14,507	2	0	3	108	15,628	3	0	3	117	15,826	3	0	3	118	6,275	1	0	2	69
				TFM	14,820	2	0	3	111	15,965	3	0	3	119	16,167	3	0	3	121	6,203	1	0	2	68
				TSVS	15,413	4	0	1	115	16,604	4	0	1	124	16,815	4	0	1	125	6,671	2	0	0	73
				TSS	15,426	3	0	1	115	16,618	4	0	1	124	16,828	4	0	1	126	6,569	2	0	0	72
				T5M	15,387	4	0	2	115	16,576	4	0	2	124	16,786	4	0	2	125	6,491	3	0	1	71
				T5W	15,506	4	0	3	116	16,704	4	0	3	125	16,915	4	0	3	126	6,504	3	0	2	71
				BLC	12,151	1	0	2	91	13,090	1	0	2	98	13,255	1	0	2	99					
				LCCO	9,041	1	0	3	67	9,740	1	0	3	73	9,863	1	0	3	74					
				RCCO	9,041	1	0	3	67	9,740	1	0	3	73	9,863	1	0	3	74					
40	1300	P7	166W		17,023	3	0	3	103	18,338	3	0	3	110	18,570	3	0	3	112					
				T2S	17,005	3	0	3	102	18,319	3	0	3	110	18,551	3	0	3	112					
				T2M	17,092	3	0	3	103	18,413	3	0	3	111	18,646	3	0	3	112					
				T3S	16,553	3	0	3	100	17,832	3	0	3	107	18,058	3	0	3	109					
				T3M	17,051	3	0	3	103	18,369	3	0	3	111	18,601	3	0	3	112					
				T4M	16,681	3	0	3	100	17,969	3	0	3	108	18,197	3	0	3	110					
				TFTM	17,040	3	0	3	103	18,357	3	0	4	111	18,590	3	0	4	112					
				TSVS	17,723	4	0	1	107	19,092	4	0	1	115	19,334	4	0	1	116					
				TSS	17,737	4	0	2	107	19,108	4	0	2	115	19,349	4	0	2	117					
				TSM	17,692	4	0	2	107	19,059	4	0	2	115	19,301	4	0	2	116					
				TSW	17,829	5	0	3	107	19,207	5	0	3	116	19,450	5	0	3	117					
				BLC	13,971	2	0	2	84	15,051	2	0	2	91	15,241	2	0	2	92					
				LCCO	10,396	1	0	3	63	11,199	1	0	3	67	11,341	1	0	3	68					
					10,396	1	0	3	63	11,199	1	0	3	67	11,341	1	0	3	68					

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of the configurations shown, within the tolerances allowed by Lighting Facts. Contact factory for performance data on any configurations not shown here.

Rotated Optics																								
LED Count	Orive Current	Power Package	System Watts	Dist. Type	$\begin{gathered} 30 \mathrm{~K} \\ (3000 \mathrm{~K}, 70 \mathrm{CRI}) \\ \hline \end{gathered}$					$\begin{gathered} 40 \mathrm{~K} \\ (4000 \mathrm{~K}, 70 \mathrm{CRI}) \end{gathered}$					$\begin{gathered} 50 \mathrm{~K} \\ (5000 \mathrm{~K}, 70 \mathrm{CR}) \end{gathered}$					AMBPC(Amber Phosphor Converted)				
					Lumens	8	0	6	IPW	tumens	B	1	6	LPW	Lumens	B	1	G	LPW	lumens	B	U	G	LPW
30	530	P10	53W	T15	6,727	2	0	2	127	7,247	3	0	3	137	7,339	3	0	3	138					
				T2S	6,689	3	0	3	126	7,205	3	0	3	136	7,297	3	0	3	138					
				T2M	6,809	3	0	3	128	7,336	3	0	3	138	7,428	3	0	3	140					
				T3S	6,585	3	0	3	124	7,094	3	0	3	134	7,183	3	0	3	136					
				T3M	6,805	3	0	3	128	7,331	3	0	3	138	7,424	3	0	3	140					
				T4M	6,677	3	0	3	126	7,193	3	0	3	136	7,284	3	0	3	137					
				TFTM	6,850	3	0	3	129	7,379	3	0	3	139	7,472	3	0	3	141					
				TSVS	6,898	3	0	0	130	7,431	3	0	0	140	7,525	3	0	0	142					
				TSS	6,840	2	0	1	129	7,368	2	0	1	139	7,461	2	0	1	141					
				T5M	6,838	3	0	1	129	7,366	3	0	2	139	7,460	3	0	2	141					
				T5W	6,777	3	0	2	128	7,300	3	0	2	138	7,393	3	0	2	139					
				BLC	5,626	2	0	2	106	6,060	2	0	2	114	6,137	2	0	2	116					
				LCCO	4,018	1	0	2	76	4,328	1	0	2	82	4,383	1	0	2	83					
				RCCO	4,013	3	0	3	76	4,323	3	0	3	82	4,377	3	0	3	83					
30	700	P11	72W	T15	8,594	3	0	3	119	9,258	3	0	3	129	9,376	3	0	3	130					
				T2S	8,545	3	0	3	119	9,205	3	0	3	128	9,322	3	0	3	129					
				T2M	8,699	3	0	3	121	9,371	3	0	3	130	9,490	3	0	3	132					
				T3S	8,412	3	0	3	117	9,062	3	0	3	126	9,177	3	0	3	127					
				T3M	8,694	3	0	3	121	9,366	3	0	3	130	9,484	3	0	3	132					
				T4M	8,530	3	0	3	118	9,189	3	0	3	128	9,305	3	0	3	129					
				TFTM	8,750	3	0	3	122	9,427	3	0	3	131	9,546	3	0	3	133					
				TSVS	8,812	3	0	0	122	9,493	3	0	0	132	9,613	3	0	0	134					
				T5S	8,738	3	0	1	121	9,413	3	0	1	131	9,532	3	0	1	132					
				TSM	8,736	3	0	2	121	9,411	3	0	2	131	9,530	3	0	2	132					
				TSW	8,657	4	0	2	120	9,326	4	0	2	130	9,444	4	0	2	131					
				BLC	7,187	3	0	3	100	7,742	3	0	3	108	7,840	3	0	3	109					
				LCCO	5,133	1	0	2	71	5,529	1	0	2	77	5,599	1	0	2	78					
				RCCO	5,126	3	0	3	71	5,522	3	0	3	77	5,592	3	0	3	78					
30	1050	P12	104W	T1S	12,149	3	0	3	117	13,088	3	0	3	126	13,253	3	0	3	127					
				T2S	12,079	4	0	4	116	13,012	4	0	4	125	13,177	4	0	4	127					
				T2M	12,297	3	0	3	118	13,247	3	0	3	127	13,415	3	0	3	129					
				T3S	11,891	4	0	4	114	12,810	4	0	4	123	12,972	4	0	4	125					
				T3M	12,290	3	0	3	118	13,239	4	0	4	127	13,407	4	0	4	129					
				T4M	12,058	4	0	4	116	12,990	4	0	4	125	13,154	4	0	4	126					
				TFTM	12,369	4	0	4	119	13,325	4	0	4	128	13,494	4	0	4	130					
				T5VS	12,456	3	0	1	120	13,419	3	0	1	129	13,589	4	0	1	131					
				T5S	12,351	3	0	1	119	13,306	3	0	1	128	13,474	3	0	1	130					
				T5M	12,349	4	0	2	119	13,303	4	0	2	128	13,471	4	0	2	130					
				T5W	12,238	4	0	3	118	13,183	4	0	3	127	13,350	4	0	3	128					
				BLC	10,159	3	0	3	98	10,944	3	0	3	105	11,083	3	0	3	107					
				LCCO	7,256	1	0	3	70	7,816	1	0	3	75	7,915	1	0	3	76					
				RCCO	7,246	3	0	3	70	7,806	4	0	4	75	7,905	4	0	4	76					
30	1300	P13	128W	T15	14,438	3	0	3	113	15,554	3	0	3	122	15,751	3	0	3	123					
				T2S	14,355	4	0	4	112	15,465	4	0	4	121	15,660	4	0	4	122					
				T2M	14,614	3	0	3	114	15,744	4	0	4	123	15,943	4	0	4	125					
				T3S	14,132	4	0	4	110	15,224	4	0	4	119	15,417	4	0	4	120					
				T3M	14,606	4	0	4	114	15,735	4	0	4	123	15,934	4	0	4	124					
				T4M	14,330	4	0	4	112	15,438	4	0	4	121	15,633	4	0	4	122					
				TFTM	14,701	4	0	4	115	15,836	4	0	4	124	16,037	4	0	4	125					
				TSVS	14,804	4	0	1	116	15,948	4	0	1	125	16,150	4	0	1	126					
				TSS	14,679	3	0	1	115	15,814	3	0	1	124	16,014	3	0	1	125					
				T5M	14,676	4	0	2	115	15,810	4	0	2	124	16,010	4	0	2	125					
				T5W	14,544	4	0	3	114	15,668	4	0	3	122	15,866	4	0	3	124					
				BLC	7919	3	0	3	62	8531	3	0	3	67	8639	3	0	3	67					
				LCCO	5145	1	0	2	40	5543	1	0	2	43	5613	1	0	2	44					
					5139	3	0	3	40	5536	3	0	3	43	5606	3	0	3	44					

FEATURES \& SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 0 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and pedestrian areas.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED driver is mounted in direct contact with the casting to promote low operating temperature and long life. Housing is completely sealed against moisture and environmental contaminants (IP65). Low EPA ($0.95 \mathrm{ft}^{2}$) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

OPTICS

Precision-molded proprietary acrylic lenses are engineered for superior area lighting distribution,
uniformity, and pole spacing. Light engines are available in $3000 \mathrm{~K}, 4000 \mathrm{~K}$ or 5000 K (70 CRI)
configurations. The D-Series Size 0 has zero uplight and qualifies as a Nighttime Friendly ${ }^{\text {Tre }}$
product, meaning it is consistent with the LEED ${ }^{s}$ and Green Globes ${ }^{\text {TMM }}$ criteria for eliminating wasteful uplight.
ELECTRICAL
Light engine(s) configurations consist of high-efficacy LEDs mounted to metal-core circuit boards to maximize heat dissipation and promote long life (up to L85/100,000 hours at $25^{\circ} \mathrm{C}$). Class 1 electronic drivers are designed to have a power factor $>90 \%$, THD $<20 \%$, and an expected life of

100,000 hours with $<1 \%$ failure rate. Easily serviceable 10 kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

INSTALLATION

Included mounting block and integral arm facilitate quick and easy installation. Stainless steel bolts fasten the mounting block securely to poles and walls, enabling the D-Series Size 0 to withstand up to a 3.0 G vibration load rating per ANSI C136.31. The D-Series Size 0 utilizes the AERIS ${ }^{\text {th }}$ series pole drilling pattern (template \#8). Optional terminal block and NEMA photocontrol receptacle are also available

LISTINGS

UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP65 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient. U.S. Patent No. D672,492 S. International patent pending.
DesignLights Consortium@ (DLC) Premium qualified product and DLC qualified product Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/OPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000 K color temperature only.

WARRANTY

5-year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

Geotechnical Engineering Report

$8^{\text {th }}$ Court Redevelopment $21808^{\text {th }}$ Court
West Linn, Oregon 97068

GeoPacific Engineering, Inc. Job No. 18-4970
August 22, 2018

Real-World Geotechnical Solutions Investigation • Design •Construction Support

TABLE OF CONTENTS

1.0 PROJECT INFORMATION 1
2.0 SITE AND PROJECT DESCRIPTION 2
3.0 REGIONAL GEOLOGIC SETTING 2
4.0 REGIONAL SEISMIC SETTING 3
4.1 Portland Hills Fault Zone 3
4.2 Gales Creek-Newberg-Mt. Angel Structural Zone 3
4.3 Cascadia Subduction Zone 4
5.0 FIELD EXPLORATION AND SUBSURFACE CONDITIONS 4
5.1 Soil Descriptions 5
5.2 Groundwater and Soil Moisture 7
6.0 CONCLUSIONS AND DESIGN RECOMMENDATIONS 7
6.1 Site Preparation and Undocumented Fill Removal 8
6.2 Engineered Fill 9
6.3 Excavating Conditions and Utility Trench Backfill 9
6.4 Erosion Control Considerations 10
6.5 Wet Weather Earthwork 11
6.6 Structural Foundations 11
6.7 Concrete Slab-on-Grade Floors 13
6.8 Perimeter Footing and Roof Drains 14
6.9 Permanent Below-Grade Walls 14
6.10 Flexible Pavement Design 16
6.11 Wet Weather Construction Pavement Section 17
7.0 SEISMIC DESIGN 18
7.1 Soil Liquefaction Potential 18
7.2 Post-Liquefaction Settlements 19
7.3 Lateral Spreading 19
7.4 Other Secondary Seismic Impacts 20
8.0 UNCERTAINTIES AND LIMITATIONS 20
REFERENCES 22
CHECKLIST OF RECOMMENDED GEOTECHNICAL TESTING AND OBSERVATION 23
APPENDIX

Real-World Geotechnical Solutions Investigation • Design • Construction Support

List of Appendices

Figures
Exploration Logs
Laboratory Test Results
Liquefaction Assessment
Site Research
Photographic Log

List of Figures

1 Site Vicinity Map
2 Site Aerial Map
3 Site Plan and Exploration Locations

Real-World Geotechnical Solutions
Investigation • Design • Construction Support
August 16, 2018
Project No. 18-4970

Edge Development

Mr. Ed Bruin
735 SW 20 ${ }^{\text {th }}$ Place, Suite 220
Portland, Oregon 97205
Phone: (503) 292-7733

SUBJECT: GEOTECHNICAL ENGINEERING REPORT $8^{\text {TH }}$ COURT REDEVELOPMENT $81208^{\text {th }}$ COURT WEST LINN, OREGON 97068

1.0 PROJECT INFORMATION

This report presents the results of a geotechnical engineering study conducted by GeoPacific Engineering, Inc. (GeoPacific) for the above-referenced projects. The purpose of our investigation was to evaluate subsurface conditions at the site, and to provide geotechnical recommendations for site development. This geotechnical study was performed in accordance with GeoPacific Proposal No. P-6617, dated May 31, 2018, and your subsequent authorization of our proposal and General Conditions for Geotechnical Services.

Site Location:	$81208^{\text {th }}$ Court West Linn, Oregon 97068 (see Figures 1 through 3)
Developer:	Edge Development 735 SW 20 ${ }^{\text {th }}$ Place, Suite 220 Portland, Oregon 97205
Jurisdictional Agency:	West Linn, Oregon
Geotechnical Engineer:	GeoPacific Engineering, Inc 14835 SW $72^{\text {nd }}$ Avenue Portland, Oregon 97224 Tel (503) 598-8445 Fax (503) 941-9281

2.0 SITE AND PROJECT DESCRIPTION

The subject site is located at $81208^{\text {th }}$ Court in West Linn, Oregon, as indicated on Figures 1 through 3. The site consists of Clackamas County Property No. 1680363, totaling approximately 1.04 -acres in size. The site is bordered by Interstate 205 to the north, single family residences to the east, Willamette Falls Drive to the south, and $8^{\text {th }}$ Court and commercial businesses to the west. Currently, the site is occupied by a vacant restaurant building on the southern portion of the site with parking and drive areas throughout the rest of the property. The site is vegetated with landscaping, shrubs, and medium to large trees around the perimeter of the site. Topography at the site slopes down gently to the north with site elevations ranging from approximately 141 to 147 feet above mean sea level (amsl). Along the northern property boundary, the ground surface moderately slopes down to a shallow drainage which runs to the northeast.

Based upon communication with the client, GeoPacific understands that the proposed development at the site will consist of construction of a medical facility on the southern portion of the site, and a commercial retail building on the northern portion of the site with stormwater disposal facilities, parking areas, and associated underground utility improvements.

3.0 REGIONAL GEOLOGIC SETTING

Regionally, the subject site lies within the Willamette Valley/Puget Sound lowland, a broad structural depression situated between the Coast Range on the west and the Cascade Range on the east. A series of discontinuous faults subdivide the Willamette Valley into a mosaic of fault-bounded, structural blocks (Yeats et al., 1996). Uplifted structural blocks form bedrock highlands, while down-warped structural blocks form sedimentary basins.

According to the Geologic framework of the Willamette lowland aquifer system, Oregon and Washington, (United States Geological Survey, Gannett, M.W., and Caldwell, R.R. 1998), the site is underlain by Quaternary-aged (last 1.6 million years) lacustrine deposits consisting of unconsolidated gravel, sand, and silt (Qs), generally referred to as the Willamette Formation, a catastrophic flood deposit associated with repeated glacial outburst flooding of the Willamette Valley (Yeats et al., 1996). The last of these outburst floods occurred about 10,000 years ago. This material is poorly to moderately sorted (Madin, 1990).

Underlying the Willamette Formation are Miocene-aged (approximately 23 to 5 million years ago) Columbia River basalt flows, which consist of phyric basalt and basaltic-andesite flows erupted eastern Oregon, Washington, and Idaho, (Tcr). The basalts are generally composed of dense, finely crystalline rock that is commonly fractured along blocky and columnar vertical joints. The Web Soil Survey (United States Department of Agriculture, Natural Resource Conservation Service (USDA NRCS 2018 Website), indicates that near-surface soils consist of the Willamette and Woodburn Silt Loam soil series. Willamette and Woodburn series soils generally consist of moderately well-drained glaciolacustrine deposits.

4.0 REGIONAL SEISMIC SETTING

At least three major fault zones capable of generating damaging earthquakes are thought to exist in the vicinity of the subject site. These include the Portland Hills Fault Zone, the Gales Creek-Newberg-Mt. Angel Structural Zone, and the Cascadia Subduction Zone.

4.1 Portland Hills Fault Zone

The Portland Hills Fault Zone is a series of NW-trending faults that include the central Portland Hills Fault, the western Oatfield Fault, and the eastern East Bank Fault. These faults occur in a northwest-trending zone that varies in width between 3.5 and 5.0 miles. The combined three faults reportedly vertically displace the Columbia River Basalt by 1,130 feet and appear to control thickness changes in late Pleistocene (approx. 780,000 years) sediment (Madin, 1990). The Portland Hills Fault occurs along the Willamette River at the base of the Portland Hills, and is located approximately 4.85 miles northeast of the site. The Oatfield Fault occurs along the western side of the Portland Hills, and is located approximately 3.86 miles northeast of the site. The East Bank Fault occurs along the eastern margin of the Willamette River, and is located approximately 11.67 miles northeast of the site. The accuracy of the fault mapping is stated to be within 500 meters (Wong, et al., 2000).

According to the USGS Earthquake Hazards Program, the fault was originally mapped as a down-to-the-northeast normal fault, but has also been mapped as part of a regional-scale zone of rightlateral, oblique slip faults, and as a steep escarpment caused by asymmetrical folding above a south-west dipping, blind thrust fault. The Portland Hills fault offsets Miocene Columbia River Basalts, and Miocene to Pliocene sedimentary rocks of the Troutdale Formation. No fault scarps on surficial Quaternary deposits have been described along the fault trace, and the fault is mapped as buried by the Pleistocene aged Missoula flood deposits. No historical seismicity is correlated with the mapped portion of the Portland Hills Fault Zone, but in 1991 a M3.5 earthquake occurred on a NW-trending shear plane located 1.3 miles east of the fault (Yelin, 1992). Although there is no definitive evidence of recent activity, the Portland Hills Fault Zone is assumed to be potentially active (Geomatrix Consultants, 1995).

4.2 Gales Creek-Newberg-Mt. Angel Structural Zone

The Gales Creek-Newberg-Mt. Angel Structural Zone is a 50 -mile-long zone of discontinuous, NW-trending faults that lies about 16.36 miles southwest of the subject site. These faults are recognized in the subsurface by vertical separation of the Columbia River Basalt and offset seismic reflectors in the overlying basin sediment (Yeats et al., 1996; Werner et al., 1992). A geologic reconnaissance and photogeologic analysis study conducted for the Scoggins Dam site in the Tualatin Basin revealed no evidence of deformed geomorphic surfaces along the structural zone (Unruh et al., 1994). No seismicity has been recorded on the Gales Creek Fault or Newberg Fault (the fault closest to the subject site); however, these faults are considered to be potentially active because they may connect with the seismically active Mount Angel Fault and the rupture plane of the 1993 M5.6 Scotts Mills earthquake (Werner et al. 1992; Geomatrix Consultants, 1995).

According to the USGS Earthquake Hazards Program, the Mount Angel fault is mapped as a highangle, reverse-oblique fault, which offsets Miocene rocks of the Columbia River Basalts, and

Miocene and Pliocene sedimentary rocks. The fault appears to have controlled emplacement of the Frenchman Spring Member of the Wanapum Basalts, and thus must have a history that predates the Miocene age of these rocks. No unequivocal evidence of deformation of Quaternary deposits has been described, but a thick sequence of sediments deposited by the Missoula floods covers much of the southern part of the fault trace.

4.3 Cascadia Subduction Zone

The Cascadia Subduction Zone is a 680-mile-long zone of active tectonic convergence where oceanic crust of the Juan de Fuca Plate is subducting beneath the North American continent at a rate of 4 cm per year (Goldfinger et al., 1996). A growing body of geologic evidence suggests that prehistoric subduction zone earthquakes have occurred (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). This evidence includes: (1) buried tidal marshes recording episodic, sudden subsidence along the coast of northern California, Oregon, and Washington, (2) burial of subsided tidal marshes by tsunami wave deposits, (3) paleoliquefaction features, and (4) geodetic uplift patterns on the Oregon coast. Radiocarbon dates on buried tidal marshes indicate a recurrence interval for major subduction zone earthquakes of 250 to 650 years with the last event occurring 300 years ago (Atwater, 1992; Carver, 1992; Peterson et al., 1993; Geomatrix Consultants, 1995). The inferred seismogenic portion of the plate interface lies approximately along the Oregon Coast at depths of between 20 and 40 kilometers below the surface.

5.0 FIELD EXPLORATION AND SUBSURFACE CONDITIONS

Our site-specific explorations for this report were conducted on July 3, 2018, and July 20, 2018. On July 3, 2018, four exploratory borings (designated B-1 through B-4) were drilled to a maximum depth of 45.6 feet below the ground surface, and one exploratory hand auger boring (designated HA-1) was advanced to a depth of 8.5 feet below the ground surface using hand equipment. On July 20, 2018, one Cone Penetration Test (CPT) was advanced to a depth of 54 feet below the ground surface.

The boreholes were drilled using a trailer-mounted drill rig using solid stem auger methods. Boring B-1 was left open for 6 hours to observe groundwater conditions with a water meter. During the drilling of borings B-1 through B-4, SPT (Standard Penetration Test) sampling was performed in general accordance with ASTM D1586 using a 2-inch outside diameter split-spoon sampler and a 140 -pound automatic hammer mechanism. During the test, a sample is obtained by driving the sampler 18 inches into the soil with the hammer free-falling 30 inches. The number of blows for each 6 inches of penetration is recorded. The Standard Penetration Resistance (" N-value") of the soil is calculated as the number of blows required for the final 12 inches of penetration. If 50 or more blows are recorded within a single 6 -inch interval, the test is terminated, and the blow count is recorded as 50 blows for the number of inches driven. This resistance, or N -value, provides a measure of the relative density of granular soils and the relative consistency of cohesive soils.

Explorations were conducted under the full-time observation of a GeoPacific engineer. During the explorations, pertinent information including soil sample depths, stratigraphy, soil engineering characteristics, and groundwater occurrence was recorded. Soils were classified in accordance with the Unified Soil Classification System (USCS). Rock hardness was classified in accordance
with Table 1, modified from the ODOT Rock Hardness Classification Chart. Soil samples obtained from the explorations were placed in relatively air-tight plastic bags. At the completion of the site investigation, the borings and CPT sounding were filled with bentonite chips and the hand auger boring was loosely backfilled with onsite soils. At the ground surface, the borings B-1 through B-4 and CPT exploration CPT-1 were patched with asphaltic concrete.

Table 1-Rock Hardness Classification Chart

ODOT Rock Hardness Rating	Field Criteria	Unconfined Compressive Strength	Typical Equipment Needed for Excavation
Extremely Soft (R0)	Indented by thumbnail	$<100 \mathrm{psi}$	Small excavator
Very Soft (R1)	Scratched by thumbnail, crumbled by rock hammer	$100-1,000 \mathrm{psi}$	Small excavator
Soft (R2)	Not scratched by thumbnail, indented by rock hammer	$1,000-4,000 \mathrm{psi}$	Medium excavator (slow digging with small excavator)
Medium Hard (R3)	Scratched or fractured by rock hammer	$4,000-8,000 \mathrm{psi}$	Medium to large excavator (slow to very slow digging), typically requires chipping with hydraulic hammer or mass excavation)
Hard (R4)	Scratched or fractured w/ difficulty	$8,000-16,000 \mathrm{psi}$	Slow chipping with hydraulic hammer and/or blasting
Very Hard (R5)	Not scratched or fractured after many hammer blows	$>16,000 \mathrm{psi}$	Blasting

The approximate locations of our explorations are indicated on Figures 2 and 3 . It should be noted that exploration locations were located in the field by pacing or taping distances from apparent property corners and other site features shown on the plans provided. As such, the locations of the explorations should be considered approximate. Summary exploration logs are attached. The stratigraphic contacts shown on the individual exploration logs represent the approximate boundaries between soil types. The actual transitions may be more gradual. The soil and groundwater conditions depicted are only for the specific dates and locations reported, and therefore, are not necessarily representative of other locations and times. Soil and groundwater conditions encountered in the explorations are summarized below.

5.1 Soil Descriptions

Existing Pavement Section: At the locations of borings B-1 through B-4, the ground surface was underlain by an existing pavement section consisting of approximately 3 to 5 inches of asphaltic concrete underlain by 6 to 8 inches of base rock.

Undocumented Fill: Underlying the existing pavement section at the location of borings B-1 through B-4 and hand auger boring HA-1, we encountered undocumented fill soils. The undocumented fill soils generally consisted of dark brown, medium stiff, moist, moderately organic, SILT (ML). The fill material contained angular gravel, organic debris, brick and concrete debris. The undocumented fill soils observed in our explorations extended to depths ranging from
approximately 2.5 to 8 feet below the ground surface in borings B-1 through B-4, and hand auger boring HA-1 (See Figures 2 and 3). Undocumented fill depths encountered within our explorations are summarized on the attached exploration logs and below in Table 2.

Table 2 - Undocumented Fill Depths Encountered Within Explorations

Exploration Designation	Depth of Undocumented Fill (ft)
B-1	6.3
B-2	3.3
B-3	8.0
B-4	<2.5
HA-1	7.5

Laboratory soils testing of a representative sample taken at 5 feet below the ground surface in boring $\mathrm{B}-3$ indicate that the organic content was 3.6 percent by weight at the location tested.

Willamette Formation: Underlying the undocumented fill material in borings B-1, B-2, and B-4 and hand auger boring HA-1, we encountered soils belonging to the Willamette Formation. The upper few feet of Willamette Formation soils consisted of brown, medium stiff to very stiff, elastic SILT (MH). The elastic silt was micaceous, exhibited orange and grey mottling, and extended to depths ranging from 5 to 10 feet below the ground surface in borings B-1, B-2, and B-4, and beyond the maximum observed depth of 8.5 feet in hand auger boring HA-1. Underlying the elastic silt in borings B-1, B-2, B-4, and the undocumented fill observed in boring B-3, soils consisted of light brown, moist, medium stiff to very stiff, sandy SILT (ML). This soil layer extended to depths ranging between 20 to 31 feet below ground surface in borings B-1, B-2, and B-3, and beyond the maximum observed depth of 11.5 feet in boring B-4. Underlying the sandy silt in borings B-1, and B-3, soils consisted of brown and gray, medium dense, moist to very moist silty SAND (SM). The sand was generally fine to medium grained with lenses of coarse grained sand. The silty sand extended to a depth of 40 feet in boring B-3, and beyond the maximum observed depth of 41.5 feet in boring B-1. Underlying the silty sand in boring B-3, soils consisted of light brown, very stiff sandy SILT (ML). The silt contained fine-grained sand, and extended to an observed depth of 45 feet in boring B-3.

At the location of cone penetration test CPT-1, soil properties were observed to a depth up to 54 feet using correlative methods and the CPT data obtained on July 20, 2018. Cone resistance observed throughout the CPT explorations generally ranged from 15 to 150 tsf, gradually increasing with depth. Utilizing Robertson (1990) methodology, CPT exploration tip resistance and skin friction ratio data correlates to silty CLAY to a depth of 10 feet below the ground surface, primarily of interchanging layers of silty SAND and very stiff fine-grained material from 10 to 20 feet below the ground surface, interchanging layers of silty SAND, sandy SILT, clayey Silt, and very stiff fine-grained material from 20 to 50 feet bgs, primarily SAND and silty Sand from 50 to 52 feet bgs, and sandy SILT which extends to an approximate depth of 53 feet bgs.

Columbia River Basalt: Underlying the Willamette Formation at the location of borings B-2, and $\mathrm{B}-3$, and cone penetration test CPT-1, we encountered a zone of weathered rock which sharply graded into very dense, in-tact basalt. Borings B-2 and B-3 were terminated at depths of 20.9 and
45.6 feet below the ground surface respectively due to practical refusal of hard bedrock. Cone penetration test CPT-1 reached refusal at a depth of 54 feet on dense material which we assume to be weathered rock. The basalt was light to dark gray and displayed extremely soft (R1) to hard consistency (R4) in boring B-2, and soft (R2) to hard (R4) consistency in boring B-3 (See Table 2 for rock hardness classification). Depths to refusal encountered within our explorations are summarized on the attached exploration logs and below in Table 3.

Table 3 - Depths to Refusal Encountered Within Explorations

Exploration Designation	Depth of Refusal on Bedrock (ft)
B-2	20.9
B-3	45.6
CPT-1	54

5.2 Groundwater and Soil Moisture

On July 3, 2018, observed soil moisture conditions were generally moist in the upper 40 feet below ground surface and very moist to wet below 40 feet. Static groundwater was encountered within boring B-3 at an approximate depth of 40 feet below the ground surface. On July 20, 2018, static groundwater was observed in cone penetrometer test CPT-1 at an approximate depth of 46 feet below the ground surface. According to the Estimated Depth to Groundwater in the Portland, Oregon Area, (United States Geological Survey, Snyder, 2018 website), groundwater is present at an approximate depth of 35 to 45 feet below the ground surface. It is anticipated that groundwater conditions will vary depending on the season, local subsurface conditions, changes in site utilization, and other factors. Perched groundwater may be encountered in localized areas. Seeps and springs may exist in areas not explored, and may become evident during site grading.

6.0 CONCLUSIONS AND DESIGN RECOMMENDATIONS

Our site investigation indicates that the proposed construction appears to be geotechnically feasible, provided that the recommendations of this report are incorporated into the design and construction phases of the project.

The primary geotechnical concerns associated with development at the site are the presence of up to 8 feet of undocumented fill throughout the site. Due to the extent of undocumented fill observed onsite, we recommend that areas proposed for construction of building foundations be overexcavated to expose underlying competent native soil and either refilled structurally with engineered fill, or the foundation elements extended to depths necessary to bear directly on competent native soil. In areas where parking and drive areas are proposed and undocumented fill is present, it may be feasible to allow some of the undocumented fill soils to remain in place provided they can pass specifications for engineered fill compaction and proofrolls with fully loaded haul trucks. At a minimum, the upper portion of existing undocumented fill soils in parking and drive areas will likely need to be ripped and recompacted.

Our secondary geotechnical concern is the potential for liquefaction on the northern portion of the site. In the design earthquake event, without ground improvement, the building proposed on the northern portion of the site may experience post-liquefaction settlement and lateral spreading. At
a minimum, the building needs to be able to tolerate the estimated magnitudes of total and differential settlement without collapsing. The foundation of the building also needs to be strong enough to remain intact should the building move towards the river. If the estimated magnitudes of total and differential post-liquefaction settlement are not considered tolerable, the incorporation of ground improvement technologies, such as engineered aggregate piers, may be utilized to reduce the estimated magnitude of total vertical post-liquefaction settlement.

The following report sections provide recommendations for site development and construction in accordance with the current applicable codes and local standards of practice.

6.1 Site Preparation and Undocumented Fill Removal

The areas of proposed structures should be cleared of debris. If encountered, undocumented fill within influence zones of the proposed building footprints or other settlement-sensitive improvements, should be completely removed and replaced with engineered fill. Undocumented fill was encountered to depths ranging from 2.5 to 8 feet during our site exploration. We anticipate that areas of undocumented fill may exist throughout the site.

As mentioned above, we encountered up to 8 feet of undocumented fill within our site specific explorations. In-situ soils containing debris, trash, etc, are considered unsuitable for placement of structures and roadways, and should be removed where buildings and roadways are proposed. Some of the existing undocumented fill soils appeared to be suitable to re-use as engineered fill provided the organic and inorganic debris is thoroughly removed prior to replacement.

In areas proposed for construction of buildings, existing undocumented fill soils within the influence zones of proposed structures should be over-excavated to expose underlying native soils. The excavations should either be refilled structurally with engineered fill, or the foundations extended to depths necessary to bear directly on the native soils. Recommendations for placement of engineered fill are presented below in Section 6.2, Engineered Fill.

It may be feasible for undocumented fill material to remain in place below proposed parking areas, driving lanes, and other areas which are not sensitive to settlement, with the understanding that some settlement may occur as the organic material in the fill material breaks down over time. Exposed subgrade soils, including undocumented fills in the future parking lot, should be evaluated by the geotechnical engineer. For large areas, this evaluation is normally performed by proofrolling the exposed subgrade with a fully loaded scraper or dump truck and potholing with an excavator to evaluate the buried layers of undocumented fill. For smaller areas where access is restricted, the subgrade should be evaluated by probing the soil with a steel probe. Soft/loose soils identified during subgrade preparation should be compacted to a firm and unyielding condition, over-excavated and replaced with engineered fill (as described below) or stabilized with rock prior to placement of engineered fill. The depth of over-excavation, if required, should be evaluated by the geotechnical engineer at the time of construction.

Areas proposed for construction of roadways should be ripped and tilled to a minimum depth of 12 inches bgs, then moisture conditioned to within 2 percent of optimum moisture. Following adequate tilling, removal of any debris, and moisture conditioning, the soils should be recompacted using standard compaction equipment. We recommend that engineered fill be compacted to
project specifications for engineered fill, to at least 95 percent of the maximum dry density determined by ASTM D1557 (Modified Proctor) or equivalent.

The final depth of soil removal should be determined by the geotechnical engineer or designated representative during site inspection while stripping/excavation is being performed. Stripped topsoil and moderately to highly organic fill should be removed from areas proposed for placement of engineered fill. Any remaining topsoil and organic debris should be stockpiled only in designated areas and stripping operations should be observed and documented by the geotechnical engineer or his representative.

If encountered, undocumented fills and any subsurface structures (dry wells, basements, driveway and landscaping fill, old utility lines, septic leach fields, etc.) should be completely removed and the excavations backfilled with engineered fill.

Site earthwork may be impacted by shallow groundwater and wet weather conditions. Stabilization of subgrade soils will require aeration and recompaction. If subgrade soils are found to be difficult to stabilize, over-excavation, placement of granular soils, or cement treatment of subgrade soils may be feasible options. GeoPacific should be onsite to observe preparation of subgrade soil conditions prior to placement of engineered fill.

6.2 Engineered Fill

All grading for the proposed construction should be performed as engineered grading in accordance with the applicable building code at the time of construction with the exceptions and additions noted herein. Areas proposed for fill placement should be prepared as described in the Site Preparation Recommendations section. Surface soils should then be scarified and recompacted prior to placement of structural fill. Proper test frequency and earthwork documentation usually requires daily observation and testing during stripping, rough grading, and placement of engineered fill. Imported fill material must be approved by the geotechnical engineer prior to being imported to the site. Oversize material greater than 6 inches in size should not be used within 3 feet of foundation footings, and material greater than 12 inches in diameter should not be used in engineered fill.

Engineered fill should be compacted in horizontal lifts not exceeding 8 inches using standard compaction equipment. We recommend that engineered fill be compacted to at least 95 percent of the maximum dry density determined by ASTM D1557 (Modified Proctor) or equivalent. Field density testing should conform to ASTM D2922 and D3017, or D1556. All engineered fill should be observed and tested by the project geotechnical engineer or his representative. Typically, one density test is performed for at least every 2 vertical feet of fill placed or every 500 yd3, whichever requires more testing. Because testing is performed on an on-call basis, we recommend that the earthwork contractor be held contractually responsible for test scheduling and frequency. During periods of wet-weather site earthwork may be impacted by soil moisture.

6.3 Excavating Conditions and Utility Trench Backfill

We anticipate that on-site soils can generally be excavated using conventional heavy equipment to a depth of 20 feet below the ground surface. Bedrock was encountered at a depth of 20.9 feet
below the ground surface in boring B-2. Maintenance of safe working conditions, including temporary excavation stability, is the responsibility of the contractor. Actual slope inclinations at the time of construction should be determined based on safety requirements and actual soil and groundwater conditions. All temporary cuts in excess of 4 feet in height should be sloped in accordance with U.S. Occupational Safety and Health Administration (OSHA) regulations (29 CFR Part 1926), or be shored. The existing native silt soils classify as Type B Soil and temporary excavation side slope inclinations as steep as $1 \mathrm{H}: 1 \mathrm{~V}$. The existing native silty sand soils classify as Type C soil and temporary excavation side slope as steep as $1.5 \mathrm{H}: 1 \mathrm{~V}$ may be assumed for planning purposes. These cut slope inclinations are applicable to excavations above the water table only.

Shallow, perched groundwater may be encountered during the wet weather season and should be anticipated in excavations and utility trenches. Vibrations created by traffic and construction equipment may cause some caving and raveling of excavation walls. In such an event, lateral support for the excavation walls should be provided by the contractor to prevent loss of ground support and possible distress to existing or previously constructed structural improvements.

PVC pipe should be installed in accordance with the procedures specified in ASTM D2321 and City of West Linn standards. We recommend that structural trench backfill be compacted to at least 95 percent of the maximum dry density obtained by the Modified Proctor (ASTM D1557) or equivalent. Initial backfill lift thicknesses for a $3 / 4 "-0$ crushed aggregate base may need to be as great as 4 feet to reduce the risk of flattening underlying flexible pipe. Subsequent lift thickness should not exceed 1 foot. If imported granular fill material is used, then the lifts for large vibrating platecompaction equipment (e.g. hoe compactor attachments) may be up to 2 feet, provided that proper compaction is being achieved and each lift is tested. Use of large vibrating compaction equipment should be carefully monitored near existing structures and improvements due to the potential for vibration-induced damage.

Adequate density testing should be performed during construction to verify that the recommended relative compaction is achieved. Typically, at least one density test is taken for every 4 vertical feet of backfill on each 100 -lineal-foot section of trench.

6.4 Erosion Control Considerations

During our field exploration program, we did not observe soil conditions that may be considered highly susceptible to erosion. In our opinion, the primary concern regarding erosion potential will occur during construction in areas that have been stripped of vegetation. Erosion at the site during construction can be minimized by implementing the project erosion control plan, which should include judicious use of straw wattles, fiber rolls, and silt fences. If used, these erosion control devices should remain in place throughout site preparation and construction.

Erosion and sedimentation of exposed soils can also be minimized by quickly re-vegetating exposed areas of soil, and by staging construction such that large areas of the project site are not denuded and exposed at the same time. Areas of exposed soil requiring immediate and/or temporary protection against exposure should be covered with either mulch or erosion control netting/blankets. Areas of exposed soil requiring permanent stabilization should be seeded with an approved grass seed mixture, or hydroseeded with an approved seed-mulch-fertilizer mixture.

6.5 Wet Weather Earthwork

Soils underlying the site are likely to be moisture sensitive and will be difficult to handle or traverse with construction equipment during periods of wet weather. Earthwork is typically most economical when performed under dry weather conditions. Earthwork performed during the wet-weather season will require expensive measures such as cement treatment or imported granular material to compact areas where fill may be proposed to the recommended engineering specifications. If earthwork is to be performed or fill is to be placed in wet weather or under wet conditions when soil moisture content is difficult to control, the following recommendations should be incorporated into the contract specifications:

- Earthwork should be performed in small areas to minimize exposure to wet weather. Excavation or the removal of unsuitable soils should be followed promptly by the placement and compaction of clean engineered fill. The size and type of construction equipment used may have to be limited to prevent soil disturbance. Under some circumstances, it may be necessary to excavate soils with a backhoe to minimize subgrade disturbance caused by equipment traffic;
- The ground surface within the construction area should be graded to promote run-off of surface water and to prevent the ponding of water;
- Material used as engineered fill should consist of clean, granular soil containing less than 5 percent passing the No. 200 sieve. The fines should be non-plastic. Alternatively, cement treatment of on-site soils may be performed to facilitate wet weather placement;
- The ground surface within the construction area should be sealed by a smooth drum vibratory roller, or equivalent, and under no circumstances should be left uncompacted and exposed to moisture. Soils which become too wet for compaction should be removed and replaced with clean granular materials;
- Excavation and placement of fill should be observed by the geotechnical engineer to verify that all unsuitable materials are removed, and suitable compaction and site drainage is achieved; and
- Geotextile silt fences, straw wattles, and fiber rolls should be strategically located to control erosion.

If cement or lime treatment is used to facilitate wet weather construction, GeoPacific should be contacted to provide additional recommendations and field monitoring.

6.6 Structural Foundations

As discussed in section 7 of this report titled Seismic Design, without ground improvement, we estimate that in the event of the design earthquake, approximately 0.4 inches of post-liquefaction settlement will occur on the northern portion of the site. We estimate that differential settlement of 0.2 inches may occur between adjacent foundation elements, or over a horizontal distance of 20 feet, whichever is less. Some lateral spreading may also occur in the northern portion of the site.

If the current estimates of total and/or differential post-liquefaction settlement and lateral spreading are determined to be tolerable by the project structural engineer, then no further study is required, and the proposed structures may be supported on shallow foundations near existing grade. If the current estimates of total and/or differential seismically induced settlement displacements are not tolerable, then the design team may consider utilizing ground improvements to lower the estimates of total and differential settlement to within tolerable limits.

During our site investigation, we observed up to 8 feet of undocumented fill underlying the ground surface on the northern portion of the site (See Figures 2 and 3), and potentially liquefiable layers between the depths of 40 to 45 feet below the ground surface at the location of cone penetrometer test CPT-1.

Due to the extent of undocumented fill observed onsite, we recommend that areas proposed for construction of building foundations be over-excavated to expose underlying competent native soil and either refilled structurally with engineered fill, or the foundation elements extended to depths necessary to bear directly on competent native soil. However, if leaving the existing undocumented fill in place is desired at the locations of the proposed structures, GeoPacific may be consulted to provide recommendations for deep foundations such as engineered aggregate piers or piles.

If the current estimates of total and/or differential post-liquefaction settlement are acceptable, the proposed structures may be supported on shallow foundations bearing on stiff, native soils and/or engineered fill, appropriately designed and constructed as recommended in this report. Foundation design, construction, and setback requirements should conform to the applicable building code at the time of construction. For maximization of bearing strength and protection against frost heave, spread footings should be embedded at a minimum depth of 18 inches below exterior grade. If soft soil conditions are encountered at footing subgrade elevation, they should be removed and replaced with compacted crushed aggregate.

Foundation excavations should be observed by the geotechnical engineer or his designated representative during construction. Final foundation subgrade recommendations and overexcavation limits should be determined during construction when the foundation subgrade soil conditions are exposed.

The anticipated allowable soil bearing pressure is $1,500 \mathrm{lbs} / \mathrm{ft}^{2}$ for footings bearing on competent, native soil and/or engineered fill. The anticipated allowable soil bearing pressure is $2,000 \mathrm{lbs} / \mathrm{ft}^{2}$ for footings bearing on a minimum of 6 inches of $1.5 "-0$ crushed aggregate compacted to at least 95 percent of the maximum dry density determined by ASTM D1557 (Modified Proctor) or equivalent. The recommended maximum allowable bearing pressure may be increased by $1 / 3$ for short-term transient conditions such as wind and seismic loading. For loads heavier than 75 kips , the geotechnical engineer should be consulted. If heavier loads than described above are proposed, it may be necessary to over-excavate point load areas and replace with additional compacted crushed aggregate. The coefficient of friction between on-site soil and poured-in-place concrete may be taken as 0.42 , which includes no factor of safety. The maximum anticipated total and differential footing movements (generally from soil expansion and/or settlement) are 1 inch and $3 / 4$ inch over a span of 20 feet, respectively. We anticipate that the majority of the estimated settlement will occur during construction, as loads are applied. Excavations near structural
footings should not extend within a $1 \mathrm{H}: 1 \mathrm{~V}$ plane projected downward from the bottom edge of footings.

Footing excavations should penetrate through topsoil and any loose soil to competent subgrade that is suitable for bearing support. All footing excavations should be trimmed neat, and all loose or softened soil should be removed from the excavation bottom prior to placing reinforcing steel bars. Due to the moisture sensitivity of on-site native soils, foundations constructed during the wet weather season may require overexcavation of footings and backfill with compacted, crushed aggregate.

Our recommendations are for construction incorporating conventional spread footing foundations. After site development, a Final Soil Engineer's Report should either confirm or modify the above recommendations.

6.7 Concrete Slab-on-Grade Floors

As described above, up to 8 feet of undocumented fill was encountered on the northern portion of the site. Undocumented fill soils encountered within our explorations will likely not be considered to be suitable to provide bearing support for the proposed structures. Areas proposed for construction of buildings should be over-excavated to expose underlying native soils and either refilled structurally with engineered fill, or the foundations extended to depths necessary to bear directly on competent native soil.

Preparation of areas beneath concrete slab-on-grade floors should be performed as recommended in the Site Preparation Recommendations and Spread Foundations sections. Care should be taken during excavation for foundations and floor slabs, to avoid disturbing subgrade soils. If subgrade soils have been adversely impacted by wet weather or otherwise disturbed, the surficial soils should be scarified to a minimum depth of 8 inches, moisture conditioned to within about 3 percent of optimum moisture content, and compacted to engineered fill specifications. Alternatively, disturbed soils may be removed, and the removal zone backfilled with additional crushed rock.

For evaluation of the concrete slab-on-grade floors using the beam on elastic foundation method, a modulus of subgrade reaction of $150 \mathrm{kcf}(87 \mathrm{pci})$ should be assumed for the medium stiff, fine-grained soils anticipated to be present at foundation subgrade elevation following adequate site preparation as described above. This value assumes the concrete slab system is designed and constructed as recommended herein, with a minimum thickness of 8 inches of $1 \frac{1}{2} 2^{\prime \prime}-0$ crushed aggregate beneath the slab. The total thickness of crushed aggregate will be dependent on the subgrade conditions at the time of construction, and should be verified visually by proof-rolling. Under-slab aggregate should be compacted to at least 95 percent of its maximum dry density as determined by ASTM D698 (Standard Proctor) or equivalent.

In areas where moisture will be detrimental to floor coverings or equipment inside the proposed structure, appropriate vapor barrier and damp-proofing measures should be implemented. Appropriate design professionals should be consulted regarding vapor barrier and damp proofing systems, ventilation, building material selection and mold prevention issues, which are outside GeoPacific's area of expertise.

6.8 Perimeter Footing and Roof Drains

The upslope edge of perimeter footings may be provided with a drainage system consisting of 3 or 4 -inch diameter, perforated, plastic pipe embedded in a minimum of $1 \mathrm{ft}^{3}$ per lineal foot of clean, free-draining gravel or uncompacted $3 / 4 "$ - 0 rock. The drain pipe and surrounding drain rock should be wrapped in non-woven geotextile (Mirafi 140N, or approved equivalent) to minimize the potential for clogging and/or ground loss due to piping. Water collected from the footing drains should be directed into the local storm drain system or other suitable outlet. A minimum 0.5 percent fall should be maintained throughout the drain and non-perforated pipe outlet. The footing drains should include clean-outs to allow periodic maintenance and inspection. Grades around the proposed structure should be sloped such that surface water drains away from the building.

Perimeter footing drains are recommended to prevent detrimental effects of surface water runoff on foundations - not to dewater groundwater. Footing drains should not be expected to eliminate all potential sources of water entering a basement or beneath a slab-on-grade. An adequate grade to a low point outlet drain in the crawlspace is required by code. Underslab drains are sometimes added beneath the slab when placed over soils of low permeability and shallow, perched groundwater.

Down spouts and roof drains should collect roof water in a system separate from the footing drains to reduce the potential for clogging. Roof drain water should be directed to an appropriate discharge point and storm system well away from structural foundations. Grades should be sloped downward and away from buildings to reduce the potential for ponded water near structures.

6.9 Permanent Below-Grade Walls

Lateral earth pressures against below-grade retaining walls will depend upon the inclination of any adjacent slopes, type of backfill, degree of wall restraint, method of backfill placement, degree of backfill compaction, drainage provisions, and magnitude and location of any adjacent surcharge loads. At-rest soil pressure is exerted on a retaining wall when it is restrained against rotation. In contrast, active soil pressure will be exerted on a wall if its top is allowed to rotate or yield a distance of roughly 0.001 times its height or greater.

If the subject retaining walls will be free to rotate at the top, they should be designed for an active earth pressure equivalent to that generated by a fluid weighing 35 pcf for level backfill against the wall. For restrained wall, an at-rest equivalent fluid pressure of 55 pcf should be used in design, again assuming level backfill against the wall. These values assume that the recommended drainage provisions are incorporated, and hydrostatic pressures are not allowed to develop against the wall.

During a seismic event, lateral earth pressures acting on below-grade structural walls will increase by an incremental amount that corresponds to the earthquake loading. Based on the Mononobe-Okabe equation and peak horizontal accelerations appropriate for the site location, seismic loading should be modeled using the active or at-rest earth pressures recommended above, plus an incremental rectangular-shaped seismic load of magnitude 6.5 H , where H is the total height of the wall.

We assume relatively level ground surface below the base of the walls. As such, we recommend passive earth pressure of 320 pcf for use in design, assuming wall footings are cast against competent native soils or engineered fill. If the ground surface slopes down and away from the base of any of the walls, a lower passive earth pressure should be used and GeoPacific should be contacted for additional recommendations.

A coefficient of friction of 0.42 may be assumed along the interface between the base of the wall footing and subgrade soils. The recommended coefficient of friction and passive earth pressure values do not include a safety factor, and an appropriate safety factor should be included in design. The upper 12 inches of soil should be neglected in passive pressure computations unless it is protected by pavement or slabs on grade.

The above recommendations for lateral earth pressures assume that the backfill behind the subsurface walls will consist of properly compacted structural fill, and no adjacent surcharge loading. If the walls will be subjected to the influence of surcharge loading within a horizontal distance equal to or less than the height of the wall, the walls should be designed for the additional horizontal pressure. For uniform surcharge pressures, a uniformly distributed lateral pressure of 0.3 times the surcharge pressure should be added. Traffic surcharges may be estimated using an additional vertical load of 250 psf (2 feet of additional fill), depending on anticipated traffic loads.

The recommended equivalent fluid densities assume a free-draining condition behind the walls so that hydrostatic pressures do not build-up. This can be accomplished by placing a 12 to 18 -inch wide zone of sand and gravel containing less than 5 percent passing the No. 200 sieve against the walls. A 3-inch minimum diameter perforated, plastic drain pipe should be installed at the base of the walls and connected to a suitable discharge point to remove water in this zone of sand and gravel. The drain pipe should be wrapped in filter fabric (Mirafi 140N or other as approved by the geotechnical engineer) to minimize clogging.

Wall drains are recommended to prevent detrimental effects of surface water runoff on foundations - not to dewater groundwater. Drains should not be expected to eliminate all potential sources of water entering a basement or beneath a slab-on-grade. An adequate grade to a low point outlet drain in the crawlspace is required by code. Underslab drains are sometimes added beneath the slab when placed over soils of low permeability and shallow, perched groundwater.

Water collected from the wall drains should be directed into the local storm drain system or other suitable outlet. A minimum 0.5 percent fall should be maintained throughout the drain and nonperforated pipe outlet. Down spouts and roof drains should not be connected to the wall drains in order to reduce the potential for clogging. The drains should include clean-outs to allow periodic maintenance and inspection. Grades around the proposed structure should be sloped such that surface water drains away from the building.

GeoPacific should be contacted during construction to verify subgrade strength in wall keyway excavations, to verify that backslope soils are in accordance with our assumptions, and to take density tests on the wall backfill materials.

Structures should be located a horizontal distance of at least 1.5 H away from the back of the retaining wall, where H is the total height of the wall. GeoPacific should be contacted for additional foundation recommendations where structures are located closer than 1.5 H to the top of any wall.

6.10 Flexible Pavement Design

We understand that development at the site will include construction of private parking and drive areas. For the new private pavement section, we conservatively assume that the subgrade will exhibit a resilient modulus of at least 6,000 , which correlates to a CBR value of 4 . Based upon our understanding of the anticipated traffic which includes light-duty passenger vehicles, deliveries, and occasional fire trucks weighing up to $75,000 \mathrm{lbs}$. For design of the automobile driving lanes, we assumed an anticipated 18-kip ESAL count of approximately 60,000 over 20 years. Table 2 presents our recommended minimum dry-weather pavement section for the proposed pavement section, supporting 20 years of vehicle traffic.

Table 2 - Recommended Minimum Dry-Weather Pavement Section

Material Layer	Section Thickness (in)		Compaction Standard
	Driving Lanes	Parking Areas	
Asphaltic Concrete (AC)	3	3	$91 \% / 92 \%$ of Rice Density AASHTO T-209
Crushed Aggregate Base $3 / 4^{\prime \prime}-0$ (leveling course)	2	2	95% of Modified Proctor ASTM D1557
Crushed Aggregate Base $11 / 2^{"-0}$	10	8	95% of Modified Proctor ASTM D1557
Subgrade	12	12	95% of Modified Proctor ASTM D1557 or Approved Native

Any pockets of organic debris or loose fill encountered during subgrade preparation should be removed and replaced with engineered fill (see Site Preparation Section). In order to verify subgrade strength, we recommend proof-rolling directly on subgrade with a loaded dump truck during dry weather and on top of base course in wet weather. Soft areas that pump, rut, or weave should be stabilized prior to paving. If pavement areas are to be constructed during wet weather, the subgrade and construction plan should be reviewed by the project geotechnical engineer at the time of construction so that condition specific recommendations can be provided. The moisture sensitive subgrade soils make the site a difficult wet weather construction project.

During placement of pavement section materials, density testing should be performed to verify compliance with project specifications. Generally, one subgrade, one base course, and one asphalt compaction test is performed for every 100 to 200 linear feet of paving.

6.11 Wet Weather Construction Pavement Section

This section presents our recommendations for wet weather pavement section and construction for new pavement sections at the project. These wet weather pavement section recommendations are intended for use in situations where it is not feasible to compact the subgrade soils to project requirements, due to wet subgrade soil conditions, and/or construction during wet weather. Based on our site review, we recommend a wet weather section with a minimum subgrade deepening of 6 to 12 inches to accommodate a working subbase of additional $11 / 2^{\prime \prime}-0$ crushed rock. Geotextile fabric, Mirafi 500x or equivalent, should be placed on subgrade soils prior to placement of base rock.

In some instances, it may be preferable to use a subbase material in combination with overexcavation and increasing the thickness of the rock section. GeoPacific should be consulted for additional recommendations regarding use of additional subbase in wet weather pavement sections if it is desired to pursue this alternative. Cement treatment of the subgrade may also be considered instead of over-excavation. However, mixing and tilling of the soil may be difficult due to the shallow observed depth of cobbles and boulders throughout the site. For planning purposes, we anticipate that treatment of the onsite soils would involve mixing cement powder to approximately $6-8$ percent cement content and a mixing depth on the order of 12 to 18 inches. The mixing depth and cement content will depend upon site conditions and moisture content of the subgrade during construction.

With implementation of the above recommendations, it is our opinion that the resulting pavement section will provide equivalent or greater structural strength than the dry weather pavement section currently planned. However, it should be noted that construction in wet weather is risky and the performance of pavement subgrades depend on a number of factors including the weather conditions, the contractor's methods, and the amount of traffic the road is subjected to. There is a potential that soft spots may develop even with implementation of the wet weather provisions recommended in this letter. If soft spots in the subgrade are identified during roadway excavation, or develop prior to paving, the soft spots should be over-excavated and backfilled with additional crushed rock.

During subgrade excavation, care should be taken to avoid disturbing the subgrade soils. Removals should be performed using an excavator with a smooth-bladed bucket. Truck traffic should be limited until an adequate working surface has been established. We suggest that the crushed rock be spread using bulldozer equipment rather than dump trucks, to reduce the amount of traffic and potential disturbance of subgrade soils. Care should be taken to avoid overcompaction of the base course materials, which could create pumping, unstable subgrade soil conditions. Heavy and/or vibratory compaction efforts should be applied with caution. Following placement and compaction of the crushed rock to project specifications (95 percent of Modified Proctor), a finish proof-roll should be performed before paving.

The above recommendations are subject to field verification. GeoPacific should be on-site during construction to verify subgrade strength and to take density tests on the engineered fill, base rock and asphaltic pavement materials.

7.0 SEISMIC DESIGN

The Oregon Department of Geology and Mineral Industries (DOGAMI), Oregon HazVu: 2018 Statewide GeoHazards Viewer indicates that the site is in an area where severe ground shaking is anticipated during an earthquake. Structures should be designed to resist earthquake loading in accordance with the methodology described in the 2015 International Building Code (IBC) with applicable Oregon Structural Specialty Code (OSSC) revisions (current 2014). We recommend Site Class D be used for design per the OSSC, Table 1613.5.2 and as defined in ASCE 7, Chapter 20, Table 20.3-1. Design values determined for the site using the USGS (United States Geological Survey) 2018 Seismic Design Maps Summary Report are summarized in Table 3, and are based upon existing soil conditions.

Table 3 - Recommended Earthquake Ground Motion Parameters (USGS 2018)

Parameter	Value
Location (Lat, Long), degrees	45.346, -122.651
Probabilistic Ground Motion Values, 2\% Probability of Exceedance in 50 yrs	
Peak Ground Acceleration PGAM	0.447 g
Short Period, $\mathrm{S}_{\text {s }}$	0.942 g
1.0 Sec Period, S1	0.407 g
Soil Factors for Site Class D:	
Fa_{a}	1.123
F_{v}	1.593
$\mathrm{SD}_{\mathrm{s}}=2 / 3 \times \mathrm{F}_{\mathrm{a}} \times \mathrm{S}_{\mathrm{s}}$	0.706 g
$\mathrm{SD}_{1}=2 / 3 \times \mathrm{F}_{\mathrm{v}} \times \mathrm{S}_{1}$	0.432 g
Seismic Design Category	D

7.1 Soil Liquefaction Potential

Soil liquefaction is a phenomenon wherein saturated soil deposits temporarily lose strength and behave as a liquid in response to earthquake shaking. Soil liquefaction is generally limited to loose, granular soils located below the water table. Primary factors controlling the development of liquefaction include intensity and duration of strong ground motion, characteristics of subsurface soil, in-situ stress conditions, and the depth to groundwater.

During our site investigation, we observed silty sand and sandy silt below the water table at the location of borings B-1 and B-3 at a depth of 40 to 45 feet below the ground surface. These layers are considered susceptible to liquefaction. At the location of boring B-2, we encountered bedrock at a depth of 20.9 feet below the ground surface, indicating that the soil profile in the vicinity of boring $\mathrm{B}-2$ is not considered susceptible to liquefaction.

According to the Oregon HazVu: Statewide Geohazards Viewer, the subject site is regionally characterized as having moderate to high risk of soil liquefaction (DOGAMI:HazVu, 2018). We estimated soil liquefaction potential using CTP sounding, CPT-1 on the northern portion of the site. For the purposes of liquefaction analyses, we assumed groundwater at 40 feet bgs.

For the soil liquefaction analysis, we assumed seismicity parameters appropriate for the MCE design event. This level of earthquake shaking has a probability of exceedance of 2 percent in 50 years (i.e. a "2500-year" event). The commercial computer code CLiq was used for our
liquefaction analysis under the assumed conditions using the Idriss and Boulanger 2014 methodology. Results of the liquefaction potential evaluations are attached. Based on the analysis performed, potentially liquefiable zones occur predominantly in a silty sand to sandy silt layer between about 40 and 45 feet below the ground surface (see attached liquefaction analysis results).

7.2 Post-Liquefaction Settlements

Settlement of the ground surface may occur as a result of earthquake shaking, particularly in conjunction with the occurrence of soil liquefaction. We estimated seismically induced settlements using the Cliq computer program and the Idriss and Boulanger 2014 methodology. Based upon our analysis of the existing soil profile and using a site-adjusted mapped MCE geometric mean peak horizontal ground acceleration of 0.46 g from the USGS Seismic Design Map tool, total vertical dynamic settlement expected due to soil liquefaction at the location of cone penetration test CPT-1 is estimated to be 0.4 inches. Our estimate of post-liquefaction settlement is summarized on Table 6.

Table 4 - Estimates of Total Vertical Settlement

CPT Designation	Estimated Total Vertical Settlement (in)
CPT-1	0.4

During our site investigation, we observed a bedrock contour sloping down to the north. We encountered bedrock at a depth of 20.9 feet at the location of boring B-2 at a depth of 54 feet at the location of cone penetrometer test CPT-1. We expect 0.4 inches of post-liquefaction settlement at the location of CPT-1, and no post-liquefaction settlement on the southern portion of the site where the depth to bedrock is less than the depth to groundwater.

Based on this evaluation, it is our opinion that the proposed building on the northern portion of the site should be designed to resist total post-liquefaction settlements up to 0.4 inches under the design earthquake scenarios. Without ground improvement, we estimate that differential settlement of 0.2 inches may occur between adjacent foundation elements or over a distance of 20 feet, whichever is less. If mat foundations are utilized, differential settlements of up to 0.4 inches are anticipated from one side of the slab to the other.

7.3 Lateral Spreading

Lateral spreads involve down-slope movement of large volumes of liquefied soil. Often, layers of non-liquefied soils overlying the liquefied material are also translated down-slope. Lateral spreads generally develop on moderate to gentle slopes and move toward a free face such as a riverbank. The site is located a horizontal distance of approximately 0.6 miles west of the Willamette River at an average slope gradient of approximately 1 percent. Seismically induced lateral spreading was calculated using the Cliq computer program and the Idriss and Boulanger 2014 methodology. Based on the results of our calculations, we anticipate that up to 8 inches of lateral spreading could occur in the northern portion of the site. We anticipate that lateral spreading will not occur in the
southern portion of the site, since we did not observe any potentially liquefiable layers in boring B2.

Since the liquefiable layers in CPT-1 were observed at depths ranging from 40 to 45 feet below the ground surface, the expression of lateral spreading on the ground surface will likely be diminished. Due to the depth of the potentially liquefiable layer, bedrock contour sloping perpendicular to the anticipated direction of lateral spreading, and unknown factors such as the extent of liquefiable layers downslope of the subject site, a high level of uncertainty exists regarding the expression of lateral spreading which may occur in the northern portion of the subject site. Based on information obtained from Oregon Hazvu: Statewide Geohazards Viewer, risk of soil liquefaction decreases in all directions around the site. Therefore, our estimate of the magnitude of lateral spreading may be conservative.

In the northern portion of the site, lateral displacement may occur differentially across the building. For design purposes, we recommend assuming that the differential lateral displacement across the length of the building would be about one-half the total estimated lateral displacement.

The client and design team should work together to determine the maximum allowable total and differential settlements and lateral spreading that are considered to be tolerable to the proposed structure during the design seismic event. If determined necessary, the magnitudes of total and differential post-liquefaction settlement and lateral spreading may potentially be reduced to within tolerable limits with ground improvements such as deep foundations, engineered aggregate piers, or deep soil mixing. If desired, ground improvement recommendations can be provided by GeoPacific on a time and expense basis.

7.4 Other Secondary Seismic Impacts

Other potential seismic impacts include fault rupture potential, and other hazards as discussed below:

Fault Rupture Potential - Based on our review of available geologic literature, we are not aware of any mapped active (demonstrating movement in the last 10,000 years) faults on the site. During our field investigation, we did not observe any evidence of surface rupture or recent faulting. Therefore, we conclude that the potential for fault rupture on site is very low.

Seismic Induced Landslide - Site grades are generally flat to moderately sloping. The potential for slope instability and seismic induced landslide to impact the proposed building is considered low. Lateral spreading potential has been considered separately, as discussed above.

Effects of Local Geology and Topography - In our opinion, no additional seismic hazard will occur due to local geology or topography. The site is expected to have no greater seismic hazard than surrounding properties and the West Linn area in general.

8.0 UNCERTAINTIES AND LIMITATIONS

We have prepared this report for the owner and their consultants for use in design of this project only. This report should be provided in its entirety to prospective contractors for bidding and

Geotechnical Engineering Report
Project No. 18-4970, $8^{\text {th }}$ Court Redevelopment, West Linn, Oregon

estimating purposes; however, the conclusions and interpretations presented in this report should not be construed as a warranty of the subsurface conditions. Experience has shown that soil and groundwater conditions can vary significantly over small distances. Inconsistent conditions can occur between explorations that may not be detected by a geotechnical study. If, during future site operations, subsurface conditions are encountered which vary appreciably from those described herein, GeoPacific should be notified for review of the recommendations of this report, and revision of such if necessary.

Sufficient geotechnical monitoring, testing and consultation should be provided during construction to confirm that the conditions encountered are consistent with those indicated by explorations. The checklist attached to this report outlines recommended geotechnical observations and testing for the project. Recommendations for design changes will be provided should conditions revealed during construction differ from those anticipated, and to verify that the geotechnical aspects of construction comply with the contract plans and specifications.

Within the limitations of scope, schedule and budget, GeoPacific attempted to execute these services in accordance with generally accepted professional principles and practices in the fields of geotechnical engineering and engineering geology at the time the report was prepared. No warranty, expressed or implied, is made. The scope of our work did not include environmental assessments or evaluations regarding the presence or absence of wetlands or hazardous or toxic substances in the soil, surface water, or groundwater at this site.

We appreciate this opportunity to be of service.
Sincerely,

GeoPacific Engineering, Inc.

Thomas J. Torkelson, E.I.T. Engineering Staff

Benjamin D. Anderson, P.E. Senior Engineer

Project No. 18-4970, $\mathbf{8}^{\text {th }}$ Court Redevelopment, West Linn, Oregon

REFERENCES

Atwater, B.F., 1992, Geologic evidence for earthquakes during the past 2,000 years along the Copalis River, southern coastal Washington: Journal of Geophysical Research, v. 97, p. 1901-1919.
Carver, G.A., 1992, Late Cenozoic tectonics of coastal northern California: American Association of Petroleum Geologists-SEPM Field Trip Guidebook, May, 1992.

Gannet, Marshall W., and Caldwell, Rodney R., Generalized Geologic Map of the Willamette Lowland, U.S. Department of the interior, U.S. Geological Survey, 1998.

Geologic Map of the Camas Quadrangle, Multnomah County, Oregon, and Clark County, Washington, U.S. Geological Survey, Evarts and O'Connor, 2008.

Geologic Map of the Vancouver Quadrangle, Phillips, W.M., Washington Division of Geology and Earth Resources, Open File Report 87-10, 1987.

Geomatrix Consultants, 1995, Seismic Design Mapping, State of Oregon: unpublished report prepared for Oregon Department of Transportation, Personal Services Contract 11688, January 1995.
Goldfinger, C., Kulm, L.D., Yeats, R.S., Appelgate, B, MacKay, M.E., and Cochrane, G.R., 1996, Active strike-slip faulting and folding of the Cascadia Subduction-Zone plate boundary and forearc in central and northern Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 223-256.
Lidar-Based Surficial Geologic Map of the Greater Portland Area, Clackamas, Columbia, Marion, Multnomah, Washington, and Yamhill Counties, Oregon, and Clark County, Washington, State of Oregon Department of Geology and Mineral Industries, Open File Report 0-12-02, 2012.
Ma, L., Madin, I.P., Duplantis, S., and Williams, K.J., 2012, Lidar-based Surficial Geologic Map and Database of the Greater Portland, Oregon, Area, Clackamas, Columbia, Marion, Multnomah, Washington, and Yamhill Counties, Oregon, and Clark County, Washington, DOGAMI Open-File Report O-12-02
Mabey, M.A., Madin, I.P., and Black G.L., 1996, Relative Earthquake Hazard Map of the Lake Oswego Quadrangle, Clackamas, Multnomah and Washington Counties, Oregon: Oregon Department of Geology and Mineral Industries
Madin, I.P., 1990, Earthquake hazard geology maps of the Portland metropolitan area, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-90-2, scale 1:24,000, 22 p.
Oregon Department of Geology and Mineral Industries, Statewide Geohazards Viewer, www.oregongeology.org/hazvu.
Oregon Department of Geology and Mineral Industries, Madin, Ian P., Ma, Lina, and Niewendorp, Clark A., Open-File Report 0-08-06, Preliminary Geologic Map of the Linnton 7.5' Quadrangle, Multnomah and Washington Counties, Oregon, 2008.
Peterson, C.D., Darioenzo, M.E., Burns, S.F., and Burris, W.K., 1993, Field trip guide to Cascadia paleoseismic evidence along the northern California coast: evidence of subduction zone seismicity in the central Cascadia margin: Oregon Geology, v. 55, p. 99-144.
United States Geological Survey, USGS Earthquake Hazards Program Website (earthquake.usgs.gov).
Unruh, J.R., Wong, I.G., Bott, J.D., Silva, W.J., and Lettis, W.R., 1994, Seismotectonic evaluation: Scoggins Dam, Tualatin Project, Northwest Oregon: unpublished report by William Lettis and Associates and Woodward Clyde Federal Services, Oakland, CA, for U. S. Bureau of Reclamation, Denver CO (in Geomatrix Consultants, 1995).
Web Soil Survey, Natural Resources Conservation Service, United States Department of Agriculture 2015 website.
(http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.).
Werner, K.S., Nabelek, J., Yeats, R.S., Malone, S., 1992, The Mount Angel fault: implications of seismic-reflection data and the Woodburn, Oregon, earthquake sequence of August, 1990: Oregon Geology, v. 54, p. 112-117.
Wong, I. Silva, W., Bott, J., Wright, D., Thomas, P., Gregor, N., Li., S., Mabey, M., Sojourner, A., and Wang, Y., 2000, Earthquake Scenario and Probabilistic Ground Shaking Maps for the Portland, Oregon, Metropolitan Area; State of Oregon Department of Geology and Mineral Industries; Interpretative Map Series IMS-16
Yeats, R.S., Graven, E.P., Werner, K.S., Goldfinger, C., and Popowski, T., 1996, Tectonics of the Willamette Valley, Oregon: in Assessing earthquake hazards and reducing risk in the Pacific Northwest, v. 1: U.S. Geological Survey Professional Paper 1560, P. 183-222, 5 plates, scale 1:100,000.
Yelin, T.S., 1992, An earthquake swarm in the north Portland Hills (Oregon): More speculations on the seismotectonics of the Portland Basin: Geological Society of America, Programs with Abstracts, v. 24, no. 5, p. 92.
Snyder, D.T., 2008, Estimated Depth to Ground Water and Configuration of the Water Table in the Portland, Oregon Area: U.S. Geological Survey Scientific Investigations Report 2008-5059, 41 p., 3 plates.

CHECKLIST OF RECOMMENDED GEOTECHNICAL TESTING AND OBSERVATION

Item No.	Procedure	Timing	By Whom	Done
1	Preconstruction meeting	Prior to beginning site work	Contractor, Developer, Civil and Geotechnical Engineers	
2	Fill removal from site and/or sorting and stockpiling	Prior to mass stripping	Soil Technician/ Geotechnical Engineer	
3	Compaction testing of engineered fill (90\% of Modified Proctor)	During filling, tested every 2 vertical feet	Soil Technician	
4	Compaction testing of trench backfill (95\% of Standard Proctor)	During backfilling, tested every 4 vertical feet for every 200 linear feet	Soil Technician	
6	Street Subgrade Inspection (95\% of Standard Proctor)	Prior to placing base course	Soil Technician	
7	Base course compaction (95\% of Modified Proctor)	Prior to paving, tested every 200 linear feet	Soil Technician	
8	Asphalt Compaction (92\% Rice Value)	During paving, tested every 100 linear feet	Soil Technician	
Final Geotechnical Engineer's				
Report	Completion of project	Geotechnical Engineer		

FIGURES

SITE AERIAL AND EXPLORATION LOCATIONS

Legend: Base Map Obtained From Google Earth 2018

CPT-1
CPT Designation and Approximate Location

B-1

 Boring Designation and Approximate LocationAPPROXIMATE SCALE
(FEET)

Drawn by: TJT
Date: 7/23/2018

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

EXPLORATION LOGS

			14835 Portla Tel: (5	SW 72 nd, Or	2nd Aven egon 972 8-8445	enue 7224 Fax: (50	941-9281	HA	D AUGER LOG
Pro	ct:	Cou est Lin	urt Red th Cour inn, Or		$\begin{aligned} & \hline \text { pment } \\ & 97068 \\ & \hline \end{aligned}$		Proje	o. 18-4970	Hand Auger No. HA-1
$\begin{aligned} & \text { E } \\ & \text { 言 } \\ & \text { ه } \end{aligned}$								Material Desc	ion
4 5 5 6		$\frac{\pi}{100010}$	95.0	32.0		SILT (ML), concrete and Undocume Grades to eet bgs. Grades to Ēastic $\overline{\text { In }}$ mottling, mi AASHTO	dark brown, s and wood, debris ented Fill). with higher org medium stiff at $\bar{T}(\bar{M} \bar{H}), \bar{b}$ bown icaceous, moi	ft, moderately orga , bluish gray staini nic content and les 4 feet bgs. to very moist. (Will -7-5, Liquid Limit=5	c, with angular gravel, brick, , moist, organic odor, concrete and brick debris at 3.5 city, with orange and gray amette Formation). 2.7, Plasticity Index=22.4
							Hand seepage or g	auger terminated at undwater encount	. 5 feet bgs. ed. No caving observed
LEGEND 100 to Bag Sample		$\underbrace{5 \text { Beal }}_{\text {Bucket Sample }}$		Shelby Tube Sample			Water Bearing Zone		Date Excavated: 07/24/2018 Logged By: TJT Surface Elevation:

GeoPacific / CPT-1 / 2180 8th Ct West Linn

OPERATOR: OGE BB
CONE ID: DPG1323
HOLE NUMBER: CPT-1
TEST DATE: 7/20/2018 9:17:55 AM
TOTAL DEPTH: 53.970 ft

COMMENT: GeoPacific / CPT-1 / 2180 8th Ct West Linn

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

LABORATORY TESTING RESULTS

LIQUID AND PLASTIC LIMITS TEST REPORT

Dashed line indicates the approximate
upper limit boundary for natural soils

Tested By: SJC

Envinearing inc.	Project Name: Sample ID: S18-206 Location: Material Type:	8th Court Redevelopment	Project No.: 18-4970	Sampled By: Sample Date: Tested By:	TJT
		35'			7/3/2018
		B-1			SJC
		Silt			7/5/2018

Moisture

Tare Number:
Tare Wt.:
Tare + Wet Soil:
Tare + Dry Soil:
Percent Moisture:

41
517.4
843.1
775
26.4

Organic Content ASTM D 2974 at $440^{\circ} \mathrm{F}$
Tare Number:
Tare Wt.:
Tare + Pre-Oven:
Tare + Post-Oven:
Percent Organic:
No. 200 Wash Data
Tare Number
Tare Wt:
Tare+Pre-Wash: Tare+Post-Wash: -\#200 From Wash: Pre-Wash Mass:
\% Passing No. 200 \qquad

Grain Size Data

Sieve Size Unmax windexidualy verained)	Individual Weight Retained	Individual Weight Retained
3"		
$1.5 "$		
$1 "$		
3/4/900		
1/2 / 570		
3/8 / 550		
1/4		
\#4 / 325		
\#8		
\#10 / 180		
\#16		
\#30		
\#40 / 75		
\#50		
\#100 / 40		
\#200 / 20		
Pan		

Atterberg Analysis LI Atterberg Analysis PI

	Point 1	Point 2	Point 3	Point 4	Point 5	Point 1	Point 2	Point 3
Tare \#								
Tare Wt.								
Wet Wt								
Dry Wt								
\# of Blows								

	Project Name:	8th Court Redevelopment	Project No.: 18-4970	Sampled By:	TJT
	Sample ID: S18-207	5'		Sample Date:	7/3/2018
HPD CHIE	Location:	B-3		Tested By:	SJC
Engineering, Inc.	Material Type:	Fill Material		Tested Date:	7/9/2018

Moisture

Tare Number:
Tare Wt.:
Tare + Wet Soil:
Tare + Dry Soil:
Percent Moisture:

1
261.7
655.5
573.8
26.2

Organic Content
ASTM D 2974 at $440^{\circ} \mathrm{F}$
Tare Number:
Tare Wt.:
Tare + Pre-Oven:
Tare + Post-Oven:
Percent Organic:

5	7
25.81	24.98
69.65	68.55
67.98	67.01
3.8	3.5
Average:	3.6

No. 200 Wash Data
Tare Number
Tare Wt:
Tare+Pre-Wash: Tare+Post-Wash: -\#200 From Wash:
Pre-Wash Mass:
\% Passing No. 200 \qquad

Grain Size Data

	Individual Weight Retained	Individual Weight Retained
3"		
1.5"		
$1 "$		
3/4 / 900		
1/2 / 570		
3/8 / 550		
1/4		
\#4 / 325		
\#8		
\#10 / 180		
\#16		
\#30		
\#40 / 75		
\#50		
\#100 / 40		
\#200 / 20		
Pan		

Atterberg Analysis LI Atterberg Analysis PI

	Point 1	Point 2	Point 3	Point 4	Point 5	Point 1	Point 2	Point 3
Tare \#								
Tare Wt.								
Wet Wt								
Dry Wt								
\# of Blows								

LIQUID AND PLASTIC LIMITS TEST REPORT

| Dashed line indicates the approximate |
| :--- | :--- |
| upper limit boundary for natural soils |

Tested By: SJC

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

LIQUEFACTION ASSESSMENT

GeoPacific Engineering, Inc.

14835 SW 72nd Ave
Portland, Oregon 97224
http://www.geopacificeng.com
Overall Parametric Assessment Method

CPT Name	Earthquake Mag.	Earthquake Accel.	GWT in situ (ft)	GWT earthq. (ft)
18128 CPT-1 Text Fil	9.11	0.46	40.00	40.00

GeoPacific Engineering, Inc.

14835 SW 72nd Ave
Portland, Oregon 97224
http://www.geopacificeng.com

Overall Parametric Assessment Method

CPT Name	Earthquake Mag.	Earthquake Accel.	GWT in situ (ft)	GWT earthq. (ft)
18128 CPT-1 Text Fil	9.11	0.46	40.00	40.00

Estimation of post-earthquake settlements

[^2]
Post-earthquake settlement due to soil liquefaction ::

Depth (ft)	$\mathrm{q}_{\mathrm{c1N}, \mathrm{cs}}$	FS	e_{v} (\%)	DF	Settlement (in)	Depth (ft)	$\mathrm{q}_{\mathrm{c} 1 \mathrm{~N}, \mathrm{cs}}$	FS	$\mathrm{e}_{\mathrm{v}}(\%)$	DF	Settlement (in)
40.03	53.73	2.00	0.00	0.32	0.00	40.19	135.65	0.49	0.74	0.32	0.01
40.35	142.04	0.53	0.70	0.32	0.01	40.52	133.71	0.48	0.74	0.31	0.01
40.68	123.97	0.43	0.80	0.31	0.02	40.85	57.79	2.00	0.00	0.31	0.00
41.01	136.65	0.49	0.70	0.30	0.01	41.17	137.24	0.49	0.69	0.30	0.01
41.34	128.60	0.45	0.74	0.30	0.01	41.50	145.09	0.54	0.64	0.30	0.01
41.67	171.25	0.83	0.32	0.29	0.01	41.83	173.69	0.87	0.29	0.29	0.01
41.99	171.16	0.82	0.32	0.29	0.01	42.16	145.15	0.53	0.61	0.29	0.01
42.32	142.67	0.52	0.62	0.28	0.01	42.49	147.28	0.55	0.59	0.28	0.01
42.65	156.76	0.63	0.53	0.28	0.01	42.81	167.55	0.76	0.36	0.27	0.01
42.98	164.93	0.72	0.40	0.27	0.01	43.14	163.48	0.70	0.41	0.27	0.01
43.31	159.80	0.65	0.46	0.27	0.01	43.47	142.36	0.51	0.58	0.26	0.01
43.63	143.80	0.51	0.57	0.26	0.01	43.80	145.33	0.52	0.55	0.26	0.01
43.96	148.34	0.54	0.54	0.25	0.01	44.13	151.07	0.56	0.52	0.25	0.01
44.29	147.64	0.54	0.53	0.25	0.01	44.45	145.91	0.52	0.53	0.25	0.01
44.62	165.33	0.71	0.35	0.24	0.01	44.78	162.35	0.67	0.38	0.24	0.01
44.95	144.87	0.51	0.51	0.24	0.01	45.11	127.11	0.42	0.59	0.24	0.01
45.28	51.97	2.00	0.00	0.23	0.00	45.44	51.59	2.00	0.00	0.23	0.00
45.60	50.18	2.00	0.00	0.23	0.00	45.77	50.84	2.00	0.00	0.22	0.00
45.93	36.45	2.00	0.00	0.22	0.00	46.10	25.16	2.00	0.00	0.22	0.00
46.26	31.84	2.00	0.00	0.22	0.00	46.42	25.10	2.00	0.00	0.21	0.00
46.59	36.28	2.00	0.00	0.21	0.00	46.75	28.54	2.00	0.00	0.21	0.00
46.92	19.77	2.00	0.00	0.20	0.00	47.08	20.18	2.00	0.00	0.20	0.00
47.24	24.08	2.00	0.00	0.20	0.00	47.41	20.99	2.00	0.00	0.20	0.00
47.57	45.35	2.00	0.00	0.19	0.00	47.74	46.64	2.00	0.00	0.19	0.00
47.90	46.39	2.00	0.00	0.19	0.00	48.06	48.38	2.00	0.00	0.19	0.00
48.23	54.61	2.00	0.00	0.18	0.00	48.39	52.17	2.00	0.00	0.18	0.00
48.56	49.26	2.00	0.00	0.18	0.00	48.72	45.62	2.00	0.00	0.17	0.00
48.88	48.47	2.00	0.00	0.17	0.00	49.05	49.47	2.00	0.00	0.17	0.00
49.21	48.67	2.00	0.00	0.17	0.00	49.38	47.70	2.00	0.00	0.16	0.00
49.54	48.90	2.00	0.00	0.16	0.00	49.70	49.38	2.00	0.00	0.16	0.00
49.87	53.95	2.00	0.00	0.15	0.00	50.03	130.49	0.41	0.37	0.15	0.01
50.20	145.80	0.49	0.32	0.15	0.01	50.36	173.79	0.78	0.16	0.15	0.00
50.52	130.55	0.41	0.35	0.14	0.01	50.69	130.34	0.41	0.34	0.14	0.01
50.85	171.28	0.74	0.16	0.14	0.00	51.02	235.69	2.00	0.00	0.14	0.00
51.18	240.78	2.00	0.00	0.13	0.00	51.34	145.86	0.48	0.28	0.13	0.01
51.51	21.02	2.00	0.00	0.13	0.00	51.67	20.36	2.00	0.00	0.12	0.00
51.84	19.16	2.00	0.00	0.12	0.00	52.00	19.92	2.00	0.00	0.12	0.00
52.16	19.13	2.00	0.00	0.12	0.00	52.33	16.66	2.00	0.00	0.11	0.00
52.49	15.07	2.00	0.00	0.11	0.00	52.66	14.77	2.00	0.00	0.11	0.00
52.82	17.90	2.00	0.00	0.10	0.00	52.99	26.94	2.00	0.00	0.10	0.00
53.15	31.15	2.00	0.00	0.10	0.00	53.31	109.05	0.34	0.28	0.10	0.01
53.48	229.35	2.00	0.00	0.09	0.00	53.64	254.00	2.00	0.00	0.09	0.00
53.81	254.00	2.00	0.00	0.09	0.00	53.97	254.00	2.00	0.00	0.09	0.00

:: Post-earthquake settlement due to soil liquefaction :: (continued)

Depth (ft)	$\mathrm{qcincs}^{\text {che }}$	FS	e_{v} (\%)	DF	Settlement (in)	Depth (ft)	qcı1N,cs	FS	$e_{v}(\%)$	DF	Settlement (in)

Total estimated settlement: 0.37

Abbreviations

$\mathrm{Q}_{\mathrm{tn}, \mathrm{cs}}$: Equivalent clean sand normalized cone resistance
FS: Factor of safety against liquefaction
e_{v} (\%): Post-liquefaction volumentric strain
DF: e_{v} depth weighting factor
Settlement: Calculated settlement

Estimation of post-earthquake lateral Displacements

Abbreviations

q_{t} : Total cone resistance (cone resistance q_{c} corrected for pore water effects)
c: Soil Behaviour Type Index
$\mathrm{q}_{\mathrm{c} 1 \mathrm{n}, \mathrm{cs}}$: Equivalent clean sand normalized CPT total cone resistance
F.S.: Factor of safety
$Y_{\text {max }}$: Maximum cyclic shear strain
LDI: Lateral displacement index

CLiq v.2.2.0.32 - CPT Liquefaction Assessment Software - Report created on: 7/23/2018, 3:15:01 PM

:: Lateral displacement index calculation ::						
Depth (ft)	$\mathrm{qc}_{\text {c1N,cs }}$	Gammalim (\%)	FS	Fa	Gamma $_{\text {max }}$ (\%)	LDI
40.03	53.73	0.00	2.00	0.00	0.00	0.00
40.19	135.65	0.13	0.49	0.43	0.13	0.26
40.35	142.04	0.11	0.53	0.35	0.11	0.22
40.52	133.71	0.14	0.48	0.45	0.14	0.28
40.68	123.97	0.18	0.43	0.56	0.18	0.35
40.85	57.79	0.00	2.00	0.00	0.00	0.00
41.01	136.65	0.13	0.49	0.41	0.13	0.26
41.17	137.24	0.13	0.49	0.41	0.13	0.25
41.34	128.60	0.16	0.45	0.51	0.16	0.31
41.50	145.09	0.11	0.54	0.31	0.11	0.21
41.67	171.25	0.05	0.83	-0.04	0.05	0.10
41.83	173.69	0.05	0.87	-0.07	0.04	0.09
41.99	171.16	0.05	0.82	-0.04	0.05	0.10
42.16	145.15	0.11	0.53	0.31	0.11	0.21
42.32	142.67	0.11	0.52	0.34	0.11	0.22
42.49	147.28	0.10	0.55	0.28	0.10	0.20
42.65	156.76	0.08	0.63	0.16	0.08	0.15
42.81	167.55	0.06	0.76	0.01	0.06	0.11
42.98	164.93	0.06	0.72	0.05	0.06	0.12
43.14	163.48	0.07	0.70	0.07	0.07	0.13
43.31	159.80	0.07	0.65	0.12	0.07	0.14
43.47	142.36	0.11	0.51	0.34	0.11	0.22
43.63	143.80	0.11	0.51	0.33	0.11	0.21
43.80	145.33	0.10	0.52	0.31	0.10	0.21
43.96	148.34	0.10	0.54	0.27	0.10	0.19
44.13	151.07	0.09	0.56	0.23	0.09	0.18
44.29	147.64	0.10	0.54	0.28	0.10	0.19
44.45	145.91	0.10	0.52	0.30	0.10	0.20
44.62	165.33	0.06	0.71	0.04	0.06	0.12
44.78	162.35	0.07	0.67	0.08	0.07	0.13
44.95	144.87	0.11	0.51	0.31	0.11	0.21
45.11	127.11	0.16	0.42	0.53	0.16	0.32
45.28	51.97	0.00	2.00	0.00	0.00	0.00
45.44	51.59	0.00	2.00	0.00	0.00	0.00
45.60	50.18	0.00	2.00	0.00	0.00	0.00
45.77	50.84	0.00	2.00	0.00	0.00	0.00
45.93	36.45	0.00	2.00	0.00	0.00	0.00
46.10	25.16	0.00	2.00	0.00	0.00	0.00
46.26	31.84	0.00	2.00	0.00	0.00	0.00
46.42	25.10	0.00	2.00	0.00	0.00	0.00
46.59	36.28	0.00	2.00	0.00	0.00	0.00
46.75	28.54	0.00	2.00	0.00	0.00	0.00
46.92	19.77	0.00	2.00	0.00	0.00	0.00
47.08	20.18	0.00	2.00	0.00	0.00	0.00
47.24	24.08	0.00	2.00	0.00	0.00	0.00
47.41	20.99	0.00	2.00	0.00	0.00	0.00
47.57	45.35	0.00	2.00	0.00	0.00	0.00
47.74	46.64	0.00	2.00	0.00	0.00	0.00

:: Estimation of post-earthquake lateral Displacements :: (continued)

Depth (ft)	$\mathrm{qc}_{\mathrm{c} 1 \mathrm{~N}, \mathrm{cs}}$	Gammalim (\%)	FS	Fa	$\begin{aligned} & \text { Gamma }_{\text {max }} \\ & (\%) \end{aligned}$	LDI
47.90	46.39	0.00	2.00	0.00	0.00	0.00
48.06	48.38	0.00	2.00	0.00	0.00	0.00
48.23	54.61	0.00	2.00	0.00	0.00	0.00
48.39	52.17	0.00	2.00	0.00	0.00	0.00
48.56	49.26	0.00	2.00	0.00	0.00	0.00
48.72	45.62	0.00	2.00	0.00	0.00	0.00
48.88	48.47	0.00	2.00	0.00	0.00	0.00
49.05	49.47	0.00	2.00	0.00	0.00	0.00
49.21	48.67	0.00	2.00	0.00	0.00	0.00
49.38	47.70	0.00	2.00	0.00	0.00	0.00
49.54	48.90	0.00	2.00	0.00	0.00	0.00
49.70	49.38	0.00	2.00	0.00	0.00	0.00
49.87	53.95	0.00	2.00	0.00	0.00	0.00
50.03	130.49	0.15	0.41	0.49	0.15	0.30
50.20	145.80	0.10	0.49	0.30	0.10	0.20
50.36	173.79	0.05	0.78	-0.07	0.05	0.10
50.52	130.55	0.15	0.41	0.49	0.15	0.30
50.69	130.34	0.15	0.41	0.49	0.15	0.30
50.85	171.28	0.05	0.74	-0.04	0.05	0.10
51.02	235.69	0.01	2.00	-0.99	0.00	0.00
51.18	240.78	0.00	2.00	-1.07	0.00	0.00
51.34	145.86	0.10	0.48	0.30	0.10	0.20
51.51	21.02	0.00	2.00	0.00	0.00	0.00
51.67	20.36	0.00	2.00	0.00	0.00	0.00
51.84	19.16	0.00	2.00	0.00	0.00	0.00
52.00	19.92	0.00	2.00	0.00	0.00	0.00
52.16	19.13	0.00	2.00	0.00	0.00	0.00
52.33	16.66	0.00	2.00	0.00	0.00	0.00
52.49	15.07	0.00	2.00	0.00	0.00	0.00
52.66	14.77	0.00	2.00	0.00	0.00	0.00
52.82	17.90	0.00	2.00	0.00	0.00	0.00
52.99	26.94	0.00	2.00	0.00	0.00	0.00
53.15	31.15	0.00	2.00	0.00	0.00	0.00
53.31	109.05	0.25	0.34	0.71	0.25	0.50
53.48	229.35	0.01	2.00	-0.89	0.00	0.00
53.64	254.00	0.00	2.00	-1.28	0.00	0.00
53.81	254.00	0.00	2.00	-1.28	0.00	0.00
53.97	254.00	0.00	2.00	-1.28	0.00	0.00

Total estimated displacement: 7.90

Abbreviations

Depth:	Depth of test point
$\mathrm{q}_{\mathrm{c} 1 \mathrm{n}, \mathrm{cs}}$	Adjusted and corrected cone resistance due to fines
Gammalim:	Limiting shear strain
FS:	Calculated factor of safety against liquefaction
Fa:	
Gamma ${ }_{\text {max }}:$	Maximum cyclic shear strain
Lat. disp.:	Lateral displacement

:: Strength loss calculation Idriss \& Boulanger (2008) ::

:: Strength loss calculation (I driss \& Boulanger (2008) :: (continued)

:: Strength loss calculation (I driss \& Boulanger (2008) :: (continued)

:: Strength loss calculation (Idriss \& Boulanger (2008) :: (continued)

:: Strength loss calculation (I driss \& Boulanger (2008) :: (continued)

Depth (ft)	$\begin{gathered} \mathrm{q}_{\mathrm{t}} \\ \text { (tsf) } \end{gathered}$	Qtn	K ${ }_{\text {c }}$	Qtn,cs	I_{c}	$\mathrm{Su}_{\mathrm{u}(\mathrm{liq})} / \sigma^{\prime}{ }_{\mathrm{v}}$	$\mathrm{Su}_{\text {upeak })} / \sigma^{\prime}{ }_{\mathrm{v}}$
34.28	82.76	38.87	3.42	132.96	2.62	N/A	N/A
34.45	97.81	47.04	2.89	136.06	2.52	N/A	N/A
34.61	116.31	57.21	2.47	141.06	2.44	N/A	N/A
34.78	127.49	62.75	2.40	150.87	2.42	N/A	N/A
34.94	115.57	54.98	2.88	158.27	2.52	N/A	N/A
35.10	85.87	38.17	4.16	158.66	2.72	N/A	N/A
35.27	57.77	25.07	6.06	151.87	2.94	N/A	N/A
35.43	46.19	19.74	7.21	142.36	3.04	N/A	N/A
35.60	62.83	27.09	4.99	135.08	2.82	N/A	N/A
35.76	80.08	35.51	3.66	129.83	2.65	N/A	N/A
35.92	95.59	44.03	2.86	125.86	2.52	N/A	N/A
36.09	94.81	43.40	2.88	125.08	2.52	N/A	N/A
36.25	92.14	41.65	3.01	125.46	2.55	N/A	N/A
36.42	90.66	40.58	3.10	125.83	2.56	N/A	N/A
36.58	94.66	42.47	2.98	126.73	2.54	N/A	N/A
36.74	100.20	45.24	2.81	127.13	2.51	N/A	N/A
36.91	101.42	45.74	2.75	125.88	2.50	N/A	N/A
37.07	97.12	43.28	2.86	123.79	2.52	N/A	N/A
37.24	90.77	39.66	3.10	122.98	2.56	N/A	N/A
37.40	87.98	37.94	3.25	123.18	2.59	N/A	N/A
37.57	85.47	36.42	3.38	122.93	2.61	N/A	N/A
37.73	84.45	35.75	3.40	121.69	2.61	N/A	N/A
37.89	86.13	36.55	3.27	119.52	2.59	N/A	N/A
38.06	88.59	37.81	3.09	116.73	2.56	N/A	N/A
38.22	89.05	38.08	2.97	113.13	2.54	N/A	N/A
38.39	86.05	36.47	3.03	110.64	2.55	N/A	N/A
38.55	82.42	34.53	3.13	108.16	2.57	N/A	N/A
38.71	79.01	32.62	3.30	107.62	2.60	N/A	N/A
38.88	76.73	31.18	3.50	109.20	2.63	N/A	N/A
39.04	76.99	30.83	3.71	114.42	2.66	N/A	N/A
39.21	72.28	28.27	4.19	118.52	2.73	N/A	N/A
39.37	67.41	26.18	4.55	119.12	2.77	N/A	N/A
39.53	65.23	25.19	4.67	117.57	2.79	N/A	N/A
39.70	70.29	27.10	4.26	115.49	2.74	N/A	N/A
39.86	78.04	30.26	3.89	117.80	2.69	N/A	N/A
40.03	87.31	34.52	3.49	120.41	2.63	0.13	2.40
40.19	98.52	39.84	3.09	123.01	2.56	0.15	0.71
40.35	103.78	42.46	2.88	122.17	2.52	0.16	0.71
40.52	99.52	40.22	3.02	121.56	2.55	0.15	0.71
40.68	93.23	36.97	3.28	121.37	2.59	0.14	0.70
40.85	94.15	37.06	3.38	125.14	2.61	0.14	2.57
41.01	99.11	39.40	3.18	125.19	2.58	0.16	0.70
41.17	100.70	40.10	3.11	124.83	2.56	0.16	0.71
41.34	104.36	41.71	3.03	126.25	2.55	0.14	0.71
41.50	117.32	47.85	2.72	129.95	2.49	0.17	0.73
41.67	135.02	56.74	2.33	132.40	2.41	0.23	0.75
41.83	145.27	62.52	2.06	128.59	2.33	0.23	0.76
41.99	136.38	57.91	2.16	125.21	2.36	0.23	0.75

:: Strength loss calculation (I driss \& Boulanger (2008) :: (continued)

:: Strength loss calculation (Idriss \& Boulanger (2008) :: (continued)

Depth (ft)	q_{t} (tsf)	Q_{tn}	K_{c}	$\mathrm{Q}_{\mathrm{tn}, \mathrm{cs}}$	I_{c}	$\mathrm{S}_{\mathrm{u}(\text { liq }) / \sigma_{v}^{\prime}{ }_{v}}$	$\mathrm{~S}_{\mathrm{u}(\text { peak }) / \sigma_{v}^{\prime}}$
50.03	106.94	38.20	2.92	111.71	2.53	0.15	0.70
50.20	137.39	54.34	1.87	101.58	2.27	0.16	0.74
50.36	160.24	68.99	1.38	95.05	2.05	0.23	0.78
50.52	164.24	74.58	1.20	89.44	1.91	0.16	0.79
50.69	166.99	72.66	1.33	96.40	2.02	0.14	0.78
50.85	195.76	85.84	1.30	111.90	2.00	0.24	0.81
51.02	230.06	101.66	1.28	130.13	1.98	0.83	0.83
51.18	209.08	89.31	1.39	124.51	2.06	0.81	0.81
51.34	136.24	51.81	2.09	108.10	2.34	0.17	0.74
51.51	67.47	22.11	4.11	90.95	2.72	0.08	1.58
51.67	37.25	11.68	6.48	75.63	2.98	0.07	0.83
51.84	36.67	11.46	5.58	63.98	2.89	0.08	0.82
52.00	36.07	11.23	5.64	63.31	2.89	0.08	0.80
52.16	34.70	10.74	5.74	61.69	2.90	0.08	0.77
52.33	31.92	9.77	5.96	58.22	2.93	0.07	0.70
52.49	29.43	8.91	6.05	53.85	2.93	0.07	0.64
52.66	30.24	9.17	5.86	53.70	2.92	0.07	0.65
52.82	37.12	11.49	5.35	61.50	2.86	0.08	0.82
52.99	46.50	14.65	5.69	83.31	2.90	0.09	1.05
53.15	63.23	20.29	5.23	106.13	2.85	0.09	1.45
53.31	138.52	50.23	2.36	118.45	2.41	0.11	0.73
53.48	293.06	130.23	1.21	157.32	1.92	0.87	0.87
53.64	440.53	219.05	1.00	219.05	1.64	0.94	0.94
53.81	526.63	274.43	1.00	274.43	1.52	0.98	0.98
53.97	531.14	276.91	1.00	276.91	1.51	0.98	0.98

Abbreviations

$\mathrm{q}_{\mathrm{t}}: \quad$ Total cone resistance
$\mathrm{K}_{\mathrm{c}}: \quad$ Cone resistance correction factor due to fines
Qtn,cs: \quad Adjusted and corrected cone resistance due to fines
$I_{c}: \quad$ Soil behavior type index
$\mathrm{S}_{\mathrm{u}(\mathrm{liq})} / \sigma_{v}: \quad$ Calculated liquefied undrained strength ratio
$\mathrm{S}_{\mathrm{u} \text { (peak) }} / \sigma_{\mathrm{v}}$: \quad Calculated peak undrained strength ratio

Real-World Geotechnical Solutions
Investigation • Design • Construction Support

SITE RESEARCH

USGS
 Design Maps Summary Report

User-Specified Input
Report Title 18-4970
Wed July 25, 2018 22:28:38 UTC
Building Code Reference Document ASCE 7-10 Standard
(which utilizes USGS hazard data available in 2008)
Site Coordinates $45.34592^{\circ} \mathrm{N}, 122.65094^{\circ} \mathrm{W}$
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category I/II/III

USGS-Provided Output

$\mathbf{S}_{\mathrm{s}}=0.942 \mathrm{~g}$	$\mathbf{S}_{\mathrm{MS}}=1.058 \mathrm{~g}$	$\mathbf{S}_{\mathrm{DS}}=0.706 \mathrm{~g}$
$\mathbf{S}_{\mathbf{1}}=0.407 \mathrm{~g}$	$\mathbf{S}_{\mathrm{M} 1}=0.648 \mathrm{~g}$	$\mathbf{S}_{\mathrm{D} 1}=0.432 \mathrm{~g}$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

For $\mathrm{PGA}_{M}, \mathrm{~T}_{\mathrm{L}}, \mathrm{C}_{\mathrm{RS}}$, and $\mathrm{C}_{R 1}$ values, please view the detailed report.

[^3]Site Class D - "Stiff Soil", Risk Category I/II/III

Section 11.4.1 - Mapped Acceleration Parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{S}) and 1.3 (to obtain S_{1}). Maps in the 2010 ASCE- 7 Standard are provided for Site Class B.

Adjustments for other Site Classes are made, as needed, in Section 11.4.3.
From Figure 22-1 ${ }^{[1]}$

$$
\mathrm{S}_{\mathrm{s}}=0.942 \mathrm{~g}
$$

From Figure 22-2 ${ }^{[2]}$

$$
\mathrm{S}_{1}=0.407 \mathrm{~g}
$$

Section 11.4.2 - Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	$\overline{\boldsymbol{v}}_{\mathbf{s}}$	$\overline{\boldsymbol{N}}$ or $\overline{\boldsymbol{N}}_{\mathbf{c h}}$	$\overline{\boldsymbol{s}}_{\mathbf{u}}$
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
B. Rock	2,500 to $5,000 \mathrm{ft} / \mathrm{s}$	N / A	N / A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	$>2,000 \mathrm{psf}$
D. Stiff Soil	600 to $1,200 \mathrm{ft} / \mathrm{s}$	15 to 50	1,000 to $2,000 \mathrm{psf}$
E. Soft clay soil	$<600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \geq 40 \%$, and
- Undrained shear strength $\bar{s}_{u}<500$ psf
F. Soils requiring site response

See Section 20.3.1
analysis in accordance with Section
21.1

$$
\text { For SI: } 1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}
$$

Section 11.4.3 - Site Coefficients and Risk-Targeted Maximum Considered Earthquake (MCE_{R}) Spectral Response Acceleration Parameters

Table 11.4-1: Site Coefficient F_{a}

Site Class	Mapped MCE ${ }_{R}$ Spectral Response Acceleration Parameter at Short Period				
	$\mathrm{S}_{\mathrm{S}} \leq 0.25$	$\mathrm{~S}_{\mathrm{S}}=0.50$	$\mathrm{~S}_{\mathrm{S}}=0.75$	$\mathrm{~S}_{\mathrm{S}}=1.00$	$\mathrm{~S}_{\mathrm{S}} \geq 1.25$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	0.9
E	2.5	1.7	1.2	0.9	
F		See Section 11.4 .7 of ASCE 7	1.0		

Note: Use straight-line interpolation for intermediate values of S_{S}

For Site Class $=\mathrm{D}$ and $\mathrm{S}_{\mathrm{s}}=\mathbf{0 . 9 4 2} \mathrm{g}, \mathrm{F}_{\mathrm{a}}=\mathbf{1 . 1 2 3}$
Table 11.4-2: Site Coefficient F_{v}

Site Class	Mapped MCE ${ }_{R}$ Spectral Response Acceleration Parameter at 1-s Period				
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{~S}_{1}=0.20$	$\mathrm{~S}_{1}=0.30$	$\mathrm{~S}_{1}=0.40$	$\mathrm{~S}_{1} \geq 0.50$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.7	1.6	1.5	1.4	1.3
D	2.4	2.0	1.8	1.6	1.5
E	3.5	3.2	2.8	2.4	2.4
F		See Section 11.4 .7 of ASCE 7			

Note: Use straight-line interpolation for intermediate values of S_{1}

$$
\text { For Site Class }=D \text { and } S_{1}=0.407 \mathrm{~g}, \mathrm{~F}_{\mathrm{v}}=1.593
$$

Equation (11.4-2): $S_{M 1}=F_{v} S_{1}=1.593 \times 0.407=0.648 \mathrm{~g}$

Section 11.4.4 - Design Spectral Acceleration Parameters

Equation (11.4-3):

$$
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 1.058=0.706 \mathrm{~g}
$$

Equation (11.4-4):

$$
S_{D 1}=2 / 3 S_{M 1}=2 / 3 \times 0.648=0.432 \mathrm{~g}
$$

Section 11.4.5 - Design Response Spectrum
From Figure 22-12 ${ }^{[3]} \quad T_{L}=16$ seconds

Section 11.4.6 - Risk-Targeted Maximum Considered Earthquake ($M C E_{R}$) Response Spectrum
The $M C E_{R}$ Response Spectrum is determined by multiplying the design response spectrum above by
1.5.
(is) es 'uopueapoov asuodsoy feqnods

Section 11.8.3 - Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

From Figure 22-7 ${ }^{[4]}$ $\mathrm{PGA}=0.411$

Equation (11.8-1): $\quad \mathrm{PGA}_{M}=\mathrm{F}_{\text {PGA }} P G A=1.089 \times 0.411=0.447 \mathrm{~g}$

Table 11.8-1: Site Coefficient $\mathrm{F}_{\mathrm{PGA}}$

Site Class	Mapped MCE Geometric Mean Peak Ground Acceleration, PGA				
	$\begin{gathered} \text { PGA } \leq \\ 0.10 \end{gathered}$	$\begin{gathered} \text { PGA }= \\ 0.20 \end{gathered}$	$\begin{gathered} \text { PGA }= \\ 0.30 \end{gathered}$	$\begin{gathered} \text { PGA }= \\ 0.40 \end{gathered}$	$\begin{gathered} \text { PGA } \geq \\ 0.50 \end{gathered}$
A	0.8	0.8	0.8	0.8	0.8
B	1.0	1.0	1.0	1.0	1.0
C	1.2	1.2	1.1	1.0	1.0
D	1.6	1.4	1.2	1.1	1.0
E	2.5	1.7	1.2	0.9	0.9
F	See Section 11.4.7 of ASCE 7				

Note: Use straight-line interpolation for intermediate values of PGA

$$
\text { For Site Class }=\mathrm{D} \text { and } \mathrm{PGA}=0.411 \mathrm{~g}, \mathrm{~F}_{\mathrm{PGA}}=1.089
$$

Section 21.2.1.1 - Method 1 (from Chapter 21 - Site-Specific Ground Motion Procedures for Seismic Design)

From Figure 22-17 ${ }^{[5]}$

From Figure 22-18 ${ }^{[6]}$
$C_{R S}=0.903$
$C_{R 1}=0.872$

Section 11.6 - Seismic Design Category
Table 11.6-1 Seismic Design Category Based on Short Period Response Acceleration Parameter

VALUE OF S	RISK CATEGORY		
	I or II	III	IV
$\mathbf{S}_{\mathrm{DS}}<0.167 \mathrm{~g}$	A	A	A
$0.167 \mathrm{~g} \leq \mathrm{S}_{\mathrm{DS}}<0.33 \mathrm{~g}$	B	B	C
$0.33 \mathrm{~g} \leq \mathrm{S}_{\mathrm{DS}}<0.50 \mathrm{~g}$	C	C	D
$0.50 \mathrm{~g} \leq \mathbf{S}_{\mathrm{DS}}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{Ds}} \mathbf{= 0 . 7 0 6} \mathbf{g}$, Seismic Design Category = D

Table 11.6-2 Seismic Design Category Based on 1-S Period Response Acceleration Parameter

VALUE OF S D_{1}	RISK CATEGORY		
	I or II	III	IV
$\mathbf{S}_{\mathrm{D} 1}<0.067 \mathrm{~g}$	A	A	A
$0.067 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.133 \mathrm{~g}$	B	B	C
$0.133 \mathrm{~g} \leq \mathrm{S}_{\mathrm{D} 1}<0.20 \mathrm{~g}$	C	C	D
$0.20 \mathrm{~g} \leq \mathbf{S}_{\mathrm{D} 1}$	D	D	D

For Risk Category $=\mathrm{I}$ and $\mathrm{S}_{\mathrm{D} 1} \mathbf{= 0 . 4 3 2} \mathbf{~ g}$, Seismic Design Category = D

Note: When S_{1} is greater than or equal to 0.75 g , the Seismic Design Category is \mathbf{E} for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category \equiv "the more severe design category in accordance with Table $11.6-1$ or $11.6-2^{\prime \prime}=D$

Note: See Section 11.6 for alternative approaches to calculating Seismic Design Category.

References

1. Figure 22-1: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf 2. Figure 22-2: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf 3. Figure 22-12: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-12.pdf 4. Figure 22-7: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-7.pdf 5. Figure 22-17: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-17.pdf 6. Figure 22-18: https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-18.pdf

Due to insufficient resources and the recent development of similar web tools by third parties, this spring the USGS will be streamlining the two U.S. Seismic Design Maps web applications, including the one below. Whereas the current applications each interact with users through a graphical user interface (GUI), the new web services will receive the inputs (e.g. latitude and longitude) in the form of a web address and return the outputs (e.g. S_{DS} and $\mathrm{S}_{\mathrm{D} 1}$) in text form, without supplementary graphics. Though designed primarily to be read by the aforementioned third-party web GUIs, the text outputs are also human-readable. To preview the new web services, please click here. Step-by-step instructions for using one of these web services, namely that for the recently published 2016 ASCE 7 Standard, are posted here.

18-4970 8TH Court

Latitude $=45.346^{\circ} \mathrm{N}$, Longitude $=122.650^{\circ} \mathrm{W}$

Location

Reference Document
2015 NEHRP Provisions

Site Class
D (default): Stiff Soil

Risk Category
I or II or III

$\mathbf{S}_{\mathbf{S}}=$	0.834 g	$\mathbf{S}_{\mathbf{M S}}=1.001 \mathrm{~g}$	$\mathbf{S}_{\mathbf{D S}}=0.667 \mathrm{~g}$
$\mathbf{S}_{\mathbf{1}}=$	0.376 g	$\mathbf{S}_{\mathbf{M} 1}=0.724 \mathrm{~g}^{1}$	$\mathbf{S}_{\mathbf{D} 1}=0.483 \mathrm{~g}^{1}$

[^4]

Mapped Acceleration Parameters, Long-Period Transition Periods, and Risk Coefficients

Note: The S_{S} and S_{1} ground motion maps provided below are for the direction of maximmum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_{S}) 1.3 (to obtain S_{1}).

- FIGURE 22-1 $\mathbf{S}_{\underline{S}}$ Risk-Targeted Maximum Considered Earthquake $\left(M_{M_{2}}\right)$ Ground Motion Parameter for the Conterminous United States for 0.2 s Spectral Response Acceleration (5\% of Critical Damping), Site Class B
- FIGURE 22-2 S_{1} Risk-Targeted Maximum Considered Earthquake $\left(\right.$ MCE $\left._{R}\right)$ Ground Motion Parameter for the Conterminous United States for 1.0 s Spectral Response Acceleration (5\% of Critical Damping), Site Class B
- FIGURE 22-9 Maximum Considered Earthquake Geometric Mean (MCE \underline{G})PGA, \%g, Site Class B for the Conterminous United States
- FIGURE 22-14 Mapped Long-Period Transition Period, $I_{\text {L_ }}$ (s), for the Conterminous United States
- FIGURE 22-18 Mapped Risk Coefficient at 0.2 s Spectral Response Period, $\underline{C}_{\text {RS }}$
- FIGURE 22-19 Mapped Risk Coefficient at 1.0 s Spectral Response Period, $\underline{C}_{R 1}$

Site Class

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site class as Site Class , based on the site soil properties in accordance with Chapter 20.

Table 20.3-1 Site Classification

Site Class	\bar{v}_{S}	$\overline{\mathrm{N}} \text { or } \overline{\mathbf{N}}_{\mathrm{ch}}$	\bar{s}_{u}
A. Hard Rock	$>5,000 \mathrm{ft} / \mathrm{s}$	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to $2,500 \mathrm{ft} / \mathrm{s}$	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	< $600 \mathrm{ft} / \mathrm{s}$	<15	$<1,000 \mathrm{psf}$
	Any profile with more than 10 ft of soil having the characteristics: - Plasticity index PI > 20 - Moisture content $w \geq 40 \%$, and - Undrained shear strength $\bar{s}_{u}<500$ psf		
F. Soils requiring site response analysis in accordance with Section 21.1	See Section 20.3.1		
For SI: $1 \mathrm{ft} / \mathrm{s}=0.3048 \mathrm{~m} / \mathrm{s} 1 \mathrm{lb} / \mathrm{ft}^{2}=0.0479 \mathrm{kN} / \mathrm{m}^{2}$			

Site Coefficients and Risk-Targeted Maximum Considered Earthquake ($\mathrm{MCE}_{\mathrm{R}}$) Spectral Response Acceleration Parameters

Risk-targeted Ground Motion (0.2 s)

$$
C_{R S} S_{S U H}=0.891 \times 0.936=0.834 \mathrm{~g}
$$

Deterministic Ground Motion (0.2 s)

$$
\mathrm{S}_{\mathrm{SD}}=1.500 \mathrm{~g}
$$

$\mathrm{S}_{\mathrm{S}} \equiv$ "Lesser of $\mathrm{C}_{\mathrm{RS}} \mathrm{S}_{\mathrm{SUH}}$ and S_{SD} " $=0.834 \mathrm{~g}$

Risk-targeted Ground Motion (1.0 s)

$$
C_{R 1} S_{1 U H}=0.865 \times 0.435=0.376 \mathrm{~g}
$$

Deterministic Ground Motion (1.0 s)
$\mathrm{S}_{1} \equiv$ "Lesser of $\mathrm{C}_{\mathrm{R} 1} \mathrm{~S}_{1 \mathrm{UH}}$ and $\mathrm{S}_{1 \mathrm{D}} "=0.376 \mathrm{~g}$

Table 11.4-1: Site Coefficient F_{a}

Site Class	Spectral Reponse Acceleration Parameter at Short Period					
	$\mathrm{S}_{\mathrm{S}} \leq 0.25$	$\mathrm{~S}_{\mathrm{S}}=0.50$	$\mathrm{~S}_{\mathrm{S}}=0.75$	$\mathrm{~S}_{\mathrm{S}}=1.00$	$\mathrm{~S}_{\mathrm{S}}=1.25$	$\mathrm{~S}_{\mathrm{S}} \geq 1.50$
	0.8	0.8	0.8	0.8	0.8	0.8
B (measured)	0.9	0.9	0.9	0.9	0.9	0.9
B (unmeasured)	1.0	1.0	1.0	1.0	1.0	1.0
C	1.3	1.3	1.2	1.2	1.2	1.2
D (determined)	1.6	1.4	1.2	1.1	1.0	1.0
D (default)	1.6	1.4	1.2	1.2	1.2	1.2
E	2.4	1.7	1.3	1.2^{*}	1.2^{*}	1.2^{*}
F			See Section 11.4 .7			

* For Site Class E and $S_{S} \geq 1.0 \mathrm{~g}$, see the requirements for site-specific ground motions in Section 11.4 .7 of the 2015 NEHRP
Provisions. Here the exception to those requirements allowing F_{a} to be taken as equal to that of Site Class C has been invoked. Note: Use straight-line interpolation for intermediate values of S_{S}.

Note: Where Site Class B is selected, but site-specific velocity measurements are not made, the value of F_{a} shall be taken as 1.0 per Section 11.4.2.
Note: Where Site Class D is selected as the default site class per Section 11.4.2, the value of F_{a} shall not be less than 1.2 per Section 11.4.3.

For Site Class $=D($ default $)$ and $S_{S}=0.834$ g, $F_{a}=1.200$

Table 11.4-2: Site Coefficient F_{v}

Site Class	Spectral Response Acceleration Parameter at 1-Second Period					
	$\mathrm{S}_{1} \leq 0.10$	$\mathrm{S}_{1}=0.20$	$\mathrm{S}_{1}=0.30$	$\mathrm{S}_{1}=0.40$	$\mathrm{S}_{1}=0.50$	$\mathrm{S}_{1} \geq 0.60$
A	0.8	0.8	0.8	0.8	0.8	0.8
B (measured)	0.8	0.8	0.8	0.8	0.8	0.8
B (unmeasured)	1.0	1.0	1.0	1.0	1.0	1.0
C	1.5	1.5	1.5	1.5	1.5	1.4
D (determined)	2.4	$2.2{ }^{1}$	$2.0{ }^{1}$	$1.9{ }^{1}$	$1.8{ }^{1}$	$1.7{ }^{1}$
D (default)	2.4	$2.2{ }^{1}$	2.0^{1}	$1.9{ }^{1}$	$1.8{ }^{1}$	1.7^{1}
E	4.2	$3.3{ }^{1}$	$2.8{ }^{1}$	$2.4{ }^{1}$	$2.2{ }^{1}$	$2.0{ }^{1}$
F	See Section 11.4.7					

${ }^{1}$ For Site Class D or E and $\mathrm{S}_{1} \geq 0.2 \mathrm{~g}$, site-specific ground motions might be required. See Section 11.4.7 of the 2015 NEHRP Provisions.

Note: Use straight-line interpolation for intermediate values of S_{1}.
Note: Where Site Class B is selected, but site-specific velocity measurements are not made, the value of F_{v} shall be taken as 1.0 per Section 11.4.2.

$$
\text { For Site Class = D (default) and } S_{1}=0.376 \text { g, } F_{v}=1.924
$$

Site-adjusted MCE R_{R} (0.2 s)

$$
S_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{~S}_{\mathrm{S}}=1.200 \times 0.834=1.001 \mathrm{~g}
$$

Site-adjusted MCE E_{R} (1.0 s)

$$
\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{V}} \mathrm{~S}_{1}=1.924 \times 0.376=0.724 \mathrm{~g}
$$

Design Spectral Acceleration Parameters

Design Ground Motion (0.2 s)

$$
S_{D S}=2 / 3 S_{M S}=2 / 3 \times 1.001=0.667 \mathrm{~g}
$$

Design Ground Motion (1.0 s)

$$
\mathrm{S}_{\mathrm{D} 1}=2 / 3 \mathrm{~S}_{\mathrm{M} 1}=2 / 3 \times 0.724=0.483 \mathrm{~g}
$$

Design Response Spectrum

Figure 11.4-1: Design Response Spectrum

MCE $_{R}$ Response Spectrum

The $\mathrm{MCE}_{\mathrm{R}}$ response spectrum is determined by multiplying the design response spectrum above by 1.5 .

Additional Geotechnical Investigation Report Requirements for Seismic Design Categories D through F

Table 11.8-1: Site Coefficient for $\mathrm{F}_{\text {PGA }}$

Site Class	Mapped MCE Geometric Mean $\left(\mathrm{MCE}_{\mathrm{G}}\right)$ Peak Ground Acceleration					
	$\mathrm{PGA} \leq 0.10$	$\mathrm{PGA}=0.20$	$\mathrm{PGA}=0.30$	$\mathrm{PGA}=0.40$	$\mathrm{PGA}=0.50$	$\mathrm{PGA} \geq 0.60$
	0.8	0.8	0.8	0.8	0.8	0.8
B (measured)	0.9	0.9	0.9	0.9	0.9	0.9
B (unmeasured)	1.0	1.0	1.0	1.0	1.0	1.0
C	1.3	1.2	1.2	1.2	1.2	1.2
D (determined)	1.6	1.4	1.3	1.2	1.1	1.1
D (default)	1.6	1.4	1.3	1.2	1.2	1.2
E	2.4	1.9	1.6	1.4	1.2	1.1
F			See Section 11.4 .7			

Note: Use straight-line interpolation for intermediate values of PGA
Note: Where Site Class D is selected as the default site class per Section 11.4.2, the value of $\mathrm{F}_{\mathrm{pga}}$ shall not be less than 1.2.
For Site Class $=\mathrm{D}($ default $)$ and $\mathrm{PGA}=0.376 \mathrm{~g}, \mathrm{~F}_{\mathrm{PGA}}=1.224$

Mapped MCE_{G}

Site-adjusted MCE $_{G}$

$$
\mathrm{PGA}_{\mathrm{M}}=\mathrm{F}_{\mathrm{PGA}} \mathrm{PGA}=1.224 \times 0.376=0.460 \mathrm{~g}
$$

Summary statistics for, Deaggregation: Total

Deaggregation targets

Return period: 2475 yrs
Exceedance rate: $0.0004040404 \mathrm{yr}^{-1}$
PGA ground motion: 0.38787598 g

Totals

Binned: 100 \%
Residual: 0 \%
Trace: 0.61 \%

Mode (largest r-m bin)
r: 83.56 km
m: 9.34
$\varepsilon_{0}: 0.65 \sigma$
Contribution: 10.11 \%

Discretization
$r: \min =0.0, \max =1000.0, \Delta=20.0 \mathrm{~km}$
$\mathrm{m}: \min =4.4, \max =9.4, \Delta=0.2$
$\varepsilon: \min =-3.0, \max =3.0, \Delta=0.5 \sigma$

Recovered targets

Return period: 2503.542 yrs
Exceedance rate: 0.00039943409 yr $^{-1}$

Mean (for all sources)
r: 54.65 km
m: 7.55
$\varepsilon_{0}: 0.87 \sigma$

Mode (largest ε_{o} bin)
r: 83.53 km
m: 9.01
$\varepsilon_{0}: 0.72 \sigma$
Contribution: 7.05%

Epsilon keys

ع0: $[-\infty . .-2.5)$
ع1: [-2.5 .. -2.0)
ع2: [-2.0 .. -1.5)
ع3: [-1.5 .. -1.0)
ع4: [-1.0 .. -0.5)
ع5: [-0.5 .. 0.0)
ع6: [0.0 .. 0.5)
ع7: [0.5 .. 1.0)
ع8: [1.0 .. 1.5)
ع9: [1.5 .. 2.0)
ع10: [2.0 .. 2.5)
ع11: [2.5 .. $+\infty$]

Deaggregation Contributors

Source Set \longrightarrow Source	Type	r	m	ε_{0}	lon	lat	az	\%
sub0_ch_bot.in	Interface							23.94
Cascadia Megathrust - whole CSZ Characteristic		83.56	9.11	0.78	$123.599^{\circ} \mathrm{W}$	$45.501^{\circ} \mathrm{N}$	283.46	23.94
sub0_ch_mid.in	Interface							9.24
Cascadia Megathrust - whole CSZ Characteristic		134.01	8.93	1.52	$124.330^{\circ} \mathrm{W}$	$45.489^{\circ} \mathrm{N}$	277.52	9.24
coastalOR_deep.in	Slab							7.24
Geologic Model Partial Rupture	Fault							6.63
Portland Hills		8.67	6.77	0.03	$122.566^{\circ} \mathrm{W}$	$45.386^{\circ} \mathrm{N}$	55.75	6.28
Geologic Model Full Rupture	Fault							5.03
Portland Hills		6.89	7.00	-0.44	$122.566^{\circ} \mathrm{W}$	$45.386^{\circ} \mathrm{N}$	55.75	4.73
Geologic Model Small Mag	Fault							4.74
Bolton		2.85	6.15	-0.19	$122.616^{\circ} \mathrm{W}$	$45.365^{\circ} \mathrm{N}$	50.61	3.76
WUSmap_2014_fixSm.ch.in (opt)	Grid							4.69
PointSourceFinite: -122.649, 45.404		7.73	5.99	0.77	$122.649^{\circ} \mathrm{W}$	$45.404^{\circ} \mathrm{N}$	0.00	1.47
PointSourceFinite: -122.649, 45.413		8.68	5.81	1.05	$122.649^{\circ} \mathrm{W}$	$45.413^{\circ} \mathrm{N}$	0.00	1.06
noPuget_2014_fixSm.ch.in (opt)	Grid							4.69
PointSourceFinite: -122.649, 45.404		7.73	5.99	0.77	$122.649^{\circ} \mathrm{W}$	$45.404^{\circ} \mathrm{N}$	0.00	1.47
PointSourceFinite: -122.649, 45.413		8.68	5.81	1.05	$122.649^{\circ} \mathrm{W}$	$45.413^{\circ} \mathrm{N}$	0.00	1.06
WUSmap_2014_fixSm.gr.in (opt)	Grid							4.40
PointSourceFinite: -122.649, 45.404		7.73	5.99	0.77	$122.649^{\circ} \mathrm{W}$	$45.404^{\circ} \mathrm{N}$	0.00	1.47
noPuget_2014_fixSm.gr.in (opt)	Grid							4.40
PointSourceFinite: -122.649, 45.404		7.73	5.99	0.77	$122.649^{\circ} \mathrm{W}$	$45.404^{\circ} \mathrm{N}$	0.00	1.47
sub0_ch_top.in	Interface							2.05
Cascadia Megathrust - whole CSZ Characteristic		149.89	8.83	1.78	$124.549^{\circ} \mathrm{W}$	$45.485^{\circ} \mathrm{N}$	276.61	2.05
coastalOR_deep.in	Slab							1.77
sub2_ch_bot.in	Interface							1.48
Cascadia Megathrust - Goldfinger Case C Characteristic		95.79	8.74	1.16	$123.702^{\circ} \mathrm{W}$	$45.000^{\circ} \mathrm{N}$	245.39	1.48
WUSmap_2014_fixSm_M8.in (opt)	Grid							1.37
noPuget_2014_fixSm_M8.in (opt)	Grid							1.37
Zeng Model Partial Rupture	Fault							1.22
Portland Hills		8.67	6.77	0.03	$122.566^{\circ} \mathrm{W}$	$45.386^{\circ} \mathrm{N}$	55.75	1.16
Zeng Model Small Mag	Fault							1.09

Source Set \longrightarrow Source	Type	r	m	ε_{0}	lon	lat	az	\%
sub1_ch_bot.in	Interface							1.06
Cascadia Megathrust - Goldfinger Case B Characteristic		82.93	8.86	0.90	$123.599^{\circ} \mathrm{W}$	$45.501^{\circ} \mathrm{N}$	283.46	1.06

Investigation • Design • Construction Support

PHOTOGRAPHIC LOG

Real-World Geotechnical Solutions Investigation • Design • Construction Support

$8^{\text {TH }}$ COURT REDEVELOPMENT GEOTECHNICAL SITE INVESTIGATION PHOTOGRAPHIC LOG

View of Site from $\mathbf{8}^{\text {TH }}$ Court, Facing East

Boring B-1, Facing West

Real-World Geotechnical Solutions Investigation • Design • Construction Support

$8^{\text {TH }}$ COURT REDEVELOPMENT GEOTECHNICAL SITE INVESTIGATION PHOTOGRAPHIC LOG

Boring B-1, Contact to Native Soil at 6.3 feet bgs.

Boring B-1, Potentially Liquefiable Soil at 40 Feet bgs

Real-World Geotechnical Solutions Investigation • Design • Construction Support

$8^{\text {TH }}$ COURT REDEVELOPMENT GEOTECHNICAL SITE INVESTIGATION PHOTOGRAPHIC LOG

Boring B-2, Bedrock Encountered at 20.9 Feet bgs

Boring B-3, Contact to Native Soil at 8.0 Feet bgs

Real-World Geotechnical Solutions Investigation • Design • Construction Support

$8^{\text {TH }}$ COURT REDEVELOPMENT GEOTECHNICAL SITE INVESTIGATION PHOTOGRAPHIC LOG

Boring B-3, Potentially Liquefiable Soil at 40 Feet bgs

Technical Memorandum
To: Ed Bruin
From: William R. Farley, PE
Date: September 14, 2018
Subject: 2180 8th Court
Transportation Analysis Letter

LANCASTER
ENGINEERING

321 SW 4th Ave., Suite 400
Portland, OR 97204
phone: 503.248.0313
fax: 503.248.925
lancasterengineering.com

Introduction

This memorandum evaluates the transportation impacts related to the partitioning and redevelopment of approximately 1.4 acres located at $21808^{\text {th }}$ Court in West Linn, Oregon. The partition will divide the site into a 0.53 -acre northern property and a 0.51 -acre southern property and remove an existing building that was previously a Shari's restaurant. The northern property will then be developed with a 5,000 square-foot retail/office building while the southern property will be developed with a 2,800 square-foot medical office and a 1,400 square-foot retail/office building.

The purpose of this report is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses. Detailed information regarding trip generation calculations and safety analyses is included within the technical appendix.

Location Description

The subject site is located at the eastern end of the cul-de-sac for $8^{\text {th }}$ Court in West Linn, Oregon. The site is bounded by Interstate 205 to the north, Willamette Falls Drive to the south, retail land uses to the west, and residential property to the east. Upon partitioning, an easement will be provided along the shared property line that extends from the cul-de-sac on $8^{\text {th }}$ Court to the eastern property line.
$10^{\text {th }}$ Street is classified as a Minor Arterial by the City of West Linn. It is a three-four lane roadway that connects between Willamette Falls Drive to the south and Salamo Road/Blankenship Road to the north, while providing access to Interstate 205. Curbs and sidewalks are provided on both sides of the street.
$8^{\text {th }}$ Court is classified as a Local street by the City of West Linn. It is a two-lane roadway with one lane in each direction that extends from $10^{\text {th }}$ Street approximately 425 feet before ending in a cul-de-sac. Curbs and sidewalks are provided on both sides of the street. On-street parking is not permitted on either side.

The intersection of $10^{\text {th }}$ Street at $8^{\text {th }}$ Street $/ 8^{\text {th }}$ Court is a four-legged intersection under two-way stop control for the eastbound and westbound approaches. The northbound approach on $10^{\text {th }}$ Street has a single, shared lane for all turning movements; however, a left-turn restriction is signed for the hours between 4:00 PM and

6:00 PM. The southbound approach on $10^{\text {th }}$ and the eastbound approach on $8^{\text {th }}$ Street each have a shared through/right-turn lane and a dedicated left-turn lane. The westbound approach on $8^{\text {th }}$ Court has a dedicated right-turn lane and a shared through/left-turn lane. Crosswalks are marked across the eastern, western, and southern legs of the intersection.

Figure 1 below provides an aerial image of the nearby vicinity with the project site outlined in yellow (image from PortlandMaps).

Figure 1: Aerial photo of site vicinity.

Trip Generation

Following the partitioning of the subject property, the 3,600 square-foot restaurant previously occupied by Shari's will be replaced with a 2,800 square-foot medical office, a 1,400 square-foot retail/office building, and a 5,000 square-foot retail/office building. While it is currently known that the medical office space will be leased by a dentist, tenants for the retail/office space have not been identified.

September 14, 2018
Page 3 of 8

To estimate the number of trips that will be generated by the existing restaurant and the proposed medical office, trip rates from Trip Generation Manual' were used. Data from land-use code 932, High-Turnover (SitDown) Restaurant, was used to estimate the trip generation of the existing restaurant building while land-use code 720, Medical-Dental Office Building, was used to estimate the trip generation of the proposed medical office. Both trip generation estimates were calculated based on rates corresponding to the gross-floor area of the land use.

Typically land uses such as restaurants attract pass-by and diverted-link trips. Pass-by trips are those that leave an adjacent roadway to patronize a land use and then continue in their original direction of travel. Similar to pass-by trips, diverted-link trips are trips that divert from a nearby roadway not adjacent to the site to patronize the land use before continuing to their original destination. Pass-by trips do not add additional vehicles to the surrounding transportation system; however, they do impact turning movements at site access intersections. Diverted-link trips may add turning movements at both site accesses and other nearby intersections.

Since the subject site is at the end of a cul-de-sac on $8^{\text {th }}$ Court, the existing restaurant would not have been able to attract a significant number of pass-by trips. Therefore, it is expected that any non-primary trips were attracted from $10^{\text {th }}$ Street or other nearby roadway, which added turning movements at the intersection of $10^{\text {th }}$ Street and $8^{\text {th }}$ Court. Accordingly, no reductions in trip generation were accounted for in the calculations for the existing restaurant.

The trip generation calculations show that replacing the existing 3,600 square-foot restaurant building with a 2,800 square-foot medical office will reduce the site's trip generation by 28 trips during the morning peak hour, 25 trips during the evening peak hour, and 306 daily trips.

Based on the trip generation calculations, the occupancy of a dental office is projected to generate less trips than the Shari's restaurant. Accordingly, no traffic impacts are anticipated with the construction of the 2,800 square-foot medical office.

Table 1 on the following page offers a summary of the trip generation calculations. Detailed trip generation worksheets are included in the technical appendix to this report.

[^5]September 14, 2018
Page 4 of 8
Table 1: Trip Generation Summary

	ITE Code	Size	Morning Peak Hour			Evening Peak Hour			Weekday Total
			Enter	Exit	Total	Enter	Exit	Total	
Existing									
Restaurant	932	3,600 SF	20	16	36	22	13	35	404
Proposed									
Medical Office	720	2,800 SF	6	2	8	3	7	10	98
Net Change in Trips			-14	-14	-28	-19	-6	-25	-306

Although the tenants of the retail/office space are currently unknown, the trip generation of the remaining 6,400 square-foot of retail/office space was estimated assuming it will be leased as offices. To estimate the possible trip generation, data from land-use code 710, General Office Building, was referenced based on grossfloor area.

With 2,800 square-feet of medical office and 6,400 square-feet of general office, the site is expected to generate a total of 16 trips during the morning peak hour, 18 trips during the evening peak hour, and 160 daily trips. When compared to the existing restaurant, the site will still generate 20 less trips during the morning peak hour, 17 less trips during the evening peak hour, and 244 less daily trips. Accordingly, no traffic impacts are anticipated with the development if the site is leased to office and medical/dental office uses.

Table 2 on the following page summarizes the trip generation calculations assuming the retail/office space is leased by office uses.

September 14, 2018
Page 5 of 8

Table 2: Trip Generation Summary

	ITE Code	Size	Morning Peak Hour			Evening Peak Hour		Weekday	
		Enter	Exit	Total	Enter	Exit	Total	Total	
Existing	Restaurant	932	$3,600 \mathrm{SF}$	20	16	36	22	13	35
Proposed	720	$2,800 \mathrm{SF}$	6	2	8	3	7	10	98
Medical Office	710	$1,400 \mathrm{SF}$	2	0	2	0	2	2	14
Office Building (South) Office Building (North)	710	$5,000 \mathrm{SF}$	5	1	6	1	5	6	48
Net Change in Trips			$\mathbf{- 7}$	$\mathbf{- 1 3}$	$\mathbf{- 2 0}$	$\mathbf{- 1 8}$	$\mathbf{1}$	$\mathbf{- 1 7}$	$\mathbf{- 2 4 4}$

Since it is difficult to estimate the trip generation of the site with the varying number of retail uses that could occupy the space, it is recommended that, if a retail use is to occupy the site, additional analysis be conducted to evaluate the site's impacts on the local transportation system.

Site Circulation \& Parking

With the partitioning of the subject site, a 24 -foot access easement will be provided from the cul-de-sac on $8^{\text {th }}$ Court to the eastern property line. This easement will provide access to a shared parking aisle with adjacent properties to the west as well as 90 -degree parking along the face of each building and 90 -degree parking in an eastern lot on each property.

Vehicles entering the site are anticipated to slow as they transition from $8^{\text {th }}$ Court into the parking lot and remain slow as they round a " S " curve into the parking aisle. Both properties will provide 11 parking stalls and 1 accessible stall along this parking aisle. If the driver chooses, or if these spaces are full, the vehicle can travel to the eastern part of either site and enter into a parking area on the side of either building. Additional parking spaces are available along the aisles shared with adjacent properties at the entrance to the site.

Figure 2 shows the circulation of a " P " design vehicle through the site into the parking area on the eastern side of the southern property prior to backing into a space. It should be noted that circulation with the "P" design vehicle is a conservative analysis and that most late-model vehicles are significantly smaller in size and have improve maneuverability.

September 14, 2018
Page 6 of 8

Figure 2: Circulation of "P" design vehicle on the site.
Due to the configuration of the site's access, it is anticipated that vehicles traveling along the parking on the face of each building will be traveling at a slow speeds. If visibility along the inside of the " S " corner and entering the parking areas on the eastern side of the property are maintained, it is anticipated that a vehicle exiting a parking stall will be able to see oncoming traffic for sufficient distance in order to ensure they can safely back into the drive aisle; or that an entering vehicle will be able to observe a backing vehicle with enough time to slow or come to a stop.

Because the site is located at the eastern end of cul-de-sac without a through path to another street, it is anticipated that the property will serve minimal pedestrian and bicycle traffic. Regardless, pedestrians and bicyclists who travel from the street to the site and pedestrians who travel from within the parking area itself should be considered in the design.

The proposed site plan shows a concrete path being maintained from the previous restaurant use that connects the sidewalk on $8^{\text {th }}$ Court and the southern building. This feature, in addition to slow vehicular travel speeds at the site access, are anticipated to allow pedestrians to safely navigate the site. The slow vehicular speeds also allow bicyclists to safely share the drive aisle with motor vehicles.

Traffic Impact Analysis Requirements

Per Section 85.170.B.2.c.1) of the City's Development Code, a Traffic Impact Analysis is required under the following conditions:
(A) When the development application proposes a change in zoning or an amendment to the Comprehensive Plan; or
(B) When the Oregon Department of Transportation states the development action may have operation or safety concerns along a State highway; and
(C) The development causes one or more of the following effects:
(1) Increases site traffic volumes by at least 250 average daily trips; or
(2) Increases the use of adjacent streets by vehicles exceeding the 20,000 -pound gros vehicle weights by 10 vehicles or more per day; or
(3) Has an access that does not meet minimum intersection sight distance requirements, or is located where vehicles entering/leaving the property are restricted; or
(4) Has an access that does not meet the access spacing standard of the roadway; or
(5) A change in internal traffic patterns that may cause safety problems.

The proposed development is an allowed use under the existing zoning and does not alter the zoning designation or amend the Comprehensive Plan. Criteria (A) is not triggered.

Although located near the Interstate 205 ramps onto $10^{\text {th }}$ Street, the proposed development of the 2,800 square-foot of medical office is projected to have less of an impact on the system than the existing restaurant use. If the additoinal retail/office space is used for office uses, the subject property is anticipated to generate less trips than the existing use of the site. Also, additional truck traffic is not expected for any of the uses on the site.

Access to the site is located at the end of the cul-de-sac on $8^{\text {th }}$ Court. Based on the location of the access, the visibility of oncoming traffic is expected to be adequate with no obstructions and traffic entering/exiting the site will remain unrestricted so not to create queuing issues onto the public street. The access is located at least 50 feet from the adjacent access in the cul-de-sac meeting the City's standards for Local Commercial

Streets. The parking layout of the site is similar to the existing use on the site and is not expected to cause safety problems.

Per the requirements in the City's Development Code, a Traffic Impact Analysis is not required for the partition of the property, removal of the restaurant, and development of 2,800 square feet of medical office and 6,400 square feet of office space. If retail uses are proposed to occupy any of the retail/office space, it is recommended that trip generation be evaluated to ensure a Traffic Impact Analysis is not required.

Conclusions

The proposed partition and development of a 2,800 square-foot medical office at $21808^{\text {th }}$ Court is projected to have less traffic impacts than the previous restaurant use on the subject site. If used for office, the 1,400 square-foot building on the southern lot and the 5,000 square-foot building on the northern lot will not contribute more traffic than what the site previously generated. If either space is considered for a retail use, it is recommended that additional analysis be conducted to evaluate whether occupancy will have any off-site impacts.

Based on the proposed parking configuration, it is anticipated that vehicles will be able to circulate the site in an efficient manner. Speeds of entering traffic are anticipated to be slow enough for pedestrians and bicyclists to safely utilize the parking area to reach destinations within the site. The provided site plan also shows the maintaining of a pedestrian walkway from the sidewalk to the southern building.

Per the City of West Linn's Development Code, a Traffic Impact Analysis is not required for the partitioning of the property, removal of the existing restaurant, and development of 2,800 square feet of medical office and 6,400 square feet of office space. If retail uses are proposed to occupy any of the retail/office space, it is recommended that the site's trip generation be evaluated to ensure a Traffic Impact Analysis is not required.

If you have any questions or concerns regarding this memorandum, please don't hesitate in contacting us.

ξ

Appendix

TRIP GENERATION CALCULATIONS

Land Use: High-Turnover (Sit-Down) Restaurant
Land Use Code: 932
Setting/Location General Urban/Suburban
Variable: 1,000 Sq. Ft. Gross Floor Area
Variable Quantity: 3.6

AM PEAK HOUR

Trip Rate: 9.94

	Enter	Exit	Total
Directional Distribution	55%	45%	
Trip Ends	$\mathbf{2 0}$	$\mathbf{1 6}$	$\mathbf{3 6}$

PM PEAK HOUR

Trip Rate: 9.77

	Enter	Exit	Total
Directional Distribution	62%	38%	
Trip Ends	$\mathbf{2 2}$	$\mathbf{1 3}$	$\mathbf{3 5}$

WEEKDAY

Trip Rate: 112.18

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 0 2}$	$\mathbf{2 0 2}$	$\mathbf{4 0 4}$

SATURDAY
Trip Rate: 122.40

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 2 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$

TRIP GENERATION CALCULATIONS

Land Use: Medical-Dental Office Building
Land Use Code: 720
Setting/Location General Urban/Suburban
Variable: 1,000 Sq Ft Gross Floor Area
Variable Quantity: 2.8

AM PEAK HOUR

Trip Rate: 2.78

	Enter	Exit	Total
Directional Distribution	78%	22%	
Trip Ends	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{8}$

WEEKDAY

Trip Rate: 34.80

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{4 9}$	$\mathbf{4 9}$	$\mathbf{9 8}$

PM PEAK HOUR
Trip Rate: 3.46

	Enter	Exit	Total
Directional Distribution	28%	72%	
Trip Ends	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{1 0}$

SATURDAY

Trip Rate: 8.57

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 4}$

TRIP GENERATION CALCULATIONS

Land Use: General Office Building
Land Use Code: 710
Setting/Location General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Value: 1.4

AM PEAK HOUR
Trip Rate: 1.16

	Enter	Exit	Total
Directional Distribution	86%	14%	
Trip Ends	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$

WEEKDAY

Trip Rate: 9.74

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{1 4}$

PM PEAK HOUR
Trip Rate: 1.15

	Enter	Exit	Total
Directional Distribution	16%	84%	
Trip Ends	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$

SATURDAY
Trip Rate: 2.21

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$

[^6]
TRIP GENERATION CALCULATIONS

Land Use: General Office Building
Land Use Code: 710
Setting/Location General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Value: 5.0

AM PEAK HOUR
Trip Rate: 1.16

	Enter	Exit	Total
Directional Distribution	86%	14%	
Trip Ends	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{6}$

WEEKDAY

Trip Rate: 9.74

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 4}$	$\mathbf{2 4}$	$\mathbf{4 8}$

PM PEAK HOUR
Trip Rate: 1.15

	Enter	Exit	Total
Directional Distribution	16%	84%	
Trip Ends	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{6}$

SATURDAY
Trip Rate: 2.21

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{1 2}$

[^7]

smmea	oscoramon
\square	
［	setrwall
［	mownerssenvesaberreer
［4］	fueroie
区	тeus
区	вrefack
［7］	${ }^{12}$ Manemume eios
［8］	
回	\％сомйfane
［0］	Punteeotme）
四	Treshregerace（TP）
［1］	тef toraman

concrete plaza with pantings

SEATWALL

MANTENACEE EDGE

iA
 ISELIN ARCHITECTS

L1.02

$$
{ }_{\text {Not }}
$$

$$
\underset{\geq}{\text { PRELIMINARY }}
$$

$$
o_{\tau_{\text {STRUO }^{\prime}}}{ }^{2}
$$

DESIGN REVIEW
(1) PLAZA ENLARGEMENT

4 PLANT PALETTE

5TEEA4ES ए4

(minh
................. \gg wint 11 wh be demolished as part of this proposal.
U1.. 小. *,

 d..if: h h.s. hwon mitiated for llis building. At this time the developer does not know if they will move forworl will developing llie ateor

Werrgue. im chportunity to hate our ideds with the Willamette Neighborhood Association and to
 -*о

We - made: $:$ hand thin the Novernher meiphhorhood meeting is available to us on your schedule. We are

sincerely,

Ed Bruin

EDGE
 DEVELOPMENT

CCB \#147657
503-292-7733
SITE OF PROPOSED
ADDRESS
DEVELOPMENT

PERMIT

EDGE

DEVELOFMENT

October 22, 2018

Willamette Neighborhood Association

Re: $8^{\text {th }}$ COURT DEVELOPMENT

$21808^{\text {TH }}$ COURT, WEST LINN, OR
To whom it may concern-
We are in the process of redeveloping the commercial site located at the end of $8^{\text {th }}$ Court in West Linn. The site currently has a vacant restaurant (Sheri's) which will be demolished as part of the proposal.

The scope of work at this time is limited to the south side of the main drive aisle (access easement). The site plan shows a building pad on the north side of the lot but no building design is included in the current proposal.

The proposed use for the south building is "office", with a tenant identified. Traffic trip counts for "office" use are significantly under those of the original restaurant use.

We would welcome the opportunity to share with your group our thoughts on this development and to solicit your input. Please let us know when an appropriate time would be to meet with you and present our project.

Sincerely,

Ed Bruin

Development Services Manager
2233 NW $23^{\text {rd }}$ Avenue, Suite 100
Portland, OR 97210

EXISTING SITE PLAN

PROPOSED SITE PLAN

$8^{\text {th }}$ COURT DEVELOPMENT

(A) COUNTRY LEDGESTONE.

MUTUAL MATERIALS OR SIMILAR

(B) CLEAR GLASS STOREFRONT GLAZING WITH ANODIZED ALUMINUM FRAMING. FINISH COLOR T.B.D.

(C) ARTISAN LAP SIDING. JAMES HARDIE OR SIMILAR

C ARTISAN LAP SIDING JAMES HARDIE OR SIMILAR

ARCHITECTS

$8^{\text {th }}$ COURT DEVELOPMENT

(D) WOOD TRELLIS.

smmea	Desserpoon
(1)	coveretr pua wint pumine
[2]	sefriwall
3	
4	fuceore
[5]	тения
®	
[7]	12 Manemame Eios
®	F_{6} cemarferce
(10)	Pumbeolme

concrete plaza with plantings

MSELIN ARCHITECTS

DESIGN
REVIEW

NOT FO_{8},
PRELIMINARY
O

(1) PLANTING PLAN

${ }^{\text {Trees }}$	COOE		conr	cal		orv
	${ }_{\text {of }}$	atemen		${ }^{2} \mathrm{CaL}$		3
(-)	${ }^{\text {or }}$			${ }^{20 a l}$		1
	${ }^{26}$			${ }_{2004}$		3
simuse	$\underset{\sim}{c o 0 e s}$	BOTANICAL / COMMON NAME ACER CIRCI VINE MAPLE	$\frac{\mathrm{sezE}}{888}$	$\frac{\text { ut }}{46 \mathrm{FFT}}$		arv
\bigcirc	$\mathrm{cas}^{\text {a }}$	CALAMAGROSTIS X ACUTIFLORA `KARL FOERSTER FEATHER REED GRASS & sout & & & - \\ \hline \(\bigcirc\) & 000 & & som & & & 3 \\ \hline \(\bigcirc\) & нro & RUDY SLIPPERS HYDRANGEA & som & & & , \\ \hline - & \({ }_{10}\) & ILEX X MESERVEAE `CASTLE WALL` CASTLE WALL HOLLY	somb			${ }^{2}$
Struanecs	coos	Botwech comonovme	conr		spacke	orn
		OEen wares sevecs soommarefacur				(1,41455
	meE	MAHONIA REPENS	190		${ }_{18}{ }^{\text {coec }}$	9
	smo	SARCOCOCCA HOOKERIANA HUMILIS SWEET BOX SWEET BOX	som		3500	47
crouncoures	coos	sotweal common wne	conr		spance	orn
	amo	cimex	1901		3 aroc	47
	um	Unior	190		${ }_{\text {rooc }}$	40
	MIE	Messaraussus	or		${ }^{3} \mathrm{roc}$	${ }^{1}$
\%	pown	(eorstern	1004		${ }_{3} 900$	${ }^{6}$

今

1. Streets. Sufficient right-of-way and slope easement shall be dedicated to accommodate all abutting streets to be improved to the City's Improvement Standards and Specifications. The City Engineer shall determine the appropriate level of street and traffic control improvements to be required, including any off-site street and traffic control improvements, based upon the transportation analysis submitted. The City Engineer's determination of developer obligation, the extent of road improvement and City's share, if any, of improvements and the timing of improvements shall be made based upon the City's systems development charge ordinance and capital improvement program, and the rough proportionality between the impact of the development and the street improvements.

In determining the appropriate sizing of the street in commercial, office, multi-family, and public settings, the street should be the minimum necessary to accommodate anticipated traffic load and needs and should provide substantial accommodations for pedestrians and bicyclists. Road and driveway alignment should consider and mitigate impacts on adjacent properties and in neighborhoods in terms of increased traffic loads, noise, vibrations, and glare.

The realignment or redesign of roads shall consider how the proposal meets accepted engineering standards, enhances public safety, and favorably relates to adjacent lands and land uses. Consideration should also be given to selecting an alignment or design that minimizes or avoids hazard areas and loss of significant natural features (drainageways, wetlands, heavily forested areas, etc.) unless site mitigation can clearly produce a superior landscape in terms of shape, grades, and reforestation, and is fully consistent with applicable code restrictions regarding resource areas.

Streets shall be installed per Chapter 85 CDC standards. The City Engineer has the authority to require that street widths match adjacent street widths. Sidewalks shall be installed per CDC 85.200(A)(3) for commercial and office projects, and CDC 85.200(A)(16) and 92.010(H) for residential projects, and applicable provisions of this chapter. Where streets bisect or traverse water resource areas (WRAs) the street width shall be reduced to the appropriate "constrained" cross-section width indicated in the TSP or alternate configurations which are appropriate to site conditions, minimize WRA disturbance or are consistent with an adopted transportation system plan. The street design shall also be consistent with habitat friendly provisions of CDC 32.060(I).

Based upon the City Manager's or Manager's designee's determination, the applicant shall construct or cause to be constructed, or contribute a proportionate share of the costs, for all necessary off-site improvements identified by the transportation analysis commissioned to address CDC 55.125 that are required to mitigate impacts from the proposed development. Proportionate share of the costs shall be determined by the City Manager or Manager's designee, who shall assume that the proposed development provides improvements in rough proportion to identified impacts of the development.

No changes are proposed to the public street system or public access easement serving the property. The public access easement across the site is planned to remain. It is proposed to provide onsite vegetative storm planters and basin to meet both the City's water quality and detention requirements. The north parcel will discharge to it's current location as no redevelopment is proposed for the north parcel. The south parcel project is being redeveloped and those areas being redeveloped will be collected, treated and detained per the city storm drainage policy as shown in the preliminary storm drainage report.

Technical Memorandum

To: Ed Bruin
From: William R. Farley, PE
Date: January 3, 2019
Subject: 2180 8th Court
Transportation Analysis Letter

LANCASTER ENGINEERING 321 SW 4th Ave., Suite 400 Portland, OR 97204 phone: 503.248.0313 fax: 503.248.9251 lancasterengineering.com

Introduction

This memorandum evaluates the transportation impacts related to the partitioning and redevelopment of approximately 1.4 acres located at $21808^{\text {th }}$ Court in West Linn, Oregon. The partition will divide the site into a 0.53 -acre northern property and a 0.51 -acre southern property and remove an existing building that was previously a Shari's restaurant. Following the partition, the southern property will be developed with a 2,797 square-foot medical office and a 1,470 square-foot general office building.

The purpose of this report is to determine whether the transportation system within the vicinity of the site is capable of safely and efficiently supporting the existing and proposed uses. Detailed information regarding trip generation calculations and safety analyses is included within the technical appendix.

Location Description

The subject site is located at the eastern end of the cul-de-sac for $8^{\text {th }}$ Court in West Linn, Oregon. The site is bounded by Interstate 205 to the north, Willamette Falls Drive to the south, retail land uses to the west, and residential property to the east. Upon partitioning, an easement will be provided along the shared property line that extends from the cul-de-sac on $8^{\text {th }}$ Court to the eastern property line.
$10^{\text {th }}$ Street is classified as a Minor Arterial by the City of West Linn. It is a three-four lane roadway that connects between Willamette Falls Drive to the south and Salamo Road/Blankenship Road to the north, while providing access to Interstate 205. Curbs and sidewalks are provided on both sides of the street.
$8^{\text {th }}$ Court is classified as a Local street by the City of West Linn. It is a two-lane roadway with one lane in each direction that extends from $10^{\text {th }}$ Street approximately 425 feet before ending in a cul-de-sac. Curbs and sidewalks are provided on both sides of the street. On-street parking is not permitted on either side.

The intersection of $10^{\text {th }}$ Street at $8^{\text {th }}$ Street $/ 8^{\text {th }}$ Court is a four-legged intersection under two-way stop control for the eastbound and westbound approaches. The northbound approach on $10^{\text {th }}$ Street has a single, shared lane for all turning movements; however, a left-turn restriction is signed for the hours between 4:00 PM and 6:00 PM. The southbound approach on $10^{\text {th }}$ and the eastbound approach on $8^{\text {th }}$ Street each have a shared
through/right-turn lane and a dedicated left-turn lane. The westbound approach on $8^{\text {th }}$ Court has a dedicated right-turn lane and a shared through/left-turn lane. Crosswalks are marked across the eastern, western, and southern legs of the intersection.

Figure 1 below provides an aerial image of the nearby vicinity with the project site outlined in yellow (image from PortlandMaps).

Figure 1: Aerial photo of site vicinity.

Trip Generation

Following the partitioning of the subject property, the southern lot previously occupied by the 3,600 squarefoot restaurant Shari's restaurant will be replaced with a 2,797 square-foot medical office, a 1,470 square-foot general office building.

January 3, 2019
Page 3 of 7

To estimate the number of trips that will be generated by the existing restaurant and the proposed offices, trip rates from Trip Generation Manual ${ }^{1}$ were used. Data from land-use code 932, High-Turnover (Sit-Down) Restaurant, was used to estimate the trip generation of the existing restaurant building. Land-use code 710, General Office Building, and land-use code 720, Medical-Dental Office Building, were used to estimate the trip generation of the proposed general offices and medical office. Trip generation estimates were calculated based on rates corresponding to the gross-floor area of each land use.

Typically land uses such as restaurants attract pass-by and diverted-link trips. Pass-by trips are those that leave an adjacent roadway to patronize a land use and then continue in their original direction of travel. Similar to pass-by trips, diverted-link trips are trips that divert from a nearby roadway not adjacent to the site to patronize the land use before continuing to their original destination. Pass-by trips do not add additional vehicles to the surrounding transportation system; however, they do impact turning movements at site access intersections. Diverted-link trips may add turning movements at both site accesses and other nearby intersections.

Since the subject site is at the end of a cul-de-sac on $8^{\text {th }}$ Court, the existing restaurant would not have been able to attract a significant number of pass-by trips. Therefore, it is expected that any non-primary trips were attracted from $10^{\text {th }}$ Street or other nearby roadways, which added turning movements at the intersection of $10^{\text {th }}$ Street and $8^{\text {th }}$ Court. Accordingly, no reductions in trip generation were accounted for in the calculations for the existing restaurant.

With 2,797 square feet of medical office and 1,470 square feet of general office, the site is expected to generate a total of 10 trips during the morning peak hour, 12 trips during the evening peak hour, and 112 daily trips. When compared to the existing restaurant, the site will still generate 26 less trips during the morning peak hour, 23 less trips during the evening peak hour, and 292 less daily trips. Accordingly, no traffic impacts are anticipated with the development of the southern site.

Based on the trip generation calculations, the occupancy of the general offices and dental office is projected to generate less trips than the Shari's restaurant. Accordingly, no traffic impacts are anticipated with the construction of 2,797 square feet of medical office and 1,470 square feet of general office.

Table 1 on the following page offers a summary of the trip generation calculations. Detailed trip generation worksheets are included in the technical appendix to this report.

[^8]January 3, 2019
Page 4 of 7

Table 1: Trip Generation Summary

	ITE Code	Size	Morning Peak Hour			Evening Peak Hour			Weekday Total
			Enter	Exit	Total	Enter	Exit	Total	
Existing									
Restaurant	932	3,600 SF	20	16	36	22	13	35	404
Proposed									
Medical Office	720	2,797 SF	6	2	8	3	7	10	98
Office Building	710	1,470 SF	2	0	2	0	2	2	14
Net Change in Trips			-12	-14	-26	-19	-4	-23	-292

Site Circulation \& Parking

With the partitioning of the subject site, a 24 -foot access easement will be provided from the cul-de-sac on $8^{\text {th }}$ Court to the eastern property line. This easement will provide access to a shared parking aisle with adjacent properties to the west as well as 90 -degree parking along the face of each building and 90 -degree parking in an eastern lot on each property.

Vehicles entering the site are anticipated to slow as they transition from $8^{\text {th }}$ Court into the parking lot and remain slow as they round a " S " curve into the parking aisle. Both properties will provide 11 parking stalls and 1 accessible stall along this parking aisle. If the driver chooses, or if these spaces are full, the vehicle can travel to the eastern part of either site and enter into a parking area on the side of either building. Additional parking spaces are available along the aisles shared with adjacent properties at the entrance to the site.

Figure 2 shows the circulation of a " P " design vehicle through the site into the parking area on the eastern side of the southern property prior to backing into a space. It should be noted that circulation with the "P" design vehicle is a conservative analysis and that most late-model vehicles are significantly smaller in size and have improve maneuverability.

January 3, 2019
Page 5 of 7

Figure 2: Circulation of "P" design vehicle on the site.
Due to the configuration of the site's access, it is anticipated that vehicles traveling along the parking on the face of each building will be traveling at a slow speeds. If visibility along the inside of the " S " corner and entering the parking areas on the eastern side of the property are maintained, it is anticipated that a vehicle exiting a parking stall will be able to see oncoming traffic for sufficient distance in order to ensure they can safely back into the drive aisle; or that an entering vehicle will be able to observe a backing vehicle with enough time to slow or come to a stop.

Because the site is located at the eastern end of cul-de-sac without a through path to another street, it is anticipated that the property will serve minimal pedestrian and bicycle traffic. Regardless, pedestrians and bicyclists who travel from the street to the site and pedestrians who travel from within the parking area itself should be considered in the design.

The proposed site plan shows a concrete path being maintained from the previous restaurant use that connects the sidewalk on $8^{\text {th }}$ Court and the southern building. This feature, in addition to slow vehicular travel speeds at the site access, are anticipated to allow pedestrians to safely navigate the site. The slow vehicular speeds also allow bicyclists to safely share the drive aisle with motor vehicles.

January 3, 2019
Page 6 of 7

Traffic Impact Analysis Requirements

Per Section 85.170.B.2.c.1) of the City's Development Code, a Traffic Impact Analysis is required under the following conditions:
(A) When the development application proposes a change in zoning or an amendment to the Comprehensive Plan; or
(B) When the Oregon Department of Transportation states the development action may have operation or safety concerns along a State highway; and
(C) The development causes one or more of the following effects:
(1) Increases site traffic volumes by at least 250 average daily trips; or
(2) Increases the use of adjacent streets by vehicles exceeding the 20,000-pound gros vehicle weights by 10 vehicles or more per day; or
(3) Has an access that does not meet minimum intersection sight distance requirements, or is located where vehicles entering/leaving the property are restricted; or
(4) Has an access that does not meet the access spacing standard of the roadway; or
(5) A change in internal traffic patterns that may cause safety problems.

The proposed development is an allowed use under the existing zoning and does not alter the zoning designation or amend the Comprehensive Plan. Criteria (A) is not triggered.

Although located near the Interstate 205 ramps onto $10^{\text {th }}$ Street, the proposed development of the 2,797 square feet of medical office and 1,470 square feet of general office space is projected to have less of an impact on the system than the existing restaurant use. Additional truck traffic is not expected for any of the uses on the site.

Access to the site is located at the end of the cul-de-sac on $8^{\text {th }}$ Court. Based on the location of the access, the visibility of oncoming traffic is expected to be adequate with no obstructions and traffic entering/exiting the site will remain unrestricted so not to create queuing issues onto the public street. The access is located at least 50 feet from the adjacent access in the cul-de-sac meeting the City's standards for Local Commercial Streets. The parking layout of the site is similar to the existing use on the site and is not expected to cause safety problems.

Per the requirements in the City's Development Code, a Traffic Impact Analysis is not required for the partition of the property, removal of the restaurant, and development of 2,797 square feet of medical office and 1,470 square feet of office space.

January 3, 2019
Page 7 of 7

Conclusions

The proposed partition and development of a 2,797 square-foot medical office and 1,470 square feet of general office space at $21808^{\text {th }}$ Court is projected to have less traffic impacts than the previous restaurant use on the subject site.

Based on the proposed parking configuration, it is anticipated that vehicles will be able to circulate the site in an efficient manner. Speeds of entering traffic are anticipated to be slow enough for pedestrians and bicyclists to safely utilize the parking area to reach destinations within the site. The provided site plan also shows the maintaining of a pedestrian walkway from the sidewalk to the southern building.

Per the City of West Linn's Development Code, a Traffic Impact Analysis is not required for the partitioning of the property, removal of the existing restaurant, and development of 2,797 square feet of medical office and 1,470 square feet of office space.

If you have any questions or concerns regarding this memorandum, please don't hesitate in contacting us.

ξ

Appendix

TRIP GENERATION CALCULATIONS

Land Use: High-Turnover (Sit-Down) Restaurant
Land Use Code: 932
Setting/Location General Urban/Suburban
Variable: 1,000 Sq. Ft. Gross Floor Area
Variable Quantity: 3.6

AM PEAK HOUR

Trip Rate: 9.94

	Enter	Exit	Total
Directional Distribution	55%	45%	
Trip Ends	$\mathbf{2 0}$	$\mathbf{1 6}$	$\mathbf{3 6}$

PM PEAK HOUR

Trip Rate: 9.77

	Enter	Exit	Total
Directional Distribution	62%	38%	
Trip Ends	$\mathbf{2 2}$	$\mathbf{1 3}$	$\mathbf{3 5}$

WEEKDAY

Trip Rate: 112.18

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 0 2}$	$\mathbf{2 0 2}$	$\mathbf{4 0 4}$

SATURDAY
Trip Rate: 122.40

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2 2 0}$	$\mathbf{2 2 0}$	$\mathbf{4 4 0}$

TRIP GENERATION CALCULATIONS

Land Use: Medical-Dental Office Building
Land Use Code: 720
Setting/Location General Urban/Suburban
Variable: 1,000 Sq Ft Gross Floor Area
Variable Quantity: 2.8

AM PEAK HOUR

Trip Rate: 2.78

	Enter	Exit	Total
Directional Distribution	78%	22%	
Trip Ends	$\mathbf{6}$	$\mathbf{2}$	$\mathbf{8}$

WEEKDAY

Trip Rate: 34.80

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{4 9}$	$\mathbf{4 9}$	$\mathbf{9 8}$

PM PEAK HOUR
Trip Rate: 3.46

	Enter	Exit	Total
Directional Distribution	28%	72%	
Trip Ends	$\mathbf{3}$	$\mathbf{7}$	$\mathbf{1 0}$

SATURDAY

Trip Rate: 8.57

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 4}$

TRIP GENERATION CALCULATIONS

Land Use: General Office Building
Land Use Code: 710
Setting/Location General Urban/Suburban
Variable: 1000 Sq Ft Gross Floor Area
Variable Value: 1.5

AM PEAK HOUR
Trip Rate: 1.16

	Enter	Exit	Total
Directional Distribution	86%	14%	
Trip Ends	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$

WEEKDAY
Trip Rate: 9.74

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{1 4}$

PM PEAK HOUR
Trip Rate: 1.15

	Enter	Exit	Total
Directional Distribution	16%	84%	
Trip Ends	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{2}$

SATURDAY
Trip Rate: 2.21

	Enter	Exit	Total
Directional Distribution	50%	50%	
Trip Ends	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$

MEXCAN FEATHER GRASS

1 PLAZA ENLARGEMENT
2 PLANT PALETTE

PC-4 PUBLIC COMMENTS

Arnold, Jennifer

From:	Lena Davidson davidsonlena@gmail.com
Sent:	Wednesday, February 20, 2019 3:51 PM
To:	Arnold, Jennifer
Cc:	Wayne Rask
Subject:	File No. DR-18-08
Attachments:	plat 3202.pdf; 2180 8th ct.pdf; 1995 56837.pdf

Jennifer

Per our phone conversation today, attached are the easement documents that were provided to us from the title company.

Thank you,
Lena Davidson
Accountant
Tamer Willamette, LLC

[^9]

Property Detail Report
Clackamas County Data as of: 11/20/2018

	Occupancy:	Absentee Owner
	County:	Clackamas, OR
21E35D00903	Census Tract/ Block:	020700/1001
2S-1E-35	Legal Lot / Block: Legal Book / Page:	31
West Linn-Wilsonville School District 3J		
Athey Creek Middle...	High School:	West Linn High Sch...
\$1,025,000	Transfer Doc \#:	2014.21480
H\& H WL 7 LLC	Deed Type:	Special Warranty Deed
\$825,000 / Confirmed	Deed Type:	Warranty Deed
	New Construction:	
	1st Mtg Doc \#:	
	Sale Doc \#:	2009.74444

z	ஆ	-		

21808 8th Ct. West Linn, oR 97068-4365

Owner Information		
Owner Name: Vesting: Mailing Address:	Willamette Capital Invs LLC Corporation 576 Glatt Cir, Woodburn, OR	7071-9675
Location Information		
Legal Description: APN: Munic / Twnshp: Subdivision: Neighborhood: Elementary School:	3202 Willamette Commercia 01680363 Willamette Commercial Park West Lynn Willamette Primary...	Park Pt Lt 3 Alternate APN: Twnshp-Rng-Sec: Tract \#: School District: Middle School:
Last Transfer / Conveyance - Current Owner		
Transfer / Rec Date: Buyer Name:	05/07/2014 /05/07/2014 Willamette Capital Invs LLC	Price: Seller Name:
Last Market Sale		
Sale / Rec Date: Multi / Split Sale: 1st Mtg Amt / Type: 2nd Mtg Amt / Type:	10/16/2009 / 10/22/2009	Sale Price / Type: Price / Sq. Ft.: 1st Mtg Rate / Type: 2nd Mtg Rate / Type:
Seller Name:	Pegasus Ents Trust	
Lender: Title Company:	First American Title	
Prior Sale Information		
Sale / Rec Date: 1st Mtg Amt / Type: Prior Lender:		Sale Price / Type: 1st Mtg Rate / Type:
Property Characteristics		
Gross Living Area: Living Area: Total Adj. Area: Above Grade: Basement Area: Style: Foundation: Quality: Condition:	Excellent	Total Rooms: Bedrooms: Baths (F / H): Pool: Fireplace: Cooling: Heating: Exterior Wall: Construction Type:
Site Information		
Land Use: State Use: County Use:	Office Building 201 - Commercial Property Improved	Lot Area: Lot Width / Depth: Usable Lot:
Site Influence: Flood Zone Code: Community Name	City Of West Linn	Acres: Flood Map \#: Flood Panel \#:
Tax Information		
Assessed Year: Tax Year: Tax Area: Property Tax: Exemption:	$\begin{aligned} & 2018 \text {. } \\ & 2018 \\ & 003-002 \\ & \$ 33,300.98 \end{aligned}$	Assessed Value: Land Value: Improvement Value: Improved \%: Delinquent Year:

Clly. State: West Limn, Oregon
Address: W. 10 th Strect and Willamette Court
L/C: 036.0182 File: 12588
WHEN RECORDED. RETURN TO:
McDonald's Corporation
Development Legal Team
One McDonald's Plaza
Oakbrook, IL 60524

RECIPROCAL EASEMENT AGREEMENT AND RESTRICTIONS

DATED:

$$
\text { tept. 18, } 1995
$$

BETWEEN: KBG INVESTMENT COMPANY, INC.
in Oregon coryoration
21920 Willamette Drive
West Lim, Oregon 97068
Developer
AND:

McDONALD'S CORPORATION.

a Delaware corporation
One McDonald's Plaza
Oak Brook, Illinots 6052l
Allentlon: Director. Real Esiate
Legal Department MeDonald's

Developer is the owner of certan parcels of land in Clackamats County,
Oregon described is Lots 1 through 5. WILLAMETTE COMMERCIAL PARK. City of West
Lum, Ciackamas Connly, Orenun fíied in ine Flat Recunls of Clackannas Cumiy. Oregon as No. 3202 on SeaC. 15 . 1995) (the "Develonnent"). Each platted Lot withtu the Development is Indivilually a "Lot" or collecuvely, Ue "Lols."

Developer owns and is aethac to McDonalde the real property desertheed as Lot 1. WILLAMETTE COMMERCIAL PARK. City of West Limn, Clackamas Comily. Oresonl ("Lol l").

As used herein, the "Owner" is the owner(s) from bime to time of one or more of line Lots

NOW. THEREFORE, for value recelved, and in consideration of the mitual agreements of Une partles sel forth in Ihls Declaration of Recijrocal Easement Aprecment and Restrictions (the "Aprecment"). the partes agree as follows:

1. Easement for Recipracal Parkinq and Ingress und Egress. Eacli

Owner will have a perpethal nonexchasive rectprocal dingress and ugress easement and right-of-way for the purpose of velientar marking and vehicular and pedestrian ingress and egress to and from lts own Lot, and appurtenant to tts Lot, over, upon and across and egress to ant from ins own driveways and access ways, sldewalks and walkways, the parking areas and spaces, driveways and access ways. side developed. altered or
exils and entrances, as such areas shall. from time to tine be dever

nocilifed on the Lots withtn the Development. sulbeet to the provistons and restrictions sel Corth in thils Agreement.
2. Easement for Uthlities. Ench Owner will have a perpetital, noncextusive reciprocal casenten for purposes of installing. operaling. maintaining. repairing. replacing and renewling any and all udlity lines and related wility facilues within the Utility Easement areas designated in the recorded Plat of the Development. No trees. permanent buildings or other structures shall be placed in or allowed to encroach itpon the Udily Easement areas desjsnated on such Plat. There will be no change of grade

 Easement area on its Lot to lee maintamed In good condilfon and repair and will not thake within siteh Utility Easement area suy change of grade elevation or excavation (odier lian for purposes of installing, operating, matntaining. repaiting, replacing or renewhing wility lines and/or metily facilites). Withond approval of the Owner(s) of Lot(s) tulazinf such Utilly Eascunent areas.
3. Easements for Storm Sewer. Each Owner will have a perpetatal nonexclisive casement for jutposes of tapping into and insing storn sewer lines and

 servelng the Development. The storm sewer lines will be locinted wilhin the Storm
Sewer Easement areas designated on the recorded Plat. The storm water retention facllites and basin will be located wilhin an area to be developed by Developer near the northeasi comer of Lot 3 of the plan and may hachucle a portion of Lot 3 (whinch may be
 açuruel by Developer for purposes of conslruchaf such slorm waller bisin).
 Owner witl bear, commencing upon completion of the Storm Sewer Facilities, Its proportionate share of the necessany cosis. If any, fincurred fin any calendar year for the
 "Opetating Expunses") of the Stom Sewer Facilites. Sich share ol Uperaling Explinses will be patid within twenty (20) days after subnission of involee therefor. trecluding reasonable back-ip docimentation concemblus the actual Operatint Expenses licurred. The opxator of the Stom Sewer Facilitics may chech. In its diseretlon, to bill Operathar Expenses on a monlbly or cuarterly basis. based on estumated cosis, shtuject to an anmail reconcilation and adjusiment. In the event the operator of the Storm Sewer Ficilites dedicates llem to the City of West Linn or odier fovermmental or other pmblic athorlty for publice operation and mabimenamece the the clarges to Owners fot such Storm Sewer Facilities will be made in accorditice with the regulations of such public body.
4. Access Easement for Adjoining Parcel. Pirsitutt to the terms of the Condifons of Approval of the Commercial Siee at 10 It Sireet. West Linn. Develuper, as Owner of Lol 3 of the Development, herelyy creates an findress and edress easenent and
 pedestrian trafic fibl thot for parkim purposes to, from and between Willamette Falls Drive and the property that is adjacent to and sthated inmediately easi of Lot 3 of the Development. The exact locaton of such access easement on Lot 3 of the Development will be as Developer may subsecpuently designatio by witten and ackowledred Insirnment. excented by Developer for sulbscruent Owner of Lot 3), or as shown on the fland stte plan for the developmant of Lot 3 that mity be submatted to and approved by

 from Willanedte Falls Drive and lle Owners of Lols fa the Development will be aranted access across the accessways of sitich adjoining property to any phblic sitreet to whach such accessways commect.

[^10]maintain its Lol in a sale condition. Each Owner shall give prompl and timely notice of
 ancmunication monder this Agreement.
pay the expensc of mainace Expenge. Each Owner further covenants and adrecs to casement areas situated on its Lolls) Including the parking, ingress. egress and odice assessmients, subject only to the rislil to defer payment paynent of all real estate taxes and and /or In connection with a bona file conter paynent in a manner provided by law the rights of the obler Ownet(s) shall not lee jeomarrliomithes or assessments. so long as
11. Restrictions on Use.
11.1 Restriction Benefitting Lot 1. No Lot (or any portion thercol) withtn the Development. odler dian Lot 1, and no other propurtuy portion thereon within one melle thereof. will be used for restandrant or food serve owned by Developer of aventy (20) years from the date of recordation of or food service purposes for a perior "restaurant" as used in this clause shat raply to this Agreentent. The term
which serves any amount of clanse shalt apply to any type of food service establishmen

 or a combination of gromed meat ind meat substatute. or any other type of meat products. any of which are served int sind dwleh form: or (iit) Tacos, Burftos. Tamales. restrictions of this Section 11.1 phe operatian (a) there shall be excluded from the
 method of service. for all meal times, food and dimk orders takers as the primiry watter or wattress at the customer's table is exclutled from the term and served by a frum the restrintions fa this Section 11.1: and (c) a conventene term "restaurant ind such restrictions. so lond as it sian 1.1: and (c) a conventence store is excluded from served in sandwich fom, or tacos burritos, tamales, ers or fromud meat substutute
in atdiliunt, anci not by way or exumpe the moder the listed trade names, or operatug we. (he foilowing restamrants operalmg prohithited within the areas. ind for the thme period sjeedfed In thits Section il. 1 .
A\&W Hamburgers
Asby's
Armburgers
Are Circie
Bin Boy
Bol) Evans
Bolis Hanmburgers
Burger Chef
Burger King
Burgerville USA
Carl's Jr.

Jack-ln-lle Bux
Rally's
Rax
Roy Roders
Spanky's
Taco Be!l
Taco Tme
Wendy's
White Castle
11.2 Restriction Bencfitting Lot 5 . No Lot (or inty portion thereon)
 Station or dasollac product service station thut this Sectlon 11.2 will not be construed
to apply to or restrict the operaton to apply to or restatec the operalion of any cat wash, oflery. or tire salle faclitity and/or automobile repiul Caclity on any Lot in the Developmentit.
11.3 Acceptance of Restrictiong. Any lease or occupincy adreemen subsequently entered into wilh respece to a Lot will require that the tenani's use fand recorded easements and resirlations tenant) mist comply with applicable laws and or contanim a specific reference to the affecting the properly (inchiding this Arecment). or contain a specific reference to the need to comply wilh the restrictions in Sectlons
11.1 and 11.2 . By excentlon of this Adre 11.1 and 11.2. By executlon of this Agreement or by acceptanee of a deed to the Lot.

each Owner acknowledges that this Scelion 11 is an essential part of this Agreennent and, limbler. that the restrictions set forll In Section $1 /$ are fatr and reasomable to betheflelal development of Uie Developmen inder whts Agreement and ordenly and

Ue Loul) Maintenance of Lot. Each Owner (aud Its tenants and subtemants of operation, and preservation of such Loin, whthont jhmination. the Remeral cleantiness, constried as requirinet an Owner to develop pood condition. This Agreement wilt not be Owner will matntain the Lot free of ribblish and Lod. Prior (o stich development, an condition. If Lue Lol memains undeveloped for unere dis and th a safe and siahtly recordatlon of the deed from Developer conveytia the hot twelve (12) monllis after the landscaped on an letertem linsis or oper conveytig the Lol to an Owner. Hee Lot wild be It is developed, An tindeveloped or oderwise covered by a sithtible ground cover, initit

 developmenit (bit! no sinch approval will bate, lease or development. prior io its intual development (hat! no such approval will berefalred after the indual development of the
Lotl.
13. Term. This Aprecment shall be perpethal (excent as proveled below) shatl rum with the hand and shall be bindmit on and shanl thure to the benefle of the

14. Default.and Remedies.

14.1 Defautts. A person shall be deemed to be in defanh of thas Agreement "pon tha explration of thity (30) clays from recedpt of whiten notice from any Owner speelfytig the particulats in whieli sueh person hins fatled to perform such person's obligations under thls Agreement, miless such person the to perform such explration of the chare perlod, enred the matters specinex in the hatice pritor to the However, Such person shall, not lue deenned to be in defand if such fed of defandt. reasonably be cured willing the be deemed to be in defanle if such failure canmol

14.2 Injunctlve Rellef. In the event of al violation or threaterted volation by any jerson of the restrichons contilned in dids Acreement, any or all

 jurisedicuon, it bejng acknowledeed diat woned vidion ln a conrt of compelent remedy for such a violition.
14.3 Rloht of Self-Held. Whenever an Owner is In definit meder Section 14.1, and withont limithag any other rghts that any other Owner may liave the event of such a defande, al hav or In ectily any Owner shat dowe Owner may have in the obligation) to perform the obligation of the defatilind Owner dave the right (but not definht, provided that the performing Owner firs tsives the owner giving dise to such
 and provided dhat dee defandung Owner has not cured tie to perform the obligettont. stich thaty (30) day pertod. The performatime cured the defanit jurior to expriation of
 for performance of such obligations. Such pasis duentred la performing of contriclings demand, withont contesi, upond delivery of its invent will be ehte and payable on

 of this paragraph shall be in adl respects to the date of payment in linl. The provistons of this paragraph shal] be in all respects sul)ject and sabordinate to (he lien of any
marteafes or decds of trish at any thme or from thme to Une on the latad of the derkapes or deeds of irish at any the fioleter or holders of any morigages or deeds of rusi
15. Covenantg Runnige with Land. The rights contained within this Agreement shall rin whth the fand and inntre to. ant be for the benefors and assigns. McDomald's, and each subsequent Owner of any wond indenands. Easement ridits umder this Agreentent hay be tised by sich Own, cuslomers and sublemants, licensues, concesslonatres. subject to the restrictions in Sections 7 and 8 business linuringe parkime.
 ancumbriules of recorl. Each party warrants that ha wh defend the thle and the olher Owners' Interests under lhis Agreenent abalnst anhyeh
 asserts priority over the finterest of die other

17. General Proulsions

17. 1 Termanation of Llability. Whenever a transfer of ownershatp of Lol
e transferor will not be lable for a breach of thes Agreement occursing takes place. the transieror wil! not be hatiatl rematn dable if it trinsfers its interest to after a Iransfer, except that Une gran alleensec or sibsidiary corjomation.

 the parlies to convey a combner cascment rights is catried oull.
17.3 Waiver. Fanhure at any thac to rectuire performance of any
17.3 Watuer. Fanhure at any tanc to regpire performance of andions Any
 walver of anty loreach of any provision shan that a waiver of any provision of this Adreentent.
17.4 Attornegs Fees. In the cvent sint of action ts fustituted to
 recover from the other party such sum as the court may athudge reasombinde as review. attorneys" fees at irtal, on appead of such sum
17.5 Indemnity. Eiach party shall defend. Ifdemulfy imd hald the ouner bambes from any chalm, loss. habifity or expense (theluding reasonable attomeys fees)
 arising olt of or in coninection withitice party Agrembent
the ternts, residetions and provisions of ins herement.
17.6 Entire Agreement. This Agrcement stupersedes and replaces al whtem and oral astements previonsiy
17.7 Protection of Rights of Mortgagees. No breach of the provisions ment shall deleat or render invalici due lien of any mortigagels) or cle in this Agreement shatl deleat or renchen allects lise partles' respioctive interests
 pursuant to dals Agteethent; provided. of any mortketels) or moker the provisions of ang hold any and all propety lnterest so
 murchased subject to ill of due provisions of (1hs A fectrent.
17.8 Gpvernigg Lap. This Agrecment will be governed and consirued in accordance with the laws of the State of Oregon.
17.9 Appurtepant Rights. This Agrecment slall be binding upon the parties hereto. their respective sucecssors autd assigns, and appurienant to the real property wheh is deseriberd herein.
17.10 pominant ani Servient Estates. Each right granted pursuant to the provisions of this Apreement are expressly or the bencelt of the property described above. The property so benefted shati be dee dominant estate and the puperty bitiotened by !le oblggetons shath be the servent estate.
17.11 Status Certificate. Information. Willun twenty (20) days after recelpt of a writien request, a party shall promply deliver a written status cerificate to
 chech and (im whether (to the best of the party's knowledge the other party is compliance with its ob
reasonably remuested.
17.12 Notices. Notices given under this Agreement shatl be in wriling and will be deetued given andi effective three (3) business days iffer bethg depostied in amd will be deemed piven ande effective and sent by reglstered or cerumed mall to the ouner Une U.S. Malls, postade prepald, and sent by regher notice to each other parly of its address for nolice by writicon notice to the ollar party. In we absence of suth notice of

17.13 Amendments. Exceplas otherwise sel forlf lerein. this
17.13 Amendments. Exded, or terminated except by the wrillen Agrement may not be modified. amended, or terminated except by
agreement on both parties. \hat{A} party may watve one or more of is right thls gigeement in writing sleneed by the party, and such writng ocedis Agrectuent shall be
 bladan inless signed Connty in wheli the Development is located.
17.14 Effect of Invalidation. If any provision of this Ayrecment is held to be invaltd or unenforceable for any reason, tue validity of the remaining provistons of Uuts Agreement shall not be affected thereby.
17.15 Counterparts. Thls Agreement may be executed simultancously or separately in two or more comenterparts. each of whith shall be deemed an original. or separ oflath logether shall constltute one and the same Agrecment.

IN WITNESS WHEREOF. the parties have caused this instrument to be thly executed as of the day and year first written above.
DEVELOPER:

WITNESS:

McDonald's:

WITNESS:

STATE OF OREGON I ss
Commty of Clackanlas ,

IN WITNESS WHEREOF, I have herennder set my hand and affixed my official seal the day and year first above written.

STATE OF ILLINOIS)

County or Dupage ; ss.

On this 141 h day of September, 1995. personally appeared before me Joseph R. Thomas, known to me to be the Assistant Vice President of MeDONALD'S on behalf of the corporation by dis authority duly given, and acknowledged the sate instrument to be the voluntary act and deed of said corporation.

IN WITNESS WHEREOF. I have hereunto set my hand and affixed my official seal die day and year first above written.

GRFICIALSEAL
PATRCIA A VACCAKO
NOTARY pUBLIC STATE OF ILLINOIS
MY COMMISSION EXT. OCT B, 1997

 Notary litibic in and for the
State of tllinols
My commission expires: October 8, 1997

95-056837
STATE OM AS COUNTY
CLACKA and placed in the publ y
 RECEIPT A AND FEE: $0 / 18 / 95$ OS: gate arid time f man, county clerk JOHN KAUFMAN.
*. 9

PC-5 TVFR COMMENTS

Tualatin Valley Fire \& Rescue

December 6, 2018

Jennifer Arnold
Associate Planner
City of West Linn
22500 Salamo Road
West Linn, Oregon 97068

Re: DR-18-08 New Commercial buildings, 2180 8 $^{\text {th }}$ Court
 Tax Lot I.D: 21E35D 00903

Jennifer,
Thank you for the opportunity to review the proposed application surrounding the above named development project. These notes are provided in regards to the application submitted to the City of West Linn on
September 18, 2018. There may be more or less requirements needed based upon the final project design, however, Tualatin Valley Fire \& Rescue will endorse this proposal predicated on the following criteria and conditions of approval.

FIRE APPARATUS ACCESS:

1. FIRE APPARATUS ACCESS ROAD DISTANCE FROM BUILDINGS AND FACILITIES: Access roads shall be within 150 feet of all portions of the exterior wall of the first story of the building as measured by an approved route around the exterior of the building or facility. An approved turnaround is required if the remaining distance to an approved intersecting roadway, as measured along the fire apparatus access road, is greater than 150 feet. (OFC 503.1.1)
2. DEAD END ROADS AND TURNAROUNDS: Dead end fire apparatus access roads in excess of 150 feet in length shall be provided with an approved turnaround. Diagrams can be found in the corresponding guide that is located at http://www.tvfr.com/DocumentCenter/View/1296. (OFC 503.2.5 \& D103.1) The provided site plan does not appear to meet the above requirements. Please provide an approved turnaround.
3. FIRE APPARATUS ACCESS ROAD EXCEPTION FOR AUTOMATIC SPRINKLER PROTECTION: When buildings are completely protected with an approved automatic fire sprinkler system, the requirements for fire apparatus access may be modified as approved by the Fire Marshal. (OFC 503.1.1)
4. FIRE APPARATUS ACCESS ROAD WIDTH AND VERTICAL CLEARANCE: Fire apparatus access roads shall have an unobstructed driving surface width of not less than 20 feet (26 feet adjacent to fire hydrants (OFC D103.1)) and an unobstructed vertical clearance of not less than 13 feet 6 inches. (OFC 503.2.1 \& D103.1)
5. NO PARKING SIGNS: Where fire apparatus roadways are not of sufficient width to accommodate parked vehicles and 20 feet of unobstructed driving surface, "No Parking" signs shall be installed on one or both sides of the roadway and in turnarounds as needed. Signs shall read "NO PARKING - FIRE LANE" and shall be installed with a clear space above grade level of 7 feet. Signs shall be 12 inches wide by 18 inches high and shall have red letters on a white reflective background. (OFC D103.6)
[^11]South Operating Center
Training Center
8445 SW Elligsen Road
12400 SW Tonquin Road
Wilsonville, Oregon
Sherwood, Oregon
6. NO PARKING: Parking on emergency access roads shall be as follows (OFC D103.6.1-2):

1. 20-26 feet road width - no parking on either side of roadway
2. $26-32$ feet road width - parking is allowed on one side
3. Greater than 32 feet road width - parking is not restricted
4. PAINTED CURBS: Where required, fire apparatus access roadway curbs shall be painted red (or as approved) and marked "NO PARKING FIRE LANE" at 25 foot intervals. Lettering shall have a stroke of not less than one inch wide by six inches high. Lettering shall be white on red background (or as approved). (OFC 503.3) Tualatin Valley Fire \& Rescue will consult on required fire lane markings once a final site circulation plan is approved.
5. FIRE APPARATUS ACCESS ROADS WITH FIRE HYDRANTS: Where a fire hydrant is located on a fire apparatus access road, the minimum road width shall be 26 feet and shall extend 20 feet before and after the point of the hydrant. (OFC D103.1)
6. SURFACE AND LOAD CAPACITIES: Fire apparatus access roads shall be of an all-weather surface that is easily distinguishable from the surrounding area and is capable of supporting not less than 12,500 pounds point load (wheel load) and 75,000 pounds live load (gross vehicle weight). Documentation from a registered engineer that the final construction is in accordance with approved plans or the requirements of the Fire Code may be requested. (OFC 503.2.3)
7. TURNING RADIUS: The inside turning radius and outside turning radius shall not be less than 28 feet and 48 feet respectively, measured from the same center point. (OFC 503.2.4 \& D103.3)
8. ANGLE OF APPROACH/GRADE FOR TURNAROUNDS: Turnarounds shall be as flat as possible and have a maximum of 5% grade with the exception of crowning for water run-off. (OFC 503.2.7 \& D103.2)
9. ACCESS DURING CONSTRUCTION: Approved fire apparatus access roadways shall be installed and operational prior to any combustible construction or storage of combustible materials on the site. Temporary address signage shall also be provided during construction. (OFC 3309 and 3310.1)
10. TRAFFIC CALMING DEVICES: Shall be prohibited on fire access routes unless approved by the Fire Marshal. (OFC 503.4.1). Traffic calming measures linked here: http://www.tvfr.com/DocumentCenter/View/1578

FIREFIGHTING WATER SUPPLIES:

14. COMMERCIAL BUILDINGS - REQUIRED FIRE FLOW: The minimum fire flow and flow duration shall be determined in accordance with OFC Table B105.2. The required fire flow for a building shall not exceed the available GPM in the water delivery system at 20 psi residual. (OFC B105.3)
Note: OFC B106, Limiting Fire-Flow is also enforced, except for the following:

- The maximum needed fire flow shall be 3,000 GPM, measured at 20 psi residual pressure.
- Tualatin Valley Fire \& Rescue does not adopt Occupancy Hazards Modifiers in section B105.4-B105.4.1

15. FIRE FLOW WATER AVAILABILITY: Applicants shall provide documentation of a fire hydrant flow test or flow test modeling of water availability from the local water purveyor if the project includes a new structure or increase in the floor area of an existing structure. Tests shall be conducted from a fire hydrant within 400 feet for commercial projects, or 600 feet for residential development. Flow tests will be accepted if they were performed within 5 years as long as no adverse modifications have been made to the supply system. Water availability information may not be required to be submitted for every project. (OFC Appendix B) Adequate fire flow will need to be verified.

FIRE HYDRANTS:

16. FIRE HYDRANTS - COMMERCIAL BUILDINGS: Where a portion of the building is more than 400 feet from a hydrant on a fire apparatus access road, as measured in an approved route around the exterior of the building, on-site fire hydrants and mains shall be provided. (OFC 507.5.1)

- This distance may be increased to 600 feet for buildings equipped throughout with an approved automatic sprinkler system.
- The number and distribution of fire hydrants required for commercial structure(s) is based on Table C105.1, following any fire-flow reductions allowed by section B105.3.1. Additional fire hydrants may be required due to spacing and/or section 507.5 of the Oregon Fire Code.
Fire hydrant spacing will need to be verified.

17. FIRE HYDRANT(S) PLACEMENT: (OFC C104)

- Existing hydrants in the area may be used to meet the required number of hydrants as approved. Hydrants that are up to 600 feet away from the nearest point of a subject building that is protected with fire sprinklers may contribute to the required number of hydrants. (OFC 507.5.1)
- Hydrants that are separated from the subject building by railroad tracks shall not contribute to the required number of hydrants unless approved by the Fire Marshal.
- Hydrants that are separated from the subject building by divided highways or freeways shall not contribute to the required number of hydrants. Heavily traveled collector streets may be considered when approved by the Fire Marshal.
- Hydrants that are accessible only by a bridge shall be acceptable to contribute to the required number of hydrants only if approved by the Fire Marshal.

18. PRIVATE FIRE HYDRANT IDENTIFICATION: Private fire hydrants shall be painted red in color. Exception: Private fire hydrants within the City of Tualatin shall be yellow in color. (OFC 507)
19. FIRE HYDRANT DISTANCE FROM AN ACCESS ROAD: Fire hydrants shall be located not more than 15 feet from an approved fire apparatus access roadway unless approved by the Fire Marshal. (OFC C102.1)
20. REFLECTIVE HYDRANT MARKERS: Fire hydrant locations shall be identified by the installation of blue reflective markers. They shall be located adjacent and to the side of the center line of the access roadway that the fire hydrant is located on. In the case that there is no center line, then assume a center line and place the reflectors accordingly. (OFC 507)
21. FIRE DEPARTMENT CONNECTION (FDC) LOCATIONS: FDCs shall be located within 100 feet of a fire hydrant (or as approved). Hydrants and FDC's shall be located on the same side of the fire apparatus access roadway or drive aisle, fully visible, and recognizable from the street or nearest point of the fire department vehicle access or as otherwise approved. (OFC 912.2.1 \& NFPA 13)

- Fire department connections (FDCs) shall normally be located remotely and outside of the fall-line of the building when required. FDCs may be mounted on the building they serve, when approved.
- FDCs shall be plumbed on the system side of the check valve when sprinklers are served by underground lines also serving private fire hydrants.

BUILDING ACCESS AND FIRE SERVICE FEATURES

22. KNOX BOX: A Knox Box for building access may be required for structures and gates. See Appendix B for further information and detail on required installations. Order via www.tvfr.com or contact TVF\&R for assistance and instructions regarding installation and placement. (OFC 506.1)
23. FIRE PROTECTION EQUIPMENT IDENTIFICATION: Rooms containing controls to fire suppression and detection equipment shall be identified as "Fire Control Room." Signage shall have letters with a minimum of 4 inches high with a minimum stroke width of $1 / 2$ inch, and be plainly legible, and contrast with its background. (OFC 509.1)
24. PREMISES IDENTIFICATION: New and existing buildings shall have approved address numbers; building numbers or approved building identification placed in a position that is plainly legible and visible from the street or road fronting the property, including monument signs. These numbers shall contrast with their background. Numbers shall be a minimum of 4 inches high with a minimum stroke width of $1 / 2$ inch. (OFC 505.1)

If you have questions or need further clarification, please feel free to contact me at 503-259-1510.
Sincerely,

Jason Arn
Deputy Fire Marshal II
Email Jason.arn@tvfr.com

Cc: file

A full copy of the New Construction Fire Code Applications Guide for Commercial and Multi-Family Development is available at http://www.tvfr.com/DocumentCenter/View/1296

Tualatin Valley Fire \& Rescue

December 20, 2018

Jennifer Arnold
Associate Planner
City of West Linn
22500 Salamo Road
West Linn, Oregon 97068

Re: DR-18-08 New Commercial buildings, 2180 8 $^{\text {th }}$ Court (Amended from 12/6/18 version)
 Tax Lot I.D: 21E35D 00903

Jennifer,
Thank you for the opportunity to review the proposed application surrounding the above named development project. These notes are provided in regards to the application submitted to the City of West Linn on
September 18, 2018 and referencing the revised site plan dated December 19, 2018. There may be more or less requirements needed based upon the final project design, however, Tualatin Valley Fire \& Rescue will endorse this proposal predicated on the following criteria and conditions of approval.

To further clarify, the following comments are in reference only to the project where it leaves the public right of way - past the apron of the existing public cul-de-sac and enters on to the private property.

FIRE APPARATUS ACCESS:

1. FIRE APPARATUS ACCESS ROAD DISTANCE FROM BUILDINGS AND FACILITIES: Access roads shall be within 150 feet of all portions of the exterior wall of the first story of the building as measured by an approved route around the exterior of the building or facility. An approved turnaround is required if the remaining distance to an approved intersecting roadway, as measured along the fire apparatus access road, is greater than 150 feet. (OFC 503.1.1) The revised site plan dated 12/19/18 meets the above requirements.
2. DEAD END ROADS AND TURNAROUNDS: Dead end fire apparatus access roads in excess of 150 feet in length shall be provided with an approved turnaround. Diagrams can be found in the corresponding guide that is located at http://www.tvfr.com/DocumentCenter/View/1296. (OFC 503.2.5 \& D103.1) Current plan meets. The revised site plan dated 12/19/18 meets the above requirements.
3. FIRE APPARATUS ACCESS ROAD WIDTH AND VERTICAL CLEARANCE: Fire apparatus access roads shall have an unobstructed driving surface width of not less than 20 feet (26 feet adjacent to fire hydrants (OFC D103.1)) and an unobstructed vertical clearance of not less than 13 feet 6 inches. (OFC 503.2.1 \& D103.1)
4. NO PARKING SIGNS: Where fire apparatus roadways are not of sufficient width to accommodate parked vehicles and 20 feet of unobstructed driving surface, "No Parking" signs shall be installed on one or both sides of the roadway and in turnarounds as needed. Signs shall read "NO PARKING - FIRE LANE" and shall be installed with a clear space above grade level of 7 feet. Signs shall be 12 inches wide by 18 inches high and shall have red letters on a white reflective background. (OFC D103.6)
[^12]South Operating Center
Training Center
8445 SW Elligsen Road
12400 SW Tonquin Road
Wilsonville, Oregon
Sherwood, Oregon
5. NO PARKING: Parking on emergency access roads shall be as follows (OFC D103.6.1-2):

1. 20-26 feet road width - no parking on either side of roadway
2. 26-32 feet road width - parking is allowed on one side
3. Greater than 32 feet road width - parking is not restricted
4. PAINTED CURBS: Where required, fire apparatus access roadway curbs shall be painted red (or as approved) and marked "NO PARKING FIRE LANE" at 25 foot intervals. Lettering shall have a stroke of not less than one inch wide by six inches high. Lettering shall be white on red background (or as approved). (OFC 503.3) Tualatin Valley Fire \& Rescue will consult on required fire lane markings once a final site circulation plan is approved.
5. FIRE APPARATUS ACCESS ROADS WITH FIRE HYDRANTS: Where a fire hydrant is located on a fire apparatus access road, the minimum road width shall be 26 feet and shall extend 20 feet before and after the point of the hydrant. (IFC D103.1)
6. SURFACE AND LOAD CAPACITIES: Fire apparatus access roads shall be of an all-weather surface that is easily distinguishable from the surrounding area and is capable of supporting not less than 12,500 pounds point load (wheel load) and 75,000 pounds live load (gross vehicle weight). Documentation from a registered engineer that the final construction is in accordance with approved plans or the requirements of the Fire Code may be requested. (OFC 503.2.3)
7. TURNING RADIUS: The inside turning radius and outside turning radius shall not be less than 28 feet and 48 feet respectively, measured from the same center point. (OFC 503.2.4 \& D103.3)
8. ANGLE OF APPROACH/GRADE FOR TURNAROUNDS: Turnarounds shall be as flat as possible and have a maximum of 5% grade with the exception of crowning for water run-off. (OFC 503.2.7 \& D103.2)
9. ACCESS DURING CONSTRUCTION: Approved fire apparatus access roadways shall be installed and operational prior to any combustible construction or storage of combustible materials on the site. Temporary address signage shall also be provided during construction. (OFC 3309 and 3310.1)
10. TRAFFIC CALMING DEVICES: Shall be prohibited on fire access routes unless approved by the Fire Marshal. (OFC 503.4.1). Traffic calming measures linked here: http://www.tvfr.com/DocumentCenter/View/1578

FIREFIGHTING WATER SUPPLIES:

13. Fire flow, hydrant public/private number and placement, Fire Department Connections), etc. may be required based on final building design. These items must be reviewed and approved before the Building Permit Issuance. Details can be located at http://www.tvfr.com/DocumentCenter/View/1296.

If you have questions or need further clarification, please feel free to contact me at 503-259-1510.
Sincerely,

Jason Ann

Jason Afn
Deputy Fire Marshal II
Email Jason.arn@tvfr.com

Cc: file

A full copy of the New Construction Fire Code Applications Guide for Commercial and Multi-Family Development is available at http://www.tvfr.com/DocumentCenter/View/1296

PC-6 ODOT COMMENTS

ODOT Response

Project Name: Shari's Restaurant Redevelopment	Applicant: Ed Bruin
Jurisdiction: City of West Linn	Jurisdiction Case \#: DR-18-08
Site Address: 2180 8th Court, West Linn, OR	State Highway: I-205

The site of this proposed land use action is in the vicinity of the I-205/10 ${ }^{\text {th }}$ Street Interchange. As discussed during the City of West Linn's most recent Transportation System Plan (TSP) update, ODOT has interests along $10^{\text {th }}$ Street between the Blankenship Road/Salamo Road and Willamette Falls Drive intersections. ODOT has permitting authority for the interchange facility and an interest in ensuring that this proposed land use is compatible with its safe and efficient operation.

COMMENTS/FINDINGS

There are a number of projects in the City of West Linn's TSP that are related to the I-205/10 ${ }^{\text {th }}$ Street Interchange area, including, but not limited to, Project Numbers M18 through M24.
TSP Project Number M19: $8^{\text {th }}$ Court
As identified in the City's TSP, Project Number M19 is directly relevant to this property and development. Project Number M19 identifies establishment of:
"... a crossover easement from the $8^{\text {th }}$ Court terminus to Willamette Falls Drive when development occurs to preserve ingress and egress for existing and future development and provide relief to the $8^{\text {th }}$ Court $/ 10^{\text {th }}$ Street intersection and secondary emergency access." (See City of West Linn Transportation System Plan, Table 24: Motor Vehicle Plan Projects)

This property and its redevelopment will be the first in the sequence of development to achieve this project. As noted by the applicant during the pre-application meeting an existing easement is in place. The applicant, City, and ODOT should work together to ensure that the existing easement meets the intent of this project by (1) providing public ingress-egress access through the properties, and (2) is adequately designed for safe and efficient access. As related to Project Number M19, this development and its outcome will set a precedence for future development to the east.

ODOT RECOMMENDED LOCAL CONDITIONS OF APPROVAL

Verify and/or establish necessary public crossover easements to achieve City of West Linn's Transportation System Plan Project Number M19. Further coordination with the City and ODOT may be required.

Signs:
$\boxtimes \quad$ Off-premises signs require a permit through the ODOT Outdoor Advertising Sign program (ORS 377.725). To determine whether or not a sign will be on or off premises contact Jill Hendrickson (ODOT Right-of-Way 503.986.3635).
$\boxtimes \quad$ Private signs are not permitted in the state highway right of way (ORS 377.700-377.840).
Please send a copy of the Notice of Decision including conditions of approval to:

ODOT Region 1 Planning
Development Review
123 NW Flanders St
Portland, OR 97209
Region1_DEVREV_Applications@odot.state.or.us

Development Review Planner: Marah Danielson	503.731 .8258 marah.b.danielson @odot.state.or.us
Traffic Contact: Avi Tayar, P.E.	503.731 .8221
District Contact: James Nelson	971.673 .2942

[^0]: Test No. LTL23422P25 tested in accordance
 with IESNA LM-79-08.

[^1]: Recommended

[^2]: Abbreviations
 qt :
 $\mathrm{I}_{\mathrm{c}}:$
 $\mathrm{FS}:$
 Total cone resistance (cone resistance q_{c} corrected for pore water effects)
 FS: Soil Behaviour Type Index
 Volumentric strain: Post-liquefaction volumentric strain

[^3]: Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

[^4]: ${ }^{1}$ Since the Site Class is D and $S_{1} \geq 0.2 \mathrm{~g}$, site-specific ground motions might be required. See Section 11.4.7 of the 2015 NEHRP Provisions.

[^5]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^6]: Source: TRIP GENERATION, Tenth Edition

[^7]: Source: TRIP GENERATION, Tenth Edition

[^8]: ${ }^{1}$ Institute of Transportation Engineers (ITE), Trip Generation Manual, 10 ${ }^{\text {th }}$ Edition, 2017.

[^9]:

[^10]: 5. Owaer's Responglbilitles Generady. Each Owner coveminnis aud agrecs to mantain in rood condition and repair, or canse to be mannatined and kept fin repair.

 oblyation of Owner to malntain, repair and keep In repair the parking eirtveways
 other casement areas shall, whinont llmithat Ue generallty thereof, Inclide the following:
 (A) Matntadning the surfinces at such frades and levels that they may
 landscaping or one-Inch asplatit dusi cap. from and after the date of initial alevelopinent of the lot.
 (B) Renoving all papers, debris, snow, ice, Inth and refinse and thoroumhly sweephing the areas to the extent reasonalily necessity to keep these areas in a neat. clean and orderly condition.
 (C) Pacing. keeping in repaif and rephacing any necessary approprate
 replactos. when necessary, artinclal lighting facilles as shall be reasomably regulred.
 (D) Mafntaladng any perhneler walls ln good conrlition and slate of repars.
 (E) Matntalning all landscaped areas, making such replacements of
 adderpately weeded, furtiltied and watered.
 6. Barriers. No fences, walls or barriers to aceess will be erected on the common boumbary lmes lyetween live Lots that woutd mareasombly theriere witit ium
 between the Lots or the tise of the Easement Areas, without die prior consent of each Owner having rights of use of sheli Easemem: Areas.

 Notwithstandmat the foregolng restifelion on bartiers, an Owner may
 install curbs, fences and landecaphar on its Lot In order to deflne the Lot boundarles. provided suci installations will be made in a mamer that does not mareasonably interfere with sitelifree fow and passinge of traffic and parking.
 7. Parking: Limitation on Use of Off-Site Parling by Employecg. Eicli Owner will mainlaln parking spaces suflicient 10 salisfy applicable code, zondug and other legal requirements with respece to the developmatert of improvements on jts dot. No Owner will have the right to tise any parking spaces oulside of tls own Lot for punposes of parking by enployces of such Owner or of the lenant(s). sulbenanl(s) and occupaint(s) of lls lal.
 8. Rules and Regulations. Each Owner siall bave Une right to enact reasomable rufes conceming the condincl and operation of the parking areas and spaces. drivewnys and other casement areas siluated on ils Lot.
 9. Compliance mith дaws and Reguiaions - fnoemиifichíñ. Eich Owner covenmals and agrees, with respect io lls own Lol(s). In comply with all laws. moles, regulations and requilements of all puble andiorlles and to findemalfy, defind

 (o, costs and atetorncys' fees) anditue ont of, or in any way related (o, its fallure to

[^11]: Command \& Business Operations Center and North Operating Center
 11945 SW 70th Avenue
 Tigard, Oregon 97223-9196
 503-649-8577

[^12]: Command \& Business Operations Center and North Operating Center
 11945 SW 70th Avenue
 Tigard, Oregon 97223-9196
 503-649-8577

